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ABSTRACT

Retrospective inference through Bayesian smoothing is indispensable in geophysics, with crucial ap-

plications in ocean and numerical weather estimation, climate dynamics, and Earth system modeling.

However, dealing with the high-dimensionality and nonlinearity of geophysical processes remains a major

challenge in the development of Bayesian smoothers. Addressing this issue, a novel subspace smoothing

methodology for high-dimensional stochastic fields governed by general nonlinear dynamics is obtained.

Building on recent Bayesian filters and classic Kalman smoothers, the fundamental equations and forward–

backward algorithms of newGaussianMixtureModel (GMM) smoothers are derived, for both the full state

space and dynamic subspace. For the latter, the stochastic Dynamically Orthogonal (DO) field equations

and their time-evolving stochastic subspace are employed to predict the prior subspace probabilities.

Bayesian inference, both forward and backward in time, is then analytically carried out in the dominant

stochastic subspace, after fitting semiparametric GMMs to joint subspace realizations. The theoretical

properties, varied forms, and computational costs of the new GMM smoother equations are presented and

discussed.

1. Introduction

Data assimilation traditionally refers to the pro-

cess of quantitatively estimating the state of a time-

varying system using all appropriate modeled and

measured information available. In geophysical ap-

plications, such as in meteorology and oceanogra-

phy, the primary purpose of data assimilation has

been to accurately estimate the flows in the atmo-

sphere and the ocean (Ghil and Malanotte-Rizzoli

1991; Bennett 1992; Wunsch 1996; Robinson et al.

1998). In these systems, the available information

essentially consists of the physical laws that govern

the flows, and the indirect, noisy measurements

gathered by the sensors observing the system (Talagrand

1997; Kalnay 2003; Daley 1993). In practice, the former

is usually available through forecasts and predictions

from computational models. Probabilistic frameworks

for data assimilation (Van Leeuwen and Evensen 1996)

allow us to naturally combine the information arising

from noisy measurements with those given by model

predictions and obtain a statistically accurate estimate

of the variables of interest. In a Bayesian setting, this

combination amounts to accurately computing the

posterior distribution of the state variables, conditioned

on the observations (Särkkä 2013).

Bayesian filtering and smoothing are two classes of

data assimilation problems that differ in their esti-

mation timeline. While filters in their basic form only

estimate the current state of the system given all the

past measurements, smoothers are used to re-

construct the entire history of states prior to the

current time using measurements distributed across

time, both past and future (Gelb 1974; Jazwinski

2007). Albeit more computationally challenging than

filtering, smoothing is applicable to a much broader

range of problems. These include generalized in-

versions (Bennett 1992) for state estimation and the

related variational assimilation schemes (Dimet and

Talagrand 1986; Sasaki 1970), adaptive sampling for

autonomous vehicles (Choi and How 2010, 2009), sto-

chastic optimal control (Lee and Campbell 2015; Hsieh

and Chirikjian 2014), target tracking (Crassidis and

Junkins 2011; Thrun et al. 2005), multiresolution imaging

(Willsky 2002) and robotic navigation (Kaess et al. 2012;
Corresponding author e-mail: Pierre F. J. Lermusiaux, pierrel@

mit.edu

JULY 2017 LOLLA AND LERMUS IAUX 2743

DOI: 10.1175/MWR-D-16-0064.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/156872561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pierrel@mit.edu
mailto:pierrel@mit.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


Särkkä 2013), to name a few. In all these applica-

tions, since a smoother utilizes more information

through future observations, it is expected to yield

better estimates than a filter. Smoothing is essential

for several geophysical applications, including at-

mospheric sciences and meteorology (Cohn et al.

1994; Evensen and Van Leeuwen 2000; Khare et al.

2008), as well as ocean modeling (e.g., Lermusiaux

and Robinson 1999). Reanalyses especially benefit

from smoothing since observations that are sub-

sequent to the estimated states are then also used

(e.g., Lermusiaux et al. 2002; Stammer et al. 2002;

Moore et al. 2004; Wunsch and Heimbach 2007; Di

Lorenzo et al. 2007; Cosme et al. 2012). Other geo-

physical applications that benefit from smoothing

include the estimation of atmospheric chemical

sources (Bocquet 2005), adjustment of ocean forc-

ings (Skandrani et al. 2009), and estimation of

boundary conditions (Barth et al. 2010).

The landscape of smoothing for linear Gaussian

systems is well established. The Kalman smoother

then provides the optimal solution, in a Bayesian

sense (Gelb 1974). Nonetheless, several optimal

linear smoother algorithms exist. These include the

fixed-point smoother, the fixed-lag smoother, the

fixed-interval smoother (Kitagawa 1987), the Rauch–

Tung–Striebel (RTS) smoother (Rauch et al. 1965;

Raanes 2016), and the two-filter smoother (Kitagawa

1994). These smoothers are all based on Kalman’s

hypotheses (Kalman 1960) and the equations of the

Kalman filter and, beyond their algorithmic differ-

ences, differ from the filter only by handling cross

covariances in time to account for future observa-

tions (Cosme et al. 2012). They all yield strictly

equivalent results when the linear Gaussian as-

sumptions hold. However, this is rarely the case in

geophysical systems, well known to be highly non-

linear and chaotic (Miller et al. 1999). As a result,

ocean and atmospheric fields can develop complex,

far-from-Gaussian statistics (e.g., Lermusiaux 2006).

Nonlinearities thus not only affect forecasts, but also

the melding of information from future observations

with state variables in the past. Therefore, smoothing

schemes should fully respect the nonlinearity of the

known dynamics as they estimate the effect of ob-

servations through time.

The relative simplicity of the Kalman framework

has prompted the development of similar types of

smoothers, but applicable to high-dimensional non-

linear problems in geophysics (Bocquet et al. 2010).

Ensemble-based methods, in particular, stand out.

These include the ensemble Kalman smoother (EnKS;

Evensen and Van Leeuwen 2000) and the error

subspace smoother (ESSE; Lermusiaux and Robinson

1999), as well as fast ensemble smoothers (Ravela and

McLaughlin 2007). These schemes represent the state

variables in the form of Monte Carlo particles, and

advance them in time using the nonlinear governing

equations. This allows the exploration and exploita-

tion of probabilistic structures beyond the basic

Gaussian representation. However, these methods

typically perform Gaussian updates, either for each

particle in the full state space (EnKS) or for the mean

in a reduced subspace (ESSE). Even though these

Gaussian updates ignore the higher-order moments of

the distribution, ensemble smoothers are popular be-

cause of their relative simplicity. For other linear

smoother algorithms extended to geophysical appli-

cations, we refer to Cohn et al. (1994) and Cosme

et al. (2010).

Sequential Monte Carlo (SMC) smoothers or parti-

cle smoothers are a class of Monte Carlo smoothing

methods that sample successively from a sequence of

target smoothed probability densities (Doucet and

Johansen 2009). These schemes are not always related

to Kalman-based approaches but they aim to overcome

the limitations of a Gaussian update while retaining the

ability to capture the non-Gaussian state features and

also utilize the nonlinear dynamics. For example,

Bresler (1986) extends the traditional two-filter

smoother to a nonlinear, non-Gaussian setting. Simi-

larly, Godsill et al. (2004) and Briers et al. (2010) de-

velop RTS-style forward–backward smoothers for

general state-space models. These schemes are as-

ymptotically optimal, in the limit of infinite particles.

For more on their implementations, we also refer to

Klaas et al. (2006).

Even though particle smoothers are attractive be-

cause of their asymptotic optimality in nonlinear, non-

Gaussian settings, several challenges remain for their

use in geophysical systems. Amajor challenge is the high

dimensionality (today, 106–1012) of state vectors com-

monly encountered in oceanic and atmospheric applica-

tions. Resolving such high-dimensional state vectors

requires a prohibitively large set of particles. Moreover, in

many applications, particlemethods can suffer from sample

impoverishment, a phenomenon in which ensembles col-

lapse into a handful of heavily weighted samples. Implicit

particle smoothers (Weir et al. 2013; Atkins et al. 2013) are

outcomes of recent efforts to address such issues. A related

interest in smoothing has been the approximation of dis-

tributions by Gaussian Mixture Models (GMMs), as ex-

plored in Lee and Campbell (2015), Tagade et al. (2014),

and Vo et al. (2012).

To address the challenges of high dimensionality, un-

certainty quantification can focus on the time-dependent
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dominant error subspace (Lermusiaux 1997), thereby

allocating computational resources to the proba-

bilistic states that matter most. The Dynami-

cally Orthogonal (DO) field equations (Sapsis and

Lermusiaux 2009, 2012) provide optimal reduced-

order differential equations to evolve this dominant

subspace forward in time, using the governing non-

linear dynamics (Feppon and Lermusiaux 2017).

Building on the recent GMM–DO filter (Sondergaard

and Lermusiaux 2013a), we first derive the funda-

mental equations of the full state-space, and subspace,

GMM smoothers. We then develop an RTS-style

implementation scheme for these non-Gaussian

smoothers, where filtering is carried out in the for-

ward pass using the state-space, or subspace, GMM

filter. Starting at the final observation time, smoothing

is then performed by propagating information back-

ward in time without linearizing the dynamics, while

also retaining the non-Gaussian GMM nature of the

joint state densities across time. For the optimal

reduced-order representation of high-dimensional

stochastic fields governed by nonlinear dynamics,

we finally obtain the equations for the GMM–DO

smoother, a particular case of subspace-GMM

smoothers. The GMM–DO smoother first uses the

GMM–DO filter to quantify uncertainty prior to

smoothing and then performs the GMM smoothing by

carrying out Bayes’s law analytically in the low-

dimensional, time-evolving DO subspace. Critically, un-

der the DO representation, the state-space GMM and

subspace GMM–DO smoothers are shown to be

equivalent.

This paper is structured as follows. In section 2, we

introduce the notation and state the smoothing

problem. Section 3 derives the core equations of the

state-space and subspace GMM smoothers. For the

GMM–DO smoother, we prove a key theorem that

shows the equivalence between Bayesian smoothing

performed in the full state space and that performed

in the reduced stochastic DO subspace. We then dis-

cuss the theoretical properties, computational costs,

and other forms of the smoothers. Conclusions and

future work are provided in section 4. Tables 1 and 2

summarize the notation and main derived equations.

The GMM–DO filter equations and schemes are

summarized in appendixes A and B. In a companion

paper (Lolla and Lermusiaux 2017), we illustrate

and validate the GMM–DO smoother. There, we

compare its performance to other smoothers, using

three complementary dynamical system applications:

a double-well diffusion experiment, reversible passive

tracer advection, and a simulated ocean flow exiting a

strait/estuary.

2. Notation and problem statement

a. Dynamical model

Let X(r, t; v): Rn 3 [0, T] / R be a continuous sto-

chastic field governed by a stochastic partial differential

equation (SPDE) with stochastic initial conditions and

boundary conditions:

›X(r, t;v)

›t
5L[X(r, t;v);v], t$ 0 (1a)

X(r, 0;v)5X
0
(r;v), and (1b)

B[X(r, t;v)]j
r5j

5 h(j, t;v), (1c)

where r and j, respectively, denote the interior and

boundary spatial coordinates; t is time; and v is a random

event. We use L[�] to represent a general nonlinear differ-

ential operator for the dynamics, and B is a linear dif-

ferential operator. The state variable X can, for example,

represent atmospheric, oceanic, or fluid flow fields.

Let X(t; v) denote the spatially discretized state

vector of the continuous fieldX(r, t; v), andNX denote

the dimensionality of the state space, that is, the size of

X(t; v). We use a bold roman font to denote vectors

and bold sans serif font for matrices. Uppercase letters

and symbols parameterized by v are random variables

and their corresponding lowercase counterparts de-

note specific realizations. We omit v in some cases

where no confusion is expected. Finally, a multivariate

Gaussian pdf with meanm and covariance§ is denoted

by N (�;m, §).

b. Observation model

We are provided access to indirect, noisy observations

of X(t; v) through the linear (or linearized) observation

model:

Y(t;v)5HX(t;v)1Y(t;v), Y(t;v);N (�; 0,R), (2)

where H is the observation matrix andY is a zero-mean,

uncorrelated Gaussian measurement noise with the co-

variancematrixR. Observations aremade at times tk, for

k5 1, 2, . . . ,K. For ease of notation, we denoteX(tk; v)

and Y(tk; v) by Xk and Yk, respectively. Posterior

quantities (i.e., conditioned on the observations) are

also indicated through subscripts; for example, Xk con-

ditioned on observations Y1, Y2, . . . , Yl is denoted by

Xkj1:l. With this notation, filtering and smoothing then

amount to computing Xkj1:k and Xkj1:l, respectively, for
1 # k # l # K. Our goal here is to determine the

smoothed quantities Xkj1:K, for all k 5 1, 2, . . . , K 2 1.

Note that in the above setup, we have assumed without

loss of generality, that smoothing times coincide with the
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TABLE 1. Table of notation.

Symbol Type Description

Scalars

t Time

v Experiment number

i 2 N Stochastic subspace index

j 2 N Mixture component index

n 2 N Dimension of spatial coordinate

NX 2 N Dimension of discrete state vector X(t; v)

Nobs 2 N Dimension of observation vector Y(t; v)

s 2 N Dimension of stochastic space

Nr 2 N No. of (Monte Carlo) realizations

M 2 N No. of mixture components

r 2{1, 2, . . . ,Nr} Realization index

K 2 N No. of smoothing indices

k, l 2{1, 2, . . . , K} Smoothing indices

tk 2 R Time at smoothing index k

pk
j 2 R

1 jth component weight of the prior forecast GMM pdf, pFk jY1:k21

p̂ j
k 2 R

1 jth component weight of the posterior filtered GMM pdf, pFk jY1:k

X(r, t; v) 2 R Continuous stochastic field

x(r, t) 2 R Continuous mean field [mean of X(r, t; v)]
~xi(r, t) 2 R Continuous DO mode i: orthonormal basis for stochastic subspace

Fi(t; v) 2 R Stochastic coefficient i

fi
(r)(t) 2 R Realization No. r of stochastic coefficient i

Vectors

r 2 R
n Spatial coordinate

F(t; v) 2 R
s Vector of stochastic coefficients, [F1(t; v), F2(t; v), . . . , Fs(t; v)]

T

Fk(v) 2 R
s Vector of stochastic coefficients at time tk

f(r)(t) 2 R
s Realization r of the vector of stochastic coefficients, [f

(r)
1 (t),f

(r)
2 (t), . . . ,f(r)

s (t)]T

f
(r)
k 2 R

s Realization r of the random vector of stochastic coefficients at time tk
X(t; v) 2 R

NX State vector [spatially discretized X(r, t; v)]

x(t) 2 R
NX Discrete mean field [mean of X(t; v)]

~xi(t) 2 R
NX Discrete DO mode i, forming the orthonormal basis for stochastic subspace

xj(t) 2 R
NX Mean vector of mixture component j in state space

x(r)(t) 2 R
NX Realization number r in state space

x
(r)
k 2 R

NX Realization number r in state space at time tk
mj(t) 2 R

s Mean vector of mixture component j in stochastic subspace

Y 2 R
Nobs Observation vector

y 2 R
Nobs Realization of observation vector Y

Y 2 R
Nobs Observation noise

y 2 R
Nobs Realization of observation noise

Ckj1:l Any random vector C(tk; v) conditioned on observations Y1:l

Ck,k11j1:l Vector formed by augmenting Ck11j1:l to Ckj1:l

Matrices

X 2 R
NX3s Matrix of orthonormal DO basis vectors [~x1, ~x2, . . . , ~xs]

P 2 R
NX3NX Covariance matrix in state space

Sj 2 R
s3s Covariance matrix of mixture component j in the stochastic subspace

Pj 2 R
NX3NX Covariance matrix of mixture component j in the state space

R 2 R
Nobs3Nobs Covariance matrix of observation noise

H 2 R
Nobs3NX Observation matrix

Densities

pCk jY1:l The pdf of the vector C(tk; v) conditioned on observations Y1:l—filtering

(k 5 l), forecast (k . l), and smoothing (k , l)

pCk ,Cm jY1:l Joint pdf of vectors Ck and Cm conditioned on Y1:l

pCk jCk11,Y1:k The pdf of Ck, conditioned on both Ck11 and Y1:k
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times at which observations occur. All the key symbols

are listed in Table 1.

3. Subspace-GMM smoothers and the GMM–DO
smoother

a. Preliminaries

GMMsmoothers are a general class of nonlinear, non-

Gaussian smoothers that assume GMM distributions at

the assimilation step. Their uncertainty prediction

schemes to integrate the governing dynamics (1) and

their filtering and smoothing schemes to assimilate ob-

servations (2) must respect the nonlinearities in the

dynamics and capture the non-Gaussian statistics of the

system in the GMM sense. Their subspace-GMM ver-

sion employs reduced-order decompositions of the form

(3) for both the forecast–prior (Xk11j1:k) and filtered–

posterior (Xkj1:k) state vectors:

X
lj1:k(v)5 x

lj1:k 1X
l
F

lj1:k(v), l 2 fk, k1 1g, l#K,

k5 1, 2, . . . ,K ,

(3)

where xlj1:k denotes the mean of Xlj1:k(v), X l is an

NX 3 s matrix of orthonormal columns (modes) (i.e.,

XT
l X l 5 I), andFlj1:k(v) is a time-dependent s3 1 vector

of zero-mean stochastic coefficients (Table 1). The col-

umns of X l form an orthonormal basis for a time-

dependent s-dimensional stochastic subspace, whereas

the vectorFlj1:k(v) describes the randomness ofXlj1:k(v)
within that subspace. The stochastic vector Flj1:k(v) is
represented by its realizations, f

(r)
lj1:k, r 5 1, 2, . . . , Nr.

Since l has two values for each k,K, (3) denotes a total

of 2K 2 1 reduced-order decompositions. Finally, we

remark that if filtering at tk leads to data-driven

learning of the stochastic subspace and thus an in-

crease of its dimension (e.g., as in Lermusiaux 1999,

2007), Xk then corresponds to that larger learned fil-

tered subspace (i.e., 5Xkj1:k) and contains the forecast

subspace Xkj1:k21 by construction.

The requirement of the reduced-order decompositions

(3) is not very restrictive. In fact, most ensemble-based

schemes for data assimilation can be cast in this form.

In such schemes, the columns of X l correspond to

the (leading) singular vectors of the prior/posterior

ensemble spread matrix, and the elements of f
(r)
lj1:k are

the projections of the mean-removed state-space re-

alizations x
(r)
lj1:k 2 xlj1:k on to the columns of X l. Simi-

larly, some ensemble schemes directly provide a GMM

representation for the state variable (Hoteit et al. 2008).

In this paper and its companion (Lolla and Lermusiaux

2017), we emphasize the specific case of the

GMM–DO smoother, which uses the GMM–DO filter

(Sondergaard and Lermusiaux 2013a) for uncer-

tainty prediction and filtering. A summary of this fil-

ter, as well as its use of the Expectation-Maximization

(EM) algorithm and Bayesian Information Criterion

(BIC) to fit GMMs to DO subspace realizations, are

provided in appendixes A and B, respectively. None-

theless, the equations for subspace-GMM smoothing

that we derive are applicable to the many assimilation

schemes that satisfy (3).

In the RTS form, a subspace-GMM smoother starts at

the final observation time tK, uses the forecast–filtered

decompositions in (3), and marches backward in time

through each time tk, for k5K2 1,K2 2. . . . , 1. Its goal

is to compute a smoothed reduced-order decomposition

of the form

X
kj1:K(v)5 x

kj1:K 1X
k
F

kj1:K(v) , (4)

where xkj1:K is the mean of the smoothed state pdf

pXkjY1:K(� j y1:K) andFkj1:K(v) is the s-dimensional vector

of zero-mean smoothed stochastic coefficients that de-

scribe the randomness of Xkj1:K(v) within the subspace

spanned by the columns ofXk. For now, thematricesXk

are assumed to be unchanged by the observations col-

lected after tk. In other words, the smoothing process

does not change the filtered subspace at tk; of course, it

changes the stochastic coefficients Fkj1:K(v) and thus

the ensemble, but, beyond rotations, it does not change

the discrete modes given by the columns of Xk. This

point is further discussed in section 3f, along with smooth-

ing schemes that adapt the filtered subspace. As with the

filter, the smoothed stochastic coefficient vector Fkj1:K(v)
is represented by its realizations, denoted by f

(r)
kj1:K, for

r5 1, 2, . . . ,Nr. We also note that at the final observation

time tK (i.e., for k 5 K) the smoothed and filtered dis-

tributions [i.e., (4), with k 5 K] are identical, by

definition.

In what follows, we first provide the recursive equa-

tion for smoothing. Then, we derive the fundamental

GMM smoother updates in the full state space and in

the stochastic subspace through a k 1 1 4 k joint

subspace GMM fit and a backward-smoothing pass

for k 5 K 2 1, K 2 2, . . . , 1. Specifically, we derive

the Bayesian smoothing equations for the mean xkj1:K,
the GMM updates in the stochastic subspace, and

the corresponding realizations f
(r)
kj1:K representing

Fkj1:K(v). Within the GMM assumptions, these equa-

tions are exact.

b. The recursive equation for smoothing

We first derive an equation that relates pXkjY1:K(xk j y1:K),
the smoothed pdf at time tk, to that at time tk11. This re-

cursionwill laterbeused todevelop thebackward-smoothing
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pass. For any k 2 f1, 2, . . . , K 2 1g, the recursion is

based on the k 1 1 4 k joint smoothed pdf pXk,Xk11jY1:K

and its marginalization to Xk. Using the definition of

conditional pdfs, pXk ,Xk11jY1:K is written as the product

of the conditional pdf pXkjXk11,Y1:K and the marginal

smoothed pdf pXk11jY1:K. This yields

p
XkjY1:K

(x
k
j y

1:K
)5ð

p
XkjXk11,Y1:K

(x
k
j x

k11
, y

1:K
)p

Xk11jY1:K
(x

k11
j y

1:K
) dx

k11
.

(5)

Due to the Markovian property of the dynamics in (1a),

when conditioned onXk11 (the smoothed present state),

the future observations Yk11:K provide no additional

information on the past state Xk (Cosme et al. 2012).

Hence, the conditioning on Yk11:K may be dropped

from pXkjXk11,Y1:K; that is,

p
XkjXk11,Y1:K

(x
k
j x

k11
, y

1:K
)5p

XkjXk11,Y1:k
(x

k
j x

k11
, y

1:k
).

(6)

Substituting (6) into (5) yields the final form of the re-

cursive smoothing equation:

p
XkjY1:K

(x
k
j y

1:K
)5ð

p
XkjXk11,Y1:k

(x
k
j x

k11
, y

1:k
)p

Xk11jY1:K
(x

k11
j y

1:K
) dx

k11
.

(7)

The recursive equation (7) may be interpreted as

follows. Assuming that the (k 1 1)th smoothed state

pdf pXk11jY1:K(�j y1:K) and the k 4 k 1 1 conditional

pdf pXkjXk11,Y1:k(�j xk11, y1:k) can be sampled from, (7)

outlines a method for generating smoothed re-

alizations from pXkjY1:K(�j y1:K). Given any sample

x
(r)
k11j1:K drawn from the pdf pXk11jY1:K(�j y1:K), the cor-

responding smoothed sample x
(r)
kj1:K of pXkjY1:K(�j y1:K) is

obtained by drawing a sample from the conditional pdf

pXkjXk11,Y1:k(�j x(r)k11j1:K, y1:k); that is,

x
(r)
kj1:K ;p

XkjXk11,Y1:k
(�j x(r)

k11j1:K, y1:k). (8)

In theory, the above process can be repeated for each

realization x
(r)
k11j1:K, r5 1, 2, . . . , Nr, in order to form the

set of ensemble members fx(1)
kj1:K, x

(2)
kj1:K, . . . , x

(Nr)
kj1:Kg rep-

resenting the smoothed distribution pXkjY1:K(�j y1:K).
However, this simple approach suffers from two major

issues, both of which are addressed in the next two

TABLE 2. GMM–DO smoother: summary of equations and algorithm.

GMM–DO smoother

a. Forward GMM–DO filter pass: Solve the DO equations (A3)–(A5) to predict the state pdf. At each observation time tk, perform the

analysis step of the GMM–DO filter (section 4). Save the following:

1) mean vectors xkj1:k (filtered) and xk11j1:k (forecast) for k 5 1, 2, . . . , K 2 1;

2) sets of stochastic coefficients ff(r)
kj1:kg

Nr

r51
(filtered) and ff(r)

k11j1:kg
Nr

r51
(forecast) for k 5 1, 2, . . . , K 2 1;

3) matrices of modes Xk for k 5 1, 2, . . . , K;

4) the final-time filtered variables—the stochastic coefficients ff(r)
Kj1:Kg

Nr

r51
and the mean vector xKj1:K .

b. Joint subspaces GMM-fitting pass: Form the realizations of Fk,k11jk(v), as per (28): f
(r)
k,k11j1:k 5

"
f

(r)
kj1:k

f
(r)
k11j1:k

#
.

Fit aGMMto each joint ensemble ff(r)
k,k11j1:kg

Nr

r51
using theEM–BICprocedure, to obtain the joint filteredGMMs (15) fork5 1, 2, . . . ,K2 1:

pFk ,Fk11 jY1:k(fk, fk11 j y1:k)5 �
M

j51

pj 3N
 �

fk

fk11

�
;

"
mj

kj1:k
mj

k11j1:k

#
,

"
§j

k,kj1:k §j

k,k11j1:k
§j

k11,kj1:k §j

k11,k11j1:k

#!
.

c. Backward-smoothing pass: Execute the following steps sequentially, starting from k 5 K 2 1 until k 5 1:

1) For each r 5 1, 2, . . . , Nr

(i) determine the subspace conditional pdf pFk jFk11,Y1:k( � jf(r)
k11j1:K , y1:k) from (20)–(21), where

pFk jFk11,Y1:k(fkjf(r)
k11j1:K , y1:k)5 �

M

j51

p̂j,(r)3N (fk; ~m
j,(r)
k , ~§j

k);

(ii) draw the sample ~f
(r)
kj1:K from (27), where ~f

(r)
kj1:K ;pFk jFk11,Y1:k( � jf(r)

k11j1:K , y1:k);

2) compute the smoothed mean xkj1:K from (29), where xkj1:K 5 xkj1:k 1Xk 3

 
1

Nr
�
Nr

r51

~f
(r)
kj1:K

!
;

3) compute the zero-mean vectors of smoothed stochastic DO coefficients f
(r)
kj1:K from (30), where

f
(r)
kj1:K 5 ~f

(r)
kj1:K2

1

Nr
�
Nr

r51

~f
(r)
kj1:K , r5 1, 2, . . . , Nr ;

4) decrement k by 1 and go to step 1).
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sections. First, the primary assumption in the above

procedure is the availability of the conditional pdf

pXkjXk11,Y1:k(�j xk11, y1:k). For general nonlinear systems,

the computation of this conditional pdf is nontrivial as it

involves the k 1 1 to k inversion of the k to k 1 1

nonlinear operator that evolves Xk into Xk11. This di-

rect model inversion is unstable for irreversible dy-

namical systems. Second, the pdfs pXk11jY1:K and pXkjY1:K

describe the smoothed variables in the full state space

and the sampling operation (8) is also performed in the

state space. This renders the above smoothing approach

prohibitively expensive and impractical for nonlinear

systems with high-dimensional state spaces, the main

focus of this work.

In what follows, we address the two issues above

and derive the GMM smoother equations. Section 3c

discusses how to compute pXkjXk11,Y1:k, respecting and

utilizing both the k1 1 to k nonlinearity in the dynamics

and the non-Gaussian structures of the pdfs involved, in

the full state space. Section 3ddescribes how the subspace

smoother uses the reduced-order decompositions in (3)

to solve (7) in the stochastic subspace and shows that,

under these conditions (3), it is equivalent to the Bayes’s

update in the high-dimensional state space, as shown in

section 3c.

c. Smoother updates in the state space

1) JOINT STATE-SPACE GMM

To perform the smoother updates given by the re-

cursion (7) directly in the state space, we need to eval-

uate and draw samples from the conditional pdf

pXkjXk11,Y1:k(xk j x(r)k11j1:K, y1:k) in (8). To this end, we start

by representing the joint filtered pdf pXk ,Xk11jY1:k as a

GMM, given by

p
Xk ,Xk11jY1:k

(x
k
,x

k11
jy

1:k
)5�

M

j51

p j

3N
x
k

x
k11

24 35; x j

kj1:k

x j

k11j1:k

264
375, P j

k,kj1:k P j

k,k11j1:k

P j

k11,kj1:k P j

k11,k11j1:k

264
375

0B@
1CA.

(9)

This representation can be either exact, or a GMM

best fit to the joint realizations of the filtered state

vectors Xkj1:k(v) and Xk11j1:k(v). The latter GMM

best fit can be completed using the EM–BIC pro-

cedure (appendix B).

2) CONDITIONAL STATE-SPACE GMM

Since the joint distribution pXk ,Xk11jY1:k is a GMM

[see (9)], the corresponding conditional distribution

pXkjXk11,Y1:k is also a GMM and its pdf can be determined

analytically. To see this, we start with the definition of the

conditional distribution,

p
XkjXk11,Y1:k

(x
k
j x

k11
, y

1:k
)5

p
Xk ,Xk11jY1:k

(x
k
, x

k11
j y

1:k
)

p
Xk11jY1:k

(x
k11

j y
1:k
)

,

and substitute the expression for the numerator directly

from (9) and the denominator by marginalizingXk from

(9) to obtain

p
Xk jXk11,Y1:k

(x
k
jx

k11
, y

1:k
)5

�
M

j51

pj 3N
"

x
k

x
k11

#
;

x j

kj1:k

x j

k11j1:k

264
375, P j

k,kj1:k P j

k,k11j1:k

P j

k11,kj1:k P j

k11,k11j1:k

264
375

0B@
1CA

�
M

j51

pj 3N (x
k11

; x j

k11j1:k,P
j

k11,k11j1:k)

.

(10)

The denominator in (10), containing no terms in-

volving xk, simply normalizes the distribution. Using

the expression for the multivariate normal pdf, we can

expand each term in the numerator of (10) to obtain

the expression for the conditional pdf pXkjXk11,Y1:k. The

value of this conditional pdf for any smoothing state-

space realization x
(r)
k11j1:K (interpreted as a full-state

observation) is

p
XkjXk11,Y1:k

(x
k
j x(r)

k11j1:K, y1:k)5�
M

j51

p̂ j,(r)3N (x
k
; bx j,(r)

k , P̂ j
k),

(11)

where the conditional GMM components satisfy the

following RTS-like equations:

p̂ j,(r) }p j3N (x
(r)
k11j1:K; x

j

k11j1:k,P
j

k11,k11j1:k), (12a)

bx j,(r)

k 5 x j

kj1:k 1Kj[x
(r)
k11j1:K 2 x j

k11j1:k], and (12b)

P̂ j
k 5P j

k,kj1:k 2K jP j

k11,kj1:k, with (12c)

Kj 5P j

k,k11j1:kP
j1

k11,k11j1:k, (12d)

and �1 denotes the generalized inverse. These com-

ponent update equations can also be derived using

the property that GMM distributions are conjugate

with respect to a linear Gaussian observation model

(e.g., Ghanem and Spanos 2003). We note here that

unlike the weights p̂j,(r) and mean vectors bx j,(r)
k , the

component covariance matrices P̂ j
k do not depend

on the specific realization x
(r)
k11j1:K and can thus be

computed independently. Hence, the superscript

(r) is not used for them. A similar property holds
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in the GMM–DO filter update (Sondergaard and

Lermusiaux 2013a), wherein the posterior GMM co-

variances do not depend on the actual value of the

observation.
The above RTS-like update equations (12) provide an

analytical GMM representation of the conditional pdf

pXkjXk11,Y1:k and allow one to draw samples from it [i.e., (8)].

The result is the set of realizations x
(r)
kj1:K representing

the smoothed pdf pXkjY1:K. This was our first objective,

as required by the smoothing approach described in

section 3b. Hence, the state-space GMM representation

(9) of the joint states fXkj1:k(v), Xk11j1:k(v)g and the

above subsequent k1 1 to k inversion addresses the first

of the two issues stated in section 3b.

d. The GMM–DO smoother with updates in the
stochastic subspace

We now address the second issue discussed in sec-

tion 3b and show how the subspace-GMM smoother

uses the reduced-order decompositions (3) to solve

the recursive smoothing in (7) directly in the dynamic

low-dimensional stochastic subspace. To do so, the

smoother exploits the joint reduced-order represen-

tations of the k 4 k 1 1 filtered variables fXkj1:k(v),
Xk11j1:k(v)g, the smoothed variable Xk11j1:K(v)
with decomposition (4), and its realizations x

(r)
k11j1:K

given by

x
(r)
k11j1:K 5 x

k11j1:K 1X
k11

f
(r)
k11j1:K, r5 1, 2, . . . ,N

r
.

(13)

From (3), the joint filtered state-space variables

fXkj1:k(v), Xk11j1:k(v)g are related to the joint filtered

stochastic coefficients fFkj1:k(v), Fk11j1:k(v)g through

the augmented affine transformation:

X
k,k11j1:k(v) :5

"
X

kj1:k(v)

X
k11j1:k(v)

#
5

x
kj1:k

x
k11j1:k

" #
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

x
k,k11j1:k

1

"X
k

0

0 X
k11

#
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Xk,k11

3

"
F

kj1:k(v)

F
k11j1:k(v)

#
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

F
k,k11j1:k(v)

. (14)

Equation (14) is the reduced-order decomposition of

Xk,k11j1:k(v), the k 4 k 1 1 joint state-space vector

formed by augmenting Xkj1:k(v) with Xk11j1:k(v). As

noted in (14), we use the notation �k,k11j1:l to indicate

vector augmentation and �k,k11 for block matrix aug-

mentation. The joint decomposition (14) exactly re-

produces the individual representations of both Xkj1:
k(v) and Xk11j1:k(v). It is thus as accurate as each of

these representations. In fact, it can be shown that

when (3) is a DO decomposition (see appendix A), (14)

is the dynamic Karhunen–Loéve (KL) expansion

(Sapsis and Lermusiaux 2009; Ghanem and Spanos

2003) of Xk,k11j1:k(v). The affine mapping (14) will be

crucial in the next steps, where we first proceed as in

section 3c but for the subspace and then prove the

equivalence between smoothing updates in the full

state space and in the stochastic subspace.

1) JOINT SUBSPACE GMM

Similar to the joint state-space pdf (9), the subspace-

GMM smoother represents the augmented vector of

filtered subspace coefficients Fk,k11j1:k(v) (and its joint

filtered subspace pdf pFk ,Fk11jY1:k) by a GMM. This can

again be either exact (for truly GMMdistributions) or in

the sense of a EM–BIC best fit to joint realizations

f
(r)
k,k11j1:k. The result is

p
Fk ,Fk11jY1:k

(f
k
,f

k11
j y

1:k
)5 �

M

j51

p j 3N
 �

f
k

f
k11

�
;

"
mj

kj1:k
mj

k11j1:k

#
,

"
§j

k,kj1:k §j

k,k11j1:k
§j

k11,kj1:k §j

k11,k11j1:k

#!
, (15)

where the component weights p j($0) sum to unity;mj

kj1:k
and mj

k11j1:k 2 R
s are the means of the jth mixture com-

ponent of Fkj1:k and Fk11j1:k, respectively; §
j

k,kj1:k and

§j

k11,k11j1:k are the corresponding covariance matrices;

and §j

k,k11j1:k and §j

k11,kj1:k are the corresponding cross-

covariance matrices.

2) EQUIVALENCE BETWEEN STATE-SPACE AND

SUBSPACE GMMS

Now that the joint pdf pFk ,Fk11jY1:k is specified, the joint

affine transformation (14) allows us to determine the

joint filtered state-space pdf pXk ,Xk11jY1:k. Indeed, (14) im-

plies that under (15), the distribution pXk ,Xk11jY1:k is also a

GMM(Sondergaard and Lermusiaux 2013a) and is given by

(9), where, for any a, b 2 fk, k1 1g, the component mean

vectors and covariance matrices, respectively, satisfy

xj

aj1:k 5 x
aj1:k 1X

a
mj

aj1:k and (16a)

Pj

a,bj1:k 5X
a
§j

a,bj1:kXT
b . (16b)

This relationship between the GMM parameters of the

joint subspace and joint state space is what allows the
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subspace-GMM smoother to solve the recursion (7) effi-

ciently. It is used in the following key theorem to demon-

strate the equivalence between the full-space and subspace

smoothing updates, hence laying the foundation of the

GMM–DO smoother. The first part of the theorem relates

the components of the conditional state-space pdf (11) to

those of the joint-subspace pdf (15). The second part

outlines a procedure to implicitly draw samples from the

pdf in (11), when x
(r)
k11j1:K has a reduced-order de-

composition. The various steps of the smoother are de-

scribed in section 3e. All equations for the GMM–DO

smoother are summarized in Table 2.

Theorem 1. Let Xkj1:k(v) and Xk11j1:k(v) 2 R
NX , re-

spectively, denote the filtered state vectors of the sto-

chastic dynamical system (1a) at times tk and tk11,

conditioned on observationsY1,Y2, . . . ,Yk.LetXkj1:k(v)
and Xk11j1:k(v) also satisfy the augmented reduced-

order decomposition (14), where xkj1:k 5Ev[Xkj1:k(v)]
and xk11j1:k 5Ev[Xk11j1:k(v)]; Xk, Xk11 2 R

NX3s are

the matrices of orthonormal modes (XT
kXk 5 I,

XT
k11Xk11 5 I); and Fkj1:k(v) and Fk11j1:k(v) 2R

s are

zero-mean vectors of stochastic coefficients whose joint

pdf is themultivariateGMM (15). Let x
(r)
k11j1:K 2 R

NX be a

smoothed state realization of the form

x
(r)
k11j1:K 5 x

k11j1:K 1X
k11

f
(r)
k11j1:K (17)

for some realization index r, xk11j1:K 2 R
NX , and

f
(r)
k11j1:K 2 R

s. Then:

1) The k 4 k 1 1 conditional state pdf

pXkjXk11,Y1:k(xk j x(r)k11j1:K, y1:k) is a multivariate GMM

whose samples are given by (11) and whose compo-

nents satisfy

p̂j,(r) }pj 3N (f
(r)
k11j1:K;m

j

k11j1:k

1XT
k11(xk11j1:k 2 x

k11j1:K),§
j

k11,k11j1:k), (18a)

bx j,(r)
k 5 x

kj1:k 1X
k
fmj

kj1:k 1
~Kj[f

(r)
k11j1:K

2m j

k11j1:k2XT
k11(xk11j1:k 2 x

k11j1:K)]g, (18b)

and

P̂ j
k 5X

k
(§j

k,kj1:k 2
~Kj§j

k11,kj1:k)XT
k , (18c)

and the subspace component gain ~Kj is

~Kj 5§j

k,k11j1:k§
j1

k11,k11j1:k, (19)

where �1 denotes the generalized inverse.

2) Defining xkdxkj1:k 1Xkfk, the k 4 k 1 1 condi-

tional full-state pdf is equivalent to the corresponding

stochastic subspace pdf, i.e.,

p
XkjXk11,Y1:k

(x
k
j x(r)

k11j1:K, y1:k)

5 p
FkjFk11,Y1:k

(f
k
jf(r)

k11j1:K, y1:k),

and this k 4 k 1 1 conditional subspace pdf

pFkjFk11,Y1:k is given by the GMM

p
FkjFk11,Y1:k

(f
k
jf(r)

k11j1:K, y1:k)

5 �
M

j51

p̂j,(r) 3 N (f
k
; ~m

j,(r)
k , ~§j

k), (20)

where

~m
j,(r)
k 5mj

kj1:k 1
~Kj[f

(r)
k11j1:K 2 mj

k11j1:k

2XT
k11(xk11j1:k 2 x

k11j1:K)] and (21a)

~§j
k 5§j

k,kj1:k 2
~Kj§j

k11,kj1:k. (21b)

Proof. 1) The augmented decomposition (14) is

an affine mapping between the state-space vectors

fXkj1:k(v),Xk11j1:k(v)g and the subspace coefficients
Fkj1:k(v),Fk11j1:k(v). Therefore, (15) implies that the

joint filtereddistributionpXk ,Xk11jY1:k is also aGMMwith

pdf (9), and its components givenby (16).As a result, the

conditional distribution pXkjXk11,Y1:k(xk j x(r)k11j1:K, y1:k) is
also a GMM; it is given by (11), and its mixture

components satisfy (12).Next,we start from these results

(12), substitute (16) and (17), and simplify the expres-

sions. This allows us to link the state-space component

weights, means, covariances, and gains to their subspace

counterparts and hence derive (18) and (19).

(i) Component weights—(18a)

For j 5 1, 2, . . . , M, using (12a), we obtain

p̂j,(r)}pj 3N (x
(r)
k11j1:K ; x

j

k11j1:k,P
j

k11,k11j1:k)

5pj 3N (x
k11j1:K 1X

k11
f

(r)
k11j1:K; x

j

k11j1:k,Xk11
§j

k11,k11j1:kXT
k11)

5
pjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det*(2pX
k11

§j

k11,k11j1:kXT
k11)

q 3e
f2(1/2)[x

k11j1:K1Xk11f
(r)
k11j1:K2x

j

k11j1:k]
T(Xk11§

j

k11,k11j1:kX
>
k11

)1[x
k11j1:K1Xk11f

(r)
k11j1:K2x

j

k11j1:k]g.

(22)
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Here, det* denotes the pseudo-determinant.

Observe that det*(2pXk11§
j

k11,k11j1:kXT
k11) 5

det*(2pXT
k11Xk11§

j

k11,k11j1:k)5det*(2p§j

k11,k11j1:k) and

that (Xk11§
j

k11,k11j1:kXT
k11)

1 5 Xk11§
j1

k11,k11j1:kXT
k11.

Substituting these expressions into (22), we

obtain

p̂ j,(r) }
p jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det*(2p§ j

k11,k11j1:k)
q 3e

f2(1/2)[x
k11j1:K1Xk11f

(r)
k11j1:K2x

j

k11j1:k]
>Xk11§

j1

k11,k11j1:kX
>
k11

[x
k11j1:K1Xk11f

(r)
k11j1:K2x

j

k11j1:k]g

5
p jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det*(2p§ j

k11,k11j1:k)
q 3e

f2(1/2)(f
(r)
k11j1:K2X>

k11
(x j

k11j1:k2x
k11j1:K))

>§ j1

k11,k11j1:k[f
(r)
k11j1:K2X

>
k11

(x j

k11j1:k2x
k11j1:K)]g

5p j 3N (f
(r)
k11j1:K;XT

k11(x
j

k11j1:k 2 x
k11j1:K),§

j

k11,k11j1:k). (23)

Finally, substituting the expression for x j

k11j1:k from

(16a) into (23) and using XT
k11Xk11 5 I again gives

us (18a).

(ii) Subspace component gain—(19)

To obtain the subspace component gain ~Kj

defined by Kj 5Xk
~KjXT

k11, we start from the

full-space component gain Kj in (12d) and

substitute the expressions for P j

k,k11j1:k and

P j

k11,k11j1:k given in (16b):

Kj 5P j

k,k11j1:k 3P j1

k11,k11j1:k

5X
k
§ j

k,k11j1:kXT
k11 3X

k11
§ j1

k11,k11j1:kXT
k11

5X
k
§ j

k,k11j1:k§
j1

k11,k11j1:kXT
k11 .

(24)

This yields ~Kj 5§ j

k,k11j1:k§
j1

k11,k11j1:k and thus (19).

(iii) Component mean vectors—(18b)

Substituting x j

kj1:k and x j

k11j1:k from (16a), x
(r)
k11j1:K

from (17), and Kj from (24) into (12b), we obtain

bx j,(r)

k 5 x j

kj1:k 1Kj[x
(r)
k11j1:K2x j

k11j1:k]

5 x
kj1:k1X

k
m j

kj1:k1X
k
~KjXT

k11[xk11j1:K

1X
k11

f
(r)
k11j1:K2x

k11j1:k 2X
k11

m j

k11j1:k]

5 x
kj1:k 1X

k
fm j

kj1:k 1
~Kj[f

(r)
k11j1:K

2m j

k11j1:k 2XT
k11(xk11j1:k 2 x

k11j1:K)]g ,

which is the component mean vector given

by (18b).

(iv) Component covariance matrices—(18c)

Substituting Pj

k,kj1:k and Pj

k11,kj1:k from (16b) into

the full-state component covariances (12c), we

obtain

P̂ j
k 5Pj

k,kj1:k 2Kj 3Pj

k11,kj1:k

5X
k
§j

k,kj1:kXT
k 2X

k
~KjXT

k11 3X
k11

§j

k11,kj1:kXT
k

5X
k
(§j

k,kj1:k 2
~Kj§j

k11,kj1:k)XT
k .

This yields (18c) and completes the proof of

part 1.

2) To prove this part of the theorem, we start from

xk 5 xkj1:k 1Xkfk and simplify the expression for

the k 4 k 1 1 conditional full-state distribution

pXkjXk11,Y1:k[xk j x(r)k11j1:K, y1:k] obtained in (11) until we

arrive at the k 4 k 1 1 conditional stochastic subspace

pdf pFkjFk11,Y1:k[fk jf(r)
k11j1:K , y1:k] given by (20). From

(11), we have

p
XkjXk11,Y1:k

(x
k
j x(r)

k11j1:K, y1:k)

5 �
M

j51

p̂ j,(r)3N (x
k
;bx j,(r)

k , P̂ j
k).

Substituting bx j,(r)

k from (18b), we obtain

p
Xk jXk11,Y1:k

(x
k
j x(r)

k11j1:K, y1:k)

5 �
M

j51

p̂ j,(r) 3N(x
kj1:k1X

k
f

k
; x

kj1:k 1X
k
fm j

kj1:k 1
~K j[f

(r)
k11j1:K 2 m j

k11j1:k 2XT
k11(xk11j1:k 2 x

k11j1:K)]g, P̂ j
k)

5 �
M

j51

p̂ j,(r) 3N(X
k
f

k
;X

k
fm j

kj1:k 1
~Kj[f

(r)
k11j1:K 2 m j

k11j1:k 2XT
k11(xk11j1:k 2 x

k11j1:K)]g, P̂ j
k). (25)
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Using (21a), (25) reduces to

p
XkjXk11,Y1:k

[x
k
j x(r)

k11j1:K, y1:k]5 �
M

j51

p̂j,(r) 3N (X
k
f

k
;X

k
~m
j,(r)
k , P̂ j

k).

Substituting P̂ j
k from (18c), and setting ~§j

k 5§j

k,kj1:k 2
~Kj§j

k11,kj1:k, we obtain

p
XkjXk11,Y1:k

(x
k
j x(r)

k11j1:K, y1:k)5 �
M

j51

p̂j,(r) 3N (X
k
f

k
;X

k
~m
j,(r)
k ,X

k
~§j
kXT

k )

5 �
M

j51

p̂j,(r)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det*(2pX

k
~§j
kXT

k )
q ef2(1/2)[Xkfk2Xk ~m

j,(r)
k

]
T
(Xk

~§j

k
X>

k
)
1
[Xkfk2Xk ~m

j,(r)
k

]g. (26)

As seen in the proof of 1(i), det*(2pXk
~§j
kXT

k )5 det*(2p ~§j
k), and (Xk

~§ j
kXT

k )
1 5Xk

~§j1

k XT
k . Substituting these

expressions into (26), and using XT
kXk 5 I, we obtain

p
XkjXk11,Y1:k

(x
k
j x(r)

k11j1:K, y1:k)5 �
M

j51

p̂j,(r)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det*(2p ~§j

k)
q ef2(1/2)[fk2~m

j,(r)
k

]
T
~§j1

k
[fk2~m

j,(r)
k

]g

5 �
M

j51

p̂j,(r)3N (f
k
; ~m

j,(r)
k , ~§j

k)5 p
FkjFk11,Y1:k

(f
k
jf(r)

k11j1:K, y1:k).

This completes the proof of part 2.j

Theorem 1 outlines a procedure to efficiently draw a

sample from the conditional pdf pXkjXk11,Y1:k(� j x(r)k11j1:K,
y1:k) [and therefore from the smoothed pdf

pXkjY1:K(xk j y1:K)], when x
(r)
k11j1:K has a reduced-order

decomposition of the form (17). Although strictly un-

necessary for the subspace-GMM smoother, a sample

from pXkjXk11,Y1:k(� j x(r)k11j1:K, y1:k) can be generated by

drawing ~f
(r)
kj1:K from the subspace conditional pdf

pFkjFk11,Y1:k(fk jf(r)
k11j1:K, y1:k) given by (20),

~f
(r)
kj1:K ; p

FkjFk11,Y1:k
(� jf(r)

k11j1:K, y1:k), (27)

and transforming these ~f
(r)
kj1:K into xkj1:k 1Xk

~f
(r)
kj1:K 5

x
(r)
kj1:K. Instead, the subspace-GMM smoother performs

all the computations for evaluating and drawing a sam-

ple from the conditional GMM distribution (20) strictly

in the evolving stochastic subspace. The component

state-space mean vectors bx j,(r)

k , covariance matrices P̂ j
k,

and smoothed realizations x
(r)
kj1:K are never explicitly

used nor calculated by the smoother. We now have all

the elements necessary to present the smoother update

equations. These are provided next.

e. The subspace-GMM smoother: Summary of
equations, algorithm, and computational cost

As the smoothed reduced-order decomposition in (4)

indicates, the goal of the subspace-GMM smoother is to

recursively determine xkj1:K and the subspace re-

alizations ff(r)
kj1:KgNr

r51 representingFkj1:K(v), using their
respective counterparts at time tk11. To obtain these

quantities, the overall smoothing procedure consists of

three steps or passes: forward filtering, joint subspaces

GMM fitting, and backward smoothing.

1) FORWARD FILTERING PASS

A nonlinear, non-Gaussian filter is first used be-

tween times t 5 0 and t 5 tK to sequentially assimilate

the observations Y1, Y2, . . . , YK as they arrive. For

l 5 k, k 1 1, the filter provides the quantities xlj1:k
and the realizations ff(r)

lj1:kgNr

r51 of Flj1:k(v) that form

the reduced-order decomposition in (3) of the state vec-

tors Xlj1:k(v). The sets of subspace ensemble members

ff(r)
kj1:kgNr

r51 and ff(r)
k11j1:kgNr

r51 computed during this fil-

tering run are stored, as needed for the second step of

the algorithm, the GMM-fitting pass. The matrices

Xk, and the mean vectors xkj1:k, xk11j1:k are also stored.

In this paper, the GMM–DO filter (Sondergaard and

Lermusiaux 2013a) is utilized for the filtering pass (see

appendix A).

2) JOINT SUBSPACES GMM-FITTING PASS

A crucial component of the new subspace-GMM

smoother is the joint pdf in (15) of the k 4 k 1 1 pair of

filtered stochastic coefficients, Fkj1:k(v) and Fk11j1:k(v).
To determine this pdf, the smoother optimally fits a
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GMM distribution to the realizations of Fk,k11j1:k(v),
defined by (14). These realizations, denoted byf

(r)
k,k11j1:k,

r 5 1, 2, . . . , Nr are assembled by augmenting the corre-

sponding realizations ofFkj1:k(v) andFk11j1:k(v); i.e.,

f
(r)
k,k11j1:k 5

24 f
(r)
kj1:k

f
(r)
k11j1:k

35 . (28)

Observe that the quantities Fkj1:k(v) and Fk11j1:k(v)
are conditioned only on the past observations Y1:k,

and do not depend on the future observations Yk11:K.

Consequently, they can be determined by a filtering

run; that is, no smoothing is required. This is why the

above filter run forms the first pass of the subspace-

GMM smoother.

Following the filtering run, for each k, a GMM is fit to

the set of ensemble realizations ff(r)
k,k11j1:kgNr

r51. The re-

sulting GMM best represents the set of ensemble re-

alizations in the 2s-dimensional joint filtered subspace.

The total number of GMM-fitting operations in this step

is K 2 1. The EM–BIC scheme (appendix B) is the

GMM-fitting procedure used in this paper.

3) BACKWARD SMOOTHING PASS

For each realization index r, the subspace-GMM

smoother draws a sample ~f
(r)
kj1:K from the conditional

subspace distribution pFkjFk11,Y1:k(� jf(r)
k11j1:K, y1:k), given

by (20). To sample from this pdf, a two-step approach is

followed. First, M independent samples are drawn, one

from each Gaussian component of (20). Next, exactly

one of these M samples is accepted, where the proba-

bility of accepting any given sample equals the weight

p̂
j
k of the Gaussian component that generated it. Then,

the smoothed mean state xkj1:K is computed as

x
kj1:K 5 x

kj1:k 1X
k
3

"
1

N
r

�
Nr

r51

~f
(r)
kj1:K

#
, (29)

and the ensemble of the zero-mean vectors of the sto-

chastic coefficients f
(r)
kj1:K is given by

f
(r)
kj1:K 5 ~f

(r)
kj1:K2

1

N
r

�
Nr

r51

~f
(r)
kj1:K, r5 1, 2, . . . ,N

r
. (30)

The smoothed xkj1:K and ff(r)
kj1:KgNr

r51 with the modes Xk

together provide the decomposition of the smoothed

state vector Xkj1:K(v) as per (4). This process is re-

peated for each time index k, starting from the final

index K (where the smoothed and filtered distribu-

tions coincide) and marching backward in time with

successive index decrements of 1, until we reach k5 1.

Along the way, we determine the smoothed variables

xkj1:K and ff(r)
kj1:KgNr

r51 for all k 5 1, 2, . . . , K 2 1. This

backward-smoothing pass constitutes the final step of

the subspace-GMM smoother.

Table 2 summarizes the equations corresponding to

the above three steps for the GMM–DO smoother, a

particular case of the subspace-GMM smoother, which

uses the GMM–DO filter and its optimal DO reduced-

order SPDEs during the forward-filtering pass.

4) COMPUTATIONAL AND STORAGE COSTS

We now describe the computational and storage costs

of the subspace-GMM smoother. In particular, we

compare and contrast the costs of backward smoothing

to these of the GMM-fitting passes. We also provide

potential strategies to accelerate GMM fitting.

At each step of the backward smoothing pass, the

conditional pdf (20) must be evaluated for all coeffi-

cient realizations f
(r)
k11j1:K. The computation of the re-

duced component gain ~Kj using (19) is an O(s3)

process (recall that s is the size of the stochastic sub-

space). Repeating this calculation for all M components

incurs a total cost ofO(s3M). As mentioned in section 3c,

the component covariances ~§j
k are uniform across all r.

From (21b), the total cost of evaluating ~§j
k for all j equals

O(s3M). Next, the quantity XT
k11(xk11j1:k 2 xk11j1:K) is

O(sNX) to calculate and is used to determine all com-

ponent mean vectors ~m
j,(r)
k in (21a) and component

weights p̂j,(r) in (18a). Hence, it is evaluated and stored in

memory. The cost of evaluating ~m
j,(r)
k from (21a) for all j

and r is O(s2MNr) For the component weights p̂j,(r),

evaluating theGaussian pdf in (18a) for all j and r incurs a

cost ofO(s2MNr), after the inverses of all the component

covariances §j

k11,k11j1:k have been determined [which is

an O(s3M) process]. Finally, computing the smoothed

mean vector xkj1:K and the smoothed coefficientsf
(r)
kj1:K

from (29) and (30), respectively, incurs a cost of

O(sNr 1 sNX). Adding all of the above at each k, the

total cost of a single step of the backward-smoothing pass

is onlyO(s3M1 s2MNr 1 sNX). Thus, the overall cost of

the backward-smoothing pass for the K assimilations

is O(s3MK 1 s2MNrK1 sNXK).

We now consider the computational cost of the joint

subspaces GMM-fitting pass. Since the EM algorithm is

an iterative optimizer, the actual cost of GMM fitting

depends on the nature of the joint subspace distributions

themselves, for example, how far from Gaussian they

are (M), in addition to the subspace size s and number of

realizations Nr. In particular, the total number of float-

ing point operations required for the E step in (B2) is

O(s3M1 s2MNr), which includes the cost of inverting all

the component covariances and the subsequent evalu-

ation of the Gaussian pdfs in (B2). The individual costs

of parts a–c in theM step of (B3) areO(NrM),O(sNrM),

and O(s2NrM), respectively, adding up to O(s2NrM).
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Thus, each iteration of the EMprocedure incurs a cost of

O(s3M 1 s2MNr). Since s � Nr in practice, the domi-

nating term in the expression is O(s2NrM). If Ni itera-

tions are required for convergence, the total cost of

GMMfitting using the EMscheme grows toO(s2NrMNi).

Assuming that each of theK2 1GMMfits in theGMM-

fitting pass has a mixture complexity M and requires

O(Ni) iterations, the overall dominating cost of the

GMM-fitting pass is O(s2NrMNiK). Hence, comparing

this cost of the EM–BIC scheme for GMM fitting to that

of backward smoothing, we find that for large Ni, the

former dominates.

One may speed up the EM–BIC scheme by placing

reasonable bounds on M or by using other efficient fit-

ting schemes (e.g., Sondergaard and Lermusiaux 2013a;

Bouveyron and Brunet-Saumard 2014). Convergence

can also be accelerated by choosing a suitable initial

guess for the unknown mixture components in the EM

algorithm. For example, one can set the initial guess to

be a random perturbation around the converged GMM

parameters of a lower mixture complexity or of a pre-

vious time. We also note that the present joint GMM

fitting is decoupled from the filtering run. Hence, the

joint subspaceGMMfits can be performed offline and in

parallel, either after the filtering run ends or, ideally, as

it progresses. The ensemble-based RTS ESSE smoother

(Lermusiaux and Robinson 1999) and Kalman smoothers

with their recent low-rank implementations (Cosme et al.

2010, 2012) are limited to single-component (M 5 1)

Gaussian updates. Thus, their analysis steps are cheaper

than that of the subspace-GMM smoother. Of course, a

major advantage of this particular GMM–DO smoother

(Table 2) is the statistical resolution in its dynamic sto-

chastic subspace, that is, the rich number of re-

alizations Nr � s in the subspace.

The subspace-GMM smoother stores the mean vec-

tors xkj1:k21, xkj1:k, xkj1:K, the matrices Xk, and the co-

efficients ff(r)
kj1:k21

gNr

r51, ff(r)
kj1:kgNr

r51, ff(r)
kj1:KgNr

r51, thereby

incurring a storage cost of O[(NX 1 Nr)sK]. Further-

more, the total cost of storing the GMM components

from the GMM-fitting pass is O(s2MK). Thus, the total

storage cost of the smoother isO[(NX1Nr)sK1 s2MK].

In contrast, the EnKS operates in the full state space and

incurs a significantly larger storage cost, even with the

same number of realizations as the subspace-GMM

smoother. The cost of storing Nr EnKS ensemble mem-

bers in the state space isO(NXNrK), which is much larger

than that of the subspace-GMM smoother asNX� s. The

subspace-GMM smoother has a similar storage cost as the

ensemble-based ESSE smoother and low-rank Kalman

smoothers, since their smoother updates are also carried

out in a dominant stochastic subspace.

f. Other remarks

1) USE OF GMMS

Our use of GMMs to represent the pdfs of the sto-

chastic coefficients is motivated by two factors. First,

GMMs can represent the pdfs of continuous random

variables to any desired level of accuracy. In particular,

they are superior in capturing multimodal distributions

that are often encountered in weather and ocean-based

systems. Second, many elegant properties of Gaussian

pdfs also extend to GMMs. For example, GMMs are

conjugate with respect to linear Gaussian measurement

models. This key property allowed us to derive the

equations of the backward-smoothing pass of the subspace-

GMM smoother. Finally, the GMM smoother is a funda-

mental direct extension to theGaussian smoother, which is

retrieved for M 5 1.

2) NONLINEARITY PRESERVATION

The use of GMMs for smoothing in linear (or line-

arized) systems has been recently studied. In such sys-

tems, an explicit algebraic relationship holds between

the GMM state vectors at any two time instances.

For example, Vo et al. (2012) derived smoother equa-

tions for linear systems with GMM state distributions.

In an earlier work (Lolla 2016), we extended their

approach to derive analytical expressions for the

smoothed pdfs in weakly nonlinear systems with linear

Gaussian measurement models. The idea is to com-

pute the smoothed pdf at any time by performing a

multiplicative correction to the corresponding fil-

tered pdf. Similar to the subspace-GMM smoother,

the filtered pdfs are computed and saved during

a forward-filtering pass. The correction terms are

computed analytically through a backward pass, line-

arizing the dynamics operator at each time step. We

implemented this method for the chaotic Lorenz-63

model, but the results are not shown here. This ap-

proach suffers from the drawback of linearizing the

dynamics during the backward pass. The present

subspace-GMM smoother however performs no lin-

earization during the backward-smoothing pass as

the joint subspace GMMs directly represent the

joint pdfs pFk,Fk11jY1:k. The nonlinear transformations

of the filtered stochastic coefficients across time [e.g.,

Fkj1:k(v) /Fk11j1:k(v)] are fully captured by allowing

the GMM-fitting process to adjust the mixture parame-

ters and complexity in accordance with their joint re-

alizations. Hence, the use of GMMs can potentially

circumvent the issue of spurious correlations introduced

by a Gaussian treatment of joint state variables (Nerger

et al. 2014).
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3) EFFECT OF SMOOTHING ON THE STOCHASTIC

SUBSPACE

The present subspace-GMM smoother assumes that

the stochastic subspaces (spanned by the columns of

Xk) remain unaltered by future observations.

Smoothing then only updates the distribution of un-

certainty within the subspaces. This is a logical as-

sumption for practical applications, since for a

properly chosen s, the errors outside the subspace are

small. Thus, the smoother corrections outside the

subspace are expected to be small. If not, one can

successively increase the size of the subspace (s) to

capture this missing fraction of the uncertainty

(Lermusiaux 2007; Sapsis and Lermusiaux 2012), until

the smoothed subspace coefficients converge statisti-

cally. Of course, the filtered subspace at tk (i.e., Xk)

has been influenced by all observations taken prior to

tk. Nonetheless, as done in ESSE (Lermusiaux 1999),

one can extend the present smoothing and expand–

learn the subspace backward in time, based on the

smoothed observation residuals. When these residuals

lie outside the filtered subspace and not as expected

by the model in (2), they are used to update filtered

subspaces into smoothed ones and even to further

correct the smoothed realizations. However, these

schemes are not discussed here.

4. Conclusions and future work

Retrospective inference, or smoothing, is in-

dispensable in geosciences. It can be used to perform

reanalysis of ocean fields, detect sources of pollutants,

initialize numerical weather predictions, and infer

past climate states. Going beyond the realm of qua-

dratic cost or Gaussian methods, recent years have

witnessed a growth of Bayesian smoothing approaches.

However, most existing methods perform poorly in

high-dimensional systems, such as those arising in geo-

sciences. Addressing these issues, we derived the funda-

mental equations of the full state-space, and subspace

GMM smoothers, focusing on their RTS-style forward–

backward form. We also obtained and discussed the the-

oretical properties and computational costs of the new

GMM smoother equations.

The GMM–DO smoother, a particular case of the

subspace-GMM smoother, uses the Bayesian GMM–

DO filter (Sondergaard and Lermusiaux 2013a) to

accurately assimilate observations sequentially over

time. Uncertainties are forecast using DO equations

(Sapsis and Lermusiaux 2009), efficiently reducing the

dimensionality to the time-evolving dominant sto-

chastic subspace. After filtering, a key step in the

smoother is the joint GMM fitting performed within

the joint stochastic subspaces across pairs of succes-

sive observation times. This joint fitting allows for the

analytical, nonlinear back propagation of future in-

formation. In the backward-smoother pass, the filter

estimates are updated by solving the smoothing re-

cursion equation within the stochastic subspaces,

rendering the algorithm practical and computation-

ally efficient. Since all smoother operations are per-

formed in the subspaces, ensemble members of the

high-dimensional state space are never computed.

This alleviates the storage costs associated with

smoothing. The overall results are the equations and

RTS-style algorithm of the GMM–DO smoother,

tailored for high-dimensional problems. The GMM–

DO smoother preserves the dominant non-Gaussian

structure of the stochastic dynamical fields, accurately

evolves them using the governing nonlinear PDEs, and

propagates the observed information backward in a non-

linear GMM fashion. In a companion paper (Lolla and

Lermusiaux 2017), we employ a double-well diffusion

experiment, a reversible passive tracer advection, and a

simulated ocean flow exiting a strait–estuary to validate

the smoother and compare its performance to that of other

smoothers.

It is straightforward to extend the RTS-style subspace

GMM smoother to other forms, such as the fixed in-

terval or the fixed lag. The procedure is similar to that of

other classic fixed-interval or fixed-lag smoothers.

Presently, all GMM fitting operations are completed

using the EM–BIC scheme. A future direction is to in-

vestigate alternate techniques for GMM fitting using

other schemes from information theory and machine

learning (McLachlan and Peel 2000). A related idea

introduced in Sondergaard and Lermusiaux (2013a) is to

complete the GMM fitting only in a dominant subspace

within the stochastic DO subspace. One could also di-

rectly work with GMMs in the subspace, and derive

evolution equations of the GMM components, rather

than employing a Monte Carlo method to forecast the

stochastic coefficients. Finally, the backward-smoothing

pass offers interesting fully Bayesian extensions of ad-

joint and variational methods, which could be further

investigated.
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APPENDIX A

Overview of the GMM–DO Filter

In this section, we review the GMM–DO filter

(Sondergaard and Lermusiaux 2013a,b), which is the

methodology for uncertainty prediction and filtering

used in this two-part paper. Specifically, we outline

(i) the Dynamically Orthogonal (DO) field equations

for uncertainty prediction and (ii) the analysis step of

the GMM–DO filter. In each case, we briefly justify the

choice of these components within the context of oce-

anic and atmospheric data assimilation.

The GMM–DO filter preserves the non-Gaussian

structure of the state variables and respects their non-

linear dynamics. It employs theDOmethodology to solve

the governing SPDE (1a) and to forecast the prior pdfs

of the state vector X(t; v). At each assimilation time

tk, k 5 1, 2, . . . , K, the filter uses the Expectation-

Maximization (EM) algorithm, coupled with the

Bayesian Information Criterion (BIC) to perform a

semiparametric GaussianMixtureModel fit (see appendix

B) of the prior pdf given by the DOmethodology. During

the analysis step, the filtered posterior pdf is computed

by analytically carrying out Bayes’s law in the DO sub-

space in accordance with the measurement model (2).

The DO methodology then advances this filtered pos-

terior state vector forward in time to yield the forecast

(prior) pdf at the next assimilation time, tk11. This pro-

cess is then repeated until the final assimilation time tK.

a. The Dynamically Orthogonal field equations for
uncertainty prediction

The DO methodology (Sapsis and Lermusiaux 2009)

is a reduced-order technique to solve (1a)–(1c) for

continuous stochastic fieldsX(r, t; v). It decomposes the

stochastic field X(r, t; v) using a generalized, time-

dependent Karhunen–Loéve (KL) expansion:

X(r, t;v)5 x(r, t)1 �
s

i51

~x
i
(r, t)F

i
(t;v). (A1)

Here, x(r, t) represents the mean of X(r, t; v); that is,

x(r, t)5Ev[X(r, t;v)], where Ev denotes the expecta-

tion operator. The (possibly time dependent) scalar s is

the total number ofmodes retained in theKL expansion,

and is also the size of the stochastic subspace. The family

of deterministic modes ~xi(r, t), for i 5 1, 2, . . . , s, con-

stitutes an orthonormal basis for the time-dependent

stochastic subspace. The randomness within this sub-

space is captured by the zero-mean stochastic

coefficients Fi(t; v). Therefore, the DO methodology

describes the randomness in the field X(r, t; v) entirely

through the coefficients Fi(t; v), based on the affine

mapping in (A1). Hereafter, the s-dimensional random

vector of stochastic coefficients [F1(t; v), F2(t; v), . . . ,

Fs(t; v)]
T will be denoted by F(t; v).

A closed set of evolution equations for x(r, t),

f~xi(r, t)gsi51, and fFi(t;v)gsi51 are derived by substituting

(A1) into (1a) and imposing the ‘‘DO condition’’:�
›~x

i
(�, t)
›t

, ~x
j
(�, t)

�
5 0, " i, j 2 f1, 2, . . . , sg. (A2)

The DO condition (A2) dictates that, with respect to the

chosen inner product, the transformation of the stochastic

subspace is strictly orthogonal to its current configuration.

This condition is imposed without loss of generality as it

removes the redundancy of having both the basis and co-

efficients to represent the evolution of uncertainty within

the stochastic subspace. Substituting (A2) and (A1) into

(1a) and performing a Galerkin projection of the resulting

equation onto each of the modes ~xi, and a statistical av-

erage after multiplication with the coefficients, yields the

following system of equations:

›x(r, t)

›t
5E

v
[L[X(r, t;v);v]], (A3a)

›~x
i
(r, t)

›t
5 �

s

j51

P?(E
v
[L[X(r, t;v);v]F

j
(t;v)])C21

Fi(t)Fj(t)
,

(A3b)

and

dF
i
(t;v)

dt
5hL[X(r, t;v);v]2E

v
[L[X(r, t;v);v]], ~x

i
(r, t)i,
(A3c)

where

P?[F(r, t)]5F(r, t)2 �
s

j51

hF(�, t), ~x
j
(�, t)i~x

j
(r, t)

is the projection of a given field F onto the orthogo-

nal complement of the stochastic subspace and C

is the covariance operator; that is, CFi(t)Fj(t) 5
Ev[Fi(t;v)Fj(t;v)]. Using (1c), the boundary conditions

on x and f~xigsi51 take the form

B[x(r, t)]j
r5j

5E
v
[h(j, t;v)] and (A4a)

B[~x
i
(r, t)]j

r5j
5 �

s

j51

E
v
[h(j, t;v)F

j
(t;v)]C21

Fi(t)Fj(t)
. (A4b)

Similarly, the initial conditions on x, f~xigsi51, and fFigsi51 are
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x(r, 0)d x
0
(r)5E

v
[X

0
(r;v)] , (A5a)

~x
i
(r, 0)5 ~x

i,0
(r), and (A5b)

F
i
(0;v)5 hX

0
(�;v)2 x

0
(�), ~x

i,0
(�)i. (A5c)

In addition to the stochastic coefficientsFi(t; v), the DO

equations in (A3a)–(A3c) evolve the modes ~xi(r, t) in

accordance with the dynamics of X(r, t; v) and the

boundary conditions. This dynamic evolution of the

modes offers a significant advantage over schemes such

as proper orthogonal decomposition, which fix the sub-

space in time (Sapsis and Lermusiaux 2009). We note

that s can also be evolved based on the dynamics and

external observations (Lermusiaux 1999; Sapsis and

Lermusiaux 2012). However, without loss of generality

for our purpose of smoothing, we will assume here that s

is fixed. We denote the spatially discretized fields of

x(r, t) and ~xi(r, t) by x(t) and ~xi(t), respectively. In

this case, the matrix X(t)5 [~x1(t) j ~x2(t) j . . . j ~xs(t)] is

formed by arranging the discretized modes ~xi(t) as col-

umn vectors.

The final step of the GMM–DO filter at each obser-

vation time is the analysis step, which computes the

posterior variables conditioned on the observation

value. We summarize this step next.

b. The GMM–DO filter: Analysis step

One of the main features of the GMM–DO filter is its

ability to retain the non-Gaussian character of the state

variable X(r, t; v) during the analysis step. To do so, at

each observation time tk, the filter fits a semiparametric

GMM to the forecast vector of the stochastic coefficients

Fkj1:k21(v) using the EM algorithm (see appendix B).

The mixture complexity (characterized by M, the num-

ber of mixture components) in the EM algorithm is

typically not known a priori. The choice of M must be

guided by the empirical evidence available, namely the

set of ensemble realizations ff(r)
kj1:k21

gNr

r51. To select a

suitable value for M, the GMM–DO filter uses the BIC

(appendix B).

At each assimilation time tk, the DO differential

equations forecast the reduced-order representation (3)

for the prior state vector Xkj1:k21(v). The present

GMM–DO filter uses a Monte Carlo approach to in-

tegrate the stochastic coefficients Fkj1:k21(v) [we note

that other schemes are possible; see Sapsis and

Lermusiaux (2009) and Ueckermann et al. (2013)]. The

stochastic ODEs in (A3c) are solved in a particle-wise

manner. Immediately preceding the analysis step, the

GMM–DO filter performs a GMM fit of the realiza-

tions of Fkj1:k21(v), using the EM–BIC criteria to yield

the parameter set fp j
k,m

j

kj1:k21
,§ j

kj1:k21
gMj51. Consequently,

Fkj1:k21(v). has the following pdf:

p
FkjY1:k21

(f
k
j y

1:k21
)5 �

M

j51

p
j
k 3N (f

k
;mj

kj1:k21
,§j

kj1:k21
).

(A6)

Upon the arrival of the noisy observation yk, the pos-

terior values of the state mean vector xkj1:k21 and all

GMM components fp j
k,m

j

kj1:k21
,§j

kj1:k21
gM
j51

are analyt-

ically computed, using the property that GMMs are

conjugate priors with respect to a linear Gaussian ob-

servation model. The posterior mean vector xkj1:k is

given by

x
kj1:k 5 x

kj1:k21
1X

k �
M

j51

p̂
j
k 3 m̂j

k , (A7)

and the filtered vector of stochastic coefficientsFkj1:k(v)
has the following pdf:

p
FkjY1:k

(f
k
j y

1:k
)5 �

M

j51

p̂
j
k 3N (f

k
;mj

kj1:k,§
j

kj1:k). (A8)

The components of this posterior GMM distribution

have the following exact expressions:

p̂
j
k }p

j
k 3N (~y

k
; ~H

k
m j

kj1:k21
, ~H

k
§j

kj1:k21
~HT
k 1R),

with �
M

j51

p̂
j
k 5 1, (A9)

mj

kj1:k 5 m̂j
k 2 �

M

l51

p̂ l
k 3 m̂l

k, and (A10)

§j

kj1:k 5 (I2 ~Kj
k
~H
k
)§j

kj1:k21
. (A11)

In the above expressions, the following definitions are

used:

m̂j
k 5mj

kj1:k21
1 ~Kj

k(~yk 2
~H
k
mj

kj1:k21
) , (A12)

~H
k
5HX

k
, (A13)

~y
k
5 y

k
2Hx

kj1:k21
, and (A14)

~Kj
k 5§j

kj1:k21
~HT
k (
~H
k
§j

kj1:k21
~HT
k 1R)21 . (A15)

The GMM–DO analysis step is completed by drawing

ensemble realizations of the posterior stochastic co-

efficient vector Fkj1:k(v) through its pdf given by (A8).

The DO representation of the posterior filtered state

vector is advanced until the next assimilation (tk11)

using the DO equations in (A3). This completes the

outline of the GMM–DO filter (Sondergaard and

Lermusiaux 2013a).
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APPENDIX B

The Expectation-Maximization (EM)Algorithm and
Bayesian Information Criterion (BIC) for Gaussian

Mixture Models

a. The EM algorithm for Gaussian Mixture Models

In this section, we briefly summarize the EM algo-

rithm specific to the case of a multivariate GMM fit of a

random vectorF, whose realizations are denoted by f(r),

r 5 1, 2, . . . . Nr. Further details are available in Bilmes

(1998) and Sondergaard and Lermusiaux (2013a) and the

references therein.

The EM algorithm is an iterative procedure for esti-

mating the parameters of a target distribution that

maximize the probability of obtaining a given set of re-

alizations. For a chosen mixture complexity M, the

EM algorithm estimates the quantities pj, mj, and§j for

j 5 1, 2, . . . , M in the GMM representation of pF(f):

p
F
(f)5 �

M

j51

pj 3N (f;mj,§j). (B1)

Here, the parameters pj, mj, and §j denote the

weight, mean vector, and the covariance matrix of

the jth mixture component of the GMM, re-

spectively. The EM algorithm is composed of a

succession of expectation and maximization steps

to obtain the maximum-likelihood (ML) estimate of

these parameters. It successively estimates the weight

with which the realizations f(r) of F are associated with

each of theMmixture components. This is done based on

the present parameter estimates, followed by an optimi-

zation of these parameters using the newly calculated

weights. Repeating this process until convergence ulti-

mately yields the ML estimate of the parameters based

on the ensemble realizations f(r). The result is as

follows.

Given the initial parameter estimate,

u
(0)

5 fp1
(0), . . . ,p

M
(0),m

1
(0), . . . ,m

M
(0),§

1
(0), . . . ,§

M
(0)g;

repeat until convergence:

d E step—For all r 2 f1, 2, . . . ,Nrg, j 2 f1, 2, . . . ,Mg, use
the present parameter estimate u(l) to form

tj(f(r); u
(l)
)5

p
j

(l)3 N (f(r);m j

(l),§
j

(l))

�
M

m51

pm
(l)3 N (f(r);mm

(l),§
m
(l))

. (B2)

d M step—For all j 2 f1, 2, . . . , Mg, update the

parameter estimate to u(l11) as follows:

p j

(l11) 5
N

j

(l)

N
r

, (B3a)

m j

(l11) 5
1

Nj

(l)

3�
Nr

r51

t j(f(r); u
(l)
)3f(r), and (B3b)

§j

(l11) 5
1

N
j

(l)

3�
Nr

r51

t j(f(r); u
(l)
)3 [f(r)2m j

(l11)]

3 [f(r)2m j

(l11)]
T , (B3c)

where

N
j

(l) 5 �
Nr

r51

t j(f(r); u
(l)
) . (B4)

In the E step, we calculate the probability of mixture

component j having generated the realization f(r).

based on the present parameter estimates. We do so

across all pairs of realizations and components. In

the M step, we update the parameter values in

accordance with their weighted averages across all

realizations. Upon repeating the above steps until

convergence, we arrive at a maxima of the ML

estimate of the parameters for a given mixture

complexity M.

b. The Bayesian Information Criterion

The BIC is a quantitative equivalent of the Occam’s

razor principle, which states that one should favor the

simplest model consistent with the ensemble. It tries to

strike a balance between underfitting, which fails to

capture the trend in the data, and overfitting, which

limits predictive capability beyond the ensemble. We

now briefly summarize this criterion, and refer the

reader to Sondergaard and Lermusiaux (2013a) for

more details.

The goal of the BIC is to choose the model com-

plexity M that maximizes the likelihood of ob-

taining the ensemble set ff(r)gNr

r51. The parameter

vector u is assumed to be random with an arbitrary

prior distribution of pQ(u; M), and M is considered

constant but unknown. The distribution of the ensem-

ble set, assuming independence of the realizations, is

given by

pfFg(ffg;M)5P
Nr

r51

p
F
(f(r);M) . (B5)

The BIC seeks the value of M at which pfFg(ffg; M) is

maximized. Using the definition of conditional proba-

bility, we obtain
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pfFg(ffg;M)5
pfFgjQ(ffg j u;M) p

Q
(u;M)

p
QjfFg(u j ffg;M)

. (B6)

The pdf pfFgjQ(ffg;u;M) in the numerator is a GMM in

our case. In the denominator pQjfFg(u j ffg; M) is

evaluated using the Laplace approximation at the ML

estimate of the parameter vector u, denoted by ûML. The

BIC is formally defined as

BIC(M)5K
M
logN

r
2 2 logpfFgjQ(ffg j û

ML
;M) , (B7)

where KM denotes the length of the parameter vector u.

The above expression for the BIC is obtained through a

sequence of approximations to 22 logpfFg(ffg; M),

starting from (B6). The optimum value of M, therefore,

minimizes the BIC defined in (B7).
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