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1 Introduction

It is well known by now that chiral media can exhibit a novel class of transport phenomena

that are anomalous in nature. In a plasma of massless fermions with interactions that

preserve chiral symmetry, the axial anomaly results in a modification of electric, axial,

and energy-momentum transports, for a review see [1]. Usually chiral effects are distin-

guished by a source to be vortical or magnetic. The most widely discussed examples of the

anomalous transport are contributions to the electric current

J i = σCMEB
i , J i = σCVEΩi (1.1)

which are referred to as chiral magnetic effect (CME) and chiral vortical effect (CVE).

These phenomena may considerably modify the medium evolution and are suggested to

play an essential role in various systems such as quark-gluon plasma, Dirac and Weyl

semi-metals, and primordial plasma (see e.g. [1–3]).

A particularly violent modification of the medium dynamics by chiral effects is tied

with a set of instabilities [2, 4–11]. For instance, if the anomalous back-reaction of the

medium is taken into account, Maxwell equations support an exponentially growing mode

of a helical magnetic field [2, 4]. This process transfers microscopic chirality of fermions

to macroscopic helicity of magnetic fields and originates from the mixing of these two

quantities. Such transfer is a general ingredient among all chiral instabilities [8, 12–14].

Not unexpectedly, there are examples of chiral effects sourced by an external gravi-

tational field.1 Indeed, already the derivation of CVE requires one to consider two point

function of the current and the stress energy tensor [17]. This mixing between responses to

the medium velocity and the 0i component of the metric perturbation is known for a long

time. Further analysis shows that a transverse traceless metric perturbation also leads

to new contributions to the stress-energy transport [18, 19]. As a simple example, one

1Note that the regular chiral effects may also gain corrections due to the presence of a gravitational field,

see e.g. [15, 16].
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may consider an anomalous response caused by a gravitational wave (GW) propagating

through the medium. Without loss of generality we choose the GW momentum to be in the

z-direction denoting it as q3 and its absolute value as q, then the only non-zero components

of a GW field hµν = gµν − ηµν are h11 = −h22, h12 = h21. The resulting linear (P-odd)

response of the stress-energy tensor can be expressed as

T11 = −T22 = iξT (ω, q)q3 h12

T12 = −iξT (ω, q)q3 h11 . (1.2)

Here ξT is proportional to the axial chemical potential µ, which is used as a measure of

the chiral asymmetry and is related to the P-odd part of the graviton self-energy. In what

follows we refer to this transport as chiral gravitational effect (CGE).

While it is theoretically motivated to study the back-reaction of a chiral medium to

a propagating gravitational perturbation, in general, one also could think about possible

applications in the physics of early universe where chiral imbalance is often discussed in

the context of axion dynamics and primordial magnetic field generation [2]. It is also

appealing since all matter fields are coupled to the gravitational sector and one may expect

P-odd effects due to the imbalance caused by a neutrino background appearing in some

cosmological models, see e.g. [20–23].

Here we study the modification of the GW dispersion relation by a chiral medium at

finite axial chemical potential µ and temperature T concentrating on the P-odd features

of the spectrum. We find that for time-like four momenta the dispersion relation modified

by the P-odd part of the graviton self-energy results in a polarization dependence of GW

damping. We compare this effect with an order-of-magnitude estimate of the P-even coun-

terpart due to the medium viscosity [24, 25] and find that the chiral damping of GWs is

suppressed compared to the helicity-independent damping. Strikingly, for space-like four

momenta, we find that the GW group velocity vg not only is helicity dependent but can

turn negative for waves of particular polarization at a given sign of the chiral asymmetry.

We stress that plasmons (electromagnetic modes) in chiral media exhibit the same pecu-

liar behavior which is not discussed in the literature to the best of our knowledge.2 The

corresponding modification in the spectrum can be seen as a new helicity-dependent real-

ization of the anomalous dispersion which attracted considerable attention in the context

of artificial materials [28, 29]. It should be mentioned that propagation of helical waves in

a chiral medium involves no gain or absorption in contrast with textbook examples of the

anomalous dispersion [30]. Finally, we argue that the helicity dependent birefringence may

lead to specific phenomenological signatures which can in principle be observed. We stress

that while in the case of gravity the effects are rather small due to the weakness of the

gravitational interaction, the electromagnetic dispersion relation can be studied in tabletop

experiments with topological systems of condensed matter supporting relativistic spectrum.

This paper is organized in the following way: in the next section we discuss an intuitive

picture of the spin-gravity interaction leading to CGE. Then we turn to the details of the

gravitational dispersion relation and show that the GW group velocity can turn negative.

2A detailed discussion of plasmons in chiral media can be found in [26, 27].
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Finally, this result is generalized to the well-studied case of electromagnetic excitations in

chiral media. We conclude our work with an outlook and a brief discussion of possible

phenomenological consequences of the helicity dependent spectrum in chiral media.

2 Chiral matter in gravitational field

In order to understand the back-reaction of a chiral medium to a metric perturbation it

is instructive to review the simpler case of the magnetic response. Considering a system

of massive fermions in the presence of an external magnetic field B one expects a net

spin polarization. Indeed, the Pauli interaction δE = −M · B, where M is the magnetic

moment, leads to a net spin alignment decreasing the energy of the system. Thus, at finite

density it is natural to expect an average current of axial charge directly related to the

spin polarization [31]. On the other hand, in a medium with a chiral imbalance one would

find an electric current along the magnetic field which decays with time.

Extending this argument, one would expect that CGE is sourced by a similar mech-

anism. Indeed, one may concentrate on the coupling of the stress-energy tensor of the

medium to an external gravitational field L = −κ
2h

µνTµν . Following [32], the expectation

of the fermionic stress-energy tensor can be decomposed as

〈P+q/2|Tµν(0)|P−q/2〉

=−iκ
4
ū(P+q/2)

[
A(q2)γ{µP ν}+

2

m
B(q2)pµpν+C(q2)

1

m
(qµqν−gµνq2)

]
u(P−q/2) (2.1)

where q is momentum transfered to a fermion by the external field, {, } denotes sym-

metrization of Lorentz indices and (A, B, C) are gravitational form factors. The coupling

of spin with a transverse-traceless (TT) metric perturbation3 can be obtained from (2.1)

in a fashion analogius to the derivation of the Pauli interaction from electromagnetic form

factors. Taking the limit q → 0 and using the non-relativistic expansion for the spinors

one finds the energy due to the spin-gravity interaction which can be written as

δE ∼ ε{ik3Mk
gp
j}q3hij . (2.2)

From (2.2) one expects a perturbation in h11 to result in a preferred orthogonal combination

of spin and linear momentum leading to non-zero perturbation in 〈T 12〉 according to (2.1).

This effect cancels for two helicities of fermions in a P-even set-up but one may expect a

response analogous to (1.2) if there is a chiral imbalance.

Note that these simple arguments based on the spin-field interaction cannot serve as

a rigorous derivation for massless fermions and should be supported by direct calculations

in a chiral medium (as it is done for both magnetic [31, 34, 35] and gravitational [19]

responses). However, we think that this picture can be helpful for understanding of the

origin of CGE.

3The interaction between spin and a GW was recently discussed in [33].
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3 Gravitational dispersion relation

Let us now analyse the spectrum of a TT metric perturbation propagating in a chiral

plasma. The stress-energy tensor induced by the medium response (1.2) modifies Ein-

stein’s equation for hρσ. Following the standard Kubo formalism it can be expressed as

〈Tµν〉 = Πµνρσhρσ, where Πµνρσ is the retarded graviton self-energy. The P-odd TT com-

ponent of the response function is derived in [19] and its tensorial structure reads

Πµνρσ
T (ω, q) = iξT (ω, q)uαQβε

αβ{µρP
ν}σ
T + (ρ↔ σ) , (3.1)

where ξT is the scalar response function. One can see that (3.1) explicitly satisfies the

Ward identity which constraints the graviton self-energy and for the P-odd contribution is

given by qµΠµνρσ = 0.

Equipped with the response (3.1), the linearized Einstein equation including back-

reaction takes the form

Gpert
µν = κT pert

µν (3.2)

where κ is the gravitational coupling, T pertµν and Gpert
µν are the perturbations of the stress-

energy tensor and the Einstein tensor. Note that in general T pert
µν contains also P-even

contributions.

For a TT metric perturbation propagating along z-axis the linearised Einstein tensor

takes a particularly simple form Gpert
ij = (ω2 − q2)hij with i(j) = 1, 2. The equation (3.2)

is homogeneous with respect to hµν and has a non-trivial solution only if its determinant

is zero. As usual, this constraint defines the spectrum of perturbations which is given by(
ω2 − q2 +

1

m2
p

ξS(ω, q)

)
= ± q

m2
p

ξT (ω, q) (3.3)

where the ± signs corresponds to two helicities, we express the gravitational coupling

through the Planck mass κ = m−2p , and ξS is introduced to stress the presence of P-even

counterpart of the graviton self-energy. The leading contribution to ξT in the derivative

expansion |ω|2, q2 � µ2, T 2 was obtained in [19] and is given by

ξT (ω, q) = − 1

96π2
µ
(
µ2 + π2T 2

)(
2 +

Q2

q2
+

3Q4

q4
L(ω, q)

)
(3.4)

where

L(ω, q) = −1 +
ω

2q
log |ω + q

ω − q
| − iπ

2

ω

q
θ

(
1− ω2

q2

)
, (3.5)

with Q2 = −ω2 + q2.

Due to non-linearities in the spectrum it is natural to concentrate on physically mo-

tivated limits. Starting with the quasi-static regime |ω| � q we can write the leading

contributions to the response function (3.4) as

ξT '
iµ(µ2 + π2T 2)

64π

ω

q
. (3.6)
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Note that in the strictly static limit of ω = 0 the P-odd part of the graviton self-energy

ξT goes to zero in contrast with the case of the photon self-energy responsible for CME.

If P-even contributions are omitted from the consideration, the dispersion relation reduces

to a simple form

ω = ±iq2
64πm2

p

µ(µ2 + π2T 2)
(3.7)

which indicates an exponentially growing mode similar to the chiral magnetic instability,

see e.g. [4]. However, one would expect it to vanish if the P-even part of the back-reaction

is taken into account. Then (3.7) should be reinterpreted as a polarization dependent

damping of modes in the quasi-static regime. It should be mentioned that eq. (3.7) implies
m2
pq

µ(µ2+π2T 2)
� 1 and characteristic wavelengths are expected to be larger than the horizon

size mp/T
2 even if the instability has a realization.

Note that in the strictly static limit ξT is non-zero beyond the leading order in the

derivative expansion [18, 19], the first non-trivial contribution appears at the second order

and takes the form

ξT (0, q) = − 1

192π2
µq2 . (3.8)

One can readily find that for momenta satisfying q2− µq2q3
192π2m2

p
< 0 there may appear a new

type of chiral instability. To be specific, in the presence of the P-even damping, say due to

viscosity, in the quasi-static limit, the spectrum could exhibit a negative imaginary part of

the frequency, depending on the sign of the chiral imbalance leading to a growing mode.

This instability is chiral in its nature and corresponds to an exponentially growing mode for

a helicity fixed by the sign of µ. However, its realization requires trans-Planckian momenta

q >
m2
p

µ in contrast with the chiral plasma instability leading beyond the applicability of

the classical gravity and to a breakdown of the derivative expansion.

We now turn to the regime of propagating waves |ω| ∼ q. Anticipating the imaginary

part of the frequency ωIm to be much smaller than the real part ωRe in the expansion

Q2/q2, the dispersion relation can be solved for the real part of the frequency with

ω2
Re − q2 = ± q

m2
P

Re[ξT (ωRe, q)]. (3.9)

It is convenient to expand around the linear spectrum ω = q + δω with δωRe/Im being the

real/imaginary part of the correction, then one finds

δωRe = ± 1

96π2
µ
(
µ2 + π2T 2

)
m2
P

. (3.10)

The two opposite chiralities result in distinct situations with ωRe ≶ q depending on the

sign of µ. Indeed, neglecting the imaginary part of ω, one expects that δωRe < q supports

δωIm 6= 0 while δωRe > q results in the theta function to be zero and δωIm = 0. The leading

contribution to the imaginary part of the frequency δωIm is given by

δωIm =
q

2m2
P

Im[ξT (q, ω)]

ωRe
∼ 1

q2

(
µ
(
µ2 + π2T 2

)
m2
P

)3

. (3.11)
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Although the dimensionful quantity multiplying the step function in the expression for ξT
can be positive or negative depending on the sign of the chemical potential µ, the step

function is non-zero only for one of the two polarizations (at given sign of µ) fixing the sign

of the imaginary part. Note that for positive helicity, a positive µ produces a negative δωRe
and also sets the imaginary part of the frequency to be positive. This complex frequency

corresponds to a suppression for one of polarized modes. The opposite helicity at µ > 0

produces a positive δωRe leading to δωIm = 0 due to the theta function in L(ω, q). In the

presence of P-even contributions to the graviton self-energy, eq. (3.11) leads to a helicity

dependent damping of GWs similarly to the quasi-static limit.

While the helicity dependent damping seems to be suppressed by additional powers

of mP , it is instructive to roughly compare its magnitude with the effect of the P-even

response in the same limit. One expects that in a P-even setup, both helicities of GWs are

damped either by a Landau damping in the collision-less limit or by the viscous damping

due to the shear viscosity η of the medium, for additional details see the discussion in [25].

For an estimate we concentrate on the effect of the shear viscosity η or more precisely on

the upper bound for the damping rate δωIm ∼ η
m2
P

[36]. For a rough estimate one can take

η ∼ T 3 and set µ ∼ T reducing the number of scales in the problem. Then the helicity

dependent contribution to the imaginary part of the frequency (3.11) is comparable with

the viscous damping contribution only if

T 3

m2
P

∼ 1

q2

(
T 3

m2
P

)3

(3.12)

or equivalently for q ∼ T 3

m2
P

. In the limit T → mP the relation (3.12) results in a char-

acteristic momentum q of the Planck scale. For modes of the horizon size l ∼ mP /T
2,

the polarization dependent damping is suppressed comparing to the upper bound on the

viscous damping by a small factor of T 2/m2
P decreasing for shorter wavelengths.

In the long-wavelength regime |ω|/q � 1 the leading GW dispersion relation is expected

to be plasmon-like ω2 = ω2
pl + q2, see e.g. [37]. The plasma frequency can be estimated as

ωpl ∼ T 4

m2
P

for µ� T and we focus on this limit. In the presence of a chiral asymmetry the

spectrum is modified by a helicity-dependent P-odd contribution to the response function

ξT (q0, q) = − 1

60
µT 2 (3.13)

resulting in

ω2 = ω2
pl + q2 ± 1

60

µT 2

m2
P

q . (3.14)

Note that the linear term in powers of momentum q, on the r.h.s. of (3.14), is much smaller

than ω2
pl for ω, q � µ, T insuring stability of the system.

Propagation of long wavelength GWs through a chiral medium can be illustrated with a

simple analysis of a wave-packet behavior. The presence of the linear term in the dispersion

relation points to the dependence of group and phase velocities on the GW polarization.
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For simplicity we consider modes with positive circular polarization recovering results for

the opposite helicity by the parity transformation (and changing the sign of µ). Then the

group velocity corresponding to the dispersion relation (3.14) is given by

vg =
dω

dq
=

q + 1
120

µT 2

m2
P√

q2 + ω2
pl + 1

60
µT 2

m2
P
q
. (3.15)

Remarkably, for q < 1
120

µT 2

m2
P

the GW group velocity (3.15) turns negative for µ < 0 indi-

cating an anomalous dispersion for the positive polarization. One can see that the phase

velocity vp ≡ ω
q derived from (3.14) is also helicity dependent but the helical contribution

is suppressed by (µq)/T 2 comparing to the leading P-even term.

Before we delve into the implications of the chiral anomalous dispersion, let us estimate

the order of magnitude of the terms involved in (3.14) in the regime where group velocity

turns negative. The corresponding momentum is given by q ∼ µT 2/m2
p and satisfies both

q � (µ, T ) and q � ωpl for (µ, T ) � mP . In this limit one finds that ω ∼ ωpl and the

expansion parameter q/ω ∼ q/ωpl ∼ µ/mp is small as expected.

It is well known that Gaussian packets of propagating waves travel with the group ve-

locity which, if negative, can lead to a peculiar behaviour. The scalar part of the Fourier am-

plitude for a gaussian wave-packet centered around the momentum qc is given by e−α(q−qc)
2
.

An inverse Fourier-transform produces the following amplitude in coordinate space

ei(qcz−ω0t)e−
(z−vg(qc)t)2

4α

after expanding the spectrum around q = qc. Thus, if the group velocity changes sign, the

wave-packets for two polarizations propagate in the opposite directions.

Typically a negative group velocity is associated with an absorptive medium. The

simplest example [30] involves modeling the response of atoms or molecules in ordinary

matter to an external perturbation of electromagnetic field. The atoms or molecules gain

dipole moments and are treated as damped simple harmonic oscillators with some charac-

teristic absorption frequency. In this case the group velocity and the refractive index n are

complex for propagating modes with a real wave-vector. Near the characteristic frequency,

the real part of the index of refraction jumps from a positive to a negative value. The slope

of the real part of the refractive index becomes negative with increasing frequency, causing

the group velocity to become negative and at times infinite vg = (n + ω dndω )−1. However,

the chiral anomalous dispersion for GWs obtained in this paper is not associate with any

absorption. The frequency, the index of refraction and the group velocity remain real.

Although a negative group velocity in chiral medium will require q < 1
120

µT 2

m2
p

, chiral

splitting of group velocities is present for arbitrary q < ω. If q & 1
120

µT 2

m2
p

the group velocity

is positive for both helicities but is still polarization dependent. In order to estimate the

upper bound on the helical correction to vg one can set q ∼ ωpl ∼ T 2/mp. Then the chiral

contribution to the group velocity goes as µ/mP while the leading term is of order ωpl/q ∼ 1.

An accurate estimate of the chiral splitting of the group velocity requires numerical study

of the spectrum including the full self-energy and we leave it for future work.
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4 Electromagnetic dispersion relation

Here we briefly discuss propagation of electromagnetic modes in a chiral plasma in the

presence of non-zero µ and show that the chiral anomalous dispersion is a general feature

of helical excitations in such systems. The dispersion relation for plasmons can be obtained

in a manner similar to the GW case discussed in the previous section. Maxwell’s equations

with the back-reaction taken into account produce

det
[
(q2 − ω2)δij − kikj + Πij

]
= 0 , (4.1)

and we use A0 = 0 gauge following conventions of [4]. Here the response function Πij is

the retarded photon self-energy in a chiral medium derived in [38]. At finite temperature

and density there is a preferred reference frame, the polarization operator has a more

involved structure than in vacuum and can be decomposed into longitudinal, transverse,

and antisymmetric parts

Πij = ΠLPLi
ij + ΠTPT i

ij + ΠAPAi
ij

P ijL =
qiqj

q2
, PT = δij − P ijL , P ijA =

iεijkqk
q

, (4.2)

where the P-odd contribution corresponds to the presence of a chiral imbalance. Using this

decomposition one can reduce (4.1) to

ω2 = ΠL , ω2 = q2 + ΠT ±ΠA (4.3)

with two signs corresponding to different polarizations. The explicit form the three contri-

butions to the photon self-energy are given by

ΠL =m2
D

ω2

q2
L̃(ω,q) , ΠT =

m2
D

2

(
1+

q2−ω2

q2
L̃(ω,q)

)
, ΠA =−αµq

π

(
1−ω

2

q2

)
L̃(ω,q) ,

(4.4)

where m2
D = e2

(
T 2

6 + µ2

2π2

)
, L̃(ω, q) ≡ L(ω, q) + 1 and we take the wave-vector in the

z-direction. In analogy with the gravity sector, we consider the photon self-energy in the

long-wavelength limit |ω/q| � 1,

ΠL '
1

3
m2
D +O

(
q2

ω2

)
, ΠT '

1

3
m2
D +O

(
q2

ω2

)
, ΠA '

αµq

3π
+O

(
q3

ω3

)
. (4.5)

Substituting (4.5) into (4.3) one finds the dispersion relation in the long-wavelength limit

ω2 = ω2
pl + q2 ± αµq

3π
+O

(
q2

ω2

)
. (4.6)

As previously in the GW case, the dispersion relation is helicity dependent and one of the

two polarizations acquires a negative group velocity for q < α
3πµ. Thus, we have shown

that the chiral anomalous dispersion discussed in this papers exists for the electromagnetic

modes in chiral media as well as for gravitational ones. Emphasizing a point mentioned

earlier, a milder constraint ω > q is satisfied for q ∼ ωpl. Although this regime is not

– 8 –
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accessible analytically, a numerical analysis is expected to reproduce the chiral splitting

of the group velocity and we leave it for further study. The relatively larger value of the

electromagnetic coupling makes the anomalous dispersion of plasmons in chiral media to

be in principle observable in tabletop experiments based on condensed matter systems

with relativistic linear spectrum such as Dirac semi-metals. This proposal is additionally

supported by the recent experimental observation of CME in those systems, see [3].

5 Outlook and discussion

In this paper we study how circularly polarized electromagnetic and gravitational waves

propagate through a chiral medium. The response of a chiral medium to the electromag-

netic and gravitational fields is given by photon and graviton retarded self-energies and

we use that to construct linearized equations of motion for corresponding waves. These

equations determine the spectrum of excitations propagating in a chiral plasma.

We start with the gravitational sector and consider CGE — the chiral medium response

to an external TT gravitational field in the stress-energy tensor. We consider the back

reaction of this effect to gravitational perturbations propagating through the medium and

the resulting spectrum in several limiting regimes. Concentrating on P-odd features of the

dynamics we mostly omit the P-even part of the graviton self-energy where it is possible and

qualitatively restore it if required. In the quasi-static limit the electromagnetic response

results in the chiral magnetic instability which corresponds to a transfer of the microscopic

chirality to the macroscopic helicity of magnetic field, see e.g. [4]. Following this intuition we

start the consideration of GWs in a chiral medium with the quasi-static limit |ω|/q � 1 and

find that a gravitational chiral instability would require wavelength above the horizon size.

We further argue that this regime is also considerably modified by P-even contributions and

the unstable behavior vanishes. This is expected since the leading order CGE disappears

in the exact static limit in contrast with CME. The first non-trivial CGE contribution

in the static limit appears at the 3d order in the derivative expansion (3.8). Taking it

into account one can find that the modified dispersion relation exhibits another instability

(in the UV limit) which, however, requires trans-Planckian momenta and goes beyond

applicability of the classical gravity (and this consideration). In the regime of relativistic

propagating waves ω ∼ q the spectrum indicates helicity dependent attenuation which

leads to an unequal damping of polarized GWs. It is however highly suppressed for shorter

wavelengths. We illustrate this result comparing the helicity dependent contribution with

the textbook example of the GW damping by the shear viscosity. Maximizing the P-

odd effect we consider modes of the horizon size and find that it is still suppressed by a

small factor of T 2/m2
P compared to the P-even part. Turning to the long-wavelength limit

|ω|/q � 1 we find an interesting result — the GW group velocity appears to be helicity

dependent and may become negative giving rise to a new type of anomalous dispersion.

We believe that the mutual effect of the polarization dependent GW propagation can turn

into an overall helical asymmetry in distinct regions of space which in principle could

lead to helical distributions of matter and radiation. One should expect this asymmetry

to be rather small but it would be interesting to study whether its signatures could at

– 9 –
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least in principle be observed. We also note that an additional chiral imbalance may be

caused by a background electromagnetic helicity4 and axions which should be added to

this consideration.

Inspired by the group velocity behavior in the gravitational case we turn to reviewing

electromagnetic excitations in chiral media. The plasmon spectrum in a medium with

a chiral asymmetry is studied in the literature in great details, for a recent discussion

see [26, 27]. Focusing on the long-wavelength limit we find that the leading correction

to the plasmon spectrum, indeed, results in a similar phenomenon: the plasmon group

velocity of a particular helicity can turn negative. The electromagnetic coupling is much

larger resulting in a stronger effect than that in the gravitational sector and one may

expect that this birefringence of chiral media may be observed in experiments with Dirac

semi-metals. In addition, phenomenological effects of the chiral anomalous dispersion can

be studied for a radiation produced in and passing through a cosmic P-odd background

such as a supernova where a chiral asymmetry may be generated. Then, one can study the

difference between polarized light signals searching for helical asymmetries.
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