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Abstract—We consider jointly optimal routing, scheduling, and
network coding strategies to maximize throughput in wireless
networks. While routing and scheduling techniques for wireless
networks have been studied for decades, network coding is a
relatively new technique that allows for an increase in throughput
under certain topological and routing conditions. In this work we
introduce k-tuple coding, a generalization of pairwise coding with
next-hop decodability, and fully characterize the region of arrival
rates for which the network queues can be stabilized under this
coding strategy. We propose a dynamic control policy for routing,
scheduling, and k-tuple coding, and prove that our policy is
throughput optimal subject to the k-tuple coding constraint. We
provide analytical bounds on the coding gain of our policy, and
present numerical results to support our analytical findings. We
show that most of the gains are achieved with pairwise coding,
and that the coding gain is greater under 2-hop than 1-hop
interference. Simulations show that under 2-hop interference our
policy yields median throughput gains of 31% beyond optimal
scheduling and routing on random topologies with 16 nodes.

I. INTRODUCTION

Network coding, originally introduced in [1], can increase

network throughput by allowing intermediate nodes to com-

bine or encode the data they receive, rather than simply

replicating and forwarding it. The benefit of this approach for

wireless transmissions was clearly demonstrated by COPE [6],

an opportunistic network coding protocol that takes advantage

of wireless multicast and allows encoding of packets between

multiple unicast sessions using binary XOR operations. The

authors combine their coding strategy with a modified MAC

protocol to show significant throughput improvements versus

a standard 802.11 MAC on a wireless testbed. While the

original work on COPE [6] explored the interplay between

coding and scheduling, subsequent work in [13] motivated the

need for routing protocols to be aware of COPE-style network

coding. The appropriate choice of routes can increase coding

opportunities and [13] shows that significant throughput im-

provements are possible through such coding aware routing.

In this work, we address the joint design and performance of

routing, scheduling, and coding in a wireless network.

Numerous previous works have considered joint routing and

scheduling in the absence of network coding. In their seminal
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paper on network control [16], Tassiulas and Ephremides intro-

duce the maximum weight scheduling and differential backlog

routing policy to provide throughput optimal network control.

The policy has an attractive property for dynamic control in

that decisions rely only on current queue state information,

without requiring knowledge of the long-term arrival rates.

The authors are able to prove, using Lyapunov stability theory,

that their policy can stabilize the network queues for any

stochastic arrival process within the stability region of the

network. Neely, Modiano, and Rohrs [9] extended this to

jointly optimize for routing, scheduling, and power control

in wireless networks with time-varying channels.

Network coding has been incorporated into the design of

scheduling and routing schemes in recent work. A num-

ber of recent works, including [2], [7], [10], [12], develop

joint scheduling and coding schemes in a network control

framework, either for single-hop transmissions, or under the

assumption that routes are fixed and specified a priori. In ad-

dressing the routing problem, [17] provides a linear optimiza-

tion approach for identifying network coding opportunities

on butterfly subgraphs with multiple unicast sessions, while

[4] develops a policy for dynamic routing and scheduling to

provide stability throughout the region from [17]. The poison-

remedy approach introduced in [4] involves opportunistically

identifying coding opportunities, creating poisoned or coded

packets, and subsequently sending a request for remedy or

uncoded packets to be sent to the destination node to allow

for decoding. In a different approach, [3] provides a distributed

backpressure routing and maximum weight scheduling policy

for a generalized COPE coding scheme, making opportunistic

coding decisions to increase throughput. The policy in [3]

exploits the use of overhearing to provide coding opportunities,

optimizing for a subset of coding opportunities to reduce

complexity while allowing for distributed implementation.

Finally, [14] formulates a linear program for the joint routing,

scheduling and pairwise coding problem and evaluates results

from a computational solution to the problem.

Network coding can be combined with overhearing to yield

additional coding opportunities, as shown in [3], [6], [7],

[10], [11], [12] and [13]. We may consider the addition of

overhearing to our coding strategy in future research.

In this paper, we propose an inter-session network coding

strategy that jointly optimizes for routing and scheduling of

unicast traffic on wireless networks. The coding scheme we
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consider does not require overhearing, but simply requires

each node to keep a copy of packets it previously transmitted

for some limited period of time. All coded packets must be

decoded at the next hop, and when a coding opportunity is

identified, the requisite conditions for decoding are already

satisfied. The main contributions of this paper are as follows:

• introduces k-tuple coding, a generalization of pairwise

inter-session network coding, and fully characterizes the

stability region under this coding strategy;

• proposes a dynamic routing, scheduling, and k-tuple

coding policy and proves that this policy is throughput

optimal subject to the k-tuple coding constraint;

• proves analytical bounds on the throughput gain for k-

tuple coding relative to optimal routing and scheduling

without network coding;

• provides numerical results via simulation and linear pro-

gram evaluation to give a sense of the performance of

our policy under various settings.

A unique attribute of our policy is that it requires keeping

track of which one-hop neighbor supplies each packet; this

requirement shows up both in the characterization of the

stability region and in the construction of weight calculations.

This paper is organized as follows. Section II describes

our system models, and Section III characterizes the stability

region under these models. In Section IV we design a control

policy that combines scheduling, routing, and network coding

to achieve the given stability region. We provide analytical

results on coding gain in Section V, and describe the com-

plexity of our coding operations in Section VI. In Section VII

we give numerical results, and offer concluding remarks in

Section VIII.

II. MODEL

A. Wireless Network

We consider a wireless network modeled as a directed

hypergraph, G = (N ,H), where N is the set of nodes in the
network and H is the set of directed hyperedges supported
by the network. Hyperedge (a, J̃) allows head node a to

communicate directly with a set of tail nodes J̃ using a

single transmission. Standard edge (a, b) is a special case of
a hyperedge, where node b is the only tail node. Let Hk ⊆ H
be the set of hyperedges that contain exactly k tail nodes.

We model the network as a hypergraph to capture the effects

of wireless multicast transmissions, which are needed by our

network coding strategy.

We consider unicast traffic. In this context, wireless multi-

cast is used only for the transmission of network coded pack-

ets. We assume time to be slotted, and for simplicity assume

unit rate links and packets of a fixed size corresponding to

one packet per time slot. We refer to packets destined for

node c as commodity c packets. We allow exogenous packet

arrivals from an arbitrary process with finite second moment.

Let λc
a be the average rate of exogenous arrivals at node a for

commodity c, and let λ = (λc
a) be a vector of arrival rates for

all sources a and commodities c.

We assume that non-interfering transmissions are reliable,

but otherwise consider arbitrary interference constraints. How-

ever our numerical results consider two interference models

of interest: 1-hop and 2-hop interference. In the context

of wireless networks, the 1-hop interference model means

that each node can receive from at most one neighbor at

a time, and a node cannot receive while transmitting. The

2-hop interference model builds on the restrictions of 1-

hop interference, adding a constraint such that simultaneous

communications will interfere if connected by any standard

edge in the network. These are natural extensions of the 1-hop

and 2-hop interference models from [15], where we explicitly

allow these models to make use of wireless multicast.

B. Routing and Scheduling

A wireless network requires mechanisms for routing packets

along a series of hyperedges toward the destination node and

for scheduling a set of hyperedges to be activated simulta-

neously without creating interference. Let schedule ℓ be a

set of non-interfering hyperedges, and let L be the set of all
such schedules. We consider a centralized control policy that

dynamically chooses which hyperedges to activate during each

time slot, and chooses which commodity to send over each

hyperedge when active.

Tassiulas and Ephremides [16] provided a joint routing and

scheduling policy that is throughput optimal; in the absence

of network coding, their policy yields 100% throughput for

all arrival rate vectors that can be supported by any policy.

At each time slot t ≥ 0 and for each edge (a, b), this policy
calculates the edge weightW ∗

ab(t) as the maximum differential
backlog over the edge:

W ∗
ab(t) = max

c∈N
{U c

a(t) − U c
b (t)} (1)

where U c
a(t) is the backlog at node a of commodity c

packets at time t. Their policy then chooses the schedule with

maximum total weight ℓ∗(t):

ℓ∗(t) = arg max
ℓ∈L

∑

(a,b)∈H1

ℓabW
∗
ab(t) (2)

where ℓab = 1 if edge (a, b) is active in schedule ℓ, and is

0 otherwise. Finally, this policy serves the commodities that

maximize Eqn. (1) for each active edge in schedule ℓ∗(t).
While this policy optimizes for scheduling and routing, the

policy as stated only considers standard edges in H1 and does

not account for network coding. We extend this policy from

Tassiulas and Ephremides to jointly optimize for scheduling,

routing, and our simple network coding scheme.

C. Network Coding

We describe our k-tuple coding operations using a construc-

tive approach by first considering the pairwise case of coding

over 2 sessions, then extending this to the case of coding over

3 sessions, and finally generalizing to the case of coding over

k sessions. We then motivate the use of coding by describing

achievable throughput gains in simple scenarios. Our coding

strategy depends on knowing the neighbor from which each
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Fig. 1. 3-tuple coding operation at node r. (a) Standard edges shown with
solid lines, with all hyperedges available; traffic demands shown with dashed
arrows. (b) Activations shown with solid arrows.

packet is received. To accomplish this, nodes store packets in

subqueues based on the one-hop source of each packet; one-

hop subqueue d for commodity c holds commodity c packets

received from neighbor d.

Our coding strategy considers ordered sets of hyperedge

tail nodes and commodities. Let (a, J) be a hyperedge with
ordered tail nodes, for J ∈ perms(J̃), where perms(J̃) is the
set of all permutations of J̃ . The tail node at the mth position

in J is denoted J(m), and with an abuse of notation J(k +
1) = J(1) for |J | = k. Let s ∈ N k be an ordered set of k

commodities, and let Sk be the set of all ordered commodity

sets of size k. The commodity at the mth position of s is

denoted s(m), and again by abuse of notation, s(k+1) = s(1).

Pairwise Coding: Consider node r that has received packet

pA for commodity a from neighbor b and packet pB for

commodity b received from neighbor a. Thus for hyperedge
(r, J), J = (a, b), and commodity set s = (a, b), a packet
for commodity s(2) = b (i.e., pB) is in one-hop subqueue

J(1) = a and a packet for commodity s(1) = a resides in
one-hop subqueue J(2) = b. Node r can generate a coded
packet pAB = pA⊕pB , where ⊕ is the binary XOR operation,
and then send pAB to nodes a and b in a single time slot using
a wireless multicast transmission. Node a has previously seen
packet pB , and can recover pA = pAB ⊕ pB . Likewise, node

b can recover packet pB . Note that we do not require packets

pA, pB , and pAB to be transmitted in consecutive time slots,

but require only that pAB is transmitted after both pA and pB

have been received at r.

The coding operation requires that each node maintain

an extra buffer with uncoded copies of packets that it has

previously transmitted; we call this the side information buffer.

In the example above, upon transmitting to node r, node
a keeps pB and node b keeps pA in their respective side

information buffers. Additionally, node r adds pA and pB

to its side information buffer upon transmitting pAB . We

discuss operations for removing packets from this buffer in

Section VI-B. Note that coded packets can be discarded at

the end of the coding operation, as only uncoded packets are

stored in one-hop subqueues and side information buffers.

3-Tuple Coding: Now suppose that node r has received
packet pA for commodity a from neighbor c, packet pB for

commodity b from neighbor a, and packet pC for commodity

c from neighbor b. For hyperedge (r, J), J = (a, b, c), and
commodity set s = (a, b, c), a packet for commodity s(2) =
b resides in the one-hop subqueue J(1) = a, a packet for

commodity s(3) = c resides in subqueue J(2) = b, and a
packet for commodity s(1) = a resides in subqueue J(3) = c.
Node r can encode packets pA, pB , and pC using two coded

packets: pAB = pA ⊕ pB and pBC = pB ⊕ pC . Node r can
then transmit coded packets pAB and pBC to neighbors a, b,
and c using 2 wireless multicast transmissions. Each of the
3 neighbors can decode the packet destined for them using

the 2 coded packets from r along with their side information
copy of the uncoded packet that they respectively supplied to

the encoding node. Note that even though nodes a, b, and c
can decode all 3 packets, they each keep only the one packet

that is destined for them and discard the rest. This scenario is

shown in Fig. 1.

Definition 1: A coding opportunity
(

s, (r, J)
)

is formed

by the combination of ordered hyperedge (r, J) and ordered
set of commodities s held at node r for which: (a) |s| = |J | =
k, and (b) for each m = 1, 2, ..., k, a packet for commodity
s(m + 1) resides in the one-hop subqueue J(m) at node r.
For the pairwise coding scenario, if pA and pB are the only

packets in the one-hop subqueues at node r, then s = (a, b) is
the only set of commodities that forms a coding opportunity

with hyperedge (r, J), J = (a, b). Commodity set s′ = (b, a)
does not form a coding opportunity with hyperedge (r, J), J =
(a, b), since at node r, there is no packet for commodity
s′(2) = a in one-hop subqueue J(1) = a, and no packet
for commodity s′(1) = b in one-hop subqueue J(2) = b. By
assumption, a node will never transmit a packet destined for

itself, so commodity set s′ = (b, a) and ordered hyperedge
(r, J), J = (a, b), will never satisfy the condition (b) for
coding opportunities. However commodity set s′ = (b, a) and
hyperedge (r, J ′), J ′ = (b, a), do form a coding opportunity,
since s′ and J ′ are formed by the same circular shift of s
and J , respectively. Yet the coding operations and packets
delivered for

(

s′, (r, J ′)
)

and
(

s, (r, J)
)

are identical. In

general, for any coding opportunity
(

s, (r, J)
)

, we can ignore

equivalent circular shifts
(

s′, (r, J ′)
)

in constructing a rout-

ing and scheduling policy. Furthermore, consider hyperedge

(r, J), J = (a, b), on a more general topology, where the
the transmit buffer at r contains packets in both one-hop
subqueues a and b for commodities g and h. Then commodity
sets s1 = (g, h), s2 = (h, g), s3 = (g, g), and s4 = (h, h) can
each be combined with hyperedge (r, J) to form valid coding
opportunities.

Coding Rule: A k-tuple coding operation can only be
performed for a coding opportunity

(

s, (r, J)
)

that satisfies

Definition 1. A packet for commodity s(m+1) that resides in
the one-hop subqueue J(m) at node r is delivered to neighbor
J(m + 1).
For the 3-tuple coding example, commodity set s = (c, b, a)

and ordered hyperedge (r, J), J = (a, c, b) also form a valid
coding opportunity. In this alternate coding opportunity, node

r delivers packet pC to node a, pB to c, and pA to b.
k-Tuple Coding: Generalizing further, a commodity set

s and hyperedge (r, J), |s| = |J | = k, can form a k-
tuple coding opportunity for 2 ≤ k ≤ deg(r), and deg(r)
is the degree of node r. The encoding operation requires r



r1 r2

a

d

b

c

pB

pC

pD

pA

(a)

pB

pA

pC

pD

pB ⊕ pC ,
pC ⊕ pD

pA ⊕ pB,
pB ⊕ pD

(b)

Fig. 2. Pair of 3-tuple coding nodes, r1 and r2. (a) Standard edges shown
with solid lines, with all hyperedges emanating from r1 and r2 available;
traffic demands shown with dashed lines. (b) Activations shown with solid
arrows.

to receive one packet from each of the k distinct neighbors
in J , and then to transmit k − 1 coded packets via wireless
multicast to all k neighbors. To encode the uncoded packets
p1, ..., pk corresponding to commodities s(1), ..., s(k), node r
can generate k−1 coded packets as: (p1⊕p2), (p2⊕p3), ..., and
(pk−1⊕pk). Each of the k neighbors already has in their side
information buffer a copy of the packet that they respectively

supplied to r. Upon receiving the k−1 coded packets from r,
each of the k neighbors can then decode the packet destined
for them. For example, assume node d supplied packet p1 to r,
and r sends packet pk to d using a k-tuple code. Node d can
recover packet pk as: p2 = p1⊕(p1⊕p2), p3 = p2⊕(p2⊕p3),
... , and pk = pk−1 ⊕ (pk−1 ⊕ pk). It follows that for all code
sizes k, the use of binary XOR operations between pairs of
packets is sufficient for both encode and decode operations for

k-tuple coding.
Lemma 1: If k neighbors of a node each have in their

respective side information buffers at most one packet from

a k-tuple coding opportunity, then under any coding strategy,
k − 1 is the fewest number of packets that the coding node
must transmit to exchange all k packets.

Proof: The proof follows because in order to solve for

k − 1 unknown packets, k − 1 linearly independent equations
are needed.

Observation 1: A single k-tuple coding operation yields a
throughput gain of 2k

2k−1 when all hyperedges connected to

the coding node mutually interfere.

The k-tuple coding operation requires a total of 2k−1 time
slots, while the same packet exchange without coding requires

2k time slots, yielding the observed result. For pairwise coding
the throughput gain is 4/3, and for 3-tuple coding the gain is
6/5. While 3-tuple coding yields a lower gain than pairwise
coding, notice that there is no pairwise coding opportunity in

the 3-tuple coding scenario in Fig. 1.
Observation 2: There exists a setting where a throughput

gain of 2k−1
2k−2 is achievable.

Consider coding nodes r1 and r2 that share a single edge

and where both coding nodes have degree k, with interference
constraints such that all hyperedges mutually interfere. An

example of this scenario is shown in Fig. 2 for the case

of k = 3 under 2-hop interference. For the traffic demands
shown, node r1 is a tail node for the 3-tuple coding opportunity
(

s2, (r2, J2)
)

, s2 = (b, c, d) and J2 = (b, c, r1), while r2 is

a tail node for the coding opportunity
(

s1, (r1, J1)
)

, where

s1 = (a, b, d) and J1 = (a, r2, d). The coding operation at

r1 can deliver pA to a, pB to r2 and pD to d. The coding
operation at r2 can deliver pB to b, pC to c, and pD to r1.

Without coding, it takes 2 + 3 + 2 + 3 = 10 or 2(2k − 1)
time slots to deliver packets pA, pB , pC , and pD, while k-tuple
coding can deliver the same set of packets in 4 + 2 + 2 = 8
or 2(2k − 2) time slots using the activations in Fig. 2(b).
This yields the observed gain of 2k−1

2k−2 . For pairwise coding

this is a throughput gain of 3/2, while for 3-tuple coding
the throughput gain is 5/4. These throughput gains require
a pipeline of coding operations, where nodes r1 and r2 are

initialized with packets from a, b, c, and d, and the activations
cycle between coding operations at r1 and r2.

III. STABILITY REGION

The stability region ΛNC of our k-tuple coding strategy is
the set of all arrival rate vectors (λc

a) that can be supported
while ensuring that all packet queues in the network remain

finite.

Let fd,c
ab be the rate of uncoded flow of commodity c packets

supplied by node d and sent over edge (a, b), and let fs
aJ

be the rate of flow over ordered hyperedge (a, J) for each
commodity in set s, where

(

s, (a, J)
)

is a coding opportunity.

For simplicity, we use the following f̂ notation to represent a
sum over a set of underlying flow variables. Notation {d, c} →
b means commodity c from one-hop subqueue d is sent to node
b. Let f̂d,c

ab be the total uncoded and coded flow rate from

node a to neighbor b for commodity c from the subqueue for
one-hop neighbor d. Thus,

f̂d,c
ab = fd,c

ab +
∑

{

(a,J)∈Hk,k≥2,s∈Sk:
d,b∈J,c∈s,{d,c}→b

}

fs
aJ , ∀a, b, c, d ∈ N (3)

where the summation is over the set of coded flow variables

fs
aJ for all hyperedges (a, J) and commodity sets s that deliver
commodity c packets from one-hop subqueue d to node b. Let
f̂c

ab be the total coded and uncoded flow rate from a to b for
commodity c traffic from all one-hop subqueues.

f̂c
ab =

∑

d

f̂d,c
ab , ∀a, b, c ∈ N (4)

We start with some efficiency assumptions: nodes don’t

transmit to themselves and nodes don’t transmit any traffic

destined for themselves. Also, all flow variables are non-

negative. Next, we define several constraints from our policy.

Flow Conservation: For each node a and for each com-
modity c 6= a, all commodity c flow that enters a must leave a.
To maintain this flow conservation, the exogenous arrivals for

commodity c must equal the difference between total network
departures for commodity c and total network arrivals for
commodity c.

λc
a =

∑

b

f̂c
ab −

∑

d

f̂c
da , ∀a, c ∈ N : a 6= c (5)

Coding Constraint: Our coding strategy allows node a
to encode packets for commodity c that have been received
directly from neighbor d, where the total flow directly from d



to a for commodity c gives an upper bound on the total coded
flow from a that can make use of commodity c packets in the
side information buffer at neighbor d.

∑

b

(

f̂d,c
ab − fd,c

ab

)

≤ f̂c
da , ∀ a, c, d ∈ N (6)

Hyperedge Rate Constraint: Let γℓ be the fraction of time

that schedule ℓ is active, and let ℓaJ̃ = 1 if hyperedge (a, J̃) is
active in schedule ℓ, and 0 otherwise. Let RaJ̃ be the fraction

of time that hyperedge (a, J̃) is active. Then we find RaJ̃ as:

RaJ̃ =
∑

ℓ∈L

ℓaJ̃ γℓ , ∀(a, J̃). (7)

The set (RaJ̃) for all hyperedges must then be in the convex
hull of the set of all schedules L.
For uncoded traffic (k = 1), the fraction of time RaJ̃ ,

J̃ = {b}, that edge (a, b) is active gives an upper bound on
the total flow of all commodities over that edge.

∑

d,c∈N

fd,c
ab ≤ RaJ̃ , ∀(a, b) : J̃ = {b} (8)

For coded traffic (k ≥ 2), our coding strategy imposes a factor
of 1

k−1 to account for the k − 1 time slots required to deliver
one packet to each destination of a coded packet.

∑

J∈perms(J̃),s∈Sk

fs
aJ ≤

RaJ̃

k − 1
, ∀(a, J̃) : |J̃ | = k, k ≥ 2 (9)

The stability region for our k-tuple coding strategy is
the convex polytope bounded by the set of constraints in

Eqns. (5-9). It can be shown that Eqns. (5-9) are necessary

for stability; due to space constraints, we omit the proof.

Additionally, we give the following two redundant con-

straints that are informative about our coding strategy.

λc
a =

∑

b

fa,c
ab , ∀a, c ∈ N : a 6= c (10)

0 =

(

∑

b

f̂d,c
ab

)

− f̂c
da , ∀a, c, d ∈ N : a 6= c, d 6= a (11)

Eqn. (10) indicates that exogenous arrivals must be sent

uncoded by the source node, while Eqn. (11) indicates that

the total flow out of one-hop subqueue d for commodity c
at node a must equal the total flow sent from d to a for
commodity c. These two equations can be viewed as detailed
flow conservation constraints for the one-hop subqueues. It

can be shown that replacing Eqns. (5) and (6) with Eqns. (10)

and (11) does not change the stability region ΛNC .

IV. LCM-FRAME POLICY FOR ROUTING, SCHEDULING,

AND k-TUPLE CODING

Our control policy performs scheduling, routing, and k-tuple
coding for dynamic choice of k. The transmission of each
k-tuple set requires k − 1 time slots, and we schedule for
fixed size frames such that all coding operations are performed

within the frame boundary. Therefore, the frame size must be

an integer multiple of k−1 for each code size k ∈ {1, ...,K}.

The least common multiple framing (LCM-Frame) policy

uses a fixed frame size of length T = lcm{1, ...,K − 1}
time slots, where K is the maximum size of any k-tuple code
used. Control decisions are made only at the beginning of each

frame, so that for each hyperedge active within a frame, all

packets sent over the active hyperedge contain packets using

the same code size k. Let Ck represent a k-tuple coding set
of k ∈ {2, ...,K} packets, which are to be encoded to form
k − 1 coded packets. For example, in the case of K = 5 all
frames will have duration T = lcm{1, 2, 3, 4} = 12 time slots
and each active hyperedge can transmit 12 uncoded packets,

12 sets of C2, 6 sets of C3, 4 sets of C4, or 3 sets of C5.

At every time slot t = nT , for integer n ≥ 0, the policy
operates as follows.

1) For every standard edge (a, b) ∈ H1, calculate edge

weight W ∗
ab(t) as below, and choose associated com-

modity s∗ab(t) and subqueue d∗ab(t). Let Ud,c
a (t) repre-

sent the backlog at node a at time t for packets received
from neighbor d and destined for commodity c. This
is a slight modification from the policy in Eqn. (1), in

that here we use the backlog of the one-hop subqueue

of each commodity instead of the total backlog for each

commodity.

W ∗
ab(t) = max

c,d

{

Ud,c
a (t) − Ua,c

b (t)
}

(12)

2) For every hyperedge (a, J̃), for k = |J̃ | ≥ 2, calculate
the weight as follows. For every ordered hyperedge

(a, J), for J ∈ perms(J̃), and every commodity set
s ∈ Sk such that

(

s, (a, J)
)

is a coding opportunity, cal-

culate the weight W s
aJ(t). First, evaluate the differential

backlog for each commodity in s and the respective tail

node from J as: U
J(m),s(m+1)
a (t) − U

a,s(m+1)
J(m+1) (t), for

each m = 1, 2, ..., k. If this differential backlog is non-
positive for any position m, then it is not beneficial to
encode, so set weight W s

aJ(t) = 0. If the differential
backlog is positive for all positions m, calculate the
weight as:

W s
aJ(t) =

1

k − 1

k
∑

m=1

(

Ud,c
a (t) − Ua,c

b (t)
)

, (13)

where d = J(m), b = J(m + 1), and c = s(m + 1).
The factor 1

k−1 accounts for k − 1 time slots required
to transmit the coded set s. Then choose optimal weight
W ∗

aJ̃
(t) for the unordered hyperedge as:

W ∗
aJ̃

(t) = max
J,s

{W s
aJ(t)} (14)

The optimal commodity set s∗
aJ̃

(t) and tail ordering

J̃∗
a (t) are chosen as the values of s and J , respectively,
that yield the maximum weight in Eqn. (14).

3) Choose the maximum weighted schedule, generalizing

Eqn. (2) to allow for hyperedges:

ℓ∗(t) = arg max
ℓ∈L

∑

(a,b)

ℓabW
∗
ab(t) +

∑

(a,J̃)

ℓaJ̃W ∗
aJ̃

(t) (15)



4) Repeatedly activate the chosen hyperedges for the dura-

tion of the T-slot frame. If there are not enough packets

in the subqueue for an active commodity, then null

packets are used in place of that commodity for the

remainder of the frame.

Definition 2: A queue U(t), t ≥ 0, is stable if

lim sup
t→∞

1

t

t−1
∑

τ=0

E[U(τ)] < ∞ (16)

A network is stable when all queues in the network are stable.

Theorem 1: The LCM-Frame policy stabilizes the network

for all arrival rate vectors interior to stability region ΛNC .

The proof is given in the Appendix.

The policy probes all paths in the network, so it will

encounter complex coding opportunities such as those in the

example from Fig. 2. As the policy makes use of coding op-

portunities it reduces backpressure along those paths, thereby

attracting more traffic to paths that offer coding opportunities.

V. k-TUPLE CODING GAIN

We require a meaningful metric to compare performance

with coding versus without coding. We identify the maxi-

mum scaling of arrival rate vector subject to stability from

Eqns. (5-9). Our metric of interest is the ratio of these stable

scalings under k-tuple coding versus routing and scheduling
without coding. Let ΛRS be the stability region under routing-

and-scheduling only.

Definition 3: Given λ ∈ ΛRS , let fNC(λ) = max{ρ :
ρλ ∈ ΛNC} and let fRS(λ) = max{ρ : ρλ ∈ ΛRS}, where ρ
is a scalar. Coding gain is the ratio fNC(λ)/fRS(λ).

Theorem 2: Considering all possible topologies, traffic de-

mands, and interference constraints, and with dynamic and

optimal choice of code size, the coding gain from k-tuple
coding is upper bounded by 2.

We offer a sketch of the proof. First, the coding constraint

is relaxed, removing the requirement that recipients of coded

packets are part of a coding opportunity while still allowing

encoding nodes to deliver k packets in k−1 time slots. Starting
with Eqn. (6), take the sum over all neighbors d for both sides
of the inequality, then add λc

a to the right side to yield the

relaxed coding constraint below.

∑

b,d

(

f̂d,c
ab − fd,c

ab

)

≤ λc
a +

∑

d

f̂c
da , ∀a, c ∈ N (17)

By this relaxation, we have ΛNC ≤ ΛRCC , where ΛRCC is

the stability region under the relaxed coding constraint (17).

Next, we compare to the flow conservation constraint (5) and

note that the relaxed constraint (17) is degenerate and can

be removed. With coding constraint (6) removed, any pair of

packets can be encoded and sent over a standard edge in one

time slot, allowing each edge to achieve a rate of 2. This

implies that ΛRCC = 2ΛRS , which in turn gives the desired

result ΛNC ≤ 2ΛRS .

VI. COMPLEXITY AND SIDE INFORMATION

The gain in stable throughput provided by the LCM-Frame

policy comes at the expense of additional complexity in

computing weights and additional side information that must

be stored in the network. In this section we quantify these

aspects of the policy.

A. Complexity of Weight Computation

The policies that we consider require solving the maximum

weight independent set (MWIS) problem at each time slot,

which is known to be NP-Hard for general interference graphs.

However, polynomial time solutions for MWIS are possible

for certain classes of interference graphs, such as claw-free

interference graphs [8]. For these classes of graphs with

polynomial MWIS solutions, we focus on the complexity of

calculating weights of hyperedges for k-tuple coding. Let N
be the number of nodes in the network, and let each node

represent a commodity.

Standard edges: There are O(N) edges per node, with
O(N) commodities and O(N) one-hop sources. The running
time for the weight calculations of standard edges at each node

is thus O(N3) per time slot.
Pairwise hyperedges: There are O(N2) pairwise hyper-

edges per node, and the required one-hop sources are given

by the tail nodes of the hyperedge. Each pairwise hyperedge

is composed of two standard edges, and for each of these

component standard edges we can independently choose the

commodity with maximum differential backlog. This gives a

running time at each node of 2N3 = O(N3) per time slot.
General k-tuple hyperedges, k ≥ 2: There are O

(

N
k

)

subsets of k tail nodes at each node, and when we elimi-
nate circular shifts, there are (k − 1)! circular permutations
of each subset of tail nodes to consider. For each circular

permutation, the choice of optimal commodity set requires a

running time of O(kN). The running time at each node is
then N !

(N−k)!k!Nk(k − 1)! = O(Nk+1) per time slot.

B. Upper Bound on Side Information

To decode coded packets, k-tuple coding requires each node
to maintain a side information buffer, where uncoded copies

of previously transmitted packets are stored.

Corollary 1: For every arrival rate vector (λc
a) strictly in-

terior to the stability region ΛNC , the LCM-Frame policy

stabilizes the side information buffers in the network.

Proof: The k-tuple coding strategy requires each node a
to keep a side information copy of each packet p sent from
a to neighbor b only as long as p resides in b’s queue. For
the LCM-Frame policy, there is only one copy of each packet

in the network, and each packet has a single one-hop source.

Under centralized control, the activation schedule can alert

nodes when to discard packets tracked as side information.

The total network queue size then gives an upper bound on the

total side information in the network, and by Theorem 1 the

LCM-Frame policy stabilizes the network queues whenever

(λc
a) ∈ ΛNC . Therefore, the side information buffers are also

stable.
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Fig. 3. Network queue size versus offered load for three configurations of
the LCM-Frame policy on 16 node topology with 11 traffic demands. Dotted
vertical lines indicate bounds of the stability region for each configuration. At
each value of ρ between 0.045 and 0.065 at increments of 0.001, we evaluate
the LCM-Frame policy for 10 million time slots.

VII. NUMERICAL RESULTS

We use two approaches to study the LCM-Frame policy:

a packet simulation to evaluate average queue size for the

policy, and a linear program (LP) solver to evaluate the flow

constraints of the policy to observe coding gain. For a scenario

with N nodes, there are N−1 possible traffic demands at each
node, for a total of N(N − 1) traffic demands in the network.
This yields 56 and 240 possible demands for N = 8 and
N = 16, respectively. We generate random arrival rate vectors
λ by activating each of these demands with probability 1/2,
where demands are specified as 1 for active and 0 for inactive.

Let ρ be a value by which we scale λ to specify the offered

load; in effect, ρ is the offered load for each active demand.

A. Simulation Results

First we consider a random 16 node topology under 2-

hop interference, and we choose an arrival rate vector λ

with 11 active traffic demands, where we scale λ by ρ.
Exogenous arrivals are generated for each active demand using

an independent Bernoulli processes; since λ is a vector of

0’s and 1’s, the scalar ρ serves as the probability of packet
arrival per time slot for each active demand. We compare three

configurations of the policy: no coding (K = 1), pairwise
coding (K = 2), and 3-tuple coding (K = 3).
Fig. 3 shows the time average of the total network queue

size, over all nodes and commodities, as a function of offered

load. Using the constraints of our stability region, Eqns. (5-9),

we find the maximum stable values of offered load to be ρ =
1/19 ≈ 0.0526 without coding, ρ = 1/17.5 ≈ 0.0571 for
pairwise coding, and ρ = 1/17 ≈ 0.0588 for 3-tuple coding;
these bounds are indicated on Fig. 3 with vertical dotted lines.

For each configuration, the policy seems to maintain bounded

average queue size within the stability region.

Fig. 4 shows average total network queue size as a function

of time for pairwise coding. The queues are stable at an offered

load of ρ = 0.057, just inside the stability region. Outside the
stability region, with ρ = 0.058, the average network queue
size grows linearly as a function of time.
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Fig. 4. Network queue size versus simulation time for the pairwise coding
configuration from Fig. 3. Average network queue sizes shown for both stable
ρ = 0.057 and unstable ρ = 0.058 values of offered load, with queue state
recorded every 25 thousand time slots.
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Fig. 5. Empirical CCDF of pairwise coding gain for random 8 node
topologies under 2-hop interference.

B. Linear Program Results

We use an LP solver with constraints (5-9) of the stability

region to evaluate the coding gain of our LCM-Frame policy.

We consider random geometric topologies, with node place-

ment drawn from a uniform distribution in a unit square. Node

connectivity is given by a scaled unit disc model, such that two

nodes are connected if they are within a certain connectivity

radius of one another. In particular, we generate topologies

with 8 nodes and a connectivity radius of 0.335, and topologies

with 16 nodes with a connectivity radius of 0.273. For both

8 and 16 node cases, the median node degree is 3 among

all nodes from the generated topologies. We consider only

topologies that are connected.

First we evaluate coding gain for pairwise and 3-tuple

coding. We consider 100 random topologies with 8 nodes each

under 2-hop interference, and we evaluate coding gain for 100

arrival rate vectors per topology. Fig. 5 shows an empirical

complementary cumulative distribution function (CCDF) of

the observed pairwise coding gain, where 80% of the observa-

tions show gain of 1.13 or more and 20% show gain of 1.26

or more. Fig. 6 shows the ratio of 3-tuple coding gain versus

pairwise coding gain. Here we see that 3-tuple coding yields

additional gain in only 4% of our observations, and that this

gain is limited to at most 6% and often much less.
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Fig. 7. Empirical CCDFs of pairwise coding gain for 16 node topologies
under 1-hop and 2-hop interference.

Finally, we compare the gain of pairwise coding under 1-hop

versus 2-hop interference. We evaluate 50 random topologies

of 16 nodes each, with 100 random arrival rate vectors per

topology. Fig. 7 shows empirical CCDFs of pairwise coding

gain for both interference models. Here, pairwise coding

performs reasonably well under 1-hop interference, with a

median coding gain of 1.25, and performs even better under

2-hop interference, where the median has increased to 1.31.

Comparing to the 8 node scenario, there is a noticeable

improvement under 2-hop interference here with 80% of

observations showing gain above 1.25.

VIII. CONCLUSION

In this paper we presented a technique that dynamically

optimizes for routing, scheduling, and simple network cod-

ing for wireless networks. We introduced k-tuple coding, a
generalization of pairwise network coding, and provided the

LCM-Frame policy, which is throughput optimal subject to the

k-tuple coding constraint. We have shown achievable coding
gain on simple scenarios, provided simulation results for more

complex scenarios, and gave an upper bound on k-tuple coding
gain for all possible scenarios.

Our main conclusion is that pairwise coding provides most

of the benefit of k-tuple coding for the scenarios considered.
We evaluated the LCM-Frame policy via packet simulation

and LP evaluation for pairwise and 3-tuple coding. Due to

the topology and traffic structure required for k-tuple coding
operations, we expect limited additional gain from increasing

code size k on random topologies. Note that the reduced
complexity in computing weights for pairwise coding becomes

significant for larger networks. We observe that the LCM-

Frame policy yields greater coding gains under 2-hop inter-

ference than under 1-hop interference. Future work of interest

includes decentralized scheduling, suboptimal scheduling with

reduced complexity, and full system implementation.

APPENDIX

PROOF OF STABILITY FOR LCM-FRAME POLICY

Proof: We use T -slot Lyapunov drift analysis to prove
that our policy stabilizes the network for all arrival rate vectors

strictly interior to the stability region. Let Ad,c
i (t) be the

number of exogenous arrivals for commodity c at node i during
time slot t, where Ad,c

i (t) = 0 for any d 6= i. Let U(t)
denote the matrix of queue backlogs Ud,c

i (t) for all nodes
and commodities.

At each decision time t = nT, n ≥ 0, the LCM-Frame
policy chooses which hyperedges and commodities to activate

for the duration of the frame. At time τ ∈ {t, ..., t+T −1}, let
µd,c

ab (τ) be the rate allocated for commodity c from one-hop

source d over edge (a, b), where µd,c
ab (τ) = 1 if active and

0 otherwise. Also at time τ , let µs
aJ(τ) be the rate allocated

to each commodity of set s for k-tuple coded transmissions
over ordered hyperedge (a, J), with traffic delivered according
to the coding rule, where µs

aJ(τ) = 1
k−1 , k = |J |, if active

and 0 otherwise. Like with flow variables, µ̂ represents a sum
over rate allocation variables. Let µ̂d,c

ab (τ) be the sum of rate
allocation variables for coded and uncoded transmissions from

a to b for commodity c packets from one-hop subqueue d:

µ̂d,c
ab (τ) = µd,c

ab (τ) +
∑

{

(a,J)∈Hk,k≥2,s∈Sk:
d,b∈J,c∈s,{d,c}→b

}

µs
aJ(τ) (18)

Let µ̂d,c
a∗ (τ) be the sum of all transmissions at node a for

packets from subqueue d for commodity c:

µ̂d,c
a∗ (τ) =

∑

b

µ̂d,c
ab (τ) (19)

Let µ̂∗,c
ab (τ) be the sum of all network transmissions from a

to b for commodity c packets from all one-hop subqueues:

µ̂∗,c
ab (τ) =

∑

d

µ̂d,c
ab (τ) (20)

The queueing dynamics of the network satisfy:

Ud,c
i (t0 + T ) ≤

[

Ud,c
i (t0) −

t0+T−1
∑

τ=t0

µ̂d,c
i∗ (τ)

]+

+

t0+T−1
∑

τ=t0

(

Ad,c
i (τ) + µ̂∗,c

di (τ)
)

(21)

where [x]+ = max(x, 0). Next, we use the following
result from [5, Lemma 4.3]: for V,U, µ,A ≥ 0 and
V ≤ [U − µ]+ + A, we have V 2 ≤ U2+µ2+A2−2U(µ−A).
Squaring both sides of Eqn. (21) and noting that Ad,c

i (τ),
µd,c

ab (τ), and µs
aJ(τ) are all finite, we have:

(

Ud,c
i (t0 + T )

)2
−
(

Ud,c
i (t0)

)2
≤ B1+

2Ud,c
i (t0)

t0+T−1
∑

τ=t0

(

Ad,c
i (τ) + µ̂∗,c

di (τ) − µ̂d,c
i∗ (τ)

)

(22)



where B1 is a positive finite number.

We employ the quadratic Lyapunov function

L
(

U(t)
)

=
∑

i,c,d

(

Ud,c
i (t)

)2
(23)

and the following T -slot Lyapunov drift argument from [5,
Lemma 4.2]: If there exists a positive integer T such that
E{U(τ)} < ∞ for all τ ∈ {0, ..., T − 1}, and if there exists
a positive B and θ such that for all time slots t0 we have

E
{

L
(

U(t0 + T )
)

− L
(

U(t0)
)∣

∣U(t0)
}

≤ B − θ
∑

i,c,d

Ud,c
i (t0) (24)

then the network is stable according to Definition 2.

Using Eqn. (22) we have

L
(

U(t0 + T )
)

− L
(

U(t0)
)

≤
∑

i,c,d

[

B1 + 2Ud,c
i (t0)

t0+T−1
∑

τ=t0

Ad,c
i (τ) + µ̂∗,c

di (τ) − µ̂d,c
i∗ (τ)

]

(25)

≤ N3B1 + 2
∑

i,c

U i,c
i (t0)

t0+T−1
∑

τ=t0

Ai,c
i (τ)

− 2

t0+T−1
∑

τ=t0

∑

i,b,c,d

µ̂d,c
ib (τ)

[

Ud,c
i (t0) − U i,c

b (t0)
]

(26)

At each decision time t0, expected T-slot drift is given as

∆T

(

U(t0)
)

, E
{

L
(

U(t0 + T )
)

− L
(

U(t0)
)∣

∣U(t0)
}

≤ N3B1 + 2T
∑

i,c

U i,c
i (t0)λ

c
i

− 2

t0+T−1
∑

τ=t0

∑

i,b,c,d

µ̂d,c
ib (τ)

[

Ud,c
i (t0) − U i,c

b (t0)
]

(27)

For arrival rate matrix
(

λc
i

)

strictly inside of stability region

ΛNC , there exists a small ǫ > 0 such that
(

λc
i +ǫ

)

is also inside

the stability region. By definition of the stability region, we can

identify a flow vector of fc,d
ab and fs

iJ terms that corresponds

to
(

λc
i + ǫ

)

and satisfies the constraints of the stability region.

For any decision time t0 and any τ ∈ {t0, ..., t0 + T − 1},
our policy satisfies the following inequality by choosing the

set of rate allocation variables corresponding to µ̂d,c
ab (τ) that

maximize the term on the right:

∑

a,b,c,d

f̂d,c
ab

[

Ud,c
a (t0) − Ua,c

b (t0)
]

≤
∑

a,b,c,d

µ̂d,c
ab (τ)

[

Ud,c
a (t0) − Ua,c

b (t0)
]

(28)

Applying the result from Eqn. (28) to Eqn. (27), we have:

∆T

(

U(t0)
)

≤ B2 + 2T
∑

i,c

U i,c
i (t0)λ

c
i

− 2T
∑

i,b,c,d

f̂d,c
ib

[

Ud,c
i (t0) − U i,c

b (t0)
]

(29)

= B2 + 2T

[

∑

i,c

U i,c
i (t0)λ

c
i −

∑

i,c

U i,c
i (t0)

∑

b

f i,c
ib

−
∑

i,c,d 6=i

Ud,c
i (t0)

(

∑

b

f̂d,c
ib −

∑

g

f̂g,c
di

)]

(30)

= B2 + 2T

[

∑

i,c

U i,c
i (t0)λ

c
i −

∑

i,c

U i,c
i (t0) (λc

i + ǫ)

−
∑

i,c,d 6=i

Ud,c
i (t0)(0)

]

(31)

= B2 − 2Tǫ
∑

i,c

U i,c
i (t0) (32)

where B2 = N3B1 is finite. We have shown that our policy

satisfies Eqn. (24), and thus satisfies the conditions of [5,

Lemma 4.2]. The LCM-Frame policy therefore stabilizes the

network for all arrival rate vectors strictly interior to the

stability region.
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