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Abstract—It has been shown that there is a duality between the
linear network coding solution and the entropic vectors induced
by collection of subspaces in a vector space over a finite field
(dubbed linearly constructed entropic vectors). The region of
all linearly constructed vectors, coincides with the set of all
representable polymatroids. For any integer polymatroid, there is
an associated matroid, which uniquely identifies the polymatroid.
We conjecture that the representability of the underlying matroid
is a sufficient condition for integer polymatroids to be linearly
representable. We prove that the conjecture holds for represen-
tation over real numbers. Furthermore, we show that any real-
valued submodular function (such as Shannon entropy) can be
approximated (arbitrarily close) by an integer polymatroid.

I. INTRODUCTION

Let f : 2" — R be a real valued set function, where

[n] ={1,2,...,n}. The function f is submodular if for every
S, T C [n]

FS)+ () = F(SUT) + f(SNT), (D

Submodularity has a rich combinatorial structure. Submodular
functions play a key role in many combinatorial optimization
problems, and have many applications in economics and engi-
neering. In information theory, many problems are directly re-
lated to submodular function analysis, since Shannon entropy
of collection of random variables is known to be a submodular
function. Specifically, for a collection of jointly distributed
discrete random variables { X1, Xo, ..., X, }, the joint entropy
of a collection of random variables Xg := (X;,i € [n]),
denoted by H(Xg,S C [n]), is submodular. For a particular
joint distribution of (X7,...,X,), the entropy of all subsets
of these random variables can be expressed by a 2™ — 1
dimensional vector (H(Xg), S C [n]). The region of all such
vectors known as the entropy region and denoted by I';. It
has been shown that the closure of this region I'* is convex;
however, characterization of this region for n > 3 is one of the
well-known open problems in network information theory [1],
which is closely related to the capacity region of the general
network coding problem.
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Many network coding capacity regions and entropy region
can be upper-bounded by exploiting just the submodularity
of entropy function. These upper bounds are often termed as
polymatroidal upper bounds [1]. It has been shown that these
outer bounds are not tight when n > 3. Many techniques exist
for constructing the corresponding lower bounds. One of the
most important classes, which we term as linear construction
of entropy vector or simply linear network coding solution,
relies on building a subspace of a vector space over a finite
field, and we denote this region by I'2. However, it has been
shown that linear solutions are not sufficient to characterize the
entire entropy region or achieve the network coding capacity.
When n = 4, the region 'Y can be characterized by the
Ingleton inequality and Shannon inequalities [9], [10]. The
exact characterization of this region for five random variables,
is given by a set of inequalities known as DFZ, together
with Shannon and Ingleton inequalities [7]. In general, exact
characterization of 'L is equivalent to the space of all linearly
representable integer polymatroids [11].

From a combinatorial point of view, integer polymatroids
are closely related to matroids. In this paper, we ask the
following question: Given an integer polymatroid, is it possible
to infer its representability from that of a particular matroid?
We conjecture that this is possible and in fact, we prove the
statement for representation over R. If the conjecture is true,
the results concerning the representation of matroids, would
be sufficient to analyze the representability of integer polyma-
troids. A necessary and sufficient condition for representability
of integer polymatroids is given in Section III. Furthermore,
we show that for any € > 0, any submodular function f, can
be approximated by a rational-valued submodular function fQ
such that for every set S, we have | f(S)— fo(S)| < € we refer
to this as e-approximation. Since any rational-valued submod-
ular function can be considered as a properly scaled integer
polymatroid, this approximation suggests that any submodular
function can be approximated by an integer polymatroid. In
Sections IV and V, we discuss the implication of these results
in some network information theory problems.

II. PRELIMINARIES

For a given submodular function f, we define the following
distance between two arbitrary subsets of the ground set,
S, TCFE

Dy(5,T) = f(S)+ f(T) = f(TUS) = f(TNS). 2



By definition of submodularity, D;(S,7") > 0 for any sub-
modular function and D(S,T) < 0 for any supermodular
function. This distance is not an interesting object by itself,
since D(S,T) = 0 for every S C T (or T' C S). However,
if we take out these special subsets, the minimum value that
Dy(S,T) can take, becomes informative and is defined as

Ap= min min |Df(S + 1,5 + )| 3)

Remark 1. It is easy to verify some of the properties of Ay.
For example, if f and g are both submodular functions, we
have

Apig > Ar+ Ay, 4
and when f and g are both supermodular functions, we have
Af_;,_g < Af + Ag. (@)

This particular property defines a special class of submod-
ualr functions as follows.

Definition 1. A submodular (supermodular) function f, de-
fined on the ground set B, is called strictly submodular
(supermodular) if Ay > 0.

In the following we show an example of a strictly submod-
ular function.

Example 1. The set function log(1+1|S|) is strictly submodu-
lar. One way to prove this is by contradiction. Assume that it
is not strictly submodular and, therefore, there exist T, S # ()
and T ¢ S, S ¢ T such that
0=f(S)+ f(T) = f(SUT) - f(SNT)
=log(1 + [S]) +log(1 + |T']) —log(1 + [SUTY)
—log(1+1[SNTY)
=log(1 +[S|[T| + |S] + |T1)
—log(1+ |SUT|ISNT|+|SUT|+|SNT)).
Since |S|+|T| =|SUT|+|SNT

ISUTIISNT| =[S (6)

, this implies that

Assume |S| = |SUT| —x and |T| = |S NT|+ x. Therefore,
we have

ISIIT] = (ISUT|==z)(ISNT| + z)
=|SNT||SUT|+=|SUT|—2|SNT| - x*

which implies either x = 0 or x = |SUT|—|SNT|. The former
condition on x implies that T C S and the latter implies that
S C T, which contradicts our assumption.

A. Integer polymatroids

A Polymatroid P is a pair (E, f), where E is a non-empty
ground set and f is a set function satisfying the following
conditions:

o [ is submodular: f(S)+ f(T) > f(SNT)+ f(SUT),

for S, T CFE

o Nondecreasing: f(S) > f(T), S22 T

« Normalized: f()) =0

When f is an integer-valued set function, P = (E, f) is called
integer polymatroid.

In a way akin to representable matroids, we can define the
representability of integer polymatroids as follows:

Definition 2. An integer polymatroid (E, f) on the ground set
E is representable, if there exists a collection of subspaces V.,
e € E, such that for every S C E, we have rank(UecsV.) =

f(S).
ITI. MAIN RESULTS
A. Representability of Integer Polymatroids

Although integer polymatroids are interesting combinatorial
objects by nature, they have a matroid structure. Moreover, it
has been shown by Helgason [2], that every integer polyma-
troid can be constructed by a matroid. Therefore, all problems
in integer polymatroids are matroid problems. More specifi-
cally, let f be an integer-valued, nondecreasing submodular
set function on F, with f(@) = 0. For each element of ground
set e € E, we assign a set X, with the size of f({e}). Now
the ground set for the new matroid that we construct will be
X = J,cg Xe, where |- denotes the disjoint union operation.

Theorem 1. Helgason [2]: M = (X,r) is a matroid, where
the rank function of a matroid is given by

= 1 . . C
r(U) =min(U\ | Xe| + £(T)). YUCX (D
seT
It is easy to check that the rank function of the original
integer polymatroid has not been changed. Namely,

AT =7 Xeo)- ®)
ecT

The interesting observation here is that the integer polymatroid
is defined on the ground set F, where the rank function of
the matroid r(.) is defined on a larger ground set than F,
namely X = (J cp X with cardinality |X| = > _p f(e).
The construction of an integer polymatroid from matroids
is not unique. In the next section, we explain the notion of
extending the ground set of a polymatroid and how using this
extension, it is possible to construct a matroid.

B. Extending Integer Polymatroids

Lovaész [6], showed that it is possible to extend the ground
set of an integer polymatroid by “adding new element ¢’ to
the element e in the ground set”!. Specifically, “adding €’ to
e € E” means constructing a new integer polymatroid (E U
{€'}, f), where the value of f remains the same on the subsets
of E and

s ={

'Lovisz [6], gave this a geometric interpretation and called “adding a point
z on an element of integer polymatroid y in general position”. Here we adopt
his notation and for simplicity we refer to this as “adding « on an element y
in the ground set of integer polymatroid”.

it f(T+¢) = f(T)

(1),
) it (T+e)>f(1). @

+1,



Similarly, we can continue adding elements and eventually
construct an integer polymatroid (E U X, f), where X =
(Jocs Xe and elements of X, have been added to element
e € E. The following theorem, gives the explicit construction
of a matroid.

Theorem 2. Lovdsz [6]: Let (E U X, f) be the extended
polymatroid defined above. Then M = (X,r) is a matroid
where r(U) = f(U), for all U C E. Moreover,

r(U) = min(JU\ o) Xel + £(T)), YU C X

ecT

(10)

which is identical to (7).

Through the paper, we will refer to this special construction
of matroids as expanding-construction.

C. Representation of Integer Polymatroid

The following theorem gives the necessary and sufficient
condition for the representability of an integer polymatroid
over real numbers R.

Theorem 3. An integer polymatroid is representable over R,
if and only if the underlying matroid using the expanding-
construction, is representable over R.

Proof. Assume that (E, f) is an integer polymatroid and its
associated matroid using the described expanding construction
is (WeepXe,r). One direction trivially holds: if the underly-
ing matroid (WU.cgXe,r) is representable, one can take the
subspace generated by the span of the vectors associated with
each X, and therefore, by definition, the integer matroid is,
indeed, representable.

To verify the other direction, we assume that there exist a
collection of vector spaces V. for every e € E and the goal is
to show that the matroid derived using expanding-construction
is representable. Assume that the subspaces for the integer
polymatroid are given as S = {S1,S2,...,5)g } and define
r; == rank(S;).

The outline of the proof is as follows: Similarly to the
expanding-construction, we start with the ground set S, and
at each step, we “add a vector to subspace S; € S”, where
the definition will be made precise later. We continue adding
elements and, for each S; € S, we add r; vectors, which are
denoted by V; = {Vl(l), Cey VT(;')}. Eventually the ground set
will be S'U U, Vi and we show that the rank function
of any collection of these vectors satisfies (7). Therefore, we
conclude that the vectors | J; c[g|) Vi are a linear representation
of the expanding-construction matroid.

In order to complete the proof, we need to explain how we

add vector Vj(l) to subspace S;. Assume that we want to add

a vector Vj(i)

set

for j < r; to S;. First, we define the following

T =Suviu--uviou{v? v an

It is easy to verify that |7*;| = |E| + S e+ (1) We
define
Tiy ={TIT C T

i rank(T'U S;) > rank(T)}.  (12)

To accomplish the construction of the linear matroid, we pick
a vector Vj(z) for j < r; such that:

Vj(i) €5\ U span(T).
T€eT,;

In order to choose the vector Vj(i)

Si\Urer, , span(T) # 0.
Claim 1. For all i € [|E|}, we have Si\Ur7, , span(T) # 0.

Proof. First, note that S; ¢ span(T) for all T' € T ;; other-
wise rank(T U S;) = rank(T). This implies that T ¢ 7; ;;
however, this contradicts our assumption that we started with
T € Ti;. The only possibility is S; O Uper, , span(T).
However, since we assumed that all subspaces are in R, we
know that it is not possible to write a subspace in R as
countable union of subspaces that do not include it. [

13)

, we need to make sure that

With this choice of vectors, once we add a new vector Vj(i)
to the ground set of the integer polymatroid, since the chosen
vector is not in the (Jrc 7 ; span(T'), we have

if T¢ T,
if TeT,.

,

rank(T),
rank(T) + 1,

Without loss of generality, we continue this construction in
|E| steps, starting from S; up to S|g, and at each step i, we
add r; new vectors to the ground set. On the other hand, the
rank function given in (14) is identical to (9) , and therefore,
this proves that the collection of vectors V = Uli‘lvi is a
vector matroid, isomorphic to the matroid that we obtain from
an expanding-construction; and this completes the proof. [J

rank(T + Vj(i)) = { (14)

This proof cannot be directly generalized to finite fields
since we used a unique property of the vector spaces in R.
Namely, a vector space over R cannot be decomposed into a
countable union of proper subspaces. However, we posit the
following conjecture, suggested by our results,

Conjecture 1. The integer polymatroid is representable, if
and only if the underlying matroid using the expanding-
construction, is representable.

D. Approximation of Submodular Function With Rank Func-
tion of a Matroid

Recall that the rank function of an integer polymatroid is
submodular; Therefore, it might seem redundant to approxi-
mate a submodular function with another submodular function.
However, as we discussed in the previous sections, any scaled
integer polymatroids can be constructed by matroids. Observe
that when a submodular function takes rational values, it can
be considered as an integer-valued submodular function with
proper scaling, which is the lowest common denominator
of all the function values. On the other hand, when the
submodular function takes real values, this construction is
impossible. However, in this case, we can approximate any
submodular function (with proper scaling) by a matroid. This
approximation is not only just of mathematical interest, but
also useful in certain information theoretic problems.



Theorem 4. Suppose that f : 2F — R is a real-valued
submodular function over the ground set E. For every € > 0,
there exist a polymatroid (E, fg) where fo : 2F — Q
satisfying

0 < f(T) — fo(T) < e (15)

forall T C E.

Proof. We consider two cases; For the first case, we assume
that the function is strictly submodular (Af > 0). For the
second case, we argue that, when Ay = 0, we can construct a
strictly submodular function f, which is properly close to the
original function f, namely f(T)— f(T) < e, for any T C E.

Case 1: We consider that f(.) is strictly submodular,
namely Ay > 0, and define " := min(e,%). Then we
are guaranteed to find a rational number fo(T") such that

fo(T) € [f(T) — ¢, f(T)]. Assume
F(T) = < fo(T) = f(T) —er < f(T).

Lemma 1. The set function fq defined on the ground set E
is submodular.

(16)

Proof. First, observe that, by our assumption Ay > 0 and
er < €* for every T' C E, we have

Aj =min min fo(S+19)+ fo(5+7)

— fQ(8) = fo(S+i+j)

N, , .
—%%i,j%gﬂgf(s+’) + f(S+7)

—f(S) = f(S+i+])

4+ min min €gi; + €51 — €5 — €54iti
SCEijeE\S +1 +7 +i+j

a
:Af —+ €5* 4 i* —+ ES*-‘y—j* — €g* — ES*J,_i*J'_j*
>Af — €50 — €55 4iv 40

A
>A; -2

2
>0

where S*,i* and j* in (a) are the optimal solutions for the
second minimization. O]

Case 2: Consider that Ay = 0; then we can construct a
strictly submodular function as follows

F(T) = f(T) — v9(T),

where ~ is small enough and ¢(T) is a strictly supermodular
function. We have the following two facts.

a7

Fact 1. The set function f (T') defined over ground set E is
strictly submodular.

Fact 2. We have Aj > Ap +7A5 = vA,.

Both are the immediate consequence of (4). We can choose
v to be arbitrary small, such that ¢* = % < €. Now with
this choice of f , we have a strictly submodular function and
similarly to the the previous case and (16), with f (.) and €*,
we are guaranteed to find rational-valued submodular function,

which is an e-approximation of f. This completes the proof.
O

Similarly we can approximate any submodular function
from above.

Corollary 2. Suppose that f : 2F — R is a real-valued
submodular function over the ground set E. For every € > 0,
there exists a polymatroid (E, fq) where fo : 2F — Q
satisfying

0< fo(T)—f(T) <e (18)

forall T C E.

Proof. The proof is similar to Theorem 4, except that we need
g(T) to be a non-negative strictly submodular function.  [J

I'V. IMPLICATION IN INFORMATION THEORY: FRACTIONAL
NETWORK CODING SOLUTION

We consider a network with the underlying topology as a
capacitated directed acyclic graph (DAG) ((V, A), (Cy: a €
A)). Here, V and A are the node and the arc sets of the graph
with unit edge capacities. A set of distinct nodes S C V called
source nodes, which have the access to a subset of message
set W = {wi,...,wn}. There is also, a distinct subset of
nodes 7 C V called sink nodes. Associated with each sink
node there is a subset of message set VV as demand.

We assume that a vector of k; symbols of message w;
for every i € [m] at a source node are encoded and a code
(n,{xs: a € A}) with block length n is transmitted over the
arc a.

Definition 3. A network has (k1,...,km,n) fractional linear
solution if there exists a set of linear encoding and decoding
operations at each node of the network and decoders at sink
nodes, such that each sink node can perfectly decode its
demanded messages.

When k£ = n = 1, the linear network coding solution is
called a scalar-linear solution. It has been shown that every
scalar linear solvable network is a matroidal network. For the
special case where k£ = n, the solution is called a vector linear
solution. From the definition above, the following lemma is
immediate [3].

Lemma 3. If a network has a (ki,...,km,n) fractional
network coding solution over ¥, with independent messages
uniformly distributed over ¥, the following hold:

1) For any collection of source messages H(U;cjw;) =
> icr ki, where I C [m].

2) H(X,) <n foreverya € A

3) H(Uaeln(v)Xa) = H(UaEIn('u)Xaa UaEOut('u)Xa)

In the work by Dougherty et. al. [3], it has been shown
that, if the network has a scalar linear solution over finite
field X, with messages wq,...,w,, and the links that carry
the symbols {x,: a € A}), finding a scalar linear solution
is equivalent to finding a mapping 7" : W Ugen Xo — E
where F is the ground set of a representable matroid M =



(E, 1), such that the three conditions in Lemma 3 are satisfied
with H(-) = r(-). The converse was established by Médard
and Kim [8]. Similarly, we can have the following result for
fractional linear solutions.

Lemma 4. Assume that the network has a (ki,...,km,n)
fractional linear solution over finite field X, with messages
W1, ..., Wy and the links that carry the symbols {x,: a €
A}). Then finding a fractional linear solution is equivalent
to finding a mapping T : W Ugeua X, — E, where E is
the ground set of a representable integer polymatroid (E, f),
such that the three conditions in Lemma 3 are satisfied with
H() = f().

The proof is similar to the proof of Lemma 3. A similar
statement has been proved in (Theorem. 3, [4]), where they
introduced the notion of discrete polymatroidal network, and
showed that the network has a fractional linear solution if
and only if it is discrete polymatroidal with respect to a
representable discrete polymatroid.

V. IMPLICATION IN INFORMATION THEORY:
CONSTRUCTING ENTROPIC VECTORS

Assume that we are given an integer vector (or rational 2)
in I';,. Naturally, this vector defines an integer polymatroid
since entropy is a submodular function. Therefore, if it is
representable over some finite field F, we can conclude that
the vector is indeed entropic and it can be constructed using
linear mappings. The main problem here is that checking
whether an integer polymatroid is representable, is not an
easy task. However, if our conjecture is true, we can construct
the associated expanded-matroid and check its representability.
Therefore, one can use the extensive literature on repre-
sentability of matroids. Moreover, if we conclude that the
underlying matroid is not representable, we can claim that
nonlinear transformation (or nonlinear code in the case of
network coding) is inevitable.

Furthermore, if the given vector is not integral (or rational),
then using Theorem 4, we are guaranteed to find an integer
polymatroid, which is arbitrarily close to the desired vector.
We should then be able to study the approximated integer
polymatroid to see whether it is representable or not.

VI. CONCLUSION

In this paper, we studied the representability of polyma-
troids. We showed that the representability of an integer
polymatroid is a necessary and sufficient condition for the rep-
resentability of the underlying expanding-construction matroid
over reals. Moreover, we showed that it is always possible to
approximate a polymatroid with an integer polymatroid.
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2A rational vector can be transformed to an integer vector with a proper
scaling.
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