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THE RESIDUAL FINITENESS OF (HYPERBOLIC)
AUTOMORPHISM-INDUCED HNN-EXTENSIONS

ALAN D. LOGAN

ABSTRACT. We classify finitely generated, residually finite automorphism-
induced HNN-extensions in terms of the residual separability of a

single associated subgroup. This classification provides a method

to construct automorphism-induced HNN-extensions which are not
residually finite. We prove that this method can never yield a

“new” counter-example to Gromov’s conjecture on the residual
finiteness of hyperbolic groups.

1. INTRODUCTION

A group H* (g 4) is called an automorphism-induced HNN-extension
if it has a relative presentation of the form

Hxgg) = (H,t;tktil =o¢(k), k€ K)

where ¢ € Aut(H) and K < H.

The main result of this note is a classification of finitely generated,
residually finite automorphism-induced HNN-extensions. A subgroup
K of H is residually separable in H if for all z € H \ K there exists a
finite index, normal subgroup N of H, written N <y H, such that « &
KN (hence if ¢, : H — H/N is the natural map then ¢, (z) € ¢.(K)).

Theorem A. Suppose that H is finitely generated. Then G = H*(k g)
1s residually finite if and only if H is residually finite and K is residu-
ally separable in H.

We prove two corollaries of Theorem A. These corollaries can be eas-
ily applied to construct automorphism-induced HNN-extensions which
are not residually finite. Both corollaries relate to the subgroup-quotient
Ny (K)/K. This subgroup-quotient plays a central role in a framework
for the construction of groups possessing certain properties and with
specified outer automorphism group [Logl5] (see also [Logl6] [Logl7]).

Corollary 1.1. Suppose that H is finitely generated. If Ng(K)/K is
not residually finite then G = Hx( ) is not residually finite.
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Corollary 1.2. Suppose that H is finitely generated and that Ny (K)
has finite index in H. Then G = Hx g 4) is residually finite if and only
if both H and Ny(K)/K are residually finite.

Hyperbolicity. It is a famous conjecture of Gromov that all hyper-
bolic groups are residually finite [nib93] [KWO00] [O'00]. One might
hope to apply Corollary 1.1 to obtain a counter-example to this con-
jecture. However, Theorem B proves that Corollary 1.1 can produce
no “new” counter-examples to Gromov’s conjecture, in the sense that
if G = Hxgg) is a counter-example where the subgroup-quotient
Ny (K)/K is used to force G to be non-residually finite then the con-
ditions of Theorem B hold, and so H is also a counter-example.

Theorem B. Suppose that G = Hx* g 4) is hyperbolic and non-residually
finite, and that K < Ny(K). Then K is finite, and H is hyperbolic

and non-residually finite.
Theorem B leaves the following question:

Question 1.3. Suppose that G = Hx* g 4) is hyperbolic and non-residually
finite. Then is H is hyperbolic and non-residually finite?

We also have the following result:

Theorem C. Suppose that K < Ng(K) and that K contains an ele-
ment of infinite order. Then Z x Z embeds into G = Hx (g ¢).

Automorphism-induced HNN-extensions can be thought of as “par-
tial” mapping tori H x4 Z. Theorem C proves that automorphism-
induced HNN-extensions of free groups F,* 4) are not hyperbolic if
K < Ng(K), even if the “full” mapping torus F,, X, Z is hyperbolic.

Acknowledgments. I would like to thank the anonymous referee for
their extremely helpful comments.

2. RESIDUAL FINITENESS

We first prove Theorem A. Note that for G some group, if P <y G
and H < G then PNH <1y H. Also note that if H is a finitely generated
group, Q <y H and ¢ € Aut(H) then N;ez¢'(Q) <y H.

Proof of Theorem A. Suppose H is residually finite and K is residually
separable in H. Then Hx* g 4 is residually finite [BT78, Lemma 4.4].
Suppose Hx (g ¢ is residually finite. Then H is residually finite, as
subgroups of residually finite groups are residually finite. Now, suppose
that K is not residually separable in H, and let x € H\ K be such that
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x € KN for all finite index subgroups N of H. Let N < Hx* g ) be
arbitrary. It is sufficient to prove that tot~'p(z)~t € N. To see this in-
clusion, first note that NNH <1y H. Consider L := N;ez¢" (N N H), and
note that L <y H. Then there exists k € K such that 2k, ¢(zk™1) €
L. Thus, zk~%, ¢(zk™1) € N, and so N = kN and ¢(x)N = ¢(k)N.
Then:
totr¢(x) "N = tht '¢o(k)"'N = N
Hence, trt~*¢(x)~t € N as required. O
We now prove Corollary 1.1.

Proof of Corollary 1.1. Suppose that Ny (K)/K is not residually finite.
Then there exists some z € Ny (K) such that z € NK for all N <y
Nu(K). Hence, for all N <ty H we have that z € (NN Ny(K)) K,

and so z € NK. Therefore, K is not residually separable in H, and so
Hx* g 4) is not residually finite by Theorem A. U

We now prove Corollary 1.2. We previously proved the analogous
result for the groups Hx* g 1), so where the inducing automorphism ¢
is trivial [Logl6, Proposition 2.2 |.

Proof of Corollary 1.2. By Theorem A and Corollary 1.1, it is suffi-
cient to prove that if H and Ng(K)/K are residually finite then K is
residually separable. So, suppose that H and Ny (K)/K are residually
finite.

Additionally, suppose that * ¢ Ny(K). Clearly z ¢ Ny(K)K as
K < Ny(K). Then the subgroup N := Npegh !Ny (K)h is a finite
index, normal subgroup of H such that z ¢ N K, as required.

Suppose that z € Ny(K) \ K. Now, as Ny(K)/K is residually
finite, there exists a map ¢, : Ny(K)/K — A, with A, finite and
K ¢ ker(p,). Therefore, there exists a map ¢, : Ng(K) — A,
which factors as Ny (K) — Ny(K)/K £% A, such that x ¢ ker (g,).
Then K < ker (¢,) so @ & ker (p,) K. As ker (p,) <y Ny(K) <y H,
there exists N <y H such that N < ker (p,). As z & ker (p,) K and
NK < ker(p,) K we have that ¢ NK as required. O

3. HYPERBOLICITY

We first prove Theorem C, as it is applied in the proof of Theorem B.
Recall that Theorem C gives a necessary condition for Z x Z to embed
into G = Hxxg4). As Z x Z does not embed into any hyperbolic
group, Theorem C gives a necessary condition for the hyperbolicity of
automorphism-induced HNN-extensions.
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Proof of Theorem C. Consider an element k € K of infinite order, and
consider a € Ny(K)\ K. Then the word W = a~'t"1¢(a)t has infinite
order in GG, and indeed no power of W is contained in K. Now, as
aka™' € K we have that t7'¢(aka™) = aka='t~!. Then W and k
commute as follows:

a 't e(a)t -k =a 't g(ak)t
=a 't '¢(aka M o(a)t
=k-a 't '¢(a)t
Therefore, (W, k) = Z x 7Z as required. O
We now prove Theorem B.

Proof of Theorem B. By assumption, G = Hx* 4) is hyperbolic and
non-residually finite, and K < Ng(K). Suppose that K is infinite.
Then K is an infinite torsion group by Theorem C. Now, as K < G
with G hyperbolic, this is a contradiction [Gro87]. Hence, K is finite.

Suppose that H is residually finite. As K is finite we have that G
is residually finite [BT78, Theorem 3.1], a contradiction. Hence, H is
non-residually finite.

Finally, note that H is a quasi-convex subgroup of G as K and ¢(K)
are finite. Hence, H is hyperbolic [BH99, Proposition II1.I".3.7]. O
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