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certain aspect des équations differentielles stochastiques

de type mean-field et applications

Dr. Naceur Khelil, MCA, Université de Biskra, Président
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Résumé

Cette thèse de doctorat s’inscrit dans le cadre de l’analyse stochastique dont le thème central est: les
conditions nécessaires et suffisantes sous forme du maximum stochastique de type champ moyen
d’optimalité et de presque optimalité et ces applications. L’objectif de ce travail est d’étudier
des problèmes d’optimisation stochastique. Il s’agira ensuite de faire le point sur les conditions
nécessaires et suffisantes d’optimalité et de presque optimalité pour un system gouverné par des
équations différentielles stochastiques de type champ moyen. Cette thèse s’articule autour de qua-
tre chapitres:

Le chapitre 1 est essentiellement un rappel. La candidate présente quelques concepts et résultats
qui lui permettent d’aborder son travail; tels que les processus stochastiques, l’espérance condition-
nelle, les martingales, les formules d’Ito, les classes de contrôle stochastique, . . . etc.

Dans le deuxième chapitre, on a établie et on a prouvé les conditions nécessaires et suffisantes de
presque optimalité d’order 3b5{ 3bb} vérifiées par un contrôle optimal stochastique, pour un system
différentiel gouverné par des équations différentielles stochastiques EDSs. Le domaine de contrôle
stochastique est supposé convexe. La méthode utilisée est basée sur le lemme d’Ekeland. Les résultats
obtenus dans le chapitre 2, sont tous nouveaux et font l’objet d’un premier article intitulé :

Boukaf Samira & Mokhtar Hafayed, & Ghebouli Messaoud: A study on optimal control problem with
ελ-error bound for stochastic systems with application to linear quadratic problem, International
Journal of Dynamics and Control, Springer DOI: 10.1007/s40435-015-0178-x (2015).

Dans le troisième chapitre, on a démontré le principe du maximum stochastique de presque optimalité,
où le system est gouverné par des equations différentielles stochastiques progressive rétrogrades avec
saut (FBSDEs). Ces resultats ont été appliqués pour résoudre un problème d’optimisation en finance.
Ces resultats généralisent le principe du maximum de Zhou (SIAM. Control. Optim. (36)-3, 929-947
(1998)). Les résultats obtenus dans le chapitre 3 sont tous nouveaux et font l’objet d’un deuxième
article intitulé:

Mokhtar Hafayed, & Abdelmadjid Abba & Samira Boukaf: On Zhou’s maximum principle for near-
optimal control of mean-field forward-backward stochastic systems with jumps and its applications
International Journal of Modelling, Identification and Control . 25 (1), 1-16, (2016).

De plus, et dans le chapitre 4, on a prouvé un principe du maximum stochastique de type de Pontryagin
pour des systems gouvernés par FBSDEs avec saut. Ces resultats ont été établi avec M. Hafayed, et
M. Tabet, sous le titre :

Mokhtar Hafayed, & Moufida Tabet & Samira Boukaf: Mean-field maximum principle for optimal
control of forward-backward stochastic systems with jumps and its application to mean-variance
portfolio problem, Communication in Mathematics and Statistics, Springer, Doi: 10.1007/s40304-
015-0054-1, Volume 3, Issue 2, pp 163-186 (2015) .
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Dans le chapitre 5, on a aborde un probléme de contrôle singulier, où le problème est d’établir des
conditions nécessaires et suffisantes d’optimalité pour un control singulier ou le system est gouverné
par des équations différentielles stochastiques progressive rétrograde de type McKean-Vlasov. Dans
ces cas, le domaine de contrôle admissible est supposé convexe. Les résultats obtenus dans le chapitre
5 sont tous nouveaux et font l’objet d’un article intitulé :

Mokhtar Hafayed, & Samira Boukaf & Yan Shi, & Shahlar Meherrem.: A McKean-Vlasov optimal
mixed regular-singular control problem, for nonlinear stochastic systems with Poisson jump pro-
cesses, Neurocomputing. Doi 10.1016/j.neucom.2015.11.082, Volume 182, 19, pages 133-144 (2016).

Abstract
This thesis is concerned with stochastic control of mean-field type. The central theme is the necessary
and sufficient conditions in the form of the Pontryagin’s stochastic maximum of the mean-field type
for optimality and for near-optimality with some applications. Recently, the main purpose of this
thesis is to derive a set of necessary as well as sufficient conditions of optimality and near optimality,
where the system is governed by stochastic differential equations of the mean field type. This thesis
is structured around four chapters:

Chapter 1 is essentially a reminder. we presents some concepts and results that allow us to prove
our results, such as stochastic processes, conditional expectation, martingales, Ito formulas, class of
stochastic control, etc. In the second chapter, we have proved the necessary and sufficient conditions
of near-optimality of order 3b5 { 3bb} satisfied by an optimal stochastic control, where the system is
governed by stochastic differential equations EDSs. The stochastic control domain is assumed to be
convex. The method used is based on the Ekeland lemma. The results obtained in Chapter 2 are all
new and are the subject of a first article entitled:

Boukaf Samira & Mokhtar Hafayed and Ghebouli Messaoud: A study on optimal control problem
with ελ-error bound for stochastic systems with application to linear quadratic problem, International
Journal of Dynamics and Control, Springer DOI: 10.1007 / s40435-015-0178-x (2015).

In the third chapter, we have proved the stochastic maximum principle of near-optimality, where the
system is governed by forward backward stochastic differential equations (FBSDEs). These results
have been applied to solve an optimization problem in finance. These results generalize the Zhou’s
maximum principle (SIAM, Control, Optim (36) -3, 929-947 (1998)). The results obtained in Chapter
3 are all new and are the subject of a second article entitled:

Mokhtar Hafayed, & Abdelmadjid Abba & Samira Boukaf: On Zhou’s maximum principle for near-
optimal control of mean-field forward-backward stochastic systems with jumps and its applications.
25 (1), 1-16, (2016).

Moreover, and in Chapter 4, we have proved a Pontryagin type stochastic maximum principle for
systems governed by FBSDEs with jumps. These results have been established with M. Hafayed, and
M. Tabet, under the title

7



Mokhtar Hafayed, & Moufida Tabet & Samira Boukaf: Mean-field maximal for optimal control of
forward-backward stochastic systems with jumps and its application to mean-variance portfolio prob-
lem, Communication in Mathematics and Statistics, Springer, Doi: 10.1007 / s40304- 015-0054-1,
Volume 3, Issue 2, pp 163-186 (2015).

In Chapter 5, we have addressed a singular control problem, where the problem is to establish a
set of necessary and sufficient conditions of optimality for a singular control for a system governed
by forward backward stochastic differential equations of McKean-Vlasov type. In these cases, the
control domain is assumed to be convex. An application to finance is given to ullistrated our new
results The results obtained in Chapter 5 are all new and are the subject of an article entitled:

Mokhtar Hafayed, & Samira Boukaf & Yan Shi, & Shahlar Meherrem: A McKean-Vlasov optimal
mixed regular-singular control problem for nonlinear stochastic systems with Poisson jump processes,
Neurocomputing. Doi 10.1016 / j.neucom.2015.11.082, Volume 182, 19, 133-144 (2016).
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Symbols and Acronyms
• a.e. almost everywhere

• a.s. almost surely

• càdlàg continu à droite, limite à gauche

• cf. compare (abbreviation of Latin confer )

• e.g. for example (abbreviation of Latin exempli gratia)

• i.e,. that is (abbreviation of Latin id est)

• HJB The Hamilton-Jacobi-Bellman equation

• SDE: Stochastic differential equations.

• BSDE: Backward stochastic differential equation.

• FBSDEs: Forward-backward stochastic differential equations.

• FBSDEJs: Forward-Backward stochastic differential equations with jumps.

• PDE: Partial differential equation.

• ODE: Ordinary differential equation.

• R: Real numbers.

• R+: Nonnegative real numbers.

• N: Natural numbers.

• ∂f

∂x
, fx : The derivatives with respect to x.

• P⊗dt : The product measure of P with the Lebesgue measure dt on [0, T ] .

• E (·) , E (· | G) Expectation; conditional expectation

• σ (A) : σ−algebra generated by A.

• IA : Indicator function of the set A.

• FX : The filtration generated by the process X.

• W (·), B(·) : Brownian motions

• FBt the natural filtration generated by the brownian motion B(·),

• F1 ∨ F2 denotes the σ-field generated by F1 ∪ F2.
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Part I

Introduction
Optimal control theory can be described as the study of strategies to optimally influence a system x
with dynamics evolving over time according to a differential equation. The influence on the system
is modeled as a vector of parameters, u, called the control. It is allowed to take values in some
set U , which is known as the action space. For a control to be optimal, it should minimize a cost
functional (or maximize a reward functional), which depends on the whole trajectory of the system
x and the control u over some time interval [0, T ]. The infimum of the cost functional is known
as the value function (as a function of the initial time and state). This minimization problem is
infinite dimensional, since we are minimizing a functional over the space of functions u(t), t ∈ [0, T ].
Optimal control theory essentially consists of different methods of reducing the problem to a less
transparent, but more manageable problem.

1. Formulations of stochastic optimal control problems
In this section, we present two mathematical formulations (strong and weak formulations) of stochas-
tic optimal control problems in the following two subsections, respectively.

1.1. Strong formulation

Let
(
Ω,F , {Ft}t∈[0,T ],P

)
be a given filtered probability space satisfying the usual condition, on

which an d-dimensional standard Brownian motionW (·) is defined, consider the following controlled
stochastic differential equation:{

dx(t) = f(t, x(t), u(t))dt+ σ(t, x(t), u(t))dW (t),
x(0) = x0 ∈ Rn,

(1)

where

f : [0, T ]× Rn × A −→ Rn,

σ : [0, T ]× Rn × A −→ Rn×d,

and x(·) is the variable of state.
The function u(·) is called the control representing the action of the decision-makers (con-

troller). At any time instant the controller has some information (as specified by the information
field {Ft}t∈[0,T ]) of what has happened up to that moment, but not able to foretell what is going to
happen afterwards due to the uncertainty of the system (as a consequence, for any t the controller
cannot exercise his/her decision u(t) before the time t really comes), This nonanticipative restriction
in mathematical terms can be expressed as ”u(·) is {Ft}t∈[0,T ]−adapted”.
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The control u (·) is an element of the set

U [0, T ] = {u : [0, T ]× Ω −→ A such that u (·) is {Ft}t∈[0,T ] − adapted}.

We introduce the cost functional as follows

J(u(·)) .
= E

[
T
0 l(t, x(t), u(t))dt+ g(x(T ))

]
, (2)

where
l : [0, T ]× Rn × A −→ R,
g : Rn −→ R.

Definition 1.1. Let
(
Ω,F , {Ft}t∈[0,T ],P

)
be given satisfying the usual conditions and let W (t) be

a given d-dimensional standard {Ft}t∈[0,T ]-Brownian motion. A control u(·) is called an admissible
control, and (x(·), u(·)) an admissible pair, if

i) u(·) ∈ U [0, T ];

ii) x(·) is the unique solution of equation (25);

iii) l(·, x(·), u(·)) ∈ L1
F ([0, T ] ;R) and g(x(T )) ∈ L1

FT (Ω;R) .

The set of all admissible controls is denoted by U ([0, T ]). Our stochastic optimal control problem
under strong formulation can be stated as follows:
Problem 1.1 Minimize (26) over U ([0, T ]) . The goal is to find u∗(·) ∈ U ([0, T ]) , such that

J(u∗(·)) = inf
u(·)∈U([0,T ])

J(u(·)). (3)

For any u∗(·) ∈ U s ([0, T ]) satisfying (27) is called an strong optimal control. The corresponding
state process x∗(·) and the state control pair (x∗(·), u∗(·)) are called an strong optimal state process
and an strong optimal pair, respectively.

1.2. Weak formulation
In stochastic control problems, there exists for the optimal control problem another formulation of
a more mathematical aspect, it is the weak formulation of the stochastic optimal control problem.
Unlike in the strong formulation the filtered probability space

(
Ω,F , {Ft}t∈[0,T ],P

)
on which we

define the Brownian motion W (·) are all fixed, but it is not the case in the weak formulation, where
we consider them as a parts of the control.

Definition 1.2. A 6-tuple
(
Ω,F , {Ft}t∈[0,T ],P,W (·) , u (·)

)
is called weak-admissible control and

(x(·), u(·)) an weak admissible pair, if

1.
(
Ω,F , {Ft}t∈[0,T ],P

)
is a filtered probability space satisfying the usual conditions;

2. W (·) is an d-dimensional standard Brownian motion defined on
(
Ω,F , {Ft}t∈[0,T ],P

)
;
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3. u(·) is an {Ft}t∈[0,T ]−adapted process on (Ω,F ,P) taking values in U ;

4. x(·) is the unique solution of equation (25),

5. l(·, x(·), u(·)) ∈ L1
F ([0, T ] ;R) and g(x(T )) ∈ L1

F (Ω;R) .

The set of all weak admissible controls is denoted by Uw ([0, T ]). Sometimes, might write u(·)) ∈
Uw ([0, T ]) instead of

(
Ω,F , {Ft}t∈[0,T ],P,W (·) , u (·)

)
∈ Uw ([0, T ]) .

Our stochastic optimal control problem under weak formulation can be formulated as follows:

Problem 1.2. The objective is to minimize the cost functional given by equation (26) over the of
admissible controls Uw ([0, T ]) . Namely, one seeks π∗(·) =

(
Ω,F , {Ft}t∈[0,T ],P,W (·) , u (·)

)
∈

Uw ([0, T ]) such that
J(π∗(·)) = inf

π(·)∈Uw([0,T ])
J(π(·)).

2. Methods to solving optimal control problem
Two major tools for studing optimal control are Bellman’s dynamic programming method and Pon-
tryagin’s maximum principle.

2.1. The Dynamic Programming Principle.
We present an approach to solving optimal control problems, namely, the method of dynamic pro-

gramming. Dynamic programming, originated by R. Bellman (Bellman, R.: Dynamic programming,
Princeton Univ. Press., (1957)) is a mathematical technique for making a sequence of interrelated de-
cisions, which can be applied to many optimization problems (including optimal control problems).
The basic idea of this method applied to optimal controls is to consider a family of optimal control
problems with different initial times and states, to establish relationships among these problems via
the so-called Hamilton-Jacobi-Bellman equation (HJB, for short), which is a nonlinear first-order (in
the deterministic case) or second-order (in the stochastic case) partial differential equation. If the HJB
equation is solvable (either analytically or numerically), then one can obtain an optimal feedback con-
trol by taking the maximize/minimize of the Hamiltonian or generalized Hamiltonian involved in the
HJB equation. This is the so-called verification technique. Note that this approach actually gives
solutions to the whole family of problems (with different initial times and states).

The Bellman principle. Let (Ω,F ,P) be a probability space with filtration {Ft}t∈[0,T ], satisfying the
usual conditions, T > 0 a finite time, and W a d-dimensional Brownian motion defined on the filtered
probability space

(
Ω,F ,P, {Ft}t∈[0,T ]

)
.

We consider the state stochastic differential equation

dx(s) = f(s, x(s), u(s))ds+ σ(s, x(s), u(s))dW (s), s ∈ [0, T ] (4)

The control u = u(s)0≤s≤T is a progressively measurable process valued in the control set U , a subset
of Rk, satisfies a square integrability condition. We denote by U ([t, T ]) the set of control processes
u.

12



Conditions. To ensure the existence of the solution to SDE-(??), the Borelian functions

f : [0, T ]× Rn × U −→ Rn

σ : [0, T ]× Rn × U −→ Rn×d

satisfy the following conditions:

|f(t, x, u)− f(t, y, u)|+ |σ(t, x, u)− σ(t, y, u)| ≤ C |x− y| ,

|f(t, x, u)|+ |σ(t, x, u)| ≤ C [1 + |x|] ,

for some constant C > 0. We define the gain function as follows:

J(t, x, u) = E
[∫ T

t
l(s, x(s), u(s))ds+ g(x (T ))

]
, (5)

where

l : [0, T ]× Rn × U −→ R,
g : Rn −→ R,

be given functions. We have to impose integrability conditions on f and g in order for the above
expectation to be well-defined, e.g. a lower boundedness or quadratic growth condition. The objective
is to maximize this gain function. We introduce the so-called value function:

V (t, x) = sup
u∈U([t,T ])

J(t, x, u), (6)

where x(t) = x is the initial state given at time t. For an initial state (t, x) , we say that u∗ ∈ U ([t, T ])
is an optimal control if

V (t, x) = J(t, x, u∗).

Theorem 1.1. Let (t, x) ∈ [0, T ]× Rn be given. Then we have

V (t, x) = sup
u∈U([t,T ])

E

[∫ t+h

t

l(s, x(s), u(s))dt+ V (t+ h, x(t+ h))

]
, for t ≤ t+ h ≤ T. (7)

Proof. The proof of the dynamic programming principle is technical and has been studied by different
methods, we refer the reader to Yong and Zhou [69].

The Hamilton-Jacobi-Bellman equation The HJB equation is the infinitesimal version of the
dynamic programming principle. It is formally derived by assuming that the value function is
C1,2 ([0, T ]× Rn) , applying Itô’s formula to V (s, xt,x(s)) between s = t and s = t + h, and then
sending h to zero into (6). The classical HJB equation associated to the stochastic control problem (6)
is

−Vt(t, x)− sup
u∈U

[LuV (t, x) + l(t, x, u)] = 0, on [0, T ]× Rn, (8)

13



where Lu is the second-order infinitesimal generator associated to the diffusion x with control u

LuV = f(x, u).DxV +
1

2
tr (σ (x, u)σᵀ (x, u)D2

xV ) .

This partial differential equation (PDE) is often written also as:

−Vt(t, x)−H(t, x,DxV (t, x), D2
xV (t, x)) = 0, ∀(t, x) ∈ [0, T ]× Rn, (9)

where for (t, x,Ψ, Q) ∈ [0, T ]× Rn × Rn × Sn (Sn is the set of symmetric n× n matrices) :

H(t, x,Ψ, Q) = sup
u∈U

[
f(t, x, u).Ψ +

1

2
tr (σσᵀ (t, x, u)Q) + l(t, x, u)

]
. (10)

The function H is sometimes called Hamiltonian of the associated control problem, and the PDE (8)
or (9) is the dynamic programming or HJB equation.
There is also an a priori terminal condition:

V (T, x) = g(x), ∀x ∈ Rn,

which results from the very definition of the value function V .

The classical verification approach The classical verification approach consists in finding a smooth
solution to the HJB equation, and to check that this candidate, under suitable sufficient conditions,
coincides with the value function. This result is usually called a verification theorem and provides
as a byproduct an optimal control. It relies mainly on Itô’s formula. The assertions of a verification
theorem may slightly vary from problem to problem, depending on the required sufficient technical
conditions. These conditions should actually be adapted to the context of the considered problem. In
the above context, a verification theorem is roughly stated as follows:

Theorem 1.2. Let W be a C1,2 function on [0, T ] × Rn and continuous in T , with suitable growth
condition. Suppose that for all (t, x) ∈ [0, T ]× Rn, there exists u∗(t, x) mesurable, valued in U such
that W solves the HJB equation:

0 = −Wt(t, x)− sup
u∈U

[LuW (t, x) + l(t, x, u)]

= −Wt(t, x)− Lu∗(t,x)W (t, x)− l(t, x, u∗(t, x)), on [0, T ]× Rn,

together with the terminal condition W (T, ·) = g on Rn, and the stochastic differential equation:

dx(s) = f(s, x(s), u∗(s, x (s)))ds+ σ(s, x(s), u∗(s, x (s)))dW (t),

admits a unique solution x∗, given an initial condition x(t) = x. Then, W = V and u∗ (s, x∗) is an
optimal control for V (t, x).

A proof of this verification theorem can be found in book, by Yong & Zhou [69].
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2.2. The Pontryagin’s maximum principle
The pioneering works on the stochastic maximum principle were written by Kushner [37, 38]. Since
then there have been a lot of works on this subject, among them, in particular, those by Bensoussan
[6], Peng [40], and so on. The stochastic maximum principle gives some necessary conditions for
optimality for a stochastic optimal control problem.
The original version of Pontryagin’s maximum principle was first introduced for deterministic control
problems in the 1960’s by Pontryagin et al. (Pontryagin,L.S., Boltyanski,V.G., Gamkrelidze, R.V.,
Mischenko, E.F. ) 1 as in classical calculus of variation. The basic idea is to perturbe an optimal
control and to use some sort of Taylor expansion of the state trajectory around the optimal control, by
sending the perturbation to zero, one obtains some inequality, and by duality.

The maximum principle. As an illustration, we present here how the maximum principle for
a deterministic control problem is derived. In this setting, the state of the system is given by the
ordinary differential equation (ODE) of the form{

dx(t) = f(t, x(t), u(t))dt, t ∈ [0, T ] ,
x(0) = x0,

(11)

where
f : [0, T ]× R×A −→ R,

and the action space A is some subset of R. The objective is to minimize some cost function of the
form:

J(u (·)) =
∫ T

0
l(t, x(t), u(t)) + g(x (T )), (12)

where

l : [0, T ]× R×A −→ R,
g : R −→ R.

That is, the function l inflicts a running cost and the function g inflicts a terminal cost. We now assume
that there exists a control u∗(t) which is optimal, i.e.

J(u∗ (·)) = inf
u
J(u (·)).

We denote by x∗(t) the solution to (11) with the optimal control u∗(t). We are going to derive neces-
sary conditions for optimality, for this we make small perturbation of the optimal control. Therefore
we introduce a so-called spike variation, i.e. a control which is equal to u∗ except on some small time
interval:

uε(t) =

{
v for τ − ε ≤ t ≤ τ,
u∗(t) otherwise. (13)

1

Pontryagin,L.S., Boltyanski,V.G., Gamkrelidze,R.V., Mischenko, E.F. Mathematical Theory of Optimal Pro-
cesses, Wiley, New York, 1962.
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We denote by xε(t) the solution to (11) with the control uε(t). We set that x∗(t) and xε(t) are equal
up to t = τ − ε and that

xε(τ)− x∗(τ) = (f(τ, xε(τ), v)− f(τ, x∗(τ), u∗ (τ)))ε+ o (ε)
= (f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗ (τ)))ε+ o (ε) ,

(14)

where the second equality holds since xε(τ)− x∗(τ) is of order ε. We look at the Taylor expansion of
the state with respect to ε. Let

z(t) =
∂

∂ε
xε(t) |ε=0,

i.e. the Taylor expansion of xε(t) is

xε(t) = x∗ (t) + z(t)ε+ o(ε). (15)

Then, by (14)
z (τ) = f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗ (τ)). (16)

Moreover, we can derive the following differential equation for z(t).

dz(t) =
∂

∂ε
dxε(t) |ε=0

=
∂

∂ε
f(t, xε(t), uε(t))dt |ε=0

= fx(t, x
ε(t), uε(t))

∂

∂ε
xε(t)dt |ε=0

= fx(t, x
∗(t), u∗(t))z(t)dt,

where fx denotes the derivative of f with respect to x. If we for the moment assume that l = 0, the
optimality of u∗(t) leads to the inequality

0 ≤ ∂

∂ε
J(uε)

∣∣∣∣
ε=0

=
∂

∂ε
g (xε(T )) |ε=0

= gx (xε(T ))
∂

∂ε
xε(T ) |ε=0

= gx (x∗(T )) z(T ).

We shall use duality to obtain a more explicit necessary condition from this. To this end we introduce
the adjoint equation: {

dΨ(t) = −fx(t, x∗(t), u∗(t))Ψ(t)dt, t ∈ [0, T ] ,

Ψ(T ) = gx(x
∗(T )).

Then it follows that
d(Ψ(t)z(t)) = 0,

16



i.e. Ψ(t)z(t)) = constant. By the terminal condition for the adjoint equation we have

Ψ(t)z(t) = gx(x
∗(T ))z(T ) ≥ 0, for all 0 ≤ t ≤ T.

In particular, by (16)
Ψ(τ) (f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗ (τ))) ≥ 0.

Since τ was chosen arbitrarily, this is equivalent to

Ψ(t)f(t, x∗(t), u∗(t)) = inf
v∈U

Ψ(t)f(t, x∗(t), v), for all 0 ≤ t ≤ T.

By repeating the calculations above for this two-dimensional system, one can derive the necessary
condition

H(t, x∗(t), u∗(t),Ψ(t)) = inf
v
H(t, x∗(t), v,Ψ(t)) for all 0 ≤ t ≤ T, (17)

whereH is the so-called Hamiltonian (sometimes defined with a minus sign which turns the minimum
condition above into a maximum condition) :

H(x, u,Ψ) = l(x, u) + Ψf(x, u),

and the adjoint equation is given by{
dΨ(t) = −(lx(t, x

∗(t), u∗(t)) + fx(t, x
∗(t), u∗(t))Ψ(t))dt,

Ψ(T ) = gx(x
∗(T )).

(18)

The minimum condition (17) together with the adjoint equation (18) specifies the Hamiltonian system
for our control problem.

The stochastic maximum principle. Stochastic control is the extension of optimal control to prob-
lems where it is of importance to take into account some uncertainty in the system. One possibility is
then to replace the differential equation by an SDE:

dx(t) = f(t, x(t), u(t))dt+ σ(t, x(t))dW (t), t ∈ [0, T ] , (19)

where f and σ are deterministic functions and the last term is an Itô integral with respect to a Brownian
motion W defined on a probability space

(
Ω,F , {Ft}t∈[0,T ],P

)
.

More generally, the diffusion coefficient σ may has an explicit dependence on the control: t ∈ [0, T ] .

dx(t) = f(t, x(t), u(t))dt+ σ(t, x(t), u(t))dW (t), (20)

The cost function for the stochastic case is the expected value of the cost function (??), i.e. we want
to minimize

J(u (·)) = E

[∫ T

0

l(t, x(t), u(t)) + g(x (T ))

]
.
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For the case (19) the adjoint equation is given by the following Backward SDE:
−dΨ(t) = {fx(t, x∗(t), u∗(t))Ψ(t) + σx(t, x

∗(t))Q(t)

+(lx(t, x
∗(t), u∗(t))}dt−Q(t)dW (t),

Ψ(T ) = gx(x
∗(T )).

(21)

A solution to this backward SDE is a pair (Ψ(t), Q(t)) which fulfills (21). The Hamiltonian is

H(x, u,Ψ(t), Q(t)) = l(t, x, u) + Ψ(t)f(t, x, u) +Q(t)σ(t, x),

and the maximum principle reads for all 0 ≤ t ≤ T,

H(t, x∗(t), u∗(t),Ψ(t), Q(t)) = inf
u∈U

H(t, x∗(t), u,Ψ(t), Q(t)) P− a.s. (22)

Noting that there is also third case: if the state is given by (20) but the action space A is assumed
to be convex, it is possible to derive the maximum principle in a local form. This is accomplished by
using a convex perturbation of the control instead of a spike variation, see Bensoussan 1983 [6]. The
necessary condition for optimality is then given by the following: for all 0 ≤ t ≤ T

E

∫ T

0

Hu(t, x
∗(t), u∗(t),Ψ∗(t), Q∗(t)) (u− u∗(t)) ≥ 0.

3. Some classes of stochastic controls
Let (Ω,F ,Ft≥0, P ) be a complete filtred probability space.

1. Admissible control An admissible control is Ft-adapted process u(t) with values in a borelian
A ⊂ Rn

U := {u(·) : [0, T ]× Ω→ A : u(t) is Ft-adapted} . (23)

2. Optimal control The optimal control problem consists to minimize a cost functional J(u) over the

set of admissible control U . We say that the control u∗(·) is an optimal control if

J(u∗(t)) ≤ J(u(t)), for all u(·) ∈ U .

3. Near-optimal control Let ε > 0, a control is a near-optimal control (or ε-optimal) if for all control

u(·) ∈ U we have
J(uε(t)) ≤ J(u(t)) + ε. (24)

See for some applications.

4. Singular control An admissible control is a pair (u(·), ξ(·)) of measurable A1 × A2−valued,
Ft−adapted processes, such that ξ(·) is of bounded variation, non-decreasing continuous on the left
with right limits and ξ(0−) = 0. Since dξ(t) may be singular with respect to Lebesgue measure dt,
we call ξ(·) the singular part of the control and the process u(·) its absolutely continuous part.
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5. Feedback control: We say that u (·) is a feedback control if u (·) depends on the state variable
X(·). If FXt the natural filtration generated by the process X , then u (·) is a feedback control if u (·)
is FXt −adapted.

6. Impulsive control. Impulse control: Here one is allowed to reset the trajectory at stopping times
(τi) from Xτi− (the value immediately before i) to a new (non-anticipative) value Xτi , resp., with an
associated cost L

(
Xτi− , Xτi

)
. The aim of the controlled is to minimizes the cost functional:

E

∫ T

0

exp

[
−
∫ t

0

C(X(s), u(s))ds

]
K(X(t), u(t))

+
∑
τi<T

exp

[
−
∫ τi

0

C(X(s), u(s))ds

]
g(Xτ , Xτi−)

+ exp

[
−
∫ τi

0

C(X(s), u(s))ds

]
h(X(T )).

7. Ergodic control Some stochastic systems may exhibit over a long period a stationary behavior

characterized by an invariant measure. This measure, if it does exists, is obtained by the average of
the states over a long time. An ergodic control problem consists in optimizing over the long term
some criterion taking into account this invariant measure. (See Pham [47], Borkar [11]). The cost
functional is given by

lim sup
T→+∞

1

T
E

∫ T

0

f(x(t), u(t))dt.

8. Robust control In the problems formulated above, the dynamics of the control system is assumed
to be known and fixed. Robust control theory is a method to measure the performance changes of a
control system with changing system parameters. This is of course important in engineering systems,
and it has recently been used in finance in relation with the theory of risk measure. Indeed, it is proved
that a coherent risk measure for an uncertain payoff x(T ) at time T is represented by :

ρ(−X(t)) = sup
Q∈S

EQ(X(T )),

where S is a set of absolutly continuous probability measures with respect to the original probability
P.

9. Partial observation control problem It is assumed so far that the controller completely observes
the state system. In many real applications, he is only able to observe partially the state via other vari-
ables and there is noise in the observation system. For example in financial models, one may observe
the asset price but not completely its rate of return and/or its volatility, and the portfolio investment is
based only on the asset price information. We are facing a partial observation control problem. This
may be formulated in a general form as follows : we have a controlled signal (unobserved) process
governed by the following SDE:

dx (t) = f (t, x (t) , y (t) , u (t)) dt+ σ (t, x (t) , y (t) , u (t)) dW (t) ,
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and
dy (t) = g (t, x (t) , y (t) , u (t)) dt+ h (t, x (t) , y (t) , u (t)) dB (t) ,

where B (t) is another Brownian motion, eventually correlated with W (t) . The control u(t) is
adapted with respect to the filtration generated by the observation F Y

t and the functional to optimize
is :

J (u (·)) = E

[
h (x (T ) , y(T )) +

∫ T

0

g (t, x (t) , y(t), u (t)) dt

]
.

10. Random horizon In classicla problem, the time horizon is fixed until a deterministic terminal
time T . In some real applications, the time horizon may be random, the cost functional is given by
the following:

J (u (·)) = E

[
h (x (τ)) +

∫ τ

0

g (t, x (t) , y(t), u (t)) dt

]
,

where τ s a finite random time.
11. Relaxed control The idea is then to compactify the space of controls U by extending the def-
inition of controls to include the space of probability measures on U . The set of relaxed controls
µt (du) dt, where µt is a probability measure, is the closure under weak* topology of the measures
δu(t)(du)dt corresponding to usual, or strict, controls. This notion of relaxed control is introduced for
deterministic optimal control problems in Young (Young, L.C. Lectures on the calculus of variations
and optimal control theory, W.B. Saunders Co., 1969.) (See Borkar [11]).
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A study on optimal control problem with ελ−error
bound for stochastic systems with applications to

linear quadratic problem
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Part II

A study on optimal control problem with
ελ−error bound for stochastic systems with
applications to linear quadratic problem

Abstract. In this part, we study near-optimal stochastic control problem with ελ−error bound for
systems governed by nonlinear controlled Itô stochastic differential equations (SDEs in short). The
control is allowed to enter into both drift and diffusion coefficients and the control domain need be
convex. The proof of our main result is based on Ekeland’s variational principle and some approxima-
tion arguments on the state variable and adjoint process with respect to the control variable. Finally,
as an example, the linear quadratic control problem is given to illustrate our theoretical results.

AMS Subject Classification: 93E20, 60H10.

Keywords: Stochastic control with ελ−error bound, Weak maximum principle, Necessary and suffi-
cient of conditions of near-optimality, Ekeland’s variational principle, Convex perturbation.

4. Introduction
Stochastic near-optimization is as sensible and important as optimization for both theory and applica-
tions. In this work, we consider stochastic control problem with ελ−error bound for systems driven
by non linear controlled SDEs of the form{

dx (t) = f (w, t, x (t) , u (t)) dt+ σ (w, t, x (t) , u (t)) dW (t) ,

x(0) = ξ,
(25)

where (W (t))t∈[0,T ] is a standard n−dimensional Brownian motion defined on the filtered probability
space (Ω,F , (Ft)t∈[0,T ] , P ). The filtration Ft is a canonical filtration of W (t) augmented by P -null
sets. The initial condition ξ is an F0-measurable random variable. We associate to this state equation
the following cost functional

J (u (·)) = E

[
h (x (T )) +

∫ T

0

g (w, t, x (t) , u (t)) dt

]
, (26)
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and the value function is defined as

V = inf
u(·)∈U

{J (u (·))} . (27)

The maximum principle has been and remains an important tool in many situations in which
optimal control plays a role. Near-optimization is as sensible and important as optimization
for both theory and applications. The theory of stochastic near-optimization was introduced by
Zhou [71]. Various kinds of near-optimal stochastic control problems have been investigated in
[17, 18, 19, 20, 21, 28, 57, 70, 35]. The necessary and sufficient conditions of near-optimal mean-
field singular stochastic control have been studied in Hafayed and Abbas [17]. The necessary and
sufficient conditions for near-optimality for mean-field jump diffusions with applications have been
derived by Hafayed, Abba and Abbas [18]. Near-optimality necessary and sufficient conditions for
singular controls in jump diffusion processes have been investigated in Hafayed and Abbas [19]. In
Hafayed, Veverka and Abbas [20], the authors extended Zhou’s maximum principle of near-optimality
[71] to singular stochastic control. The near-optimal stochastic control problem for jump diffusions
has been investigated by Hafayed, Abbas and Veverka [21]. The near-optimality necessary and suffi-
cient conditions for classical controlled FBSDEJs with applications to finance have been investigated
in Hafayed, Veverka and Abbas [28]. Stochastic maximum principle of near-optimal control of fully
coupled forward-backward stochastic differential equation has been investigated in Tang [57]. Near-
optimal stochastic control problem for linear general controlled FBSDEs has been studied in Zhang,
Huang and Li [70]. The near-optimal control problem for recursive stochastic problem has been
studied in Hui, Huang, Li and Wang [35].

It is shown that the near-optimal controls in stochastic control problems, as the alternative to the
exact optimal ones, are of great importance for both the theoretical analysis and practical application
purposes due to its nice structure and broad-range availability as well as feasibility. The near-optimal
controls in stochastic control problems are more available than the exact optimal ones, in the sense
that the near-optimal controls always exist, while the exact optimal stochastic controls may not even
exist in many situations. Moreover, since there are many near-optimal controls, it is possible to select
among them appropriate ones that are easier for analysis and implementation. This justifies the use
of near-optimal stochastic controls, which exist under minimal hypothesis and are sufficient in most
practical cases.

Motivated by the arguments above and inspired by [71, 17, 18, 19, 21, 70], our purpose in this work
is to derive a first-order necessary and sufficient conditions for any near-optimal stochastic control
with ελ−error bound, where the diffusion coefficient can contain a control variable, and the control
domain is necessarily convex. The proof of our main result is based on Ekeland’s variational principle
[14] and some approximation arguments on the state variable and adjoint process with respect to the
control variable. As an applications, a linear quadratic control problem is discussed.

The rest of the chapter is organized as follows. In the second section we present the assumptions
and the formulation of the problem. The necessary conditions for any near-optimal stochastic control
is given in the third section. The sufficient conditions are given in the fourth section. An application
to the linear quadratic control problem is given in the last section.

23



5. Assumptions and Preliminaries
Let (Ω,F , (Ft)t∈[0,T ] , P ) be a fixed filtered probability space satisfying the usual conditions, in which
a n−dimentional Brownian motionW (t) is defined. We list some notations that will be used through-
out this work. Any element x ∈ Rd will be identified to a column vector with ith component, and the
norm |x| =

∑d
i=1 |xi|. We denote A∗ the transpose of any vector or matrix A. We denote sgn(·) the

sign function. For a function Ψ, we denote by Ψx the gradient or Jacobian of a scalar function Ψ with
respect to the variable x. We denote by L2

F([0, T ] , Rn) the Hilbert space of Ft−adapted processes
(x (t)) such that E

∫ T
0
|x (t)|2 dt < +∞.

Throughout this work we assume the following.
Let σ : Ω× [0, T ]×Rn×Rm→Rn⊗Rn, f : Ω× [0, T ]×Rn×Rm→Rn, g : Ω× [0, T ]×Rn×Rm→ R,
h : Ω×Rn→ R, are Borel measurable functions such that ∀ (w, t, x, y, u) ∈ Ω×[0, T ]×Rn×Rn×Rm.

Assumption (H1) f, σ, g and h are continuously differentiable with respect to x, u, dominated by
C(1 + |x|), and their derivatives are bounded functions.

Assumption (H2)
∣∣ ∂ρ
∂u

(w, t, x, u)− ∂ρ
∂u

(w, t, y, v)
∣∣ ≤ C(|x− y|β + |u− v|β), for ρ := f, σ and

β ∈ (0, 1).

Assumption (H3) The derivatives ∂f
∂x
, ∂σ
∂x
, ∂g
∂x
, ∂g
∂u

are Lipschitz in x, u and hx is Lipschitz in x.

Definition 1.2.1.. Let T > 0 be a fixed strictly positive real number and U be a nonempty compact
convex subset of Rm. An admissible control is defined as a function u (·) : [0, T ]×Ω −→ U which is
Ft-predictable, such that the SDE-(25) has a unique solution and write u (·) ∈ U . The set U is called
the set of admissible controls.
From assumption (H1), the SDE-(25) has a unique strong solution given by

x (t) = ξ +

∫ t

0

f (w, s, x(s), u(s)) ds+

∫ t

0

σ (w, s, x(s), u(s)) dW (s).

The criteria to be minimized over the set of admissible controls given in (26) is well defined.
We introduce the adjoint equation for our control problem (25)-(26) as follows

−dp (t) = [∂f
∗

∂x
(w, t, x (t) , u (t)) p (t) + ∂σ∗

∂x
(w, t, x (t) , u (t)) q (t)

+ ∂g
∂x

(w, t, x (t) , u (t))]dt− q (t) dW (t) ,

p (T ) = hx (x (T )) ,

(28)

and the Hamiltonian associated with our control problem (25)-(26) is given as

H (t, x, u, p (t) , q (t)) = p (t) f (t, x, u) + q (t)σ (t, x, u) + g (t, x, u) . (29)

To simplify our notation, we suppress ”w” in f (w, t, x (t) , u (t)) and write f (t, x (t) , u (t)) for
f (w, t, x (t) , u (t)) . Similarly for the functions f, σ, g, h.
We aim at using Ekeland’s variational principle [14] to establish necessary conditions of ε-optimality
satisfied by a sequence of ε-optimal controls.
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Lemma 1.2.1. (Ekeland’s Lemma [14]) Let (E, d) be a complete metric space and f : E → R be
a lower semi-continuous and bounded from below. If for each ε > 0, there exists uε ∈ E satisfies
f (uε (·)) ≤ infu(·)∈E (f (u (·))) + ε. Then for any δ > 0, there exists uδ (·) ∈ E such that
(1) f

(
uδ (·)

)
≤ f (uε (·)) .

(2) d
(
uδ (·) , uε (·)

)
≤ δ.

(3) f
(
uδ (·)

)
≤ f (u (·)) + ε

δ
d
(
uδ (·) , u (·)

)
, for all u (·) ∈ E.

To apply Ekeland’s variational principle to our problem, we must define a distance d on the space of
admissible controls such that (U , d) becomes a complete metric space. For any u (·), v (·) ∈ U we lay

d (u (·) , v (·)) =

[
E

∫ T

0

|u (t)− v (t)|2 dt
] 1

2

. (30)

6. Stochastic maximum principle with ελ−error bound
Our goal in this section is to derive necessary conditions with ελ−error bound for SDEs with con-
trolled diffusion coefficient, where the control domain is necessarily convex. We give the definition
of ε-optimal control as given in [71].
Definition 1.3.1. For a given ε > 0 the admissible control uε (·) is ε-optimal if

|J (uε (·))− V | ≤ Q (ε) ,

where Q is a function of ε satisfying limε→0Q (ε) = 0. The estimater Q (ε) is called an error bound.
If Q (ε) = Cεδ for some δ > 0 independent of the constant C, then uε (·) is called ε-optimal control
with order εδ. If Q (ε) = ε, the admissible control uε (·) called ε−optimal.

Now we are able to state and prove the Pontryagin’s maximum principle of ε-optimality for our
control problem, which is the main result in this section.
Theorem 1.3.1. Assume that (H1), (H2) and (H3) hold. For any λ ∈

[
0, 1

2

)
, there exists a positive

constant C = C (λ) such that for each ε > 0 and any ε-optimal control uε(·) there exists a constant
C > 0 such that for all u ∈ U

E

∫ T

0

∂H

∂u
(t, xε (t) , uε (t) , pε (t) , qε (t)) (u (t)− uε (t))dt ≥ −Cελ, dt− a.e., (31)

where xε (·) denotes the solution of the state equation (25) and the pair (pε (·) , qε (·)) is the solution
of the adjoint equation (28) associated with uε.
To prove the above Theorem, we need the following auxiliary results on the variation of the state and
adjoint processes with respect to the control variable.
Lemma 1.3.2. Let xu (t) and xv (t) be the solution of the state equation (25) associated with u (·) and
v (·) respectively. Then there exists a positive constant C such that, for α > 0 :

E

[
sup

0≤t≤T
|xu (t)− xv (t)|α

]
≤ Cd

α
2 (u (·) , v (·)) .
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Proof.
First we assume α ≥ 2. Using Hölder’s and Burkholder-Davis-Gundy inequalities, we obtain

E [|xu (t)− xv (t)|α] ≤ E
∣∣∣∫ t0 (f (s, xu (s) , u(s))− f (s, xv (s) , v (s)))ds

+
∫ t

0
(σ (s, xu (s) , u (s))− σ (s, xv (s) , v (s))) dW (s)

∣∣∣α
≤ CE

∫ t
0
|f (s, xu (s) , u (s))− f (s, xv (s) , v (s))|α ds

+CE
∫ t

0
|σ (s, xu (s) , u (s))− σ (s, xv (s) , v (s))|α ds

by adding and subtracting f (s, xv (s) , u(s)) , σ (s, xv (s) , u(s)) and applying the Lipschitz continuity
of the coefficients f and σ it holds that

E [|xu (t)− xv (t)|α] ≤ CE

∫ t

0

|xu (s)− xv (s)|α ds+ CE

∫ t

0

|u (s)− v (s)|α ds

≤ CE

∫ t

0

|xu (s)− xv (s)|α ds+ C

[
E

∫ t

0

|u (s)− v (s)|2 ds
]α

2

,

using Gronwall’s inequality, we get the desired inequality.
Now, we assume 0 < α < 2. Since 2

α
> 1, then by using Hölder’s inequality and the above result, we

have
E [|xu (t)− xv (t)|α] ≤

[
E |xu (t)− xv (t)|2

]α
2 ≤ Cd

α
2 (u(·), v(·)) .

This completes the proof of Lemma 1.3.2. �

Lemma 1.3.3. Let (pu (t) , qu (t)) and (pv (t) , qv (t)) be two adjoint processes corresponding to u
and v respectively. Then we have the following estimate: for any α ≥ 1

E

∫ T

0

( |pu (t)− pv (t)|α + |qu (t)− qv (t)|α)dt ≤ Cdα (u (·) , v (·)) .

Proof. First we denote by p (t) = (pu (t) − pv (t)) and q (t) = (qu (t) − qv (t)), then (p̃ (t) , q̃ (t))
satisfies the following backward stochastic differential equation:

−dp̃ (t) = [∂f
∗

∂x
(t, xu (t) , u (t)) p̃ (t) + ∂σ∗

∂x
(t, xu (t) , u (t)) q̃ (t)

+G (t)]dt− q̃ (t) dW (t) ,

p̃ (t) = hx (xu (T ))− hx (xv (T )) ,

where the process G (t) is given by

G (t) = (∂f
∂x

(t, xu (t) , u (t))− ∂f
∂x

(t, xv (t) , v (t)))pv (t)

+(∂σ
∂x

(t, xu (t) , u (t))− ∂σ
∂x

(t, xv (t) , v (t)))qv (t)

+( ∂g
∂x

(t, xu (t) , u (t))− ∂g
∂x

(t, xv (t) , v (t))).
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Let η be the solution of the following linear SDE
dηt = [∂f

∂x
(t, xu (t) , u (t)) ηt + |p̃ (t)|α−1 sgn(p̃ (t))]dt

+[∂σ
∂x

(t, xu (t) , u (t)) ηt + |q̃ (t)|α−1 sgn(q̃ (t))]dW (t) ,

η0 = 0,

(32)

where sgn (y) ≡ (sgn(y1), sgn(y2), ..., sgn(yn))∗ for any vector y = (y1, y2, .., yn)∗. It is worth
mentioning that since ∂f

∂x
and ∂σ

∂x
are bounded and the fact that

E

∫ T

0

{∣∣|p̃ (t)|α−1 sgn (p̃ (t))
∣∣2 +

∣∣|q̃ (t)|α−1 sgn (q̃ (t))
∣∣2} dt <∞,

then the SDE (32) has a unique strong solution. Let γ ≥ 2 such that 1
γ

+ 1
α

= 1 then we get

E
{

supt≤T |ηt|
γ} ≤ CE

∫ T
0

{
|p̃ (t)|αγ−γ + |q̃ (t)|αγ−γ

}
dt

= CE
∫ T

0
{|p̃ (t)|α + |q̃ (t)|α} dt.

(33)

Now applying Itô’s formula to p (t) ηt on [0, T ] and taking expectations, we obtain

E (p̃ (t) ηT − p̃(0)η0) = E

∫ T

0

−G (t) ηtdt+ E

∫ T

0

(|p̃ (t)|α + |q̃ (t)|α)dt,

using the fact that η0 = 0 we can easily show that

E

∫ T

0

(|p̃ (t)|α + |q̃ (t)|α)dt = E

∫ T

0

G (t) ηtdt+ E(p̃ (T ) ηT )

= E

∫ T

0

G (t) ηtdt+ E [(hx (xu (T ))− hx (xv (T ))) ηT ] ,

by applying Hölder’s inequality to the right hand side, it holds that

E

∫ T

0

(|p̃ (t)|α + |q̃ (t)|α)dt ≤
[
E

∫ T

0

|G (t)|α dt
] 1
α
[
E

∫ T

0

|ηt|γ dt
] 1
γ

+ [E |hx(xu (T ))− hx(xv (T ))|α]
1
α [E |ηT |γ]

1
γ

using inequality (33), it holds that

E

∫ T

0

(|p̃ (t)|α + |q̃ (t)|α)dt ≤ C

[
E

∫ T

0

(|p̃ (t)|α + |q̃ (t)|α)dt

] 1
γ

{[
E

∫ T

0

|G (t)|α dt
] 1
α

+C [E |hx(xu (T ))− hx(xv (T ))|α]
1
α

}
,
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which implies that [
E

∫ T

0

(|p̃ (t)|α + |q̃ (t)|α)dt

]1− 1
γ

≤ C

[
E

∫ T

0

|G (t)|α dt
] 1
α

+C [E |hx(xu (T ))− hx(xv (T ))|α]
1
α ,

thus

E

∫ T

0

(|p̃ (t)|α + |q̃ (t)|α)dt ≤ CE

∫ T

0

|G (t)|α dt

+CE |hx(xu (T ))− hx(xv (T ))|α .

Since hx is Lipschitz in x and due to Lemma 1.3.2, we have

E {|hx(xu (T ))− hx(xv (T ))|α} ≤ Cdα(u(·), v(·)). (34)

We proceed to estimate the first term on the right hand side, then we have

E

∫ T

0

|G (t)|α dt ≤ E

∫ T

0

{∣∣∣∣∂f∂x (t, xu (t) , u (t)) − ∂f

∂x
(t, xv (t) , v (t))

∣∣∣∣ |pv (t) |

+

∣∣∣∣∂σ∂x (t, xv (t) , u (t)) − ∂σ

∂x
(t, xv (t) , v (t))

∣∣∣∣ |qv (t) |+
∣∣∣∣∂g∂x (t, xu (t) , u (t))

−
∣∣∣∣∂g∂x (t, xv (t) , v (t))

∣∣∣∣∣∣∣∣}α dt

≤ CE

∫ T

0

∣∣∣∣∂f∂x (t, xu (t) , u (t))− ∂f

∂x
(t, xv (t) , v (t))

∣∣∣∣α |pv (t)|α dt

+CE

∫ T

0

∣∣∣∣∂σ∂x (t, xu (t) , u (t))− ∂σ

∂x
(t, xv (t) , v (t))

∣∣∣∣α |qv (t)|α dt

+CE

∫ T

0

∣∣∣∣∂g∂x (t, xu (t) , u (t))− ∂g

∂x
(t, xv (t) , v (t))

∣∣∣∣α dt
= I1 + I2 + I3.

Using the bounded of pv (t) and Hölder’s inequality with 1
2/(2−α)

+ 1
2/α

= 1 we have

I1 ≤ C

[
E

∫ T

0

∣∣∣∣∂f∂x (t, xu (t) , u (t)) − ∂f

∂x
(t, xv (t) , v (t))

∣∣∣∣ 2α
2−α

dt

]1−α
2

×
[
E

∫ T

0

|pv (t)|2 dt
]α

2

,
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adding and subtracting ∂f
∂x

(t, xu, v) , then by using the Lipschitz continuity on ∂f
∂x

(t, xu, v) in x and u
(Assumption (H3)) and Lemma 1.3.2, we have

I1 ≤ Cdα (u(·), v (·)) .

Using similar argument developed above, we can prove I2 +I3 ≤ Cdα (u(·), v (·)) . Then we conclude

E

∫ T

0

|G (t)|α dt ≤ Cdα (u (·) , v (·)) . (35)

Finally, combining (34) and (35), the proof of Lemma 1.3.3 is complete �

Lemma 1.3.4 (Maximum principle for ε-optimality). For each ε > 0 there exists uε (·) ∈ U processes
pε(t) and qε(t) such that, ∀u (·) ∈ U

E

∫ T

0

∂H

∂u
(t, xε, uε, pε(t), qε(t)) (u (t)− uε (t)) dt ≥ −Cελ, dt− a.e. (36)

Proof. Applying Ekeland’s variational principle with δ = ε1/2 there exists an admissible control uε

such that
(i) d (uε (·) , uε (·)) ≤ ε1/2,
(ii) J (uε (·)) ≤ J (u (·)) , for any u (·) ∈ U where

J̄ (u (·)) := J (u (·)) + ε1/2d (uε (·) , uε (·)) . (37)

Notice that uε (·) which is ε-optimal for the initial cost J is optimal for the new cost J defined by
(37).
Let us denote uε,θ (·) a perturbed control given by uε,θ(t) = uε(t) + θ (v (t)− uε (t)) . By using the
fact that
(i) J (uε (·)) ≤ J(uε,θ (·)), (ii) d(uε (·) , uε,θ (·)) ≤ Cθ, we get

J(uε,θ (·))− J(uε (·)) ≥ −ε1/2d(uε (·) , uε,θ (·)) ≥ −Cε1/2θ. (38)

Dividing (38) by θ and sending θ to zero we get

d

dθ

(
J(uε,θ (t))

) ∣∣∣
θ=0
≥ −Cε

1
2 ≥ −Cελ. (39)

Arguing as in [6] for the left hand side of inequality (39), the desired result follows �

Proof of Theorem 1.3.1.
First, for each ε > 0 by using Lemma 1.3.4, there exists uε (·) and Ft−adapted processes pε(t) and
qε(t) such that, ∀u(·) ∈ U :

E

∫ T

0

∂H

∂u
(t, xε, uε, pε (t) , qε (t)) (u (t)− uε (t)) dt ≥ −Cελ, dt− a.e.
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Now, to prove (31) it remains to estimate the following difference:

E

∫ T

0

∂H

∂u
(t, xε, uε, pε (t) , qε (t)) (u (t)− uε (t))dt

−E
∫ T

0

∂H

∂u
(t, xε, uε, pε (t) , qε (t)) (u (t)− uε (t))dt.

First, by adding and subtracting E
∫ T

0
∂H
∂u

(t, xε, uε, pε (t) , qε (t)) (u (t)− uε (t))dt, we have

E

∫ T

0

∂H

∂u
(t, xε, uε, pε (t) , qε (t)) (u (t)− uε(t))dt

−E
∫ T

0

∂H

∂u
(t, xε, uε, pε (t) , qε (t)) (u (t)− uε (t))dt

≤ E

∫ T

0

∂H

∂u
(t, xε, uε, pε (t) , qε (t)) (uε (t)− uε (t))dt

+E

∫ T

0

(
∂H

∂u
(t, xε, uε, pε (t) , qε (t))− ∂H

∂u
(t, xε, uε, pε (t) , qε (t)))

×(u (t)− uε (t))dt

= I1 + I2,

by using Schwarz inequality and the bounded of ∂H
∂u

in integral sense, we get

I1 ≤ E

∫ T

0

∣∣∣∣∂H∂u (t, xε, uε, pε (t) , qε (t))

∣∣∣∣ |(uε (t)− uεt)| dt

≤

[
E

{∫ T

0

∣∣∣∣∂H∂u (t, xε, uε, pε (t) , qε (t))

∣∣∣∣2 dt
}] 1

2 [
E

{∫ T

0

|(uε (t)− uεt)|
2 dt

}] 1
2

≤ Cd (uε(·), uε(·)) ≤ Cε
1
2 .

Let us turn to the second term, it holds that

I2 = E

∫ T

0

(
∂H

∂u
(t, xε, uε, pε (t) , qε (t)) − ∂H

∂u
(t, xε, uε, pε (t) , qε (t))

)
(u (t)− uε (t)) dt

= E

∫ T

0

[pε(t)
∂f

∂u
(t, xε(t), uε(t))− pε (t)

∂f

∂u
(t, xε (t) , uε (t))] (u (t)− uε (t)) dt

+E

∫ T

0

[qε(t)
∂σ

∂u
(t, xε (t) , uε(t))− qε (t)

∂σ

∂u
(t, xε (t) , uε (t))] (u (t)− uε (t)) dt

+E

∫ T

0

[
∂g

∂u
(t, xε (t) , uε(t))− ∂g

∂u
(t, xε (t) , uε (t))] (u (t)− uε (t)) dt

= J1 + J2 + J3.
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We estimate the first term on the right hand side J1 by adding and subtracting pε (t) ∂f
∂u

(t, xε(t), uε(t))
then we have

J1 ≤ E
∫ T

0
|pε(t)− pε (t)|

∣∣∂f
∂u

(t, xε(t), uε(t)) (u (t)− uε (t))
∣∣ dt

+E
∫ T

0

∣∣∂f
∂u

(t, xε(t), uε(t)) − ∂f
∂u

(t, xε (t) , uε (t)))pε (t) (u (t)− uε (t))| dt.

First, by adding and subtracting ∂f
∂u

(t, xε (t) , uε(t)) it holds that

J1 ≤ E
∫ T

0
|pε(t)− pε (t)|

∣∣∂f
∂u

(t, xεt , u
ε
t) (u (t)− uε (t))

∣∣ dt
+E

∫ T
0

∣∣∂f
∂u

(t, xε(t), uε(t))− ∂f
∂u

(t, xε (t) , uε(t))
∣∣ |pε (t) (u (t)− uε (t))| dt

+E
∫ T

0

∣∣∂f
∂u

(t, xε (t) , uε(t))− ∂f
∂u

(t, xε (t) , uε (t))
∣∣ |pε (t) (u (t)− uε (t))| dt

= J1
1 + J2

1 + J3
1.

Using Hölder inequality, the bounded of ∂f
∂u

, Lemma 1.3.2 and integral properties of admissible con-
trols, we obtain, for 1

γ
+ 1

α
= 1,

J1
1 ≤

[
E
{∫ T

0

∣∣∂f
∂u

(t, xε(t), uε(t)) (u (t)− uε (t))
∣∣γ dt}] 1

γ
[
E
{∫ T

0
|pε(t)− pε (t)|α dt

}] 1
α

≤ C
(
E
{∫ T

0
|pε(t)− pε (t)|α dt

}) 1
α

≤ C (dα (uε(·), uε(·)))
1
α ≤ Cε

1
2 .

To estimate the second term J2
1 we use assumption (H2), then we have

J2
1 ≤ CE

∫ T

0

|xε(t)− xε (t)|β |pε (t) (u (t)− uε (t))| dt,

using Hölder inequality, where 1
γ

+ 1
α

= 1 then a simple computations gets

J2
1 ≤ C

(
E

∫ T

0

|xε(t)− xε (t)|αβ |pε (t)|α
) 1

α
(
E

∫ T

0

|(u (t)− uε (t))|γ dt
) 1

γ

≤ C

(
E

∫ T

0

|xε(t)− xε (t)|αβ |pε (t)|α
) 1

α

,

applying Hölder inequality for 1
2/(2−α)

+ 1
2/α

= 1 it holds that

J2
1 ≤ C

[(
E

∫ T

0

|xε(t)− xε (t)|
2αβ
2−α

) 2−α
α

×
(
E

∫ T

0

|pε (t)|α.
2
α

)α
2

] 1
α

≤ C
(
d

2αβ
2−α (uε(·), uε(·))

) 2−α
2
. 1
α ≤ Cελ.
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Next by applying assumption (H2) and Hölder inequality then we can proceed to estimate J3
1 as

follows

J3
1 ≤ CE

∫ T

0

|uε(t)− uε (t)|β |pε (t)| |(u (t)− uε (t))| dt

≤ C

(
E

∫ T

0

|uε(t)− uε (t)|αβ |pε (t)|α dt
) 1

α
(
E

∫ T

0

|(u (t)− uε (t))|γ dt
) 1

γ

≤ C

((
E

∫ T

0

|uε(t)− uε (t)|
2αβ
2−α dt

) 2−α
2
(
E

∫ T

0

|pε (t)|α
2
α dt

) 2
α

) 1
α

≤ Cεβ.

Using similar arguments developed above for J2 and J3, then a simple computations we can prove
that I1 ≤ Cελ. Applying similar method developed above for I2 and I3 we conclude

E
∫ T

0
∂H
∂u

(t, xε, uε, pε(t), qε(t)) (u (t)− uε(t))dt

−E
∫ T

0
∂H
∂u

(t, xε, uε, pε (t) , qε (t)) (u (t)− uε (t))dt ≤ Cελ.
(40)

Finally combining (36) and (40) the proof of Theorem 1.3.1 is complete. �

7. Sufficient conditions for ε-optimality
In this section, we will prove that under an additional hypothesis, the ε-maximum condition on the
Hamiltonian function is a sufficient condition for ε-optimality.
Theorem 1.4.2. Assume that H (t, ·, ·, pε(·), qε(·)) is convex for a.e. t ∈ [0, T ] , P − a.s, and h is
convex. Let (uε(·), xε(·)) be a ε-optimal solution of the control problem (25)-(26) and (pε (t) , qε (t))
be the solution of the adjoint equation associated with uε(·). If for some ε > 0 and for any u(·) ∈ U :

E

∫ T

0

∂H

∂u
(t, xε, uε, pε (t) , qε (t)) (u (t)− uε(t))dt ≥ −Cελ, (41)

then uε(·) is an ε-optimal control of order ελ, i.e.,

J (uε(·)) ≤ inf
v(·)∈U

J (v(·)) + Cελ,

where C is a positive constant independent from ε.
Proof. Let uε(·) be an arbitrary element of U (candidate to be ε−optimal) and xε(·) is the correspond-
ing trajectory. For any v(·) ∈ U and its corresponding trajectory xv(·), we have

J (uε(·))− J (v(·)) = E
∫ T

0
(g (t, xε (t) , uε (t))− g (t, xv (t) , v (t))) dt

+E [h (xε (T ))− h (xv (T ))] .
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Since h is convex, we have

J (uε(·))− J (v(·))

≤ E [hx (xε (T )) (xε (T )− xv (T ))] + E

∫ T

0

(g (t, xε (t) , uε (t))− g (t, xv (t) , v (t))) dt,

replacing hx (xε(T )) with its value, see (28) we have

J (uε(·))− J (v(·)) ≤ E [pε (T ) (xε (T )− xv (T ))]

+E
∫ T

0
(g (t, xε (t) , uε (t))− g (t, xv (t) , v (t))) dt.

(42)

On the other hand, by applying Itô’s formula to pε (T ) (xε (T )− xv (T )) , and by taking expectation,
we obtain

E [pε (T ) (xε (T )− xv (T ))]

= E
∫ T

0
(H (t, xε (t) , uε (t) , pε (t) , qε (t))−H (t, xv (t) , v, pε (t) , qε (t)))dt

−E
∫ T

0
∂H
∂x

(t, xε (t) , uε (t) , pε (t) , qε (t)) (xε (t)− xv (t)) dt

−E
∫ T

0
(g (t, xε (t) , uε (t))− g (t, xv (t) , v (t))) dt,

(43)

then by combining (42) and (43) we have

J (uε(·))− J (v(·)) ≤ E
∫ T

0
(H (t, xε, uε, pε (t) , qε (t))−H (t, xv, v, pε (t) , qε (t)))dt

−E
∫ T

0
∂H
∂x

(t, xε, uε, pε (t) , qε (t)) (xε (t)− xv (t)) dt.
(44)

Since H is convex in (x, u) we obtain

H (t, xε, uε, pε (t) , qε (t))−H (t, xv, v, pε (t) , qε (t))

≤ ∂H
∂x

(t, xε, uε, pε (t) , qε (t)) (xε (t)− xv (t))

+∂H
∂u

(t, xε, uε, pε (t) , qε (t)) (uε (t)− v (t)) ,

then by using the necessary optimality conditions (41), it follows that

Cελ ≥ H (t, xε, uε, pε (t) , qε (t))−H (t, xv, v, pε (t) , qε (t))

−∂H
∂x

(t, xε, uε, pε (t) , qε (t)) (xε (t)− xv (t)) .
(45)

Finally combining (44) and (45) the desired result follows. �
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8. Application: linear quadratic control problem
In this section, we consider a linear quadratic control problem as a particular case of our control
problem. First, we restrict ourselves to the one dimensional case. We assume that T = 1 and
the convex control domain be U = [0, 1] , f(t, x (t) , u (t)) = −u (t) , σ(t, x (t) , u (t)) = u (t) ,
g(t, x (t) , u (t)) = 1

2
u2 (t) and h(x (t)) = x (t).

Consider the following stochastic control problem{
dx (t) = −u (t) dt+ u (t) dW (t) ,

x(0) = 1
2
,

(46)

and the cost functional being

J (u(·)) = E

{
x(1) +

∫ 1

0

1
2
u2 (t) dt

}
. (47)

The Hamiltonian function gets the form

H (t, x, u, p (t) , q (t)) = (q (t)− p (t))u+
1

2
u2, (48)

and the corresponding adjoint equation is given as follows

− dp (t) = q (t) dW (t) , p(1) = 1. (49)

It is clear that (p (t) , q (t)) = (1, 0) is the only unique adapted solution to (49). Moreover, the
Hamiltonian function has the form

H (t, x, u, p (t) , q(t)) = −u+
1

2
u2. (50)

If the admissible control uε(·) is ε−optimal in the sense that J (uε (·)) ≤ infu(·)∈U J (u (·)) + ε, then
by applying Theorem 1.3.1, we obtain for any u ∈ [0, 1] .

E

∫ 1

0

(uε (t)− 1) (u (t)− uε (t)) dt ≥ −Cελ. (51)

For example, a simple computation shows that the admissible control uε (t) = 1−ε, satisfies the above
inequality, where ε > 0 is sufficiently small. Conversely, for the sufficient part, let uε (t) = 1 − ε
which satisfy (51) candidate to be ε-optimal. Since H is convex in u and by using Theorem 1.4.2
it follows that uε (t) satisfies inequality (51), which means that uε(·) is ε-optimal for our control
problem (46)-(47), and its corresponding trajectory is

xε (t) =
1

2
− (1− ε)t+ (1− ε)W (t) .
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9. Concluding remarks and future research
In this chapter, necessary and sufficient conditions for near-optimal control with ελ−error bound for
SDEs have been established. Linear quadratic control problem has been studied to illustrate our
theoretical results. If we assume that ε = 0, our maximum principle (Theorem 1.3.1) reduces to
maximum principle of optimality developed in Benssoussan [6].

An open questions are to establish necessary and sufficient conditions for near-optimality with
ελ−error bound for SDEs with impulse control, Linear quadratic stochastic control with ελ−error
bound for SDEs with impulse and SDEs with random jumps. We will work for this interesting issue
in the future research.
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On Zhou’s maximum principle for near optimal
control of mean-field forward backward stochastic

systems with jumps and its applications
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Part III

On Zhou’s maximum principle for near
optimal control of mean-field forward
backward stochastic systems with jumps and
its applications

Abstract. This chapter is concerned with stochastic maximum principle for near-optimal control of
nonlinear controlled mean-field forward-backward stochastic systems driven by Bownian motions and
random Poisson martingale measure (FBSDEJs in short) where the coefficients depend on the state of
the solution process as well as on its marginal law through its expected value. Necessary conditions
of near-optimality are derived where the control domain is non-convex. Under some additional hy-
potheses, we prove that the near-maximum condition on the Hamiltonian function in integral form is a
sufficient condition for ε-optimality. Our result is derived by using spike variation method, Ekeland’s
variational principle and some estimates of the state and adjoint processes, along with Clarke’s gener-
alized gradient for nonsmooth data. This work extends the results obtained in (Zhou, X.Y.: SIAM J.
Control Optim. 36(3), 929–947, 1998) to a class of mean-field stochastic control problems involving
mean-field FBSDEJs. As an application, mean-variance portfolio selection mixed with a recursive
utility functional optimization problem is discussed to illustrate our theoretical results.

Keywords. Maximum principle. Stochastic near-optimal control. Mean-field forward-backward stochastic
differential equations with jumps. Necessary and sufficient conditions of near-optimality. Ekeland’s variational
principle.

10. Introduction
The mean-field stochastic systems have attracted much attention because of their practical applica-
tions in many areas such as physics, chemistry, economics, finance and other areas of science and
engineering. Discrete-time indefinite mean-field linear-quadratic optimal control problem has been
investigated in Ni, Zhang and Li [41]. In a recent work, mean-field games for large population mul-
tiagent systems with Markov jump parameters have been investigated in Wang and Zhang [56]. De-
centralized tracking-type games for large population multi-agent systems with mean-field coupling
have been studied in Li and Zhang [42]. Mean-field stochastic control problems have been investi-
gated by many authors, see for instance, [41, 62, 15, 17, 23, 24, 18, 25, 10, 5, 49, 26, 51, 52, 67, 66].
Mean-field type stochastic maximum principle for optimal control under partial information has been
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investigated in Wang, Zhang and Zhang [62]. Discrete time mean-field stochastic linear-quadratic
optimal control problems with applications have been investigated in Elliott, Li and Ni [15]. Sec-
ond order necessary and sufficient conditions of near-optimal singular control for mean-field SDE
were established in Hafayed and Abbas [17]. Mean-field type stochastic maximum principle for op-
timal singular control has been studied in Hafayed [23], where convex perturbation was used for
both absolutely continuous and singular components. The maximum principle for optimal control of
mean-field FBSDEJs has been studied in Hafayed [24]. The necessary and sufficient conditions for
near-optimality for mean-field jump diffusions with applications have been derived by Hafayed, Abba
and Abbas [18]. Singular optimal control for mean-field forward-backward stochastic systems driven
by Brownian motions has been investigated in Hafayed [25]. A general mean-field maximum princi-
ple was introduced in Buckdahn, Djehiche and Li [10]. Under the conditions that the control domains
are convex, a various local maximum principle have been studied in [5, 49]. Second-order maximum
principle for optimal stochastic control for mean-field jump diffusions was proved in Hafayed and
Abbas [26]. Necessary and sufficient conditions for controlled jump diffusion with recent application
in bicriteria mean-variance portfolio selection problem have been proved in Shen and Siu [51]. Re-
cently, maximum principle for mean-field jump-diffusions stochastic delay differential equations and
its applications to finance have been investigated in Yang, Meng and Shi [52]. A linear quadratic op-
timal control problem for mean-field stochastic differential equations has been studied in Yong [67].
Mean-field optimal control for backward stochastic evolution equations in Hilbert spaces have been
investigated in Xu and Wu [66]. In Buckdahn, Djehiche, Li and Peng [8] a general notion of mean-
field BSDE associated with a mean-field SDE is obtained in a natural way as a limit of some high
dimensional system of FBSDEs governed by a d−dimensional Brownian motion, and influenced by
positions of a large number of other particles.

Near-optimization is as sensible and important as optimization for both theory and applications.
The theory of stochastic near-optimization was introduced by Zhou [71]. Various kinds of near-
optimal stochastic control problems have been investigated in [17, 18, 19, 20, 21, 28, 57, 36, 70, 35].
The necessary and sufficient conditions of near-optimal mean-field singular stochastic control have
been studied in Hafayed and Abbas [17]. The necessary and sufficient conditions for near-optimality
for mean-field jump diffusions with applications have been derived by Hafayed, Abba and Abbas [18].
Near-optimality necessary and sufficient conditions for singular controls in jump diffusion processes
have been investigated in Hafayed and Abbas [19]. The near-optimal stochastic control problem
for jump diffusions has been investigated by Hafayed, Abbas and Veverka [21]. The near-optimality
necessary and sufficient conditions for classical controlled FBSDEJs with applications to finance have
been investigated in Hafayed, Veverka and Abbas [28]. Stochastic maximum principle of near-optimal
control of fully coupled forward-backward stochastic differential equation has been investigated in
Tang [57]. Near-optimal control problem for linear FBSDE have been studied in Huang, Li and Wang
[36]. Near-optimal stochastic control problem for linear general controlled FBSDEs has been studied
in Zhang, Huang and Li [70]. The near-optimal control problem for recursive stochastic problem has
been studied in Hui, Huang, Li and Wang [35].

It is shown that the near-optimal controls in mean-field stochastic control problems, as the alter-
native to the exact optimal ones, are of great importance for both the theoretical analysis and practical
application purposes due to its nice structure and broad-range availability as well as feasibility. The
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near-optimal controls in mean-field stochastic control problems are more available than the exact op-
timal ones, in the sense that the near-optimal controls always exist, while the exact optimal stochastic
controls may not even exist in many situations. Moreover, since there are many near-optimal controls,
it is possible to select among them appropriate ones that are easier for analysis and implementation.
This justifies the use of near-optimal stochastic controls, which exist under minimal hypothesis and
are sufficient in most practical cases.

Motivated by the arguments above and inspired by [71], our aim in this work is to establish a set
of necessary conditions for near-optimality for systems governed by nonlinear controlled mean-field
FBSDEJs. Moreover, we prove that under some additional assumptions and by applying Clarke’s
generalized gradient for nonsmooth functions, these necessary conditions are also sufficient for near-
optimality. As an illustration, mean-variance portfolio selection problem: time-inconsistent solution
is discussed.

The plan of the rest of the chaper is organized as follows. In Section 2, we present some typical
notations and formulate the mean-field stochastic control problem considered in this work. In Section
3 we prove our main results. As an illustration, Time-inconsistent mean-variance portfolio selection
problem is discussed in the last section.

11. Formulation of the problem and preliminaries

In the present work, we consider mean-field stochastic near-optimal control problem of the following
kind. Let T > 0 be a fixed time horizon and (Ω,F , (Ft)t∈[0,T ] ,P) be a fixed filtered probability space
equipped with a P−completed right continuous filtration on which a d−dimensional Brownian motion
W = (W (t))t∈[0,T ] is defined. Let η be a homogeneous (Ft)-Poisson point process independent of

W . We denote by Ñ(dθ, dt) the random counting measure induced by η, defined on Θ × R+, where
Θ is a fixed nonempty subset of R with its Borel σ−field B (Θ). Further, let µ (dθ) be the local
characteristic measure of η, i.e. µ (dθ) is a σ-finite measure on (Θ,B (Θ)) with µ (Θ) < +∞. We
then define N(dθ, dt) = Ñ(dθ, dt) − µ (dθ) dt, where N (·, ·) is Poisson martingale measure on
B (Θ)×B (R+) with local characteristics µ (dθ) dt. We assume that (Ft)t∈[0,T ] is P−augmentation of

the natural filtration (F (W,N)
t )t∈[0,T ] defined as follows:

F (W,N)
t = σ {W (s) : 0 ≤ s ≤ t} ∨ σ

{∫ s

0

∫
B

N(dθ, dr), 0 ≤ s ≤ t, B ∈ B (Θ)

}
∨ G0,

where G0 denotes the totality of P−null sets, and σ1 ∨ σ2 denotes the σ-field generated by σ1 ∪ σ2.

In the present work, we study stochastic near-optimal control problem for system described by mean-
field forward-backward stochastic differential equations with Poisson jumps processes (mean-field
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FBSDEJs) of the form:

dx(t) = f (t, x(t), E(x(t)), u(t)) dt+ σ (t, x(t), E(x(t))) dW (t)

+
∫

Θ
c (t, x(t−), θ)N (dθ, dt) .

dy(t) = −
∫

Θ
g(t, x(t), E(x(t)), y(t), E(y(t)), z(t), E(z(t)), r (t, θ) , u(t))µ (dθ) dt

+ z(t)dW (t) +
∫

Θ
r (t, θ)N (dθ, dt) .

x(0) = ζ, y(T ) = h (x(T ), E (x(T ))) ,

(52)

where f, σ, b, g, h, are given maps and the initial condition ζ is an F0-measurable random variable.
The mean-field FBSDEJs-(52), called McKean-Vlasov systems are obtained as a limit approach, by
the mean-square limit, when n→ +∞ of a system of interacting particles of the form:

dxjn(t) = f(t, xjn(t), 1
n

∑n
i=1 x

i
n(t), u(t))dt+ σ(t, xjn(t), 1

n

∑n
i=1 x

i
n(t))dW j(t)

+
∫

Θ
c(t, xjn(t−), θ)N j (dθ, dt) .

dyjn(t) = −
∫

Θ
g(t, xjn(t), 1

n

∑n
i=1 x

i
n(t), yjn(t), 1

n

∑n
i=1 y

i
n(t), zjn(t), 1

n

∑n
i=1 z

i
n(t),

r(t, θ), u(t))µ (dθ) dt+ zjn(t)dW j(t) +
∫

Θ
r (t, θ)N j (dθ, dt) ,

where (W j(·) : j ≥ 1) is a collection of independent Brownian motions and (N j(·, ·) : j ≥ 1) is a
collection of independent Poisson martingale measure. Noting that mean-field FBSDEJs-(52) occur
naturally in the probabilistic analysis of financial optimization problems and the optimal control of
dynamics of the McKean-Vlasov type. Moreover, the above mathematical mean-field approaches play
an important role in different fields of economics, finance, physics, chemistry and game theory.
The criteria to be minimized associated with the state equation (52) is defined by

J (ζ, u(·)) = E {φ (y(0), E (y(0)))} . (53)

It’s worth mentioning that since the cost functional J is possibly a nonlinear function of the expected
value stands in contrast to the standard formulation of a control problem. This leads to a so-called
time-inconsistent control problem where the Bellman Dynamic programming does not hold. The
reason for this is that one cannot apply the law of iterated expectations on the cost functional.
This section sets out the notations and assumptions used in the sequel.
Notations. We use the following notations. In the sequel, L2

F ([0, T ] ;Rn) denotes the Hilbert space
of Ft−adapted processes (x(t))t∈[0,T ] such that E

∫ T
0
|x(t)|2 dt < +∞. M2

F ([0, T ] ;R) denotes the
Hilbert space of Ft− predictable processes (ψ (·, t, θ))t∈[0,T ] defined on Ω × [0, T ] × Θ such that
E
∫ T

0

∫
Θ
|ψ (w, t, θ)|2 µ(θ)dt < +∞. Any element x ∈ Rn will be identified to a column vector with

its jth component xj and the norm |x| =
∑n

j=1 |xj|. We denote A∗ the transpose of any vector or
matrix A. We denote by E the expectation with respect to P. For a function f ∈ C1 we denote
by fx its gradient or Jacobian with respect to the variable x. We denote by 1A the indicator func-
tion of A, conv (A) the closure convex hull of A and Sgn(·) be the sign function. We denote by
(x̃(t), ỹ(t), z̃(t)) = (E(x(t)), E(y(t)), E(z(t))).
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Definition 2.1.1 Let T > 0 be a fixed strictly positive real number and U be a nonempty subset of Rk.
An admissible control is defined as a function u(·) : [0, T ]×Ω −→ U which is Ft−predictable, such
that the mean–field FBSDEJs-(52) has a unique solution and write u(·) ∈ U([0, T ]).

The value function is defined as

V (ζ) = inf {J (ζ, u(·)) : u(·) ∈ U([0, T ])} . (54)

Throughout this work, we also assume that the coefficients functions:

f : [0, T ]× Rn × Rn × U→ Rn.

σ : [0, T ]× Rn × Rn → L(Rd,Rn).

g : [0, T ]× Rn × Rn × Rm × Rm × L(Rd,Rm)× L(Rd,Rm)× U→ Rm.

c : [0, T ]× Rn×Θ→ Rn.

h : Rn × Rn→ Rm, φ : Rm × Rm→ R,

satisfy the following standard assumptions:
Assumption (H1) The functions f, σ, g, h, c, φ are continuous and continuously differentiable with
respect to (x, x̃, y, ỹ, z, z̃, r), and there exists a constant C > 0 such that |f(t, x, x̃, u)|+ |σ(t, x, x̃)| <
C(1 + |x|+ |x̃|), supθ∈Θ |c(t, x, θ)| < C(1 + |x|).
Assumption (H2) The derivatives of f, σ, c, h, φ with respect to (x, x̃, y, ỹ, z, z̃, r) are bounded and
there is a constant C > 0 such that supθ∈Θ |gκ(t, θ)| < C for κ = x, x̃, y, ỹ, z, z̃, r.

Assumption (H3) There is a constant C > 0 and γ ∈ [0, 1] such that

|fx (t, x, x̃, u)− fx (t, x′, x̃′, u)|+ |fx̃ (t, x, x̃, u)− fx̃ (t, x′, x̃′, u)|

+ |σx (t, x, x̃)− σx (t, x′, x̃′)|+ |σx̃ (t, x, x̃)− σx̃ (t, x′, x̃′)| ≤ C(|x− x′|γ + |x̃− x̃′|γ).

|hx (x, x̃)− hx (x′, x̃′)|+ |hx̃ (x, x̃)− hx̃ (x′, x̃′)| ≤ C (|x− x′|γ + |x̃− x̃′|γ) .

Further,

|gκ (t, x, x̃, y, ỹ, z, z̃, u, θ)− gκ (t, x′, x̃′, y′, ỹ′, z′, z̃′, u, θ)|
≤ C(|x− x′|γ + |x̃− x̃′|γ + |y − y′|γ + |ỹ − ỹ′|γ + |z − z′|γ + |z̃ − z̃′|γ),

where κ = x, x̃, y, ỹ, z, z̃.

Under the Assumptions (H1) and (H2) the mean–field FBSDEJs-(52) has a unique solu-
tion (x(t), y(t), z(t), r(·, ·)) ∈ L2

F ([0, T ] ;Rn) ×L2
F ([0, T ] ;Rm) ×L2

F
(
[0, T ] ;L(Rd,Rm)

)
×

M2
F ([0, T ] ;R), (see Hafayed [24]).

Adjoint equations. For any u(·) ∈ U([0, T ]) with its corresponding state trajectories
(x (·) , y (·) , z (·) , r(·, ·)) we introduce the following adjoint equations, which differ from the classical
ones in the sense that here the adjoint equation turns out to be a linear mean-field forward-backward
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stochastic differential equations with jumps

dΨ(t) = −{fx (t) Ψ(t) + E [fx̃ (t) Ψ(t)] + σx (t)Q(t) + E [σx̃ (t)Q(t)]

+
∫

Θ
[gx(t, θ)K(t) + E (gx̃(t, θ)K(t)) + cx (t, θ)R (t, θ)]µ (dθ)}dt

+Q(t)dW (t) +
∫

Θ
R (t, θ)N (dθ, dt) .

Ψ(T ) = −{hx (T )K(T ) + E [(hx̃ (T ))K(T )]} .

dK(t) =
∫

Θ
[gy (t, θ)K(t) + E (gỹ (t, θ)K(t))]µ (dθ) dt

+
∫

Θ
[gz(t, θ)K(t) + E (gz̃(t, θ)K(t))]µ (dθ) dW (t)−

∫
Θ
gr(t, θ)K(t)N(dθ, dt).

K(0) = −φy (y(0), E (y(0)))− E (φỹ (y(0), E (y(0)))) ,

(55)

where
fκ(t) = fκ (t, x(t), x̃(t), u(t)) , σκ (t) = σκ (t, x(t), x̃(t)) , hκ (t) = hκ (x(t), x̃(t)) , for κ := x, x̃.
φκ (t) = φκ (y(t), ỹ(t)) , for κ := y, ỹ.
gκ(t, θ) = gκ (t, x(t), x̃(t), y(t), ỹ(t), z(t), z̃(t), u(t), θ) , for κ := x, x̃, y, ỹ, z, z̃, r.

Hamiltonian function. We define the Hamiltonian function

H : [0, T ]×Rn×Rn×Rm×Rm×L(Rd,Rm)×L(Rd,Rm)×U×Rn×Rm×L
(
Rd,Rm

)
→ Rn,

associated with the mean-field stochastic control problem (52)-(53) as follows

H (t, x, x̃, y, ỹ, z, z̃, r(·, ·), u,Ψ, Q,K,R(·, ·))

= −Ψ(t)f (t, x, x̃, u)−Q(t)σ (t, x, x̃)−
∫

Θ
[K(t)g (t, x, x̃, y, ỹ, z, z̃, r(t, θ), u)

− R (t, θ) c (t, x, θ))]µ (dθ) .

(56)

If we denote by

H (t) = H(t, x(t), x̃(t), y(t), ỹ(t), z(t), z̃(t), r(t, θ), u(t),Ψ(t), Q(t), K(t), R(t, θ)),

the adjoint equation (55) can be rewritten as the following stochastic Hamiltonian system’s type

dΨ(t) = {Hx (t) + E [Hx̃ (t)]} dt+Q(t)dW (t) +
∫

Θ
R (t, θ)N (dθ, dt) .

Ψ(T ) = − [hx (T ) + E (hx̃ (T ))]K(T ).

−dK(t) = [Hy (t) + E (Hỹ (t))] dt+ [Hz (t) + E (Hz̃ (t))] dW (t)
∫

Θ
Hr (t−)N (dθ, dt) .

K(0) = −{ϕy (y(0), E (y(0))) + E [ϕỹ (y(0), E (y(0)))]} .
(57)

It is a well known fact that under Assumptions (H1) and (H2), the adjoint equation (55) admits a
unique solution (Ψ(t), Q(t), K(t), R(t, ·)) such that

(Ψ(t), Q(t), K(t), R(t, ·)) ∈ L2
F([0, T ] ;R)× L2

F([0, T ] ;R)× L2
F([0, T ] ;R)×M2

F([0, T ] ;R).
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Moreover, since the derivatives of fx, fx̃, σx, σx̃, cx, gx, gx̃, gy, gỹ, gz, gz̃, gr, hx, hx̃, ϕy and ϕỹ are
bounded, we deduce from standard arguments that there exists a constant C > 0 such that

E

{
sup
t∈[0,T ]

|Ψ(t)|2 + sup
t∈[0,T ]

|K(t)|2 dt+

∫ T

0

|Q(t)|2 dt +

∫ T

0

∫
Θ

|R (t, θ)|2 µ (dθ) dt

}
< C. (58)

Let us recall the definition of near-optimal control as given in (Zhou [71] Definition 2.1, and Definition
2.2) and Ekeland’s variational principle which will be used in the sequel.
Definition 2.2.2. (Near-optimal control of order εδ) For a given ε > 0 the admissible control uε(·) is
called near-optimal if

|J (ζ, uε(·))− V (ζ)| ≤ O (ε) , (59)

where O(·) is a function of ε satisfying limε→0O (ε) = 0. The estimator O (ε) is called an error
bound.
1. If O (ε) = Cεδ for δ > 0, where C and δ are independent of ε, then uε(·) is called near-optimal
control of order εδ.
2. If O (ε) = ε, the admissible control uε(·) called ε−optimal.
Lemma 2.2.1. (Ekeland’s Variational Principle) Let (F, ρ) be a complete metric space and f : F →
R be a lower semi-continuous function which is bounded from below. For a given ε > 0, suppose that
there is uε ∈ F satisfying f (uε) ≤ infu∈F f(u) + ε. Then for any λ > 0 there exists uλ ∈ F such that
1. f

(
uλ
)
≤ f (uε) ;

2. ρ
(
uλ, uε

)
≤ λ;

3. f
(
uλ
)
≤ f (u) +

ε

λ
ρ
(
u, uλ

)
, for all u ∈ F.

To apply Ekeland’s variational principle to our mean-field control problem, we must define a metric
ρ on the space of admissible controls such that (U([0, T ]), ρ) becomes a complete metric space. For
any u(·), v(·) ∈ U([0, T ]) we define

ρ (u(·), v(·)) = P⊗dt {(ω, t) ∈ Ω× [0, T ] : u (ω, t) 6= v (ω, t)} , (60)

where P⊗dt is the product measure of P with the Lebesgue measure dt on [0, T ] .

Lemma 2.2.1. (U([0, T ]), ρ) is a complete metric space.
2) The cost function J (·) is continuous from U([0, T ]) into R.
See Yong and Zhou ([69], Lemma 6.4, pp. 146-147).
Proof. 1. See Yong and Zhou ([69], Lemma 6.4, pp. 146-147).
2. From (53), we have

|J (ζ, u(·))− J (ζ, v(·))| = |E[φ (yu(0), ỹu(0))]− E[φ (yv(0), ỹv(0))]|
≤ E |φ (yu(0), ỹu(0))− φ (yv(0), ỹv(0))| .

Since φ(·, ·) is continuously differentiable with respect to y, ỹ with bounded derivatives, we get

|J (ζ, u(·))− J (ζ, v(·))| ≤ Cρ (u(·), v(·))
1
2 .

Now, let (un)n≥0 be a sequace of controls convergs to u in (U([0, T ]), ρ) ,.then we have

|J (ζ, un(·))− J (ζ, u(·))| ≤ Cρ (un(·), u(·))
1
2 ,

since ρ (un(·), u(·))→ 0 as n→ +∞, then J (ζ, un(·)) converges to J (ζ, u(·)) as n→ +∞. �
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12. Main results

12.1. Maximum principle of near-optimality for mean-field FBSDEJs
Our purpose in this section is to derive a set necessary conditions of near-optimality in the form of
maximum principle for systems governed by nonlinear controlled mean–field FBSDE with Jumps.
The proof of our main result is based on Ekeland’s variational principle [14] and some estimates of
the state and adjoint processes with respect to the control variable.
Now we are able to derive necessary conditions for a control to be near-optimal for systems governed
by mean-field FBSDEJs, which is the main result of this work.
Let (xε(·), yε(·), zε(·), rε(·)) be the solution of state equation (52) and (Ψε (·) , Qε (·) , Kε (·) , Rε(·))
be the solution of the adjoint equation (55) corresponding to uε(·).
Theorem 2.3.1. (Necessary Conditions of Near-optimality for mean–field FBSDEJs in integral form)
Let the assumptions (H1), (H2) and (H3) hold. Then for any δ ∈

[
0, 1

3

[
, there exists a positive

constant C = C (δ, T ) > 0 such that for any ε > 0 and any near-optimal control uε(·), it holds that
∀u ∈ U :

E
∫ T

0
[H(t,Λε(t, θ), E(Λε(t, θ)), u,Ψε(t), Qε(t), Kε(t), Rε(t, θ))

−H(t,Λε(t, θ), E(Λε(t, θ)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))]dt ≥ −Cεδ.
(61)

where (Λε(t, θ), E(Λε(t, θ))) = (xε(t), E(xε(t)), yε(t), E(yε(t)), zε(t), E(zε(t)), rε(t, θ)).

Corollary 2.3.1. Under the hypotheses of Theorem 3.1, it holds that

H(t,Λε(t, θ), E(Λε(t, θ)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))

≥ sup
u(·)∈U([0,T ]

H(t,Λε(t, θ), E(Λε(t, θ)), u(·),Ψε(t), Qε(t), Kε(t), Rε(t, θ))− Cεδ.

P−a.s., a.e. t ∈ [0, T ] .

(62)

Remark 2.3.1 Note that Corollary 3.1 says that any ε−optimal control nearly maximizes the Hamil-
tonian functional with an error bound of order of ε

1
3 we believe, although we are not able to prove

at this moment, that the error bound can be improved. To prove our mean-field maximum principle
(Theorem 3.1 and Corollary 3.1), we need the following auxiliary results on the stability of the state
and adjoint processes with respect to the control variable.
Our first Lemma below deals with the continuity of the state processes under distance ρ.
Lemma 2.3.1. (Continuity Lemma) If (xu(·), yu(·), zu(·), ru(·, ·)) and (xv(·), yv(·), zv(·), rv(·, ·)) be
the solution of the state equation (52) associated respectively with u(·) and v(·). For any α ∈ ]0, 1[
and β ∈ ]0, 2] satisfying αβ < 1, there exists a positive constants C = C (T, α, β, µ (Θ)) such that

E( sup
s≤t≤T

|xu(t)− xv(t)|β) ≤ Cρ (u(·), v(·))
αβ
2 . (63)

sup
0≤t≤T

E( |yu(t)− yv(t)|β) + E
∫ T
t
|zu(s)− zv(s)|β ds

+
∫ T
t

∫
Θ
|ru(s, θ)− rv(s, θ)|β µ (dθ) ds

}
≤ Cρ (u(·), v(·))

αβ
2 .

(64)
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Proof.
Proof of estimate (63).
Case 1. First, we assume that β ∈ [1, 2].We can compute, for any r ≥ s, with the helps of (Proposition
A2, Appendix), we get

E

[
sup
s≤t≤r

|xu(t)− xv(t)|β
]

≤ CE

∫ r

s

{|f(t, xu(t), E (xu(t)) , u(t)) − f(t, xu(t), E (xu(t)) , v(t))|β dt

+ |σ(t, xu(t), E (xu(t)))− σ(t, xv(t), E (xv(t)))|β

+

∫
Θ

|c (t, xu(t), θ)− c (t, xv(t), θ)|β µ (dθ)

}
× 1{u(ω,t)6=v(ω,t)} (t) dt

+CE

∫ r

s

{|f(t, xu(t), E (xu(t)) , v(t)) − f(t, xv(t), E (xv(t)) , v(t))|β

+ |σ(t, xu(t), E (xu(t)))− σ(t, xv(t), E (xv(t)))|β
}
dt.

Setting b = 2
αβ
> 1 and a > 1 such that 1

a
+ 1

b
= 1. By arguing as in Zhou [71], Lemma 3.1) and from

Cauchy-Schwartz inequality, we get

E

∫ r

s

|f (t, xu(t), E (xu(t)) , u(t)) − f (t, xu(t), E (xu(t)) , v(t))|β 1{u(ω,t) 6=v(ω,t)} (t) dt

≤
{
E

∫ r

s

|f (t, xu(t), E (xu(t)) , u(t)) − f (t, xu(t), E (xu(t)) , v(t))|βa dt
} 1
a

×
{
E

∫ r

s

1{u(ω,t)6=v(ω,t)} (t) dt

} 1
b

,

by using definition of ρ and linear growth condition on f , we obtain

E

∫ r

s

|f (t, xu(t), E (xu(t)) , u(t)) − f (t, xu(t), E (xu(t)) , v(t))|β 1{u(ω,t) 6=v(ω,t)} (t) dt

≤ C

{
E

∫ r

s

(1 + |xu(t)|2βa + |E (xu(t))|2βa)dt
} 1

a

ρ (u(·), v(·))
αβ
2

≤ Cρ (u(·), v(·))
αβ
2 .

Similarly, the same inequality holds if f above is replaced by σ and c we get

E

∫ r

0

|σ (t, xu(t), E (xu(t)))− σ (t, xv(t), E (xv(t)))|β 1{u(ω,t)6=v(ω,t)} (t) dt

≤ Cρ (u(·), v(·))
αβ
2 .

E

∫ r

0

∫
Θ

|c (t, xu(t−), θ)− c (t, xv(t−), θ)|β 1{u(ω,t)6=v(ω,t)} (t)µ (dθ) dt

≤ Cρ (u(·), v(·))
αβ
2 .
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Therefore, by using Assumption (H1), we conclude that

E( sup
0≤t≤r

|xu(t)− xv(t)|β) ≤ CE

∫ r

s

sup
0≤r≤τ

|xu(t)− xv(t)|β dτ + ρ (u(·), v(·))
αβ
2 .

Hence (63) follows immediately from Definition 2.1 and Gronwall’s inequality.
Case 2. Now we assume β ∈ ]0, 1[. By using the Cauchy-Schwartz inequality together with Case 1.,
we get

E( sup
0≤t≤T

|xu(t)− xv(t)|β) ≤ E( sup
0≤t≤T

|xu(t)− xv(t)|2)
β
2

≤ [Cρ (u(·), v(·))α]
β
2 ≤ Cρ (u(·), v(·))

αβ
2 .

This completes the proof of inequality (63) �
Proof of estimate (64). Setting

(Λu(t, θ), E(Λu(t, θ)) = (xu(t), E (xu(t)) , yu(t), E (yu(t)) , zu(t), E (zu(t)) , ru(t, θ)).

(Λv(t, θ), E(Λv(t, θ))) = (xv(t), E (xv(t)) , yv(t), E (yv(t)) , zv(t), E (zv(t)) , rv(t, θ)).

Case 1. First we assume β = 2. From the backward component (y(·), z(·)), we get

− (yu(t)− yv(t))−
∫ T
t

(zu(s)− zv(s))dW (s)−
∫ T
t

∫
Θ

(ru(s, θ)− rv(s, θ))N(dθ, ds)

= − [h(xu(T ), E(xu(T )))− h(xv(T ), E(xv(T )))] +
∫ T
t

∫
Θ

[g (s,Λu(s, θ), E(Λu(s, θ)), u(s))

− g (s,Λv(s, θ), E(Λv(s, θ)), v(s))]µ (dθ) ds.

By squaring both sides of the above equation (see Hafayed [24]) and the fact that

E
{

(yu(t)− yv(t))
∫ T
t

(zu(s)− zv(s)) dW (s)
}

= 0.

E
{

(yu(t)− yv(t))
∫ T
t

∫
Θ

(ru(s, θ)− rv(s, θ))N(dθ, ds)
}

= 0.

E
{∫ T

t
(zu(s)− zv(s)) dW (s) ×

∫ T
t

∫
Θ

(ru(s, θ)− rv(s, θ))µ (dθ) ds
}

= 0.

with the help of Proposition A2, we obtain

E
{
|yu(t)− yv(t)|2

}
+ E

∫ T
t
|zu(s)− zv(s)|2 ds+ E

∫ T
t

∫
Θ
|ru(s, θ)− rv(s, θ)|2 µ (dθ) ds

≤ E
{
|h(xu(T ), E(xu(T )))− h(xv(T ), E(xv(T )))|2

}
+E

{∫ T
t

∫
Θ

[g (s,Λu(s, θ), E(Λu(t, θ)), u(s)) − g (s,Λv(s, θ), E(Λv(s, θ)), v(s))]µ (dθ) ds}2

≤ I1 + I2.
(65)
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Let us estimate the first term I1. Using Assumption (H1) then from inequality (63), we get

I1 = E
{
|h(xu(T ), E(xu(T )))− h(xv(T ), E(xv(T )))|2

}
≤ CE

{
|xu(T )− xv(T )|2 + |E(xu(T ))− E(xv(T ))|2

}
≤ CE

{
|xu(T )− xv(T )|2 + |E [xu(T ))− xv(T )]|2

}
≤ CE

{
|xu(T )− xv(T )|2 + E |xu(T ))− xv(T )|2

}
≤ CE

{
|xu(T )− xv(T )|2

}
≤ Cρ (u(·), v(·))α .

(66)

Let us turn to estimate the second term I2. By adding and subtracting g (s,Λv(s, θ), E(Λv(s, θ)), u(s))
from I2 with the help of Propositions A2, we get

I2 = E
{∫ T

t

∫
Θ
|g (s,Λu(s, θ), E(Λu(t, θ)), u(s)) − g (s,Λv(s, θ), E(Λv(t, θ)), v(s))|

× 1{u(ω,s)6=v(ω,s)} (s)µ (dθ) ds
}2

≤ CE
{∫ T

t

∫
Θ
|g (s,Λu(s, θ), E(Λu(t, θ)), u(s)) − g (s,Λv(s, θ), E(Λv(t, θ)), u(s))|µ (dθ) ds}2

+CE
{∫ T

t

∫
Θ
|g (s,Λv(s, θ), E(Λv(s, θ)), u(s)) − g (s,Λv(s, θ), E(Λv(t, θ)), v(s))|2

× 1{u(ω,s)6=v(ω,s)} (s)µ (dθ) ds
}

= I1
2 + I2

2 .
(67)

Using Assumption (H1), we get

I1
2 = CE

{∫ T
t

∫
Θ
|g (s,Λu(s, θ), E(Λu(t, θ)), u(s)) − g (s,Λv(s, θ), E(Λv(t, θ)), u(s))|µ (dθ) ds}2

≤ CE
∫ T
t

{
|xu(s)− xv(s)|2 + |E (xu(s))− E (xv(s))|2 + |yu(s)− yv(s)|2 ds+ |E (yu(s))− E (yv(s))|2

+ |zu(s)− zv(s)|2 + |E (zu(s))− E (zv(s))|2 +
∫

Θ
|ru(s, θ)− zv(s, θ)|2 µ (dθ)

}
ds

≤ CE
∫ T
t
|xu(s)− xv(s)|2 ds+ CE

∫ T
t
|yu(s)− yv(s)|2 ds+ C(T − t)E

[∫ T
t
|zu(s)− zv(s)|2 ds

+
∫ T
t

∫
Θ
|ru(s, θ)− rv(s, θ)|2 µ (dθ) ds

]
.

(68)
Now, taking a = 1

1−α > 1 and b = 1
α
> 1 such that 1

a
+ 1

b
= 1, then from Hölder’s inequality and the

fact that g is bounded by C(1 + |x|+ |x̃|+ |y|), (see Assumption (H2)) we can shows that

I2
2 = E

{∫ T
t

∫
Θ
|g (s,Λv(s, θ), E(Λv(s, θ)), u(s)) − g (s,Λv(s, θ), E(Λv(t, θ)), v(s))|2

× 1{u(ω,s)6=v(ω,s)} (s)µ (dθ) ds
}

≤ CE
{∫ T

t

∫
Θ
|g (s,Λv(s, θ), E(Λv(s, θ)), u(s)) − g (s,Λv(s, θ), E(Λv(t, θ)), v(s))|

2
1−α µ (dθ) ds

}1−α

×
{
E
∫ T
t

1{u(ω,s)6=v(ω,s)} (s) ds
}α

,
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which implies

I2
2 ≤ Cµ (Θ)

{
1 + E

[
supt≤s≤T |xv(s)|

2
1−α

]
+ E

[
supt≤s≤T |E(xv(s))|

2
1−α

]
+E

[
supt≤s≤T |yv(s)|

2
1−α

]}{
E
∫ T
t

1{u(ω,s)6=v(ω,s)} (s) ds
}α

≤ Cµ(Θ)ρ (u(·), v(·))α .

(69)

By combining (66)∼(69) together with (65), we get

E |yu(t)− yv(t)|2 + E

∫ T

t

|zu(s)− zv(s)|2 ds+ E

∫ T

t

∫
Θ

|ru(s, θ)− rv(s, θ)|2 µ (dθ) ds

≤ Cµ (Θ) ρ (u(·), v(·))α + Cµ (Θ)

∫ T

t

E |yu(s)− yv(s)|2 ds

+ Cµ (Θ) (T − t)E
∫ T

t

[
|zu(s)− zv(s)|2 +

∫
Θ

|ru(s, θ)− rv(s, θ)|2 µ (dθ)

]
ds.

For every τ = T − t we obtain by choosing τ =
1

2Cµ (Θ)
we shows that

E |yu(t)− yv(t)|2 +
1

2
E

∫ T

T−τ
|zu(s)− zv(s)|2 ds

+
1

2
E

∫ T

T−τ

∫
Θ

|ru(s, θ)− rv(s, θ)|2 µ (dθ) ds

≤ Cµ (Θ) ρ (u(·), v(·))α + Cµ (Θ)

∫ T

T−τ
E |yu(s)− yv(s)|2 ds.

Using Gronwall’s inequality, t ∈ [T − τ, T ]

E |yu(t)− yv(t)|2 +
1

2
E

∫ T

t

|zu(s)− zv(s)|2 ds

+
1

2
E

∫ T−τ

t

∫
Θ

|ru(s, θ)− rv(s, θ)|2 µ (dθ) ds

≤ Cµ (Θ) ρ (u(·), v(·))α ,

by similar argument, we obtain for t ∈ [T − 2τ, T − τ ] ,

E |yu(t)− yv(t)|2 + E

∫ T−τ

t

|zu(s)− zv(s)|2 ds+ E

∫ T−τ

t

∫
Θ

|ru(s, θ)− rv(s, θ)|2 µ (dθ) ds

≤ Cµ (Θ) ρ (u(·), v(·))α .

After a finite number of iterations, the desired result follows.
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Case 2. First we assume 0 < β < 2. Then by using Hölder’s inequality and Case 1, we get

sup
0≤t≤T

E( |yu(t)− yv(t)|β) + E
∫ T
t
|zu(s)− zv(s)|β ds+ E

∫ T
t

∫
Θ
|ru(s, θ)− rv(s, θ)|β µ (dθ) ds

≤ Cµ (Θ)

{
sup

0≤t≤T
E |yu(t)− yv(t)|2 + E

∫ T
t
|zu(s)− zv(s)|2 ds

+E
∫ T
t

∫
Θ
|ru(s, θ)− rv(s, θ)|2 µ (dθ) ds

}β
2 ≤ C {ρ (u(·), v(·))α}

β
2 .

This completes the proof of (64) �
Since the adjoint equations corresponding to our mean-field control problem (52)-(53) are given by
forward-backward stochastic system of mean-type, the next result gives the β−th moment continuity
of the solutions to adjoint equations with respect to the metric ρ, This Lemma may be considered as
an extension of Lemma 3.3.2 in [71], to mean-field FBSDEs with jumps.
Lemma 2.3.2. For any α ∈ ]0, 1[ and β ∈ ]0, 2] satisfying (1 + α) β < 2, there exist a positive
constant C = C (µ(Θ), α, β) such that for any u(·), v(·) ∈ U([0, T ]), along with the corresponding
trajectories (xu(·), yu(·), zu(·)), (xv(·), yv(·), zv(·)) and the solutions (Ψu(·), Qu(·), Ku(·), Ru(·, ·))
and (Ψv(·), Qv(·), Kv(·), Rv(·, ·)) of the corresponding adjoint equations (55), it holds that

E
∫ T

0

{
|Ψu(t)−Ψv(t)|β + |Qu(t)−Qv(t)|β

+
∫

Θ
|Ru(t, θ)−Rv(t, θ)|β µ (dθ)

}
dt ≤ Cρ (u(·), v(·))

αβγ
2 ,

(70)

and

E

∫ T

0

|Ku(t)−Kv(t)|β dt ≤ Cρ (u(·), v(·))
αβγ
2 . (71)

Proof. For each t ∈ [0, T ] we denote Ψ̃(t) = Ψu(t) − Ψv(t), R̃(t, θ) = Ru(t, θ) − Rv(t, θ), K̃(t) =

Ku(t)−Kv(t), and Q̃(t) = Qu(t)−Qv(t). First we proceed to prove inequality-(71).
Proof of estimate (71). Note that the process K̃(t)t∈[0,T ] satisfies the following mean-field SDE

dK̃(t) =
∫

Θ

{
g∗y(t, θ)K̃(t) + Gy (t, θ) + E[g∗ỹ(t, θ)K̃(t) + Gỹ (t, θ)]

}
µ (dθ) dt

+
∫

Θ

{
g∗z(t, θ)K̃(t) + Gz (t, θ) + E[g∗z̃(t, θ)K̃(t) + Gz̃ (t, θ)]

}
µ (dθ) dW (t)

+
∫

Θ

[
g∗r(t, θ)K̃(t) + Gr (t, θ)

]
N (dθ, dt) .

K̃(0) = −{(φy (yu(0), E(yu(0)) − φy (yv(0), E(yv(0))} − E {φỹ (yu(0), E(yu(0))

− φỹ (yv(0), E(yv(0))} ,

(72)

where

Gy (t, θ) = [gy (t,Λu(t, ), E(Λu(t, θ)), u(t))− gy (t,Λv(t, θ), E(Λv(t, θ)), v(t))]Kv(t).

Gỹ (t, θ) = [gỹ (t,Λu(t, θ), E(Λu(t, θ)), u(t))− gỹ (t,Λv(t, θ), E(Λv(t, θ)), v(t))]Kv(t).
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Gz (t, θ) = [gz (t,Λu(t, θ), E(Λu(t, θ)), u(t)) − gz (t,Λv(t, θ), E(Λv(t, θ)), v(t))]Kv(t),

Gz̃ (t, θ) = [gz̃ (t,Λu(t, θ), E(Λu(t, θ)), u(t))− gz̃ (t,Λv(t, θ), E(Λv(t, θ)), v(t))]Kv(t).

Gr (t, θ) = [gr (t,Λu(t, θ), E(Λu(t, θ)), u(t))− gr (t,Λv(t, θ), E(Λv(t, θ)), v(t))]Kv(t).

Since the derivatives gy, gỹ, gz, gz̃, gr, φy, φỹ, are bounded, the mean-field SDE-(72) admits one and
only one Ft−adapted solution given by: for each t ∈ [0, T ]

K̃(t) = {(φy (yu(0), E(yu(0))− φy (yv(0), E(yv(0))}+ E {φỹ (yu(0), E(yu(0))− φỹ (yv(0), E(yv(0))}

+
∫ T

0

∫
Θ

{
g∗y(s, θ)K̃(s) + Gy (s, θ) + E[g∗ỹ(s, θ)K̃(s) + Gỹ (s, θ)]

}
µ (dθ) ds

+
∫ t

0

∫
Θ

{
g∗z(s, θ)K̃(s) + Gz (s, θ) + E[g∗z̃(s, θ)K̃(s) + Gz̃ (s, θ)]

}
µ (dθ) dW (s)

+
∫ t

0

∫
Θ

[g∗r(s, θ)K̃(s) + Gr (s, θ)]N (dθ, ds) .
(73)

Case 1. First, we assume that β = 2. By squaring both sides of equation-(73), taking expectation and
using the fact that gy, gỹ, gz, gz̃ and gr are bounded, and Assumption (H3), we shows that

E[
∣∣∣K̃(t)

∣∣∣2] ≤ Cµ(Θ)
{
E( |yu(0)− yv(0)|2) + E

∫ T
0

∣∣∣K̃(s)
∣∣∣2 ds+ E

∫ T
0

∫
Θ

[
|Gy (s, θ)|2 + |Gz (s, θ)|2

+
∣∣∣E(g∗ỹ(s, θ)K̃(s) + Gỹ (s, θ)))

∣∣∣2 +
∣∣∣E(g∗z̃(s, θ)K̃(s) + Gz̃ (s, θ))

∣∣∣2]µ (dθ) ds

}
≤ Cµ(Θ)

{
E( |yu(0)− yv(0)|2) + E

∫ T
0

∣∣∣K̃(s)
∣∣∣2 ds + E

∫ T
0

∫
Θ

[|Gy (s, θ)|2 + |Gz (s, θ)|2 + |Gr (s, θ)|2

+E |Gỹ (s, θ)|2 + E |Gz̃ (s, θ))|2]µ (dθ) ds.

We estimate the right hand side of the above inequality. By applying Lemma 3.1 we can shows
immediately that

E( |yu(0)− yv(0)|2) ≤ Cρ (u (·) , v (·))α . (74)

By a simple computation, we shows that

E
∫ T

0

∫
Θ
|Gy (t, θ)|2 µ (dθ) dt

≤ Cµ(Θ)E
∫ T

0

∫
Θ
|gy (t,Λu(t, θ), E(Λu(t, θ)), u(t)) − gy (t,Λv(t, θ), E(Λv(t, θ)), u(t))|2 |Kv(t)|2 µ (dθ) dt

+Cµ(Θ)E
∫ T

0

∫
Θ
|gy (t,Λv(t, θ), E(Λv(t, θ)), u(t)) − gy (t,Λv(t, θ), E(Λu(t, θ)), v(t))|2 |Kv(t)|2 µ (dθ) dt.

Under Assumption (H3) and from definition of metric ρ, we get: for γ ∈ [0, 1]

E
∫ T

0

∫
Θ
|Gy (t, θ)|2 µ (dθ) dt ≤ CE

∫ T
0

∫
Θ

[
|xu(t)− xv(t)|2γ + |yu(t)− yv(t)|2γ + |zu(t)− zv(t)|2γ

+ |E(yu(t)− yv(t))|2γ + |E(yu(t)− yv(t))|2γ + |E(yu(t)− yv(t))|2γ
]
|Kv(t)|2 dt

+Cµ(Θ)E
∫ T

0
1{u(ω,t)6=v(ω,t)}(t) |Kv(t)|2 dt,
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by using Hölder’s inequality we get

E
∫ T

0

∫
Θ
|Gy (t, θ)|2 µ (dθ) dt ≤

{
Cµ(Θ)

[
E
∫ T

0
|xu(t)− xv(t)|2

]γ
+
[
E
∫ T

0
|yu(t)− yv(t)|2

]γ
+
[
E
∫ T

0
|zu(t)− zv(t)|2

]γ
+
[
E
∫ T

0
|E(xu(t)− xv(t))|2

]γ
+
[
E
∫ T

0
|E(yu(t)− yv(t))|2

]γ
+
[
E
∫ T

0
|E(zu(t)− zv(t))|2

]γ}[
E
∫ T

0
|Kv(t)|2/(1−γ) dt

]1−γ

+Cµ(Θ)E
[∫ T

0
|Kv(t)|2/(1−αγ) dt

]1−αγ
ρ (u (·) , v (·))αγ .

Using Lemma 3.1, and (58) we obtain

E

∫ T

0

∫
Θ

|Gy (t, θ)|2 µ (dθ) dt ≤ Cρ (u (·) , v (·))αγ . (75)

Applying the same arguments developed above, we easily shows that γ ∈ [0, 1]

E
∫ T

0

∫
Θ
|Gỹ (t, θ)|2 µ (dθ) dt ≤ Cρ (u (·) , v (·))αγ .

E
∫ T

0

∫
Θ
|Gz (t, θ)|2 µ (dθ) dt ≤ Cρ (u (·) , v (·))αγ .

E
∫ T

0

∫
Θ
|Gz̃ (t, θ)|2 µ (dθ) dt ≤ Cρ (u (·) , v (·))αγ .

E
∫ T

0

∫
Θ
|Gr (t, θ)|2 µ (dθ) dt ≤ Cρ (u (·) , v (·))αγ .

(76)

Combining (74), (75) and (76) it follows that

E(
∣∣∣K̃(t)

∣∣∣2) ≤ Cρ (u (·) , v (·))αγ .

Case 2. Now assume that β ∈ ]1, 2[ , then by using Hölder’s inequality we get the inequality (71). �
Let us turn to prove inequality (70).
Proof of estimate (70). Noting that the processes Ψ̃(t) = Ψu(t)−Ψv(t), Q̃(t) = Qu(t)−Qv(t) and
R̃(t, θ) = Ru(t, θ)−Rv(t, θ) satisfies the following mean-field BSDE with jumps processes

−dΨ̃(t) =
{
f ∗x (t, xu(t), E(xu(t)), u(t)) Ψ̃(t) + σ∗x (t, xu(t), E(xu(t))) Q̃(t)

+
∫

Θ

{
gx (t,Λu(t, θ), E(Λu(t, θ)), u(t)) K̃(t) + cx(t, θ)R̃(t, θ)

}
µ (dθ)

+E
[
f ∗x̃ (t, xu(t), E(xu(t)), u(t)) Ψ̃(t) + σ∗x̃ (t, xu(t), E(xu(t))) Q̃(t)

+
∫

Θ
gx̃ (t,Λu(t, θ), E(Λu(t, θ)), u(t)) K̃(t)µ (dθ)

]
+M(t)} dt

−Q̃(t)dW (t) +
∫

Θ
R̃ (t, θ)N (dθ, dt) .

Ψ̃(T ) = −hx (xu(T ), E(xu(T )))Ku(T )− hx (xv(T ), E(xv(T )))Kv(T )

−E{hx̃ (xu(T ), E(xu(T )))Ku(T )− hx̃ (xv(T ), E(xv(T ))Kv(T )]},

(77)
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where the process M(·) depend to marginal law of the state processes such that

M(t) = [f ∗x (t, xu(t), E(xu(t)), u(t)) − f ∗x (t, xv(t), E(xv(t)), v(t))] Ψv(t)

+ [σ∗x (t, xu(t), E(xu(t))) − σ∗x (t, xv(t), E(xv(t)))]Qv(t)

+
∫

Θ
[g∗x (t,Λu(t, θ), E(Λu(t, θ)), u(t)))− g∗xt,Λv(t, θ), E(Λv(t, θ)), v(t))]Kv(t))µ (dθ)

+E {[f ∗x̃ (t, xu(t), E(xu(t)), u(t)) − f ∗x̃ (t, xv(t), E(xv(t)), v(t))] Φv(t)}

+E {[σ∗x̃ (t, xu(t), E(xu(t))) − σ∗x̃ (t, xv(t), E(xv(t)))]Qv(t)}

+
∫

Θ
E[g∗x̃ (t,Λu(t, θ), E(Λu(t, θ)), u(t)))− g∗x̃ (t,Λv(t, θ), E(Λv(t, θ)), v(t)))Kv(t)]µ (dθ) .

(78)
Let (U(t))t∈[0,T ] be the solution of the following linear mean-field SDE



dU(t) = {fx (t, xu(t), E(xu(t)), u(t))U(t) + fx̃ (t, xu(t), E(xu(t)), u(t))E(U(t))

+
∣∣∣Ψ̃(t)

∣∣∣β−1

Sgn(Ψ̃(t))

}
dt+ {[σx (t, xu(t), E(xu(t)))U(t)

+σx̃ (t, xu(t), E(xu(t)))E(U(t)) +
∣∣∣Q̃(t)

∣∣∣β−1

Sgn(Q̃(t))

}
dW (t)

+
∫

Θ

[
cx(t, θ)

∣∣∣R̃(t, θ)
∣∣∣β−1

Sgn(R̃(t, θ))

]
N(dθ, dt).

U(0) = 0,

(79)

where Sgn (x) = (Sgn(x1), Sgn(x2), ..., Sgn(xn))∗ for any vector x = (x1, x2, .., xn)∗.

Note that since fx, fx̃, σx fx̃, gx gx̃ are bounded with the helps of (Proposition A2, Appendix) and due
to the fact that

E
∫ T

0

{∣∣∣∣∣∣∣Ψ̃(t)
∣∣∣β−1

Sgn(Ψ̃(t))

∣∣∣∣2 +

∣∣∣∣∣∣∣Q̃(t)
∣∣∣β−1

Sgn(Q̃(t))

∣∣∣∣2
}

+E
∫ T

0

∫
Θ

∣∣∣∣∣∣∣R̃(t, θ)
∣∣∣β−1

Sgn(R̃(t, θ))

∣∣∣∣2 µ (dθ) dt <∞,

the SDE-(79) has a unique strong solution.
Let q > 2 such that 1

q
+ 1

β
= 1, β ∈ (1, 2) then according to (58), we get

E( sup
t∈[0,T ]

|U(t)|q) ≤ CE

∫ T

0

{∣∣∣Ψ̃(t)
∣∣∣βq−q +

∣∣∣Q̃(t)
∣∣∣βq−q +

∫
Θ

∣∣∣R̃(t, θ)
∣∣∣βq−q µ (dθ)

}
dt <∞.

By applying Integration by parts formula for jumps to Ψ̃(t)U(t), (see Lemma A1, Appendix) on [0, T ]
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and taking expectation, we get

E
[
Ψ̃(T )U(T )

]
+ E

∫ T

0

∫
Θ

U(t){gx (t,Λu(t, θ), E(Λu(t, θ)), u(t)) K̃(t)

+ cx(t, θ)R̃(t, θ)}µ (dθ) dt

= E

∫ T

0

{
Ψ̃(t)

∣∣∣Ψ̃(t)
∣∣∣β−1

Sgn(Ψ̃(t)) + Q̃(t)
∣∣∣Q̃(t)

∣∣∣β−1

Sgn(Q̃(t))

+

∫
Θ

∣∣∣∣∣∣∣R̃(t, θ)
∣∣∣β−1

Sgn(R̃(t, θ))

∣∣∣∣2 µ (dθ)

}
dt− E

∫ T

0

M(t)U(t)dt.

Since

E

∫ T

0

{
Ψ̃(t)

∣∣∣Ψ̃(t)
∣∣∣β−1

Sgn(Ψ̃(t)) + Q̃(t)
∣∣∣Q̃(t)

∣∣∣β−1

Sgn(Q̃(t))

+

∫
Θ

R̃(t, θ)
∣∣∣R̃(t, θ)

∣∣∣β−1

Sgn(R̃(t, θ))µ (dθ)

}
dt

= E

∫ T

0

[∣∣∣Ψ̃(t)
∣∣∣β +

∣∣∣Q̃(t)
∣∣∣β +

∫
Θ

∣∣∣R̃(t, θ)
∣∣∣β µ (dθ)

]
dt,

we have

E

∫ T

0

[∣∣∣Ψ̃(t)
∣∣∣β +

∣∣∣Q̃(t)
∣∣∣β +

∫
Θ

∣∣∣R̃(t, θ)
∣∣∣β µ (dθ)

]
dt

≤ E

{∫ T

0

M(t)U(t)dt+ Ψ̃(T )U(T )

}
≤ E

{∫ T

0

M(t)U(t)dt+ [hx (xu(T ), E(xu(T )))Ku(T )

− hx (xv(T ), E(xv(T )))Kv(T )]U(T )

+ E[hx̃ (xu(T ), E(xu(T )))Ku(T ) −hx̃ (xv(T ), E(xv(T ))Kv(T )]U(T )} .

By a simple computation we get

E
∫ T

0

[∣∣∣Ψ̃(t)
∣∣∣β +

∣∣∣Q̃(t)
∣∣∣β +

∫
Θ

∣∣∣R̃(t, θ)
∣∣∣β µ (dθ)

]
dt

≤ CE
∫ T

0
|M(t)|β dt+ CE {|hx(xu(T ), E(xu(T )))Ku(T )

− hx(xv(T ), E(xv(T )))Kv(T )|β + |E {hx̃(xu(T ), E(xu(T )))Ku(T )

− hx̃(x
v(T ), E(xv(T )))Kv(T )}|β

}
.

(80)

We proceed to estimate the right hand side of (80). From assumption (H3), Lemma 3.1 and (58), we
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easily see that

E {|hx(xu(T ), E(xu(T )))Ku(T ) − hx(x
v(T ), E(xv(T )))Kv(T )|β

+E |{hx̃(xu(T ), E(xu(T )))Ku(T ) − hx̃(x
v(T ), E(xv(T )))Kv(T )}|β

}
≤ Cρ (u (·) , v (·))

αβγ
2 .

(81)

E

∫ T

0

|M(t)|β dt ≤ Cρ (u (·) , v (·))
αβγ
2 . (82)

Finally, the desired result (70) follows immediately by combining (80), (81) and (82). This completes
the proof of Lemma 3.2. �
Lemma 2.3.3. For any ε > 0 there exists near-optimal control uε(·) ∈ U([0, T ]) and an Ft−adapted
process (Ψ

ε
(·) , Qε

(·) , Kε
(·) , Rε

(·, ·)) such that for all u ∈ U

E
{∫ T

0
Ψ
ε
(t) [f (t, xε(t), E(xε(t)), u(t)) − f (t, xε(t), E(xε(t)), uε(t))]

+
∫

Θ
K
ε
(t) [g(t,Λ

ε
(t, θ), E(Λ

ε
(t, θ)), u(t))

−g(t,Λ
ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))]µ (dθ)

}
dt ≥ −ε1/2,

(83)

where (Λ
ε
(t), E(Λ

ε
(t))) := (xε(t), E(xε(t)), yε(t), E(yε(t)), zε(t), E(zε(t))) and

(xε(·), yε(·), zε(·), rε (·, ·)) denotes the solution of mean-field FBSDEJs-(52) and
(Φ

ε
(·) , Qε

(·) , Kε
(·) , Rε

(·, ·)) is the solution of the adjoint equation (55) corresponding to
uε(·).
Proof. By applying Ekeland’s variational principle (Lemma 2.1) with λ = ε2/3, there exists an admis-
sible control uε(·) such that

ρ (uε(·), uε(·)) ≤ ε2/3, (84)

and Jε (ζ, uε(·)) ≤ Jε (ζ, u(·)) , for any u(·) ∈ U([0, T ]) where

Jε (ζ, u(·)) := J (ζ, u(·)) + ε1/3ρ (uε(·), u(·)) . (85)

Notice that uε(·) which is near-optimal for the initial cost J is optimal for the new cost Jε defined by
(85).
Next, we use the spike variation techniques for uε(·) to derive the variational inequality as follows.
For 0 < ~ < T , we choose a Borel subset B~ ⊂ [0, T ] such that µ(B~) = ~, where µ(B~) denote the
Lebesgue measure of the subset B~, and we consider the control process which is the spike variation
of uε(·), i.e., t ∈ [0, T ]

uε,~(t) =

{
u : t ∈ B~.

uε(t) : t ∈ [0, T ] \ B~.

By using the fact that Jε (ζ, uε(·)) ≤ Jε(ζ, uε,~(·)) and ρ(uε(·), uε,~(·)) ≤ ~, we obtain

J(ζ, uε,~(·))− J(ζ, uε(·)) ≥ −ε1/2ρ(uε(·), uε,~(·)) ≥ −ε1/3~. (86)
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Arguing as in Hafayed ([24], Theorem 3.1), the left-hand side of inequality (86) is equal to

E
∫ T

0

{
Ψ
ε
(t)[f (t, xε(t), E(xε(t)), u) − f (t, xε(t), E(xε(t)), uε(t))]

+
∫

Θ
K
ε
(t) [g(t,Λ

ε
(t, θ), E(Λ

ε
(t, θ)), u)− g(t,Λ

ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))]µ (dθ)

}
1B~(t)dt

+o(~).

Finally, dividing (86) by ~ and sending ~ to zero, the desired result follows �
Proof of Theorem 2.3.1. To prove (61) it remains to estimate the following differences

Γ1(ε) = E
∫ T

0
[Φ

ε
(t){f (t, xε(t), E(xε(t)), u))− f (t, xε(t), E(xε(t)), uε(t))}

−Ψε(t){f (t, xε(t), E(xε(t)), u) −f(t, xε(t), E(xε(t)), uε(t)}] dt,
(87)

Γ2(ε) = E
∫ T

0

∫
Θ

{
K
ε
(t)[g(t,Λ

ε
(t, θ), E(Λ

ε
(t, θ)), u) − g(t,Λ

ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))]

−Kε(t)[g(t,Λε(t, θ), E(Λε(t, θ)), u)− g(t,Λε(t, θ), E(Λε(t, θ)), uε(t)]}µ (dθ) dt.
(88)

Estimate (88). First, by adding and subtractingE
∫ T

0

∫
Θ
Kε(t)g(t,Λ

ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))µ (dθ) dt

from Γ2(ε) we get

Γ2(ε) = E
∫ T

0

∫
Θ

(K
ε
(t)−Kε(t))[g(t,Λ

ε
(t, θ), E(Λ

ε
(t, θ)), u(t)))

−g(t,Λ
ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))]µ (dθ) dt+ E

∫ T
0

∫
Θ
Kε(t)[g(t,Λ

ε
(t, θ), E(Λ

ε
(t, θ)), u)

−g(t,Λε(t, θ), E(Λε(t, θ)), u)]µ (dθ) dt− E
∫ T

0

∫
Θ
Kε(t)[g(t,Λ

ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))

−g(t,Λε(t, θ), E(Λε(t, θ)), uε(t))]µ (dθ) dt

= I1(ε) + I2(ε) + I3(ε).

We estimate the first term on the right-hand side I1(ε). For any δ ∈ [0, 1
3
[, let αγ = 3δ ∈ [0, 1[. Let β

be a fixed real number such that 1 < β < 2 so that (1 + α)β < 2. Taking q > 2 such that 1
β

+ 1
q

= 1

then by using Hölder’s inequality, Lemma 3.2 and note (84) and the fact that µ (Θ) <∞, we obtain

I1(ε) ≤
[
E
∫ T

0

∣∣Kε
(t)−Kε(t)

∣∣β dt] 1
β
[
E
∫ T

0

∫
Θ

∣∣g(t,Λ
ε
(t, θ), E(Λ

ε
(t, θ)), u)

− g(t,Λ
ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))

∣∣q µ (dθ) dt
] 1
q

≤ C [µ (Θ)]
1
q

[
ρ(uε(·), uε(·))αβγ2

] 1
β
[
E
∫ T

0
(1 + |xε(t)|q + |E(xε(t))|q + |yε(t)|q + |E(yε(t))|q)dt

] 1
q

≤ C(ε
2
3 )

αβγ
2

1
β = Cε

αγ
3 = Cεδ.

Let us turn to the second term I2(ε). By applying Cauchy-Schwartz inequality, note (58), Assumption
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(H1), and Lemma 3.1, we get

I2(ε) = E
∫ T

0

∫
Θ
Kε(t)[g(t,Λ

ε
(t, θ), E(Λ

ε
(t, θ)), u)− g(t,Λε(t, θ), E(Λε(t, θ)), u)]µ (dθ) dt

≤
[
E
∫ T

0
|Kε(t)|2 dt

] 1
2
[
E
∫ T

0

∫
Θ

∣∣g(t,Λ
ε
(t, θ), E(Λ

ε
(t, θ)), u)

− g(t,Λε(t, θ), E(Λε(t, θ)), u)|2 µ (dθ) dt
] 1

2

≤ C [µ (Θ)]
1
2

{
E
∫ T

0

[
|xε(t)− xε(t)|2 + |E(xε(t)− xε(t))|2

+ |yε(t)− yε(t)|2 + |E(yε(t)− yε(t))|2 + |zε(t)− zε(t)|2 + |E(zε(t)− zε(t))|2
} 1

2

≤ C [µ (Θ)]
1
2 [ρ(uε(·), uε(·))αγ]

1
2 ≤ C(ε

2
3 )αγ

1
2 = Cε

αγ
3 = Cεδ.

Now, let us estimate the third term I3(ε). By adding and subtracting g(t,Λ
ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))

from I3(ε), we have

I3(ε)

= −E
∫ T

0

∫
Θ

Kε(t)[g(t,Λ
ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))− g(t,Λ

ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))]µ (dθ) dt

− E
∫ T

0

∫
Θ

Kε(t)[g(t,Λ
ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))− g(t,Λε(t), E(Λε(t, θ)), uε(t))]µ (dθ) dt,

then by using Cauchy-Schwatrz inequality, we have

I3(ε) ≤
[
E
∫ T

0
|Kε(t)|2 dt

] 1
2
{
E
∫ T

0

∫
Θ
g(t,Λ

ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))

−g(t,Λ
ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))

∣∣2 1{uε(w,t)6=uε(w,t} (t)µ (dθ) dt
} 1

2

+E
∫ T

0

∫
Θ
|Kε(t)|

∣∣[g(t,Λ
ε
(t, θ), E(Λ

ε
(t, θ)), uε(t)) − g (t,Λε(t, θ), E(Λε(t, θ)), uε(t))]|µ (dθ) dt.

We proceed as in Iε2 to estimate the second term in the right of above inequality, then by applying
Cauchy-Schwartz inequality, Assumption (H1), Lemma 3.1 and note (58) we get

I3(ε) ≤
[
E
∫ T

0
|Kε(t)|2 dt

] 1
2
{[
E
∫ T

0

∣∣∫
Θ
g(t,Λ

ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))

− g(t,Λ
ε
(t, θ), E(Λ

ε
(t, θ)), uε(t))µ (dθ)

∣∣4 dt] 1
2
[
E
∫ T

0
1{uε(w,t)6=uε(w,t)} (t) dt

] 1
2

} 1
2

+ Cεδ

≤ C
[
ρ(uε(·), uε(·)) 1

2

] 1
2

+ Cεδ ≤ Cεδ,

this implies that
Γ2(ε) =I1(ε) + I2(ε) + I3(ε) ≤ Cεδ. (89)

Estimate (87). Using similar arguments developed above, we can prove that

Γ1(ε) ≤ Cεδ. (90)
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By combining (89), (90) and Lemma 2.3.3, we get

E
{∫ T

0
Ψε (t) [f (t, xε(t), E(xε(t), u) − f (t, xε(t), E(xε(t), uε(t))]

+
∫

Θ
Kε (t) [g (t,Λε(t, θ), E(Λε(t, θ)), u) −g (t,Λε(t, θ), E(Λε(t, θ)), uε(t))]µ (dθ)} dt

≥ −Cεδ.

Finally, the desired result (61) follows immediately from the fact that

Ψε (t) [f (t, xε(t), E(xε(t), u)− f (t, xε(t), E(xε(t), uε(t))]

+
∫

Θ
Kε (t) [g(t,Λε(t, θ), E(Λε(t, θ)), u)− g(t,Λε(t, θ), E(Λε(t, θ)), uε(t))]µ (dθ)

= H(t,Λε(t, θ), E(Λε(t, θ)), u,Ψε(t), Qε(t), Kε(t), Rε(t, θ))

−H(t,Λε(t, θ), E(Λε(t, θ)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ)).

This completes the proof of Theorem 3.1. �
Proof of Corollary 2.3.1. Let u ∈ U be a deterministic element and G be an arbitrary element of
σ−algebra Ft, and by setting

v(t) = u1G + uε(t)1Ω−G.

It is obvious that v(·) ∈ U ([0, T ]) is an admissible control. Applying (61) with v(·), we get

E[1GH(t,Λε(t, θ), E(Λε(t, θ)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))]

≥ E[1GH(t,Λε(t, θ), E(Λε(t, θ)), u,Ψε(t), Qε(t), Kε(t), Rε(t, θ))]− Cεδ,

∀u ∈ U, G ∈ Ft,

which implies that ∀u ∈ U.

E[H(t,Λε(t, θ), E(Λε(t, θ)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ)) |Ft ]
≥ E[H(t,Λε(t, θ), E(Λε(t, θ)), u,Ψε(t), Qε(t), Kε(t), Rε(t, θ)) |Ft ]− Cεδ.

Noting that the above quantity inside the conditional expectation is Ft−measurable, then we get
∀u ∈ U :

H(t,Λε(t, θ), E(Λε(t, θ)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))

≥ H(t,Λε(t, θ), E(Λε(t, θ)), u,Ψε(t), Qε(t), Kε(t), Rε(t, θ))

−Cεδ. P−a.s., a.e. t ∈ [0, T ] .

(91)

Moreover, in the spike variations technique for the perturbed control uε,~(·) the point u ∈ U may be
replaced by any admissible control u(·) ∈ U ([0, T ]) and the subsequent argument still goes through.
So the inequality in the estimate (91) holds for any u(·) ∈ U ([0, T ]). This completes the proof of
(62). �

57



12.2. Sufficient conditions for near-optimality of mean-field FBSDEJs
The sufficient condition of near-optimality is of significant importance in the stochastic maximum
principle for computing optimal controls. It says that if an admissible control satisfies the near-
maximum condition on the Hamiltonian then the control is indeed near-optimal for the stochastic
control problem. In this section, we will prove that under an additional hypotheses with non negative
derivatives with respect to x̃, ỹ, z̃, the near-maximality condition on the Hamiltonian function is a
sufficient condition for near-optimality. This is the second main result of this work.
Assumption (H4). We assume

|f(t, x, x̃, u)− f(t, x, x̃, v)|+ |fu(t, x, x̃, u)− fu(t, x, x̃, v)| ≤ C |u− v| . (92)

|g(t, x, x̃, y, ỹ, z, z̃, u)− g(t, x, x̃, y, ỹ, z, z̃, v)|+ |gu(t, x, x̃, y, ỹ, z, z̃, u)− gu(t, x, x̃, y, ỹ, z, z̃, v)|(93)
≤ C |u− v| .

H (t, ·, ·, ·, ·, ·, ·, ·, ·,Ψε(t), Qε(t), Kε(t), Rε(t, θ)) is concave with respect to (x, x̃, y, ỹ, z, z̃, r, u)

a.e.t ∈ [0, T ] , P− a.s.
(94)

h (·, ·) concave, φ (·, ·) convex with respect to (x, x̃) . (95)

Duality relations. Our Lemma below deals with the duality relations between Ψε(T ), x∗(T )− xε(T )
and Kε(T ), y∗(T )− yε(T ). This Lemma is very important for the proof of Theorem 3.2.1
Lemma 2.4.1 Let (x∗(·), y∗(·), z∗(·), r∗(·, ·)) be the solution of state equation (52) corresponding to
any admissible control u∗(·). We have

E [Ψε(T ) (x∗(T )− xε(T ))] = E
∫ T

0
Ψε(t) [f(t, x∗(t), E(x∗(t), u∗(t))

− f(t, xε(t), E(xε(t), uε(t))] dt

+E
∫ T

0
Hε
x(t) (x∗(t)− xε(t)) dt+ E

∫ T
0
E[Hε

x̃(t)] (E(x∗(t))− E(xε(t)))dt

+E
∫ T

0
Qε(t) [σ(t, x∗(t), E(x∗(t)) − σ(t, xε(t), E(xε(t))] dt

+E
∫ T

0

∫
Θ
Rε(t, θ) [c(t, x∗(t), θ)− c(t, xε(t), θ)]µ (dθ) dt,

(96)

similarly

E [Kε(T ) (y∗(T )− yε(T ))] = −E (φy (y(0), E (y(0))) (yε(0)− y∗(0)))

−E (φỹ (y(0), E (y(0)))) (E (yε(0))− E (y∗(0)))

+E
∫ T

0

∫
Θ
Kε(t) {g(t,Λε(t, θ), E(Λε(t, θ)), uε(t))

− g(t,Λ∗(t, θ), E(Λ∗(t, θ)), u∗(t))}µ (dθ) dt+ E
∫ T

0
Hε
y(t) (y∗(t)− yε(t)) dt

+E
∫ T

0
E(Hε

ỹ(t)) (E(y∗(t))− E(yε(t))))dt+ E
∫ T

0
Hε
z (t) (z∗(t)− zε(t)) dt

+E
∫ T

0
E(Hε

z̃ (t)) (E(z∗(t))− E(zε(t))) dt+ E
∫ T

0

∫
Θ
Hε
r (t) [r∗(t, θ)− rε(t, θ)]µ (dθ) dt,

(97)
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and

E [Ψε(T ) (x∗(T )− xε(T ))] + E [Kε(T ) (y∗(T )− yε(T ))]

+E (φy (y(0), E (y(0))) (yε(0)− y∗(0))) + E[φỹ (y(0), E (y(0)))] (E (yε(0))− E (y∗(0)))

= E
∫ T

0
Ψε(t)(f ∗(t, x∗(t), E(x∗(t), u∗(t))− f(t, xε(t), E(xε(t), uε(t)))dt

+E
∫ T

0
Qε(t)[σ(t, x∗(t), E(x∗(t))− σ(t, xε(t), E(xε(t))]dt

+E
∫ T

0

∫
Θ
Kε(t)[g(t,Λε(t, θ), E(Λε(t, θ)), uε(t))− g(t,Λ∗(t, θ), E(Λ∗(t, θ)), u∗(t)))]µ (dθ) dt

+E
∫ T

0

∫
Θ
Rε(t, θ) [c(t, x∗(t), θ)− c(t, xε(t), θ)]µ (dθ) dt+ E

∫ T
0
Hε
x(t) (x∗(t)− xε(t)) dt

+E
∫ T

0
E [Hε

x̃(t)] (E(x∗(t))− E(xε(t)))dt+ E
∫ T

0
Hε
y(t) (y∗(t)− yε(t)) dt

+E
∫ T

0
E(Hε

ỹ(t)) (E(y∗(t))− E(yε(t))))dt+ E
∫ T

0
Hε
z (t) (z∗(t)− zε(t)) dt

+E
∫ T

0
E(Hε

z̃ (t)) (E(z∗(t))− E(zε(t))) dt+ E
∫ T

0

∫
Θ
Hε
r (t) [r∗(t, θ)− rε(t, θ)]µ (dθ) dt.

(98)
Proof. First, by a simple computation, we get

d (x∗(t)− xε(t))

= [f(t, x∗(t), E(x∗(t), u∗(t))− f(t, xε(t), E(xε(t), uε(t))]dt

+ (σ(t, x∗(t), E(x∗(t))− σ(t, xε(t), E(xε(t))) dW (t)

+
∫

Θ
[c(t, x∗(t−), θ)− c(t, xε(t−), θ)]N(dθ, dt)

(99)

d (y∗(t)− yε(t))

=
∫

Θ
[g(t,Λ∗(t, θ), E(Λ∗(t, θ)), u∗(t))− g(t,Λε(t, θ), E(Λε(t, θ)), uε(t))]µ (dθ) dt

+ (z∗(t)− zε(t)) dW (t) +
∫

Θ
[r∗(t, θ)− rε(t, θ)]N(dθ, dt).

(100)

By applying integration by parts formula for jumps to Ψε(T ) (x∗(T )− xε(T )), and since xε(0) −
x∗(0) = 0, (see Lemma A1, Appendix) we get

E {Ψε(T ) (x∗(T )− xε(T ))}

= E
∫ T

0
Ψε(t)d (x∗(t)− xε(t)) + E

∫ T
0

(x∗(t)− xε(t)) dΨε(t)

+E
∫ T

0
Qε(t)[σ(t, x∗(t), E(x∗(t))− σ(t, xε(t), E(xε(t)))]dt

+E
∫ T

0

∫
Θ
Rε(t, θ) [c(t, x∗(t), θ)− c(t, xε(t), θ)]µ (dθ) dt

= I1(ε) + I2(ε) + I3(ε) + I4(ε).

(101)

From (99), we obtain

I1(ε) = E
∫ T

0
Ψε(t)d (x∗(t)− xε(t))

= E
∫ T

0
Ψε(t)[f(t, x∗(t), E(x∗(t), u∗(t))− f(t, xε(t), E(xε(t)), uε(t))]dt,

(102)
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similarly, by applying (57), we get

I2(ε) = E
∫ T

0
(x∗(t)− xε(t)) dΨε(t)

= E
∫ T

0
(x∗(t)− xε(t)) [Hε

x(t) + E(Hε
x̃(t))]dt

= E
∫ T

0
Hε
x(t) (x∗(t)− xε(t)) dt+

∫ T
0
E(Hε

x̃(t)) (E(x∗(t))− E(xε(t)))dt.

(103)

By standard arguments, we obtain

I3(ε) = E

∫ T

0

Qε(t)[σ(t, x∗(t), E(x∗(t))− σ(t, xε(t), E(xε(t))]dt, (104)

and

I4(ε) = E

∫ T

0

∫
Θ

Rε(t, θ) [c(t, x∗(t), θ)− c(t, xε(t), θ)]µ (dθ) dt. (105)

The duality relation (96) follows from combining (102)∼(105) together with (101).
Let us turn to the second duality relation (97). By applying integration by parts formula to
Kε(t) [yε(t)− y∗(t)] , we get

E (Kε(T ) (yε(T )− y∗(T ))) = E {Kε(0) (yε(0)− y∗(0))}

+E
∫ T

0
Kε(t)d (y∗(t)− yε(t)) + E

∫ T
0

(y∗(t)− yε(t)) dKε(t)

+E
∫ T

0
(z∗(t)− zε(t)) [Hε

z (t) + E(Hε
z̃ (t))]dt+ E

∫ T
0

∫
Θ
Hε
r (t) [r∗(t, θ)− rε(t, θ)]µ (dθ) dt

= I1(ε) + I2(ε) + I3(ε) + I4(ε) + I5(ε).
(106)

Let us turn to the first term I2(ε). From (100) we get

I2(ε) = E
∫ T

0
Kε(t)d (y∗(t)− yε(t))

= E
∫ T

0
Kε(t)[g(t,Λε(t, θ), E(Λε(t, θ)), uε(t))− g(t,Λ∗(t, θ), E(Λ∗(t, θ)), u∗(t))]dt,

(107)

from (57), we obtain

I3(ε) = E
∫ T

0
(y∗(t)− yε(t)) dK∗(t)

= E
∫ T

0
(y∗(t)− yε(t)) (Hε

y(t) + E(Hε
ỹ(t)))dt

= E
∫ T

0
Hε
y(t) (y∗(t)− yε(t)) dt+ E

∫ T
0
E(Hε

ỹ(t)) (E(y∗(t))− E(yε(t))))dt

(108)

and

I4(ε) = E
∫ T

0
(z∗(t)− zε(t)) [Hε

z (t) + E(Hε
z̃ (t))] dt

= E
∫ T

0
Hε
z (t) (z∗(t)− zε(t)) dt+ E

∫ T
0
E(Hε

z̃ (t)) (E(z∗(t))− E(zε(t))) dt.
(109)

and

I5(ε) = E

∫ T

0

∫
Θ

Hε
r (t) [r∗(t, θ)− rε(t, θ)]µ (dθ) dt. (110)
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From (55) and since

I1(ε) = E {K∗(0) (yε(0)− y∗(0))}

= −E{ [φy (y(0), E (y(0))) + E(φỹ(y(0), E (y(0)))] (yε(0)− y∗(0))}

= −E [φy (y(0), E (y(0))) (yε(0)− y∗(0))]− E(φỹ (y(0), E (y(0))))[E (yε(0))− E(y∗(0))],
(111)

the duality relation (97) follows immediately by combining (107)∼(111) together with (106). Finally
inequality (98) follows from combining (96) and (97) �
Now we are able to state and prove the sufficient conditions for near-optimality for our mean-field
control problem, which is the second main result of this work.

Theorem 2.4.1 (Sufficient Near-optimality Maximum Principle) Let Assumptions (H4) hold. Let uε(·)
be some admissible control, (xε(·), yε(·), zε(·), rε (·, ·)) and (Ψε (·) , Qε (·) , Kε (·) , Rε (·, ·)) be the
solution to (52) and (55) respectively associated with uε(·). If some ε > 0 and for any u(·) ∈ U ([0, T ])
the following near-maximality relation holds

E
∫ T

0
H(t,Λε(t, θ), E(Λε(t, θ)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))dt

≥ max
u(·)∈U([0,T ])

E
∫ T

0
H(t,Λε(t, θ), E(Λε(t, θ)), u(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))dt− ε,

(112)

then uε(·) is a near-optimal control of order ε
1
2 , i.e,

J (ζ, uε(·)) ≤ inf
u(·)∈U([0,T ])

J (ζ, u(·)) + Cε
1
2 , (113)

where C is a positive constant independent from ε.
Proof. The key step in the proof of our result is to show that
Hu(t,Λ

ε(t, θ), E(Λε(t, θ)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ)) is very small and estimate it in
terms of ε. We first fix an ε > 0 and define a new metric ρ̂ on U ([0, T ]), by setting

ρ̂(u(·), v(·)) = E

∫ T

0

|u(t)− v(t)| ςεt dt,

where ςεt is defined by

ςεt = 1 + |Ψε(t)|+ |Kε(t)|+ |Qε(t)|+ |Rε(t, θ)| ≥ 1.

Obviously ρ̂ is a metric and it is a complete metric as a weighted L1−norm. Now, we define a
functional L on U ([0, T ]) by

L (u(·)) = E

∫ T

0

H(t,Λε(t, θ), E(Λε(t, θ)), u(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))dt. (114)

By using assumption (92) then a simple computation shows that

|L (u(·))− L (v(·))|

≤ E
∫ T

0
|H(t,Λε(t, θ), E(Λε(t, θ)), u(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))

−H(t,Λε(t, θ), E(Λε(t, θ)), v(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ)))| dt

≤ CE
∫ T

0
|u(t)− v(t)| ςεt dt ≤ Cρ̂(u(·), v(·)),

61



which implies that L given by (114) is continuous on U ([0, T ]) with respect to ρ̂. Now by using (52)
and Ekeland’s variational principle, there exists a uε(·) ∈ U ([0, T ]) such that

ρ̂(uε(·), uε(·)) ≤ ε
1
2 , (115)

and

E
∫ T

0
H(t,Λε(t, θ), E(Λε(t, θ)),Ψε(t), Qε(t), Kε(t), Rε(t, θ), uε(t))dt

= max
u(·)∈U([0,T ])

E
∫ T

0
H(t,Λε(t, θ), E(Λε(t, θ)),Ψε(t), Qε(t), Kε(t), Rε(t, θ), u(t))dt,

(116)

where

H(t,Λε(t, θ), E(Λε(t, θ)),Ψε(t), Qε(t), Kε(t), Rε(t, θ), u(t))

= H(t,Λ(t, θ), E(Λ(t, θ)), u(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))

− ε
1
2 ςεt |u(t)− uε(t)| .

The maximum condition (116) implies a pointwise maximum condition namely, for a.e. t ∈ [0, T ]
and P− a.s,

H(t,Λε(t), E(Λε(t)),Ψε(t), Qε(t), Kε(t), Rε(t, θ), uε(t))

= maxu∈UH(t,Λε(t, θ), E(Λε(t, θ)),Ψε(t), Qε(t), Kε(t), Rε(t, θ), u),

then by using Clarke’s generalized gradient, see [17, Proposition A.1, (3)] we have

0 ∈ ∂◦uH(t,Λε(t, θ), E(Λε(t, θ)),Ψε(t), Qε(t), Kε(t), Rε(t, θ), uε(t)). (117)

Since the absolute value function u 7−→ |u− uε(t)| is not differentiable in uε(t) (locally Lipschitz),
then the Clarke’s generalized gradient, see [17, Proposition A.1, Example] shows that

∂◦u(ε
1
2 ςεt |u− uε(t)|) = conv{−ε

1
2 ςεt , ε

1
2 ςεt } = [−ε

1
2 ςεt , ε

1
2 ςεt ]. (118)

By using (118) and fact that the Clarke’s generalized gradient of the sum of two functions is contained
in the sum of the Clarke’s generalized gradient of the two functions, (Proposition A1, (4)) we get

∂◦uH(t,Λε(t, θ), E(Λε(t, θ)),Ψε(t), Qε(t), Kε(t), Rε(t, θ), uε(t))

⊂ Hu(t,Λ
ε(t, θ), E(Λε(t, θ)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ)) +

[
−ε 1

2 ςεt , ε
1
2 ςεt

]
.

Since H is differentiable in u by Assumption (H4), the differential inclusion (117) implies that there
is eε(t) such that eε(t) ∈

[
−ε 1

2 ςεt , ε
1
2 ςεt

]
, satisfies

Hu(t,Λ
ε(t, θ), E(Λε(t, θ)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ)) + eε(t) = 0. (119)
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Consequently, by noting Assumption (H4) and the fact that |eε(t)| ≤ ε
1
2 ςεt we have

|Hu(t,Λ
ε(t, θ), E(Λε(t, θ)), uε(t),Ψε(t), Qε(t), Kε(t) , Rε(t, θ))|

≤ |Hu(t,Λ
ε(t, θ), E(Λε(t, θ)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))

−Hu(t,Λ
ε(t), E(Λε(t)), uε(t), Ψε(t), Qε(t), Kε(t), Rε(t, θ))|

+ |Hu(t,Λ
ε(t), E(Λε(t)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))|

≤ Cςεt |uε(t)− uε(t)|+ ε
1
2 ςεt .

Now, since H (t, ·, ·, ·, ·, ·, ·, ·, ·,Ψε(t), Qε(t), Kε(t), Rε(t, θ)) is concave with respect to
(x, x̃, y, ỹ, z, z̃, r, u), we obtain

H(t,Λ(t, θ), E(Λ(t, θ)), u(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))

−H(t,Λε(t), E(Λε(t)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))

≤ Hε
x(t)(x(t)− xε(t)) + E(Hε

x̃(t))(E(x(t)− xε(t))) +Hε
y(t)(y(t)− yε(t))

+E(Hε
ỹ(t))(E(y(t)− yε(t))) +Hε

z (t)(z(t)− zε(t))) + E(Hε
z̃ (t))(E(z(t)− zε(t)))

+
∫

Θ
Hε
r (t)(r(t, θ)− rε(t, θ)))µ (dθ) +Hε

u(t)(u(t)− uε(t)).

(120)

Integrating this inequality with respect to t and taking expectations, we obtain

E
∫ T

0
{H(t,Λε(t, θ), E(Λε(t, θ)), u(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))

−H(t,Λε(t, θ), E(Λε(t, θ)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))}dt

≤ E
∫ T

0
{Hε

x(t)(x(t)− xε(t))) + E(Hε
x̃(t))(E(x(t)− xε(t)))

+Hε
y(t)(y(t)− yε(t))) + E(Hε

ỹ(t))(E(y(t)− yε(t)))

+Hε
z (t)(z(t)− zε(t))) + E(Hε

z̃ (t))(E(z(t)− zε(t)))

+
∫

Θ
Hε
r (t)(r(t, θ)− rε(t, θ)))µ (dθ)}dt+ Cε

1
2 ,

(121)

by applying Lemma 4.1 (98), the concavity of h(·, ·), and the convexity of φ(·, ·) we have

J (ζ, u(·)) ≥ J (ζ, uε(·))− Cε
1
2 .

Since u(·) is an arbitrary admissible control, we get

J (ζ, uε(·)) ≤ inf
u(·)∈U([0,T ])

J (ζ, u(·)) + Cε
1
2 .

This completes the proof of (113) �
The following corollary gives a sufficient condition for an admissible control uε(·) to be ε−optimal
for our mean-field control problem (52)-(53).
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Corollary 2.4.1 (Sufficient condition for ε−optimality). Under the assumptions of Theorem 3.2.1 a
sufficient condition for an admissible control uε(·) to be ε−optimal for our mean-field control problem
(52)-(53) is

E
∫ T

0
H(t,Λε(t, θ), E(Λε(t, θ)), uε(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))dt+ (

ε

C
)2

≥ sup
u(·)∈U([0,T ])

E
∫ T

0
H(t,Λε(t, θ), E(Λε(t, θ)), u(t),Ψε(t), Qε(t), Kε(t), Rε(t, θ))dt.

13. Applications: Time-inconsistent mean-variance portfolio se-
lection problem combined with a recursive utility functional
maximization

It is well known that mean-variance portfolio selection problem introduced by Markowitz [43] is a
time-inconsistent optimal control problem in the sense that it does not satisfy Bellman’s optimality
principle and therefore the usual dynamic programming approach fails. In this section, we will apply
our maximum principle of near-optimality to study mean-variance portfolio selection problem mixed
with a recursive utility functional optimization in a financial market. In this section we will apply
our maximum principle to study a perturbed mean-variance portfolio selection problem mixed with a
recursive utility functional optimization in a financial market and we will derive the explicit expression
for the optimal (and any near-optimal) portfolio selection strategy.

Suppose that we are given a mathematical market consisting of two investment possibilities:
The first asset is a risk-free security whose price P0(t) evolves according to the ordinary differential
equation (ODE):

dP0 (t) = P0 (t) ρ(t)dt, t ∈ [0, T ] , P0 (0) > 0, (122)

where ρ(·) : [0, T ]→ R+ is a locally bounded deterministic function.
A risky security (e.g. a stock) where the price P1 (t) at time t is given by{

dP1 (t) = P1 (t−)
[
ς(t)dt+ σ(t)dW (t) +

∫
Θ
ξt (θ)N (dθ, dt)

]
.

P1 (0) > 0,
(123)

where ς(·), σ(·) : [0, T ] → R are bounded deterministic functions such that ς(t), σ(t) 6= 0 and
ς(t) > ρ(t), ∀t ∈ [0, T ].

In order to ensure that P1 (t) > 0 for all t ∈ [0, T ] we assume that: ξt (θ) > −1 for µ−almost all
θ ∈ Θ and all t ∈ [0, T ] and

∫
Θ
ξ2
t (θ)µ(dθ) is bounded.

A portfolio is an (Ft)−predictable process (e0 (t) , e1 (t)) giving the number of units of the risk free
and the risky security held at time t. Let ν(t) = e1 (t)P1 (t) denote the amount invested in the risky
security. We call the control process ν(·) a portfolio strategy.
Let xν(0) = ζ > 0 be an initial wealth. By combining (122) and (123) we introduce the wealth
dynamics: {

dxν(t) =
[
ρ(t)xν(t) + (ς(t)− ρ(t))ν(t)

]
dt

+σ(t)ν(t)dW (t) +
∫

Θ
ξt (θ) ν(t)N (dθ, dt) , xν(0) = ζ.

(124)
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Let U be a compact convex subset of R. We denote U([0, T ]) the set of admissible (Ft)−predictable
portfolio strategies ν (·) valued in U.
Under the conditions that

E((xν(T )) = a, (125)

where a is a given real number. This problem has been formulated and solved using both the Bellman’s
dynamic programming and using the maximum principle, see ([16, 28]).

In this section, without condition (125) the objective is to use our near-optimal maximum princi-
ple to study the mean-variance portfolio selection problem mixed with a recursive utility functional
maximization. We consider a small investor endowed with an initial wealth xν(0) > 0 who chooses
at each time t his or her portfolio strategy ν(t). The investor wants to choose a portfolio strategy
νε (·) ∈ U([0, T ]) which near-maximizes the expected utility functional.
We assume that we originally have a family of optimization problems parameterized by some param-
eter ε > 0 representing the complexity of the cost functional

J (ζ, ν (·)) =
γ

2
V ar(xν(T )) + E

{∫ T

0

εϕ(ν(t))dt− xν(T )

}
+ yν(0), (126)

where ϕ : R → R is a nonlinear, convex and continuously differentiable function independent of ε.
Further, we define the wealth process (x(t)) and the recursive utility process y(t) corresponding to
ν (·) ∈ U([0, T ]) as the solutions to the following FBSDEJs:

dx(t) = [ρ(t)x(t) + (ς(t)− ρ(t))ν(t)] dt+ σ(t)ν(t)dW (t) +
∫

Θ
ξt (θ) ν(t)N (dθ, dt) .

−dy(t) = [ρ(t)x(t) + (ς(t)− ρ(t))ν(t)− cy(t)] dt− z(t)dW (t)−
∫

Θ
r (t, θ) ν(t)N (dθ, dt) .

x(0) = ζ, y(T ) = x(T ).
(127)

By setting ε = 0 in (126) leads to

J0 (ζ, ν (·)) =
γ

2
V ar(xν(T ))− E(xν(T )) + yν(0).

= E
[γ

2
xν(T )2 − xν(T )

]
− γ

2
[E(xν(T ))]2 + yν(0).

(128)

According to the maximum condition ((61), Theorem 3.1 with ε = 0), and since ν∗(·) is optimal we
immediately get

(ς(t)− ρ(t)) (Ψ∗(t) +K∗(t)) + σ(t)Q∗(t) +

∫
Θ

ξt (θ)R∗ (t, θ)µ (dθ) = 0. (129)

The adjoint equation (55) being
dΨ∗(t) = −ρ(t) (K∗(t) + Ψ∗(t)) dt+Q∗(t)dW (t) +

∫
Θ
R∗ (t, θ)N (dθ, dt) .

Ψ∗(T ) = γ (x∗(T ) + E(x∗(T )))− 1−K∗(T ).

dK∗(t) = −cK∗(t)dt, K∗(0) = −1, t ∈ [0, T ] .

(130)
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In order to solve the above equation (130) and find the expression of optimal portfolio strategy ν∗(·)
we conjecture a process Ψ∗(t) of the form:

Ψ∗(t) = φ1(t)x∗(t) + φ2(t)E (x∗(t)) + φ3(t), (131)

where φ1(·), φ2(·) and φ3(·) are deterministic differentiable functions. (see [28, 17, 23, 49, 5, 69] for
other models of conjecture). From last equation in (130), which is a simple ODE, we get

K∗(t) = − exp (−ct) . (132)

From (127), we get

d(E(x∗(t)) = (ρ(t)E(x∗(t)) + (ς(t)− ρ(t))E(ν∗(t)))dt.

Applying Itô’s formula to (131) (see Lemma A1, Appendix) in virtue of (127), we have

dΨ∗(t) = φ1(t) {[ρ(t)x∗(t) + (ς(t)− ρ(t))ν∗(t)] dt + σ(t)ν∗(t)dW (t)

+
∫

Θ
ξt (θ) ν∗(t)N (dθ, dt)

}
+ x∗(t)φ′1(t)dt

+ φ2(t) [ρ(t)E(x∗(t)) + (ς(t)− ρ(t))E(ν∗(t))] dt+ E (x∗(t))φ′2(t)dt+ φ′3(t)dt,

which implies that

dΨ∗(t) = {φ1(t) [ρ(t)x∗(t) + (ς(t)− ρ(t)) ν∗(t)]

+x∗(t)φ′1(t) + φ2(t)ρ(t)E(x∗(t)) + φ2(t)(ς(t)− ρ(t))E(ν∗(t))

+ φ′2(t)E (x∗(t)) + φ′3(t)} dt+ φ1(t)σ(t)ν∗(t)dW (t)

+
∫

Θ
φ1(t)ξt (θ) ν∗(t)N (dθ, dt) .

Ψ∗(T ) = φ1(T )x∗(T ) + φ2(T )E (x∗(T )) + φ3(T ),

(133)

where φ′1(t), φ′2(t), and φ′3(t) denotes the derivatives with respect to t.
Next, comparing (133) with (130), we get

−ρ(t) (K∗(t) + Ψ∗(t))

= φ1(t) [ρ(t)x∗(t) + (ς(t)− ρ(t))ν∗(t)] + x∗(t)φ′1(t)

+φ2(t) [ρ(t)E(x∗(t)) + (ς(t)− ρ(t))E(ν∗(t))] + φ′2(t)E (x∗(t)) + φ′3(t),

(134)

Q∗(t) = φ1(t)σ(t)ν∗(t), (135)

R∗(t, θ) = φ1(t)ξt (θ) ν∗(t). (136)

By looking at the terminal condition of Ψ∗(t), in (133), it is reasonable to get

φ1(T ) = γ, φ2(T ) = −γ, φ3(T ) = −1−K∗(T ). (137)
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Combining (134) and (131) we deduce that φ1(·), φ2(·) and φ3(·) satisfying the following ODEs:
φ′1(t) = −2ρ(t)φ1(t), φ1(T ) = γ.

φ′2(t) = −2ρ(t)φ2(t), φ2(T ) = −γ.

φ′3(t) + ρ(t)φ3(t) = ρ(t) exp {−ct} .

φ3(T ) = exp {−cT} − 1.

(138)

By solving the first two ordinary differential equations in (138) we obtain

φ1(t) = −φ2(t) = γ exp

{
2

∫ T

t

ρ(s)ds

}
. (139)

Using Integrating factor method for the third equation in (138), we get

φ3(t) = a(t)−1

[
exp (−cT )− 1−

∫ T

t

a(s)ρ(s) exp {−cs} ds
]
, (140)

where the integrating factor is

a(t) = exp

{∫ T

t

ρ(s)ds

}
, a(T ) = 1.

Combining (129), (132), (135) and (136) we get the explicit optimal portfolio section strategy in the
state feedback form involving both x∗(·) and E(x∗(·) :

ν∗(t, x∗(t), E(x∗(t)))

= (ρ(t)− ς(t))
[
φ1(t)

(
σ2(t) +

∫
Θ
ξ2
t (θ)µ (dθ)

)]−1

× [φ1(t) (x∗(t)− E(x∗(t))) + φ3(t)− exp {−ct}] ,

(141)

and

E(ν∗(t, x∗(t), E(x∗(t)))) =
(ρ(t)− ς(t)) [φ3(t)− exp {−ct}]
φ1(t)

(
σ2(t) +

∫
Θ
ξ2
t (θ)µ (dθ)

) . (142)

See [?, ?] for other class of control problems in state feedback form.
However, the Hamiltonian Hε for the problem (127)-(126) can be rewritten in the form

Hε (t, x, x̃, y, ỹ, z, z̃, r, ν,Ψ, Q,K,R)

= [ρ(t)x(t) + (ς(t)− ρ(t))ν(t)] (K(t)−Ψ(t))

+σ(t)Q(t)ν(t) + ν(t)
∫

Θ
ξt (θ)R (t, θ)µ (dθ)− εϕ(ν(t))

= H (t, x, x̃, y, ỹ, z, z̃, r, ν,Ψ, Q,K,R)− εϕ(ν(t)),

(143)

for all (x, y, z, r, ν,Ψ, Q,K,R). Therefore, if (x∗(t), y∗(t), z∗(t), r∗ (·)) denotes the optimal trajectory
to the (unperturbed) control problem (127)-(128) we can express the difference of Hamiltonian at
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different control points but at this fixed optimal trajectory in the following way

Hε (t, x∗, x̃∗, y∗, ỹ∗, z∗, z̃∗, r∗, ν,Ψ∗, Q∗, K∗, R∗)

−Hε (t, x∗, x̃∗, y∗, ỹ∗, z∗, z̃∗, r∗, ν∗,Ψ∗, Q∗, K∗, R∗)

= H (t, x∗, x̃∗, y∗, ỹ∗, z∗, z̃∗, r∗, ν,Ψ∗, Q∗, K∗, R∗)

−H (t, x∗, x̃∗, y∗, ỹ∗, z∗, z̃∗, r∗, ν∗,Ψ∗, Q∗, K∗, R∗)

−ε(ϕ (ν(t))− ϕ (ν∗(t))).

(144)

Using the fact that the function ϕ (·) is continuously differentiable and U is compact convex subset in
R it follows that

−ε
[
ϕ (ν(t))− ϕ (ν∗(t))

]
≤ ε
∣∣ϕ′ (ν(t))

∣∣|ν(t)− ν∗(t)| ≤ Cε.

Now, employing the above fact, taking maxν∈U in (144) and using the optimality of ν∗(·) we get

max
ν∈U

Hε (t, x∗, x̃∗, y∗, ỹ∗, z∗, z̃∗, r∗, ν,Ψ∗, Q∗, K∗, R∗)

−Hε (t, x∗, x̃∗, y∗, ỹ∗, z∗, z̃∗, r∗, ν∗(t),Ψ∗, Q∗, K∗, R∗)

≤ max
ν∈U

H (t, x∗, x̃∗, y∗, ỹ∗, z∗, z̃∗, r∗, ν,Ψ∗, Q∗, K∗, R∗)

−H (t, x∗, x̃∗, y∗, ỹ∗, z∗, z̃∗, ν∗(t),Ψ∗, Q∗, K∗, R∗)

+ εmax
ν∈U

{∣∣ϕ′ (ν(t))
∣∣|ν(t)− ν∗(t)|

}
≤ H (t, x∗, x̃∗, y∗, ỹ∗, z∗, z̃∗, r∗, ν∗(t),Ψ∗, Q∗, K∗, R∗)

−H (t, x∗, x̃∗, y∗, ỹ∗, z∗, z̃∗, r∗, ν∗(t),Ψ∗, Q∗, K∗, R∗) + Cε

= Cε,

which implies the near-maximality property of ν∗(·)

Hε (t, x∗, x̃∗, y∗, ỹ∗, z∗, z̃∗, r∗, ν∗(t),Ψ∗, Q∗, K∗, R∗)

≥ max
ν∈U

Hε (t, x∗, x̃∗, y∗, ỹ∗, z∗, z̃∗, r∗, ν,Ψ∗, Q∗, K∗, R∗)− Cε.

Finally, since the function ϕ(·) is convex, the Hamiltonian Hε is concave. By using sufficient max-
imum principle (Theorem 2), the portfolio strategy ν∗(·) is indeed a near-optimal for the problem
(127)-(126). �
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Mean-field maximum principle for optimal control of
forward-backward stochastic systems with jumps and

its application to mean-variance portfolio problem
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Part IV

Mean-field maximum principle for optimal
control of forward-backward stochastic
systems with jumps and its application to
mean-variance portfolio problem

Absract. In this chapter, we study mean-field type optimal stochastic control problem for systems
governed by mean-field controlled forward-backward stochastic differential equations with jump pro-
cesses, in which the coefficients depend on the marginal law of the state process through its expected
value. The control variable is allowed to enter both diffusion and jump coefficients. Moreover, the
cost functional is also of mean-field type. Necessary conditions for optimal control for these sys-
tems in the form of maximum principle are established by means of convex perturbation techniques.
As an application, time-inconsistent mean-variance portfolio selection mixed with a recursive utility
functional optimization problem is discussed to illustrate the theoretical results.
Keywords: Mean-field forward-backward stochastic differential equation with jumps; Optimal stochastic
control; Mean-field maximum principle; Mean-variance portfolio selection with recursive utility functional;
Time-inconsistent control problem.

14. Introduction
In this work, we consider stochastic optimal control for systems governed by nonlinear mean-field
controlled forward-backward stochastic differential equations with Poisson jump processes (FBS-
DEJs) of the form

dx(t) = f (t, x(t), E(x(t)), u(t)) dt+ σ (t, x(t), E(x(t)), u(t)) dW (t)

+
∫

Θ
c(t, x(t−), E(x(t−)), u(t), θ)N (dθ, dt) ,

dy(t) = −
∫

Θ
g(t, x(t), E(x(t)), y(t), E(y(t)), z(t), E(z(t)), r (t, θ) ,

u(t))µ (dθ) dt+ z(t)dW (t) +
∫

Θ
r (t, θ)N (dθ, dt) ,

x(0) = ζ, y(T ) = h (x(T ), E (x(T ))) ,

(145)
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where f, σ, c, g, h are given maps and the initial condition ζ is anF0-measurable random variable. The
mean-field FBSDEJs-(145) called McKean-Vlasov systems are obtained as the mean square limit of
an interacting particle system of the form

dxjn(t) = f(t, xjn(t), 1
n

∑n
i=1 x

i
n(t), u(t))dt

+σ(t, xjn(t), 1
n

∑n
i=1 x

i
n(t), u(t))dW j(t)

+
∫

Θ
c(t, xjn(t−), 1

n

∑n
i=1 x

i
n(t−), u(t), θ)N j (dθ, dt) ,

dyjn(t) = −
∫

Θ
g(t, xjn(t), 1

n

∑n
i=1 x

i
n(t), yjn(t), 1

n

∑n
i=1 y

i
n(t), zjn(t),

1
n

∑n
i=1 z

i
n(t), r(t, θ), u(t))µ (dθ) dt

+zjn(t)dW j(t) +
∫

Θ
r (t, θ)N j (dθ, dt) ,

where (W j(·) : j ≥ 1) is a collection of independent Brownian motions and (N j(·, ·) : j ≥ 1) is a
collection of independent Poisson martingale measure. Noting that mean-field FBSDEJs-(145) occur
naturally in the probabilistic analysis of financial optimization problems and the optimal control of
dynamics of the McKean-Vlasov type. Moreover, the above mathematical mean-field approaches play
an important role in different fields of economics, finance, physics, chemistry and game theory.
The expected cost to be minimized over the class of admissible control has the form

J (u(·)) = E
[∫ T

0

∫
Θ
`(t, x(t), E(x(t)), y(t), E(y(t)), z(t), E(z(t)),

r (t, θ) , u(t))µ (dθ) dt+ φ (x(T ), E(x(T ))) + ϕ (y(0), E (y(0)))] .
(146)

where `, φ, ϕ is an appropriate functions. This cost functional is also of mean-field type, as the
functions `, φ, ϕ depend on the marginal law of the state process through its expected value. It worth
mentioning that since the cost functional J is possibly a nonlinear function of the expected value
stands in contrast to the standard formulation of a control problem. This leads to a so-called time-
inconsistent control problem where the Bellman dynamic programming does not hold. The reason for
this is that one cannot apply the law of iterated expectations on the cost functional.
An admissible control u(·) is anFt−adapted and square-integrable process with values in a nonempty
convex subset A of <. We denote by U ([0, T ]) the set of all admissible controls. Any admissible
control u∗(·) ∈ U ([0, T ]) satisfying

J (u∗(·)) = inf
u(·)∈U([0,T ])

J (u(·)) , (147)

is called an optimal control.
The mean-field stochastic differential equation was introduced by Kac [39] as a stochastic model for
the Vlasov-kinetic equation of plasma and the study of this model was initiated by McKean [45].
Since then, many authors made contributions on mean-field stochastic problems and their applica-
tions, see for instance [56, 42, 46, 15, 8, 10, 55, 48, 17, 23, 24, 18, 25, ?, 62, 5, 49, 51, 52, 66]. In
a recent work, mean-field games for large population multiagent systems with Markov jump param-
eters have been investigated in Wang and Zhang [56]. Decentralized tracking-type games for large
population multi-agent systems with mean-field coupling have been studied in Li and Zhang [42].
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Discrete-time indefinite mean-field linear-quadratic optimal control problem has been investigated in
Ni, Zhang and Li [46]. Discrete time mean-field stochastic linear-quadratic optimal control problems
with applications have been derived by in Elliott, Li and Ni [15]. In Buckdahn, Li and Peng [8] a
general notion of mean-field BSDE associated with a mean-field SDE was obtained in a natural way
as a limit of some high dimensional system of FBSDEs governed by a d−dimensional Brownian mo-
tion, and influenced by positions of a large number of other particles. In Buckdahn, Djehiche and Li
[10], a general maximum principle was introduced for a class of stochastic control problems involving
SDEs of mean-field type. However, sufficient conditions of optimality for mean-field SDE have been
established by Shi [55]. In Meyer-Brandis, ∅ksendal and Zhou [48] a stochastic maximum principle
of optimality for systems governed by controlled Itô-Levy process of mean-field type was proved
by using Malliavin calculus. Mean-field singular stochastic control problems have been investigated
in Hafayed and Abbas [17]. More interestingly, mean-field type stochastic maximum principle for
optimal singular control has been studied in Hafayed [23], in which convex perturbations used for
both absolutly continuous and singular components. The maximum principle for optimal control of
mean-field FBSDEJs with uncontrolled diffusion has been studied in Hafayed [24]. The necessary and
sufficient conditions for near-optimality of mean-field jump diffusions with applications have been de-
rived by Hafayed, Abba and Abbas [18]. Singular optimal control for mean-field forward-backward
stochastic systems and applications to finance have been investigated in Hafayed [25]. Second-order
necessary conditions for optimal control of mean-field jump diffusion have been obtained by Hafayed
and Abbas [?]. Under partial information, mean-field type stochastic maximum principle for optimal
control has been investigated in Wang, Zhang and Zhang [62]. Under the condition that the control
domain is convex, Andersson and Djehiche [5] and Li [49] investigated problems for two types of
more general controlled SDEs and cost functionals, respectively. The linear-quadratic optimal control
problem for mean-field SDEs has been studied by Yong [67] and Shi [55]. The mean-field stochastic
maximum principle for jump diffusions with applications has been investigated in Shen and Siu [51]
Recently, maximum principle for mean-field jump-diffusions stochastic delay differential equations
and its applications to finance have been derived by Yang, Meng and Shi [52]. Mean-field optimal
control for backward stochastic evolution equations in Hilbert spaces has been investigated in Xu and
Wu [66].

The optimal control problems for stochastic systems described by Brownian motions and Poisson
jumps have been investigated by many authors including [53, 54, 9, 21, 61, 16]. The necessary and
sufficient conditions of optimality for FBSDEJs were obtained by Shi and Wu [53]. General maximum
principle for fully coupled FBSDEJs has been obtained in Shi [54], where the author generalized
Yong’s maximum principle [68] to jump case.

In this work, our main goal is to derive a maximum principle for optimal stochastic control of
mean-field FBSDEJs, where the coefficient depend not only on the state process but also its marginal
law of the state process through its expected value. The cost functional is also of mean-field type.
The mean-field problem under consideration is not simple extension from the mathematical point of
view, but also provide interesting models in many applications such as mathematical finance; (mean-
variance portfolio selection problems), optimal control for mean-field systems. The proof of our result
is based on convex perturbation method. These necessary conditions are described in terms two ad-
joint processes, corresponding to the mean-field forward and backward components with jumps and
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a maximum conditions on the Hamiltonian. In the end, as an application to finance; a mean-variance
portfolio selection mixed with a recursive utility optimization problem is given, where explicit ex-
pression of the optimal portfolio selection strategy is obtained in feedback form involving both state
process and its marginal distribution, via the solutions of Riccati ordinary differential equations. To
streamline the presentation of this work, we only study the one dimensional case.

The rest of this work is structured as follows. In Section 2 we formulate the mean-field stochastic
control problem and describe the assumptions of the model. Section 3 is devoted to prove our mean-
field stochastic maximum principle. As an illustration, using these results, a mean-variance portfolio
selection mixed problem with recursive utility (time-inconsistent solution) is discussed in the last
section.

15. Problem statement and preliminaries
We consider stochastic optimal control problem of mean-field type of the following kind. Let T > 0
be a fixed time horizon and (Ω,F , (Ft)t∈[0,T ] , P ) be a fixed filtered probability space equipped with
a P−completed right continuous filtration on which a one−dimensional Brownian motion W =
(W (t))t∈[0,T ] is defined. Let η be a homogeneous (Ft)-Poisson point process independent of W .

We denote by Ñ(dθ, dt) the random counting measure induced by η, defined on Θ × <+, where
Θ is a fixed nonempty subset of < with its Borel σ−field B (Θ). Further, let µ (dθ) be the local
characteristic measure of η, i.e. µ (dθ) is a σ-finite measure on (Θ,B (Θ)) with µ (Θ) < +∞. We
then define N(dθ, dt) := Ñ(dθ, dt) − µ (dθ) dt, where N (·, ·) is Poisson martingale measure on
B (Θ)×B (<+) with local characteristics µ (dθ) dt. We assume that (Ft)t∈[0,T ] is P−augmentation of

the natural filtration (F (W,N)
t )t∈[0,T ] defined as follows

F (W,N)
t := σ (W (s) : s ∈ [0, t]) ∨ σ(

∫ s

0

∫
B

N(dθ, dr) : s ∈ [0, t] , B ∈ B (Θ)) ∨ G0,

where G0 denotes the totality of P−null sets, and σ1 ∨ σ2 denotes the σ-field generated by σ1 ∪ σ2.
In the sequel, L2

F ([0, T ] ;<) denotes the Hilbert space of Ft−adapted processes (X(t))t∈[0,T ]

such that E
∫ T

0
|X(t)|2 dt < +∞ andM2

F ([0, T ] ;<) denotes the Hilbert space of Ft− predictable
processes (ψ (t, θ))t∈[0,T ] defined on [0, T ] × Θ such that E

∫ T
0

∫
Θ
|ψ (t, θ)|2 µ(θ)dt < +∞. In what

follows, C represents a generic constants, which can be different from line to line. For simplicity of
notation, we still use fx(t) = ∂f

∂x
(t, x∗(·), E(x∗(·)), u∗(·)), etc.

Throughout this work, we also assume that the functions f, σ : [0, T ] × < × < × A → <, c :
[0, T ]×<×A×Θ→ <, g, ` : [0, T ]×<×<×<×<×<×<×<×A → < and h, φ, ϕ : <×< → <
satisfy the following standing assumptions

Assumption (H1) 1. The functions f, σ and c are global Lipschitz in (x, x̃, u) and g is global Lipschitz
in (x, x̃, y, ỹ, z, z̃, r, u).
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2. The functions f, σ, `, c, g, h, φ, ϕ are continuously differentiable in their variables including
(x, x̃, y, ỹ, z, z̃, r, u).

Assumption (H2) 1. The derivatives of f, σ, g, φ with respect to their variables including
(x, x̃, y, ỹ, z, z̃, r, u) are bounded, and∫

Θ

(|cx (t, x, x̃, u, θ)|2 + |cx̃ (t, x, x̃, u, θ)|2 + |cu (t, x, x̃, u, θ)|2)µ (dθ) < +∞.

2. The derivatives bρ are bounded by C(1 + |x| + |x̃| + |y| + |ỹ| + |z| + |ỹ| + |r| + |u|) for ρ =
x, x̃, y, ỹ, z, z̃, r, u and b = f, σ, g, c, `. Moreover, ϕy, ϕỹ are bounded by C (1 + |y|+ |ỹ|) and hx, hx̃
are bounded by C (1 + |x|+ |x̃|) .
3. For all t ∈ [0, T ] , f(t, 0, 0, 0), g(t, 0, 0, 0, 0, 0, 0, 0, 0) ∈ L2

F ([0, T ] ;<) , σ(t, 0, 0, 0) ∈
L2
F ([0, T ] ;<× <) and c(t, 0, 0, 0, ·) ∈M2

F ([0, T ] ;<) .

Under the assumptions (H1) and (H2), the FBSDEJ-(145) has a unique solution
(x(t), y(t), z(t), r(t, ·)) ∈ L2

F ([0, T ] ;<) ×L2
F ([0, T ] ;<) ×L2

F ([0, T ] ;<) ×L2
F ([0, T ] ;<).

(See [51] Theorem 3.1, for mean-field BSDE with jumps)

For any u(·) ∈ U ([0, T ]) with its corresponding state trajectories (x (·) , y (·) , z (·) , r(·, ·)) we intro-
duce the following adjoint equations

dΨ(t) = −{fx (t) Ψ(t) + E(fx̃ (t) Ψ(t)) + σx (t)Q(t) + E(σx̃ (t)Q(t))

+
∫

Θ
[gx(t, θ)K(t) + E(gx̃(t, θ)K(t)) + cx (t, θ)R (t, θ)

+E(cx̃(t, θ)R (t, θ)) + `x(t, θ) + E(`x̃(t, θ))]µ (dθ)}dt

+Q(t)dW (t) +
∫

Θ
Rt (θ)N (dθ, dt) ,

Ψ(T ) = −[hx (x(T ), E(x(T )))K(T ) + E(hx̃ (x(T ), E(x(T )))K(T ))]

+φx(x(T ), E(x(T ))) + E(φx̃(x(T ), E(x(T )))),

dK(t) =
∫

Θ
[gy (t, θ)K(t) + E(gỹ (t, θ)K(t))− `y(t, θ)− E(`ỹ (t, θ))]µ (dθ) dt

+
∫

Θ
[gz(t, θ)K(t) + E(gz̃(t, θ)K(t))− `z(t, θ)− E (`z̃ (t, θ))]µ (dθ) dW (t)

+
∫

Θ
(gr(t, θ)K(t)− `r(t, θ))N(dθ, dt),

K(0) = −(ϕy (0) + E(ϕỹ (0))).

(148)

Note that the first adjoint equation (backward) corresponding to the forward component turns out to
be a linear mean-field backward SDE with jumps, and the second adjoint equation (forward) corre-
sponding to the backward component turns out to be a linear mean-field (forward) SDE with jump
processes. Further, we define the Hamiltonian function

H : [0, T ]× R× R× R× R× R× R× R×A× R× R× R× R→ R,

associated with the stochastic control problem (145)-(146) as follows
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H (t, x, x̃, y, ỹ, z, z̃, r, u,Ψ, Q,K,R) := Ψ(t)f (t, x, x̃, u) +Q(t)σ (t, x, x̃, u)

−
∫

Θ
[K(t)g (t, x, x̃, y, ỹ, z, z̃, r, u) +R (t, θ) c (t, x, x̃, u, θ))

+ ` (t, x, x̃, y, ỹ, z, z̃, r, u)]µ (dθ) .

(149)

If we denote by

H(t) := H(t, x(t), x̃(t), y(t), ỹ(t), z(t), z̃(t), r(t, ·), u(t),Ψ(t), Q(t), K(t), R(t, ·)),

then the adjoint equation (148) can be rewritten as the following stochastic Hamiltonian system’s type



−dΨ(t) = (Hx (t) + E(Hx̃ (t)))dt−Q(t)dW (t)−
∫

Θ
R (t, θ)N (dθ, dt) ,

Ψ(T ) = −[hx (x(T ), E(x(T )))K(T ) + E(hx̃(x(T ), E(xT (t)))K(T ))]

+φx(x(T ), E(x(T ))) + E(φx̃(x(T ), E(x(T )))).

−dK(t) = (Hy (t) + E(Hỹ (t)))dt+ (Hz (t) + E (Hz̃ (t)))dW (t)

+
∫

Θ
Hr (t, θ)N (dθ, dt)

K(0) = −(ϕy (0) + E(ϕỹ (0))).

(150)

Thanks to Lemma 3.1 in Shen and Siu [51], under assumptions (H1), (H2), the adjoint equations (148)
admits a unique solution (Ψ(t), Q(t), K(t), R(t, ·)) such that

(Ψ(t), Q(t), K(t), R(t, ·))
∈ L2

F([0, T ] ;<)× L2
F([0, T ] ;<)× L2

F([0, T ] ;<)×M2
F([0, T ] ;<).

Moreover, since the derivatives of f, σ, c, g, h, ϕ, φ with respect to x, x̃, y, ỹ, z, z̃, r are bounded, we
deduce from standard arguments that there exists a constant C > 0 such that

E
{

supt∈[0,T ] |Ψ(t)|2 + supt∈[0,T ] |K(t)|2 +
∫ T

0
|Q(t)|2 dt

+
∫ T

0

∫
Θ
|R (t, θ)|2 µ (dθ) dt

}
< C.

(151)

16. Mean-field type necessary conditions for optimal control of
FBSDEJs

In this section, we establish a set of necessary conditions of Pontraygin’s type for a stochastic con-
trol to be optimal where the system evolves according to nonlinear controlled mean-field FBSDEJs.
Convex perturbation techniques are applied to prove our mean-field stochastic maximum principle.
The following theorem constitutes the main contribution of this work.
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Let (x∗(·), y∗(·), z∗(·), r∗(·, ·)) be the trajectory of the mean-field FBSDEJ-(145) corresponding to
the optimal control u∗(·), and (Ψ∗(·), Q∗(·), K∗(·), R∗(·, ·)) be the solution of adjoint equation (148)
corresponding to u∗(·).

Theorem 3.3.1. (Maximum principle for mean-field FBSDEJs). Let Assumptions (H1) and (H2)
hold. If (u∗(·), x∗(·), y∗(·), z∗(·), r∗(·, ·)) is an optimal solution of the mean-field control problem
(145)-(146). Then the maximum principle holds, that is ∀u ∈ A

Hu(t, λ
∗(t, θ), u∗,Λ∗(t, θ))(u− u∗(t)) ≥ 0, P − a.s., a.e., t ∈ [0, T ] , (152)

where λ∗(t, θ) = (x∗(t), E(x∗(t)), y∗(t), E(y∗(t)), z∗(t), E(z∗(t)), r∗(t, θ)) and
Λ∗(t, θ) = (Ψ∗(t), Q∗(t), K∗(t), R∗(t, θ)).

We derive the variational inequality (152) in several steps, from the fact that

J (uε(·)) ≥ J (u∗(·)) , (153)

Since the control domain A is convex and for any given admissible control u(·) ∈ U([0, T ]) the
following perturbed control process

uε(t) = u∗(t) + ε (u(t)− u∗(t)) ,

is also an element of U([0, T ]).
Let λε(t, θ) = (xε(t), yε(t), zε(t), rε(t, θ)) be the solution of state equation (145) and Λε(t, θ) =
(Ψε (t) , Qε (t) , Kε (t) , Rε (t, θ)) be the solution of the adjoint equation (148) corresponding to per-
turbed control uε(·).

Variational equations. We introduce the following variational equations which have a mean-field type.
Let (xε1(·), yε1(·), zε1(·), rε1(·, ·)) be the solution of the following forward-backward stochastic system
described by Brownian motions and Poisson jumps of mean-field type

dxε1(t) = {fx(t)xε1(t) + fx̃(t)E(xε1(t)) + fu(t)u(t)} dt

+ {σx(t)xε1(t) + σx̃(t)E (xε1(t)) + σu(t)u(t)} dW (t)

+
∫

Θ
[cx(t, θ)x

ε
1(t) + cx̃(t, θ)E(xε1(t)) + cu(t, θ)u(t)]N(dθ, dt),

xε1(0) = 0,

dyε1(t) = −
∫

Θ
{gx(t, θ)xε1(t) + gx̃(t, θ)E(xε1(t)) + gy(t, θ)y

ε
1(t)

+gỹ(t, θ)E(yε1(t)) + gz(t, θ)z
ε
1(t) + gz̃(t, θ)E(zε1(t)) + gr(t, θ)r

ε
1(t, θ)

+gu(t, θ)u(t)}µ(dθ)dt+ zε1(t)dW (t) +
∫

Θ
rε1(t, θ)N(dθ, dt),

yε1(T ) = − [hx(T ) + E(hx̃(T ))]xε1(T ).

(154)

Duality relations. Our first Lemma below deals with the duality relations between Ψ∗(t), xε1(t) and
K∗(t), yε1(t). This Lemma is very important for the proof of Theorem 3.1.
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Lemma 3.3.1. We have

E (Ψ∗(T )xε1(T )) = E
∫ T

0
[Ψ∗(t)fu(t)u(t) +Q∗(t)σu(t)u(t)

+
∫

Θ
R∗(t, θ)cu(t, θ)u(t)µ(dθ)]dt− E

∫ T
0

∫
Θ
{xε1(t)gx(t, θ)K(t)

+xε1(t)E(gx̃(t, θ)K(t)) + xε1(t)`x(t, θ) +xε1(t)E(`x̃(t, θ))}µ(dθ)dt,

(155)

similarly, we get

E (K∗(T )yε1(T ))

= −E {[ϕy(y(0), E(y(0))) + E(ϕỹ(y(0), E(y(0))))]yε1(0)}

+E
∫ T

0

∫
Θ
{K∗(t)gx(t, θ)xε1(t) +K∗(t)gx̃(t, θ)E (xε1(t))

−K∗(t)gu(t, θ)u(t)− yε1(t)`y(t, θ)− yε1(t)E(`ỹ(t, θ))

− zε1(t)`z(t, θ)− zε1(t)E(`z̃(t, θ))− rε1(t, θ)`r(t, θ)}µ(dθ)dt,

(156)

and

E {[φx(x(T ), E(x(T ))) + E(φx̃(x(T ), E(x(T ))))]xε1(T )}

+E {[ϕy (y(0), E(y(0))) + E(ϕỹ(y(0), E(y(0))))]yε1(0)}

= E
∫ T

0

∫
Θ
{xε1(t)`x(t, θ) + xε1(t)E(`x̃(t, θ)) − yε1(t)`y(t, θ)

−yε1(t)E(`ỹ(t, θ))− zε1(t)`z(t, θ)− zε1(t)E(`z̃(t, θ))

− rε1(t, θ)`r(t, θ)− `u(t, θ)u(t)}µ(dθ)dt+ E
∫ T

0
Hu(t)u(t)dt.

(157)

Proof. By applying integration by parts formula for jump processes (see Lemma A1) to Ψ∗(t)xε1(t),
we get

E (Ψ∗(T )xε1(T )) = E
∫ T

0
Ψ∗(t)dxε1(t) + E

∫ T
0
xε1(t)dΨ∗(t)

+E
∫ T

0
Q∗(t) [σx(t)x

ε
1(t) + σx̃(t)E (xε1(t)) + σu(t)u(t)] dt

+E
∫ T

0

∫
Θ

[cx(t, θ)x
ε
1(t) + cx̃(t, θ)E(xε1(t)) + cu(t, θ)u(t)]R(t, θ)µ(dθ)dt

= Iε1 + Iε2 + Iε3 + Iε4 .

(158)

A simple computation shows that

Iε1 = E
∫ T

0
Ψ∗(t)dxε1(t)

= E
∫ T

0
{Ψ∗(t)fx(t)xε1(t) + Ψ∗(t)f

x̃
(t)E (xε1(t)) + Ψ∗(t)fu (t)u(t)} dt,

(159)

and
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Iε2 = E
∫ T

0
xε1(t)dΨ∗(t)

= −E
∫ T

0
{xε1(t)fx (t) Ψ∗(t) + xε1(t)E (fx̃(t)Ψ

∗(t))

+xε1(t)σx (t)Q∗(t) + xε1(t)E (σx̃(t)Q
∗(t))

+
∫

Θ
[xε1(t)gx (t, θ)K∗(t) + xε1(t)E (gx̃(t, θ)K

∗(t))

+xε1(t)cx (t, θ)R (t, θ) + xε1(t)E(cx̃ (t, θ)R (t, θ))

+ xε1(t)`x(t, θ) + xε1(t)E(`x̃(t, θ))]µ (dθ)} dt.

(160)

From (158), we get

Iε3 = E
∫ T

0
Q∗(t) [σx(t)x

ε
1(t) + σx̃(t)E (xε1(t)) + σu(t)u(t)] dt

= E
∫ T

0
Q∗(t)σx(t)x

ε
1(t)dt+ E

∫ T
0
Q∗(t)σx̃(t)E (xε1(t)) dt

+E
∫ T

0
Q∗(t)σu(t)u(t)dt

Iε4 = E
∫ T

0

∫
Θ

[cx(t, θ)x
ε
1(t) + cx̃(t, θ)E(xε1(t))

+cu(t, θ)u(t)]R(t, θ)µ(dθ)dt

= E
∫ T

0

∫
Θ
cx(t, θ)x

ε
1(t)R(t, θ)µ(dθ)dt

+E
∫ T

0

∫
Θ
cx̃(t, θ)E(xε1(t))R(t, θ)µ(dθ)dt

+E
∫ T

0

∫
Θ
cu(t, θ)u(t)R(t, θ)µ(dθ)dt.

(161)

The duality relation (155) follows immediately from combining (159)∼(161) and (158).

Let us turn to second duality relation (156). By applying integration by parts formula for jump process
(Lemma A1) to K∗(t)yε1(t), we get

E (K∗(T )yε1(T ))

= E (K∗(0)yε1(0)) + E
∫ T

0
K∗(t)dyε1(t) + E

∫ T
0
yε1(t)dK∗(t)

+E
∫ T

0

∫
Θ
zε1(t)[gz(t, θ)K

∗(t) + E (gz̃(t, θ)K
∗(t))

−`z(t, θ)− E (`z̃ (t, θ))]µ (dθ) dt

+E
∫ T

0

∫
Θ

[rε1(t, θ)(gr(t, θ)K
∗(t)− `r(t, θ))]µ(dθ)dt.

= Iε1 + Iε2 + Iε3 + Iε4 + Iε5 .

(162)

78



From (155), we obtain

Iε2 = E
∫ T

0
K∗(t)dyε1(t)

= −E
∫ T

0

∫
Θ
{K∗(t)gx(t, θ)xε1(t) +K∗(t)gx̃(t, θ)E (xε1(t))

+K∗(t)gy(t, θ)y
ε
1(t) +K∗(t)gỹ(t, θ)E (yε1(t)) +K∗(t)gz(t, θ)z

ε
1(t)

+K∗(t)gz̃(t, θ)E (zε1(t)) +K∗(t)gr(t, θ)r
ε
1(t, θ)

+ K∗(t)gu(t, θ)u(t)}µ(dθ)dt,

(163)

from (148), we obtain

Iε3 = E
∫ T

0
yε1(t)dK∗(t)

= E
∫ T

0

∫
Θ
{yε1(t)gy (t, θ)K∗(t) + yε1(t)E(gỹ(t, θ)K

∗(t))

−yε1(t)`y(t, θ)− yε1(t)E(`ỹ (t, θ))}µ(dθ)dt,

(164)

and
Iε4 = E

∫ T
0

∫
Θ

[zε1(t)gz(t, θ)K
∗(t) + zε1(t)E (gz̃(t, θ)K

∗(t))

− zε1(t)`z(t, θ)− zε1(t)E (`z̃ (t, θ))]µ(dθ)dt,

Iε5 = E
∫ T

0

∫
Θ
{rε1(t, θ)gr(t, θ)K

∗(t)− rε1(t, θ)`r(t, θ)}µ(dθ)dt.

(165)

Since

Iε1 = E (K∗(0)yε1(0))

= −E {[ϕy(y(0), E(y(0))) + E(ϕỹ(y(0), E(y(0))))]yε1(0)} ,

the duality relation (156) follows immediately by combining (163)∼(165) and (162). Let us turn to
(157). Combining (155) and (156) we get

E (Ψ∗(T )xε1(T )) + E (K∗(T )yε1(T ))

= −E[ϕy(y(0), E(y(0))) + E(ϕỹ(y(0), E(y(0)))]yε1(0)

+E
∫ T

0

∫
Θ
{xε1(t)`x(t, θ) + xε1(t)E(`x̃(t, θ)) − `y(t, θ)− E(`ỹ(t, θ))

−`u(t, θ)u(t)− `z(t, θ)− E(`z̃(t, θ))− rε1(t, θ)`r(t, θ)}µ(dθ)dt

+E
∫ T

0
Hu(t)u(t)dt.

From (150) and (154), we get

E (Ψ∗(T )xε1(T )) + E (K∗(T )yε1(T ))

= [φx(x(T ), E(x(T ))) + E(φx̃(x(T ), E(x(T )))]xε1(T ).

Using (149), we obtain
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E
∫ T

0
{Ψ(t)fu (t)u(t) +Q(t)σu (t)u(t)

+
∫

Θ
[−K(t)gu (t)u(t) +R (t, θ) cu (t, θ)u(t))

+ `u (t, θ)u(t)]µ (dθ)} dt = E
∫ T

0
Hu (t)u(t)dt,

which implies that

E {[φx(x(T ), E(x(T ))) + E(φx̃(x(T ), E(x(T ))))]xε1(T )}

+E {[ϕy (y(0), E(y(0))) + E(ϕỹ (y(0), E(y(0))))]yε1(0)}

= E
∫ T

0

∫
Θ
{xε1(t)`x(t, θ) + xε1(t)E(`x̃(t, θ))

−yε1(t)`y(t, θ)− yε1(t)E(`ỹ(t, θ))− zε1(t)`z(t, θ)− zε1(t)E(`z̃(t, θ))

− rε1(t, θ)`r(t, θ)− `u(t, θ)u(t)}µ(dθ)dt+ E
∫ T

0
Hu(t)u(t)dt.

This completes the proof of (157). �
The second Lemma present the estimates of the perturbed state process (xε(·), yε(·), zε(·), rε(·, ·)).
Lemma 3.3.2. Under assumptions (H1) and (H2), the following estimations holds

E(sup0≤t≤T |xε1(t)|2)→ 0, as ε→ 0,

E(sup0≤t≤T |yε1(t)|2) + E
∫ T

0
[|zε1(s)|2

+
∫

Θ
|rε1(s, θ)|2 µ(dθ)]ds→ 0, as ε→ 0,

(166)

sup0≤t≤T |E (xε1(t))|2 → 0, as ε→ 0,

sup0≤t≤T |E (yε1(t))|2 +
∫ T
t
|E (zε1(s))|2 ds

+
∫ T

0

∫
Θ
|E (rε1(s, θ))|2 µ(dθ)ds→ 0, as ε→ 0, .

(167)

E(sup0≤t≤T |xε(t)− x∗(t)|
2)→ 0, as ε→ 0,

E(sup0≤t≤T |yε(t)− y∗(t)|
2) + E(

∫ T
0
|zε(t)− z∗(t)|2)dt

+E
∫ T

0

∫
Θ
|rε(t, θ)− r∗(t, θ)|2 µ(dθ)dt→ 0, as ε→ 0,

(168)

and

E(sup0≤t≤T
∣∣1
ε

[xε(t)− x∗(t)]− xε1(t)
∣∣2)→ 0, as ε→ 0,

E(sup0≤t≤T
∣∣1
ε

[yε(t)− y∗(t)]− yε1(t)
∣∣2)→ 0, as ε→ 0,

E
∫ T

0

∣∣1
ε

[zε(s)− z∗(s)]− zε1(s)
∣∣2 ds→ 0, as ε→ 0,

E
∫ T

0

∫
Θ

∣∣1
ε

[rε(s, θ)− r∗(s, θ)]− rε1(s, θ)
∣∣2 µ(dθ)ds→ 0, as ε→ 0.

(169)

Let us also point out that the above estimates (166)-(168) can be proved by using similar arguments
developed in (Lemma 4.2, Lemma 4.3 [51]) and (Lemma 2.1, [53]). So we omit their proofs.
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Proof of (169). We set:

x̂ε(t) = 1
ε

[xε(t)− x∗(t)]− xε1(t),

ŷε(t) = 1
ε

[yε(t)− y∗(t)]− yε1(t),

ẑε(t) = 1
ε

[zε(t)− z∗(t)]− zε1(t),

r̂ε(t, θ) = 1
ε

[rε(t, θ)− r∗(t, θ)]− rε1(t, θ),

(170)

and

f(t) = f(t, x∗(t), E(x∗(t)), u∗(t)), σ(t) = σ(t, x∗(t), E(x∗(t)), u∗(t)),

c(t, θ) = c(t, x∗(t), E(x∗(t)), u∗(t), θ)

g(t, θ) = g(x∗(t), E(x∗(t)), y∗(t), E(y∗(t)), z∗(t), E(z∗(t)), r∗(t, θ), u∗(t)).

From equation (145) we have

dx̂ε(t) = 1
ε

[dxε(t)− dx∗(t)]− dxε1(t)

= 1
ε
[f(t, x∗(t) + ε(x̂ε(t) + xε1(t)), E(x∗(t) + ε(x̂ε(t) + xε1(t)), uε(t))− f(t)]dt

− [fx(t)x
ε
1(t) + fx̃(t)E (xε1(t)) + fu(t)u(t))] dt

+1
ε
[σ(t, x∗(t) + ε(x̂ε(t) + xε1(t)), E(x∗(t) + ε(x̂ε(t) + xε1(t))), uε(t))

−σ(t)]dW (t)− [σx(t)x
ε
1(t) + σx̃(t)E (xε1(t)) + σu(t)u(t)] dW (t)

+
∫

Θ
[c(t, x∗(t) + ε(x̂ε(t) + xε1(t)), E(x∗(t) + ε(x̂ε(t) + xε1(t))), uε(t), θ)

−c(t, θ)]N(dθ, dt)−
∫

Θ
[cx(t, θ)x

ε
1(t) + cx̃(t, θ)E(xε1(t)) + cu(t, θ)u(t)]N(dθ, dt).

(171)

We denote
xλ,ε(t) = x∗(t) + λε(x̂ε(t) + xε1(t)),

yλ,ε(t) = y∗(t) + λε(ŷε(t) + yε1(t)),

zλ,ε(t) = z∗(t) + λε(ẑε(t) + zε1(t)),

rλ,ε(t, θ) = r∗(t, θ) + λε(r̂ε(t, θ) + rε1(t, θ)),

uλ,ε(t) = u∗(t) + λεu(t).

(172)

By Taylor’s expansion with a simple computations we show that

x̂ε(t) =
1

ε
[xε(t)− x∗(t)]− xε1(t) = Ĩ1(ε) + Ĩ2(ε) + Ĩ3(ε), (173)

where
Ĩ1(ε) =

∫ t
0

∫ 1

0
fx(s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s))(x̂ε(s) + xε1(s))dλds

+
∫ t

0

∫ 1

0
fx̃(s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s))E(x̂ε(s) + xε1(s))dλds

+
∫ t

0

∫ 1

0

[
fx(s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s))− fx(s)
]
xε1(s)dλds

+
∫ t

0

∫ 1

0

[
fx̃(s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s))− fx̃(s)
]
E(xε1(s))dλds

+
∫ t

0

∫ 1

0

[
fu(s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s))− fu(s)
]
u(s)dλds,

(174)
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Ĩ2(ε) =
∫ t

0

∫ 1

0
σx(s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s))[x̂ε(s) + xε1(s)]dλds

+
∫ t

0

∫ 1

0
σx̃(s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s))E[x̂ε(s) + xε1(s)]dλds

+
∫ t

0

∫ 1

0
[σx(s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s))− σx(s)]xε1(s)dλds

+
∫ t

0

∫ 1

0
[σx̃(s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s))− σx̃(s)]E(xε1(s))dλds

+
∫ t

0

∫ 1

0

[
σu(s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s))− σu(s)
]
u(s)dλds,

(175)

and

Ĩ3(ε)

=
∫ t

0

∫
Θ

∫ 1

0
cx(s, x

λ,ε(s−), E(xλ,ε(s−)), uλ,ε(s), θ)[x̂ε(s) + xε1(s)]dλN(dθ, ds)

+
∫ t

0

∫
Θ

∫ 1

0
cx̃(s, x

λ,ε(s−), E(xλ,ε(s−)), uλ,ε(s), θ)E[x̂ε(s) + xε1(s)]dλN(dθ, ds).

+
∫ t

0

∫
Θ

∫ 1

0

[
cx(s, x

λ,ε(s−), E(xλ,ε(s−)), uλ,ε(s), θ)− cx(s, θ)
]
xε1(s)dλN(dθ, ds)

+
∫ t

0

∫
Θ

∫ 1

0
[cx̃(s, x

λ,ε(s−), E(xλ,ε(s−)), uλ,ε(s), θ)− cx̃(s, θ)]E(xε1(s))dλN(dθ, ds)

+
∫ t

0

∫
Θ

∫ 1

0
[cu(s, x

λ,ε(s), E(xλ,ε(s)), uλ,ε(s), θ)− cu(s, θ)]u(s)dλN(dθ, ds),

(176)

we proceed as in Anderson and Djehiche [5], pp 7-8, we get

E(sup0≤t≤T

∣∣∣Ĩ1(ε)
∣∣∣2)→ 0, as ε→ 0,

E(sup0≤t≤T

∣∣∣Ĩ2(ε)
∣∣∣2)→ 0, as ε→ 0,

(177)

Applying similar estimations for the third term with the help of Proposition 3.2 (in Appendix
Bouchard and Elie [9]) we have

E( sup
0≤t≤T

∣∣∣Ĩ3(ε)
∣∣∣2)→ 0, as, ε→ 0. (178)

From (177) and (178) we obtain

E( sup
0≤t≤T

∣∣∣∣1ε [xε(t)− x∗(t)]− xε1(t)

∣∣∣∣2)→ 0, as ε→ 0. (179)

We proceed to estimate the last terms in (169). First, from (170) and since ŷε(t) = 1
ε

[yε(t)− y∗(t)]−
yε1(t) we get
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dŷε(t) = −1
ε

∫
Θ

[g(t, x∗(t) + ε(x̂ε(t) + xε1(t)), E(x∗(t) + ε(x̂ε(t) + xε1(t))),

y∗(t) + ε(ŷε(t) + yε1(t)), E(y∗(t) + ε(ŷε(t) + yε1(t))), z∗(t) + ε(ẑε(t) + zε1(t)),

E(z∗(t) + ε(ẑε(t) + zε1(t))), r∗(t, θ) + ε(r̂ε(t, θ) + rε1(t, θ)), uε(t))− g(t, θ)]µ(dθ)dt

−
∫

Θ
[gx(t, θ)x

ε
1(t) + gx̃(t, θ)E(xε1(t)) + gy(t, θ)y

ε
1(t) + gỹ(t, θ)E(yε1(t))

+gz(t, θ)z
ε
1(t) + gz̃(t, θ)E(zε1(t)) + gr(t, θ)r

ε
1(t, θ) + gu(t, θ)u(t)]µ(dθ)dt

+ẑε(t)dW (t) +
∫

Θ
r̂ε(t, θ)N(dθ, dt),

and

ŷε(T ) = 1
ε
[h(xε(T ), E(xε(T )))− h(x(T ), E(x(T )))]

+[hx(x(T ), E(x(T ))) + hx̃(x(T ), E(x(T )))]xε1(T ).

Applying Taylor’s expansion we get

−dŷε(t) =
∫

Θ

∫ 1

0
gx(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)),

rλ,ε(t, θ), uλ,ε(t))× (x̂ε(t) + xε1(t))dλµ(dθ)dt

+
∫

Θ

∫ 1

0
gx̃(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t))× E(x̂ε(t) + xε1(t))dλµ(dθ)dt

+
∫

Θ

∫ 1

0
[gx(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t))− gx(t, θ)]xε1(t)dλµ(dθ)dt

+
∫

Θ

∫ 1

0
[gx̃(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t))− gx̃(t, θ)]E(xε1(t))dλµ(dθ)dt

+
∫

Θ

∫ 1

0
[gu(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t))− gu(t, θ)]u(t)dλµ(dθ)dt

+
∫

Θ

∫ 1

0
gy(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t))× (ŷε(t) + yε1(t))dλµ(dθ)dt

+
∫

Θ

∫ 1

0
gỹ(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t))× E(ŷε(t) + yε1(t))dλµ(dθ)dt

+
∫

Θ

∫ 1

0
[gy(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t))− gy(t, θ)]yε1(t)dλµ(dθ)dt
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+
∫

Θ

∫ 1

0
[gỹ(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t))− gỹ(t, θ)]× E(yε1(t))dλµ(dθ)dt

+
∫

Θ

∫ 1

0
gz(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t))× (ẑε(t) + zε1(t))dλµ(dθ)dt

+
∫

Θ

∫ 1

0
gz̃(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t))× E(ẑε(t) + zε1(t))dλµ(dθ)dt

+
∫

Θ

∫ 1

0
[gz(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t))− gz(t, θ)]× zε1(t)dλµ(dθ)dt

+
∫

Θ

∫ 1

0
[gz̃(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t))− gz̃(t, θ)]E(zε1(t))dλµ(dθ)dt

+
∫

Θ

∫ 1

0
gr(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t))× (r̂ε(t, θ) + rε1(t, θ))dλµ(dθ)dt

+
∫

Θ

∫ 1

0
[gr(t, x

λ,ε(t), E(xλ,ε(t)), yλ,ε(t), E(yλ,ε(t)), zλ,ε(t), E(zλ,ε(t)), rλ,ε(t, θ),

uλ,ε(t))− gr(t, θ)]rε1(t, θ)dλµ(dθ)dt

−ẑε(t)dW (t)−
∫

Θ
r̂ε(t, θ)N(dθ, dt),

finally, by using similar arguments developed in [53], pp 222-224, the desired result follows. This
completes the proof of (169) �

Lemma 3.3.3. Let assumptions (H1) and (H2) hold. The following variational inequality holds

E
∫ T

0

∫
Θ

[`x(t, θ)x
ε
1(t) + `x̃(t, θ)E(xε1(t)) + `y(t, θ)y

ε
1(t) + `ỹ(t, θ)E(yε1(t))

+`z(t, θ)z
ε
1(t) + `z̃(t, θ)E(zε1(t)) + `r(t, θ)r

ε
1(t, θ) + `u(t, θ)u(t)]µ(dθ)dt

+E[φx(T )xε1(T ) + φx̃(T )E(xε1(T ))] + E[ϕy(0)yε1(0) + ϕỹ(0)E (yε1(0))] ≥ o (ε) .

Proof. From (153) we have

J (uε(·))− J (u∗(·))

= E
{∫ T

0

∫
Θ

[`(t, xε(t), E(xε(t)), yε(t), E(yε(t)), zε(t), E(zε(t)), rε (t, θ) , uε(t))

−`(t, x∗(t), E(x∗(t)), y∗(t), E(y∗(t)), z∗(t), E(z∗(t)), r∗ (t, θ) , u∗(t)]µ (dθ) dt

+ [φ (xε(T ), E(xε(T )))− φ (x∗(T ), E(x∗(T )))]

+ [ϕ (xε(0), E (xε(0)))− ϕ (y∗(0), E (y∗(0)))]
}
≥ 0.

(180)
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By applying Taylor’s expansion and Lemma 3.3.2 we have
1
ε
E[φ(xε(T ), x̃ε(T ))− φ(x∗(T ), x̃∗(T ))]

= 1
ε
E
{∫ 1

0
φx(x

∗(T ) + λ(xε(T )− x∗(T )), x̃∗(T )

+λ(x̃ε(T )− x̃∗(T )))dλ(xε(T )− x∗(T ))

+
∫ 1

0
φx̃(x

∗(T ) + λ(xε(T )− x∗(T )), x̃∗(T )

+ λ(x̃ε(T )− x̃∗(T )))dλ(x̃ε(T )− x̃∗(T )))}+ o (ε) .

From estimate (169), we get
1
ε
E[φ(xε(T ), x̃ε(T ))− φ(x∗(T ), x̃∗(T ))]

→ E[φx(x
∗(T ), E(x∗(T )))xε1(T ) + φx̃(x

∗(T ), E(x∗(T )))E(xε1(T ))]

= E [φx(T )xε1(T ) + φx̃(T )E(xε1(T ))] , as ε→ 0.

(181)

Similarly, we have
1
ε
E[ϕ(yε(0), ỹε(0))− ϕ(y∗(0), ỹ∗(0))]

→ E[ϕy(y
∗(0), ỹ∗(0))yε1(0) + ϕỹ(y

∗(0), ỹ∗(0))E (yε1(0))]

= E [ϕy(0)yε1(0) + ϕỹ(0)E (yε1(0))] , as ε→ 0.

(182)

and
1
ε
E
∫ T

0

∫
Θ

[`(t, xε(t), E(xε(t)), yε(t), E(yε(t)), zε(t), E(zε(t)), rε (t, θ) , uε(t))

−`(t, x∗(t), E(x∗(t)), y∗(t), E(y∗(t)), z∗(t), E(z∗(t)), r∗ (t, θ) , u∗(t))]µ (dθ) dt

→ E
∫ T

0

∫
Θ

[`x(t, θ)x
ε
1(t) + `x̃(t, θ)E(xε1(t)) + `y(t, θ)y

ε
1(t) + `ỹ(t, θ)E(yε1(t))

+`z(t, θ)z
ε
1(t) + `z̃(t, θ)E(zε1(t)) + `r(t, θ)r

ε
1(t, θ) + `u(t, θ)u(t)]µ(dθ)dt,

as ε→ 0.

(183)

The desired result follows by combining (180)∼(183). This completes the proof of Lemma 3.3.3. �
Proof of Theorem 3.3.1. The desired result follows immediately by combining (157) in Lemma 3.3.2
and Lemma 3.3.3. �

17. Application: mean-variance portfolio selection problem
mixed with a recursive utility functional, time-inconsistent
solution

The mean-variance portfolio selection theory, which was first proposed in Markowitz [58] is a mill-
stone in mathematical finance and has laid down the foundation of modern finance theory. By us-
ing sufficient maximum principle, the authors in [16] gave the expression for the optimal portfolio
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selection in a jump diffusion market with time consistent solutions. The near-optimal consumption-
investment problem has been discussed in Hafayed, Abbas and Veverka [21]. The continuous time
mean-variance portfolio selection problem has been studied in Zhou and Li [72]. The mean-variance
portfolio selection problem where the state driven by SDE (without jump terms) has been studied in
[5]. Optimal dividend, harvesting rate and optimal portfolio for systems governed by jump diffusion
processes have been investigated in [48]. Mean-variance portfolio selection problem mixed with a
recursive utility functional has been studied by Shi and Wu [53], under the condition that

E(xπ(T )) = c,

where c is a given real positive number.
In this section we will apply our mean-field stochastic maximum principle of optimality to study a

mean-variance portfolio selection problem mixed with a recursive utility functional time-inconsistent
solutions in a financial market and we will derive the explicit expression for the optimal portfolio
selection strategy. This optimal control is represented by a state feedback form involving both x(·)
and E(x(·)).
Suppose that we are given a mathematical market consisting of two investment possibilities:

1. Risk-free security (Bond price). The first asset is a risk-free security whose price P0(t) evolves
according to the ordinary differential equation{

dP0 (t) = ρ(t)P0 (t) dt, t ∈ [0, T ] ,

P0 (0) > 0,
(184)

where ρ (·) : [0, T ]→ <+ is a locally bounded and continuous deterministic function.

2. Risk-security (Stock price). A risky security (e.g. a stock), where the price P1 (t) at time t is given
by {

dP1 (t) = P1 (t−)
[
ς(t)dt+G(t)dW (t) +

∫
Θ
ξ (t, θ)N (dθ, dt)

]
,

P1 (0) > 0, t ∈ [0, T ] .
(185)

Assumptions. In order to ensure that P1 (t) > 0 for all t ∈ [0, T ] we assume
1. The functions ς(·) : [0, T ]→ <, G(·) : [0, T ]→ < are bounded deterministic such that

ς(t), G(t) 6= 0, ς(t) > ρ(t),∀t ∈ [0, T ].

2. ξ (t, θ) > −1 for µ−almost all θ ∈ Θ and all t ∈ [0, T ],
3.
∫

Θ
ξ2 (t, θ)µ(dθ) is bounded.

Portfolio strategy, the price dynamic with recursive utility process. A portfolio is a Ft−predictable
process e (t) = (e1(t), e2(t)) giving the number of units of the risk-free and the risky security held at
time t. Let π(t) = e1 (t)P0 (t) denote the amount invested in the risky security. We call the control
process π(·) a portfolio strategy.
Let xπ(0) = ζ > 0 be an initial wealth. By combining (184) and (185) we introduce the wealth
process xπ(·) and the recursive utility process yπ(·) corresponding to π (·) ∈ U ([0, T ]) as solution of
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the following FBSDEJs

dxπ(t) = [ρ(t)xπ(t) + (ς(t)− ρ(t))π(t)] dt

+G(t)π(t)dW (t) +
∫

Θ
ξ (t, θ)π(t)N (dθ, dt) ,

−dyπ(t) = [ρ(t)xπ(t) + (ς(t)− ρ(t))π(t)− αyπ(t)] dt

−zπ(t)dW (t)−
∫

Θ
rπ (t, θ)N (dθ, dt) ,

xπ(0) = ζ, yπ(T ) = xπ(T ).

(186)

Mean-variance portfolio selection problem mixed with a recursive utility functional: In this section,
the objective is to apply our maximum principle to study the mean-variance portfolio selection prob-
lem mixed with a recursive utility functional maximization.
The cost functional, to be minimized, is given by

J (π (·)) =
γ

2
V ar(xπ(T ))− E(xπ(T ))− yπ(0). (187)

By a simple computation, we can shows that

J (π (·)) = E[
γ

2
xπ(T )2 − xπ(T )]− γ

2
[E(xπ(T ))]2 − yπ(0), (188)

where the wealth process xπ(·) and the recursive utility process yπ(·) corresponding to π (·) ∈
U ([0, T ]) is given by FBSDEJ-(186). We note that the cost functional (188) becomes a time-
inconsistent control problem. LetA be a compact convex subset of <. We denote U ([0, T ]) the set of
admissible Ft−predictable portfolio strategies π (·) valued in A. The optimal solution is denoted by
(x∗(·), π∗(·)). The Hamiltonian functional (149) gets the form

H (t, x, x̃, y, ỹ, z, z̃, r, π,Ψ, Q,K,R)

= [ρ(t)x(t) + (ς(t)− ρ(t))π(t)] (Ψ(t) +K(t))

+G(t)π(t)Q(t)− αK(t)y(t) +
∫

Θ
ξ (t, θ) π(t)R (t, θ)µ (dθ) .

According to the maximum condition ((152), Theorem 3.1), and since π∗(·) is optimal we immediately
get

(ς(t)− ρ(t)) (Ψ∗(t) +K∗(t)) +G(t)Q∗(t)

+
∫

Θ
ξ (t, θ)R∗ (t, θ)µ (dθ) = 0.

(189)

The adjoint equation (148) being
dΨ∗(t) = −ρ(t) (K∗(t) + Ψ∗(t)) dt+Q∗(t)dW (t)

+
∫

Θ
R∗ (t, θ)N (dθ, dt) .

Ψ∗(T ) = γ (x∗(T ) + E(x∗(T )))− 1−K∗(T ),

dK∗(t) = −αK∗(t)dt, K∗(0) = 1, t ∈ [0, T ] .

(190)
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In order to solve the above equation (190) and to find the expression of optimal portfolio strategy
π∗(·) we conjecture a process Ψ∗(t) of the form:

Ψ∗(t) = A1(t)x∗(t) + A2(t)E (x∗(t)) + A3(t), (191)

whereA1(·), A2(·) andA3(·) are deterministic differentiable functions. (see Shi and Wu [53], Shi [55],
Framstad, ∅ksendal and Sulem [16], Li [49], Yong [50], for other models of conjecture). From last
equation in (190), which is a simple ordinary differential equation (ODE in short), we get immediately

K∗(t) = exp (−αt) . (192)

Noting that from (186), we get

d(E(x∗(t)) = {ρ(t)E(x∗(t)) + (ς(t)− ρ(t))E(π∗(t))} dt.

Applying Itô’s formula to (191) (see Lemma A1, Appendix) in virtue of SDE-(186), we get

dΨ∗(t) = A1(t) {[ρ(t)x∗(t) + (ς(t)− ρ(t))π∗(t)] dt

+G(t)π∗(t)dW (t) +
∫

Θ
ξ (t−, θ) π

∗(t)N (dθ, dt)
}

+x∗(t)A′1(t)dt+ A2(t) [ρ(t)E(x∗(t)) + (ς(t)− ρ(t))E(π∗(t))] dt

+E (x∗(t))A′2(t)dt+ A′3(t)dt,

which implies that

dΨ∗(t) = {A1(t) [ρ(t)x∗(t) + (ς(t)− ρ(t))π∗(t)] + x∗(t)A′1(t)

+A2(t) [ρ(t)E(x∗(t)) + (ς(t)− ρ(t))E(π∗(t))]

+ A′2(t)E (x∗(t)) + A′3(t)} dt+ A1(t)G(t)π∗(t)dW (t)

+
∫

Θ
A1(t)ξ (t−, θ) π

∗(t)N (dθ, dt) ,

Ψ∗(T ) = A1(T )x∗(T ) + A2(T )E (x∗(T )) + A3(T ),

(193)

where A′1(t), A′2(t), and A′3(t) denotes the derivatives with respect to t.
Next, comparing (193) with (190), we get

−ρ(t) (K∗(t) + Ψ∗(t))

= A1(t) [ρ(t)x∗(t) + (ς(t)− ρ(t))π∗(t)] + x∗(t)A′1(t)

+A2(t) [ρ(t)E(x∗(t)) + (ς(t)− ρ(t))E(π∗(t))]

+A′2(t)E (x∗(t)) + A′3(t),

(194)

Q∗(t) = A1(t)G(t)π∗(t), (195)

R∗(t, θ) = A1(t)ξ (t, θ) π∗(t). (196)
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By looking at the terminal condition of Ψ∗(t), in (193), it is reasonable to get

A1(T ) = γ, A2(T ) = −γ, A3(T ) = −1−K∗(T ). (197)

Combining (194) and (191) we deduce that A1(·), A2(·) and A3(·) satisfying the following ODEs
A′1(t) = −2ρ(t)A1(t), A1(T ) = γ,

A′2(t) = −2ρ(t)A2(t), A2(T ) = −γ,

A′3(t) + ρ(t)A3(t) = ρ(t) exp {−αt} , A3(T ) = − exp {−αT} − 1.

(198)

By solving the first two ordinary differential equations in (198) we obtain

A1(t) = −A2(t) = γ exp

{
2

∫ T

t

ρ(s)ds

}
. (199)

Using integrating factor method for the third equation in (198), we get

A3(t) = −χ(t)−1

[
exp (−αT ) + 1 +

∫ T

t

χ(s)ρ(s) exp {−αs} ds
]
, (200)

where the integrating factor is χ(t) = exp
{∫ T

t
ρ(s)ds

}
, χ(T ) = 1.

Combining (189), (192), (195) and (196) and denoting

Γ(t) = A1(t)

(
G2(t) +

∫
Θ

ξ2 (t, θ)µ (dθ)

)
, (201)

we get

π∗(t) = Γ(t)−1(ρ(t)− ς(t)) [A1(t) (x∗(t)− E(x∗(t))) + A3(t)− exp(−αt)] , (202)

and
E(π∗(t)) = Γ(t)−1(ρ(t)− ς(t)) [A3(t)− exp {−αt}] . (203)

Finally, we give the explicit optimal portfolio selection strategy in the state feedback form involving
both x∗(·) and E(x∗(·)).
Theorem 3.4.1 The optimal portfolio strategy π∗(t) of our mean-variance portfolio selection problem
(186)-(188) is given in feedback form by

π∗(t, x∗(t), E(x∗(t))

= Γ(t)−1(ρ(t)− ς(t)) [A1(t) (x∗(t)− E(x∗(t))) + A3(t)− exp {−αt}] ,

and

E(π∗(t, x∗(t), E(x∗(t))) = Γ(t)−1(ρ(t)− ς(t)) [A3(t)− exp {−αt}] ,
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where A1(t), A3(t) and Γ(t) are given by (199), (200), (201) respectively.

Conclusions and future research.
In this chapter, we have discussed the necessary conditions for optimal stochastic control of

mean-field forward-backward stochastic differential equations with Poisson jumps (FBSDEJs). Time-
inconsistent mean-variance portfolio selection mixed with recursive utility functional optimization
problem has been studied to illustrate our theoretical results.

We would like to indicate that the general maximum principle for fully coupled mean-field FBS-
DEJs is not addressed, and we will work for this interesting issue in the future research.

Appendix
The following result gives special case of the Itô formula for mean-field jump diffusions.
Lemma A1. (Integration by parts formula for mean-field jump diffusions.) Suppose that the processes
x1(t) and x2(t) are given by: for i = 1, 2, t ∈ [0, T ]

dxi(t) = f (t, xi(t), E(xi(t)), u(t)) dt+ σ (t, xi(t), E(xi(t)), u(t)) dW (t)

+
∫

Θ
g (t, xi(t−), E(xi(t−)), u(t), θ)N (dθ, dt) ,

xi(0) = 0.

Then we get

E (x1(T )x2(T )) = E
[∫ T

0
x1(t)dx2(t) +

∫ T
0
x2(t)dx1(t)

]
+E

∫ T
0
σ (t, x1(t), E(x1(t)), u(t))σ (t, x2(t), E(x2(t)), u(t)) dt

+E
∫ T

0

∫
Θ
g (t, x1(t), E(x1(t)), u(t), θ) g (t, x2(t), E(x2(t)), u(t), θ)µ(dθ)dt.

Applying a similar method as in [16, Lemma 2.1], for the proof of the above Lemma.
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A McKean-Vlasov optimal mixed regular-singular
control problem for nonlinear stochastic systems with

Poisson jump processes

91



Part V

A McKean-Vlasov optimal mixed
regular-singular control problem for
nonlinear stochastic systems with Poisson
jump processes

Abstract. In this chapter, we develop the necessary conditions of optimality for a new class of mixed
regular-singular control problem for nonlinear forward-backward stochastic systems with Poisson
jump processes of McKean-Vlasov type. The coefficients of the system and the performance func-
tional depend not only on the state process but also its marginal law of the state process through its
expected value. The control variable has two components, the first being absolutely continuous and
the second singular control. Our optimality conditions for this McKean-Vlasov’s systems are estab-
lished by means of convex perturbation techniques for both continuous and singular parts. In our
class of McKean-Vlasov control problem, there are two types of jumps for the state processes, the
inaccessible ones which come from the Poission martingale part and the predictable ones which come
from the singular control part.

Keywords McKean-Vlasov systems, Empirical measures, Probability distribution, Mixed regular-
singular control, Poisson jump processes. Necessary and sufficient conditions for optimal control.
Mean-field Forward bakcward stochastic systems.

18. Introduction
The stochastic control problems of McKean-Vlasov type have attracted much attention because of
their practical applications in many areas such as physics, chemistry, economics, finance and other
areas of science and engineering. Historically, the stochastic differential equation of McKean-Vlasov
type was suggested by Kac [39] in 1956 as a stochastic model for the Vlasov-kinetic equation of
plasma and the study of which was initiated by McKean [45] in 1966. Since then, many authors have
made contributions on stochastic differential systems of McKean-Vlasov type and applications, see,
for instance, [1, 62, 15, 10, 27, 17, 23, 24, 18, 25, 29, 5, 49, 26, 51, 52, 67]. Optimal control problems
for nonlinear diffusions governed by McKean-Vlasov equations on Hilbert space have been investi-
gated by Ahmed [1]. McKean-Vlasov type stochastic maximum principle for optimal control under
partial information has been investigated in Wang, Zhang and Zhang [62]. Discrete time mean-field
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stochastic linear-quadratic optimal control problems with applications have been investigated in El-
liott, Li and Ni [15]. Stochastic maximum principle for mean-field stochastic systems governed by
Lévy processes, associated with Teugels martingales measures have been investigated by Hafayed,
Abbas and Abba [27]. Second order necessary and sufficient conditions of near-optimal singular con-
trol for mean-field stochastic differential equation (SDE) have been established in Hafayed and Abbas
[17]. Mean-field type stochastic maximum principle for optimal singular control has been studied in
Hafayed [23], in which convex perturbations have been used for both absolutely continuous and singu-
lar components. The maximum principle for optimal control of mean-field forward-backward stochas-
tic differential equations (FBSDEs) with Poisson jump process has been studied in Hafayed [24]. The
necessary and sufficient conditions for near-optimality for mean-field jump diffusions with applica-
tions have been derived by Hafayed, Abba and Abbas [18]. Singular optimal control for mean-field
forward-backward stochastic systems driven by Brownian motions has been investigated in Hafayed
[25]. Necessary and sufficient optimality conditions for mean-field forward-backward stochastic dif-
ferential equations with jumps (FBSDEJs) have been established by Hafayed, Tabet and Boukaf [29].
General mean-field maximum principle was introduced in Buckdahn, Djehiche and Li [10]. Under
the conditions that the control domains are convex, a various local maximum principle have been
studied in [5, 49]. Second-order maximum principle for optimal stochastic control for mean-field
jump diffusions was proved in Hafayed and Abbas [26]. Necessary and sufficient conditions for con-
trolled jump diffusion with recent application in bicriteria mean-variance portfolio selection problem
have been proved in Shen and Siu [51]. Recently, maximum principle for mean-field jump-diffusions
stochastic delay differential equations and its applications to finance have been investigated in Yang,
Meng and Shi [52]. A linear quadratic optimal control problem for mean-field stochastic differential
equations has been studied in Yong [67]. In Buckdahn, Djehiche, Li and Peng [8] a general notion
of mean-field backward stochastic differential equation (BSDE) associated with mean-field SDE is
obtained in a natural way as a limit of some high dimensional system of FBSDEs governed by a
d−dimensional Brownian motion, and influenced by positions of a large number of other particles.
Mean-field games for large population multiagent systems with Markov jump parameters have been
investigated in Wang and Zhang [56].

Stochastic maximum principle for optimal continuous control for classical FBSDEs has been in-
vestigated by many authors, see e.g. [24, 68, 9, 61]. The near-optimal stochastic control problem
for jump diffusions has been investigated by Hafayed, Abbas and Veverka [21]. The near-optimality
necessary and sufficient conditions for controlled FBSDEJs with applications to finance have been
investigated in Hafayed, Veverka and Abbas [28]. A survey on Markovian jump systems has been
investigated by Shi and Li [59]. The stochastic finite-time state estimation for discrete time-delay
neural networks with Markovian jumps have been studied in Shi, Zhang and Agarwal [60].

The stochastic singular control problems have received considerable research attention in recent
years due to wide applicability in a number of different areas, see for instance [2, 12, 20, 63, 22, 3, 64,
65, 4, 44]. In most classical cases, the optimal singular control problem was investigated through dy-
namic programming principle. The first version of maximum principle for singular stochastic control
problems was obtained by Cadenillas and Haussmann [12]. In Dufour and Miller [13], the authors
derived stochastic maximum principle where the singular part has a linear form. For this type of
singular control problem, the reader may consult the works by Haussmann and Suo [34] and the list
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of references therein. The necessary and sufficient conditions for near-optimal singular control was
obtained by Hafayed Abbas and Veverka [20]. Stochastic maximum principle for optimal control
problems of forward backward systems involving impulse controls has been studied in Wu and Zhang
[63]. The necessary and sufficient conditions of near-optimality for singular control for jump diffu-
sion processes have been investigated in Hafayed and Abbas [22]. Necessary and sufficient conditions
for near-optimal mixed singular jump control have been proved in Hafayed and Abbas [22]. A good
account on stochastic optimal control for jump diffusions and mixed singular stochastic control in
Poisson jump problems with applications in finance can be found in Alvarez and Rakkolainen [3] and
recently in ∅ksendal and Sulem [64, 65]. A combined singular stochastic control and optimal stop-
ping in the jump-diffusion model was studied in An [4]. Some cases of mixed singular-jump control
problems when the payoff functional does not depend explicitly on the control have been investigated
in Menaldi and Rebin [44].

Our main goal in this work is to study a new class of mixed regular-singular optimal stochastic
control of systems governed by McKean-Vlasov FBSDEJs, where the coefficients of the system and
the performance functional depend not only on the state process but also its marginal law of the
state process through its expected value. Necessary and sufficient conditions for the optimal regular-
singular control are established for McKean-Vlasov FBSDEJs. The McKean-Vlasov mixed control
problem under consideration is not simple extension from the mathematical point of view, but also
provides an interesting models in many applications such as mathematical finance, where the singular
components of the control means the interventions. The convexity of the control state space allows to
use an argument of convex perturbation for both continuous and singular parts of our control process
in order to deduce the stochastic maximum principle. In order to illustrate the study motivation and
application background of this optimal intelligent control strategy, we present an example of a utility
maximization problem.

Example 4.1.1. Suppose that we are given a mathematical market consisting of two investment
possibilities:
(i) Bond: The first asset is a risk-free security whose price S0(t) evolves according to the ordinary
differential equation

dS0 (t) = S0 (t) ρ(t)dt, t ∈ [0, T ] , S0 (0) > 0, (204)

where ρ (·) : [0, T ]→ R+ is a locally bounded continuous deterministic function.
(ii) Stock: a risky security where the price S1 (t) at time t is given by

dS1 (t) = ς(t)S1 (t) dt+ σ(t)S1 (t) dW (t) +

∫
Θ

A (t, θ)N (dθ, dt) , S1 (0) > 0, (205)

In order to ensure that S1 (t) > 0 for all t ∈ [0, T ] we assume
(1) The functions ς(·) : [0, T ] → R, σ(·) : [0, T ] → R are bounded continuous deterministic maps
such that

ς(t), σ(t) 6= 0 and ς(t)− ρ(t) > 0, ∀t ∈ [0, T ].

(2) A (t, θ) > −1 for any θ ∈ Θ and any t ∈ [0, T ].
(3)
∫

Θ
A2 (t, θ)m(dθ) is bounded.
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Let xu,ξ(0) = a > 0 be an initial wealth and G ≥ 0. By combining (204) and (205), we introduce the
wealth dynamics

dxu,ξ(t) =
[
ρ(t)xu,ξ(t) + (ς(t)− ρ(t))u(t)

]
dt+ σ(t)u(t)dW (t)

+
∫

Θ
A (t, θ)u(t)N (dθ, dt)−Gdξ(t),

−dyu,ξ(t) =
[
ρ(t)xu,ξ(t) + (ς(t)− ρ(t))u(t)− αyu,ξ(t)

]
dt− zu,ξ(t)dW (t)

−
∫

Θ
ru,ξ (t, θ)N (dθ, dt) + βdξ(t),

xu,ξ(0) = a, yu,ξ(T ) = xu,ξ(T ).

(206)

More precisely, for any admissible control (u(·), ξ(·)) the utility functional is given by

J (u(·), ξ(·)) =
δ

2
V ar(xu,ξ(T ))− E(xu,ξ(T )) + yu,ξ(0) + E

∫
[0,T ]

M(t)dξ(t). (207)

By a simple computation, we shows that

J (u(·), ξ(·)) = E

[
δ

2
xu,ξ(T )2 − xu,ξ(T )

]
− δ

2

[
E(xu,ξ(T ))

]2
+ yu,ξ(0) +E

∫
[0,T ]

M(t)dξ(t). (208)

This is a time-inconsistent optimal control problem in the sense that it does not satisfy Bellman’s
optimality principle and therefore the usual dynamic programming approach fails.

The rest of this work is structured as follows. The assumptions, notations and some basic defini-
tions are given in Section 2. Sections 3 and 4 are devoted to prove our main results. As an illustration,
mean-variance portfolio selection problem: time-inconsistent solution is discussed in the last section.

19. Assumptions and statement of the mixed control problem
In this work, we study mixed stochastic optimal control problems of McKean-Vlasov type of the fol-
lowing kind. Let T > 0 be a fixed time horizon and (Ω,F, (Ft)t∈[0,T ] ,P) be a fixed filtered probability
space equipped with a P−complete right continuous filtration on which a one−dimensional Brownian
motion W = (W (t))t∈[0,T ] is defined. Let η be a homogeneous Ft-Poisson point process independent

of W . We denote by Ñ(dθ, dt) the random counting measure induced by η, defined on Θ × R+,
where Θ is a fixed nonempty subset of R with its Borel σ−field B (Θ). Further, let m (dθ) be the
local characteristic measure of η, i.e. m (dθ) is a σ-finite measure on (Θ,B (Θ)) with m (Θ) < +∞.
We then define N(dθ, dt) := Ñ(dθ, dt)−m (dθ) dt, where N (·, ·) is Poisson martingale measure on
B (Θ) × B (R+) with local characteristics m (dθ) dt. We assume that (Ft)t∈[0,T ] is P−augmentation

of the natural filtration (F(W,N)
t )t∈[0,T ] defined as follows

F(W,N)
t := FWt ∨ σ

{∫ s

0

∫
A

N(dθ, dr) : 0 ≤ s ≤ t, A ∈ B (Θ)

}
∨G0,

where FWt := σ {W (s) : 0 ≤ s ≤ t}, G0 denotes the totality of P−null sets, and F1 ∨ F2 denotes the
σ-field generated by F1 ∪ F2.
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We consider the following controlled nonlinear McKean-Vlasov coupled forward-backward stochas-
tic differential equations which are governed both by Brownian motions and an independent Poisson
random measure of the form:

dxu,ξ(t) = f(t, xu,ξ(t), µx,u,ξ(t), u(t))dt+ σ(t, xu,ξ(t), µx,u,ξ(t), u(t))dW (t)

+ C(t)dξ(t) +
∫

Θ
γ(t, xu,ξ(t−), µx,u,ξ(t−), u(t), θ)N (dθ, dt) , t ∈ [0, T ] ,

dyu,ξ(t) = g(t, xu,ξ(t), µx,u,ξ(t), yu,ξ(t), µy,u,ξ(t), zu,ξ(t), µz,u,ξ(t), u(t))dt

+ zu,ξ(t)dW (t) +D(t)dξ(t) +
∫

Θ
ru,ξ (t, θ)N (dθ, dt) ,

xu,ξ(0) = a, yu,ξ(T ) = h(xu,ξ(T ), µx,u,ξ(T )),

µx,u,ξ(t) : Probability distribution of xu,ξ(t),

µy,u,ξ(t) : Probability distribution of yu,ξ(t),

µz,u,ξ(t) : Probability distribution of zu,ξ(t),

(209)

where f, σ, γ, g, h, C andD are measurable given maps and the initial condition a is an F0−measurable
random variable. The main new purpose here is the introduction of the combined singular control
in McKean-Vlasov forward-backward stochastic system with random Poisson jumps. In particular
this control might be discontinuous and it is necessary to distinguish between the jumps coming
from the jump Poisson measure in the McKean-Vlasov forward-backward dynamics (209) and those
from the interventions of controls. Noting that McKean-Vlasov FBSDEJs-(209) occur naturally in
the probabilistic analysis of financial optimization problems and the optimal control of dynamics of
the McKean-Vlasov type. Moreover, the above mathematical McKean-Vlasov approaches play an
important role in different fields of economics, finance, physics, chemistry and game theory. For
example, one may think of a biological, chemical or physical, interacting particle system in which
each particle moves in the space according to the dynamics described by McKean-Vlasov FBSDEJs-
(209) with (µx,u,ξ(t), µy,u,ξ(t), µz,u,ξ(t)) being replaced by the empirical measure:

µx,u,ξN (t) ,
1

N

N∑
j=1

δxu,ξj (t), µ
y,u,ξ
N (t) ,

1

N

N∑
j=1

δyu,ξj (t), and µz,u,ξN (t) ,
1

N

N∑
j=1

δzu,ξj (t),

of N−particles (xu,ξ1 (t), yu,ξ1 (t), zu,ξ1 (t)), ..., (xu,ξN (t), yu,ξN (t), zu,ξN (t)) at time t. According to McKean-
Vlasov theory, (see, McKean [45], Ahmed [1]), under proper conditions, the empirical measure-
valued processes (µx,u,ξN (t), µy,u,ξN (t), µz,u,ξN (t)) converges in probability as N goes to infinity to a
deterministic measure-valued function (µx,u,ξ(t), µy,u,ξ(t), µz,u,ξ(t)) which corresponds to the prob-
ability distribution of the processes determined by the McKean-Vlasov FBSDEJs-(209).

The cost functional on the time interval [0, T ] is defined by

J (u(·), ξ(·))

, E
{∫ T

0

∫
Θ

`
(
t, xu,ξ(t), µx,u,ξ(t), yu,ξ(t), µy,u,ξ(t), zu,ξ(t), µz,u,ξ(t) , ru,ξ (t, θ) , u(t)

)
m (dθ) dt

+φ(xu,ξ(T ), µx,u,ξ(T )) + ϕ(yu,ξ(0), µy,u,ξ(0)) +

∫
[0,T ]

M(t)dξ(t)
}
, (210)
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where `, φ, ϕ and M are an appropriate functions. This cost functional is also of McKean-Vlasov
type, as the functions `, φ, ϕ depend on the marginal law of the state process through its expected
value. It is worth mentioning that since the cost functional J is possibly a nonlinear function of the
expected value stands in contrast to the standard formulation of a control problem. This leads to so
called time-inconsistent control problem where the Bellman dynamic programming does not hold.
The reason for this is that one cannot apply the law of iterated expectations on the cost functional.
Noting that in most cases, the classical singular control problem (without McKean-Vlasov terms) was
studied through dynamic programming principle. This is a type of a control problem which, it seems,
has not been studied before.

An admissible control (u∗(·), ξ∗(·)) is called optimal if it satisfies

J (u∗(·), ξ∗(·)) , inf
(u(·),ξ(·))∈U1×U2([0,T ])

J (u(·), ξ(·)) . (211)

The corresponding state processes, solution of Eq-(209), is denoted by (x∗(·), y∗(·), z∗(·), r∗(·, ·))
= (xu

∗,ξ∗(·), yu∗,ξ∗(·), zu∗,ξ∗(·), ru∗,ξ∗(·, ·)).
For convenience, we will use the following notation in this work. L2

F ([0, T ] ;R) denotes the Hilbert
space of Ft−adapted processes such that E

(∫ T
0
|x(t)|2 dt

)
< +∞ and M2

F ([0, T ] ;R) denotes
the Hilbert space of Ft− predictable processes (ψ (t, θ))t∈[0,T ] defined on [0, T ] × Θ such that
E
∫ T

0

∫
Θ
|ψ (t, θ)|2m(θ)dt < +∞. For a differentiable function Φ we denote by OxΦ(t) its gradi-

ent with respect to the variable x. To simplify our notation, we suppress ”w” in f(t, w, x, µx,u,ξ, u)
and write f(t, x, µx,u,ξ, u) for f(t, w, x, µx,u,ξ, u) etc. Since the purpose of this work is to study opti-
mal combined stochastic control for McKean-Vlasov systems, we give here the precise definition of
the singular part of an admissible control.

Definition 4.2.1. An admissible control is a pair (u(·), ξ(·)) of measurable U1 × U2−valued,
FWt −adapted processes, such that:
1. ξ(·) is of bounded variation, non-decreasing continuous on the left with right limits and ξ(0−) = 0.
2. E

[
supt∈[0,T ] |u(t)|2 + |ξ(T )|2

]
<∞.

Notice that the jumps of a singular control ξ(·) at any jumping time tj denote by ∆ξ(tj) , ξ(tj) −
ξ(tj−) and we define the continuous part of the singular control by

ξ(c)(t) , ξ(t)−
∑

0≤tj≤t

∆ξ(tj),

i.e., the process obtained by removing the jumps of ξ(t).
We denote U1×U2 ([0, T ]) the set of all admissible controls. Since dξ(t) may be singular with respect
to Lebesgue measure dt, we call ξ(·) the singular part of the control and the process u(·) its absolutely
continuous part.
Throughout this work, we distinguish between the jumps caused by the singular control ξ(·) and the
jumps caused by the random Poisson measure at any jumping time t.

Definition 4.2.2. We define the jumps of xu,ξ(t) and yu,ξ(t) caused by the singular control ξ(·) by

∆ξx
u,ξ(t) , C(t)∆ξ(t) = C(t)(ξ(t)− ξ(t−)),

∆ξy
u,ξ(t) , D(t)∆ξ(t) = D(t)(ξ(t)− ξ(t−)),
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and we define the jumps of xu,ξ(t) and yu,ξ(t) caused by the Poisson measure of Ñ(θ, t) by

∆
N
xu,ξ(t) ,

∫
Θ

γ
(
t, xu,ξ(t−), µx,u,ξ(t−), u(t−), θ

)
Ñ (dθ, {t})

,

{
γ
(
t, xu,ξ(t−), µx,u,ξ(t−), u(t−), θ

)
: if η has a jump of size θ at t.

0 : otherwise

∆
N
yu,ξ(t) ,

∫
Θ

ru,ξ (t, θ) Ñ (dθ, {t}) ,

,

{
ru,ξ (t, θ) : if η has a jump of size θ at t.
0 : otherwise,

where Ñ (dθ, {t}) means the jump in the Poisson random measure, occurring at time t

Definition 4.2.3. The general jump of the state processes xu,ξ(·), yu,ξ(·) at any jumping time t is given
by (see Figure 1.)

∆xu,ξ(t) , xu,ξ(t)− xu,ξ(t−) = ∆ξx
u,ξ(t) + ∆

N
xu,ξ(t).

∆yu,ξ(t) , yu,ξ(t)− yu,ξ(t−) = ∆ξy
u,ξ(t) + ∆

N
yu,ξ(t).

In this work, we also assume that the coefficients f, σ, g, `, γ, h, ϕ, φ, C,D andM satisfy the following
standing assumptions:
Condition (H1) The functions f, σ, `, γ, g, h, φ, ϕ are continuously differentiable in their variables
including (x, x̃, y, ỹ, z, z̃, r, u).
Condition (H2) (i) The derivatives of f, σ, g, φ, γ with respect to their variables includ-
ing (x, x̃, y, ỹ, z, z̃, r, u) are bounded, and

∫
Θ

(|Oxγ (t, x, x̃, u, θ)|2 + |Ox̃γ (t, x, x̃, u, θ)|2 +

|Ouγ (t, x, x̃, u, θ)|2)m (dθ) < +∞.
(ii) The derivatives of f, σ, g, γ, ` with respect to (x, x̃, y, ỹ, z, z̃, r, u) are dominated by C(1 + |x| +
|x̃|+ |y|

+ |ỹ| + |z| + |ỹ| + |r| + |u|). Moreover, ϕy, ϕỹ are bounded by C (1 + |y|+ |ỹ|) and hx, hx̃ are
bounded by C (1 + |x|+ |x̃|) .
(iii) For all t ∈ [0, T ] , f(t, 0, 0, 0), g(t, 0, 0, 0, 0, 0, 0, 0, 0) ∈ L2

F ([0, T ] ;R) , σ(t, 0, 0, 0) ∈
L2

F ([0, T ] ;R× R) , and γ(t, 0, 0, 0, ·) ∈M2
F ([0, T ] ;R) .

Conditions (H3) The functions C : [0, T ]→ R, D : [0, T ]→ R and M : [0, T ]→ R+ are continuous
and bounded.
Under conditions (H1)∼(H3), the FBSDEJ-(209) has an unique solution
(xu,ξ (·) , yu,ξ (·) , zu,ξ (·) , ru,ξ(·, ·))
∈ L2

F ([0, T ] ;R)× L2
F ([0, T ] ;R)× L2

F ([0, T ] ;R)× L2
F ([0, T ] ;R) such that

xu,ξ(t) = a+

∫ t

0

f
(
s, xu,ξ(s), µx,u,ξ(s), u(s)

)
ds+

∫ t

0

σ(s, xu,ξ(s), µx,u,ξ(s)), u(s))dW (s)

+

∫ t

0

∫
Θ

γ
(
s, xu,ξ(s−), µx,u,ξ(s−), u(s), θ

)
N (dθ, ds) +

∫
[0,t]

C(s)dξ(s),
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Figure 1. Region and type of Jumps

and for t ∈ [0, T ]

yu,ξ(t) = yu,ξ(T )−
∫ T

t

∫
Θ

g(s, xu,ξ(s), µx,u,ξ(s), yu,ξ(s), µy,u,ξ(s), zu,ξ(s)

, µz,u,ξ(s), ru,ξ (t, θ) , u(s))m (dθ) ds+

∫ T

t

zu,ξ(s)dW (s) +

∫ T

t

∫
Θ

ru,ξ (s, θ)N (dθ, ds)

+

∫
[t,T ]

D(s)dξ(s).

Since the coefficients C and D are continuous and bounded, the existence and uniqueness can be
proved similar to ([51], Lemma 3.1 and Theorem 3.1).

Adjoint equations. We introduce the new adjoint equations involved in the stochastic max-
imum principle for our mixed singular-jump McKean-Vlasov control problem (209)-(210).

For simplicity of notation, we will still useOxf(t) ,
∂f

∂x
(t, xu,ξ(·), µx,u,ξ(·), u(·)), and

Oxg(t, θ) ,
∂g

∂x
(t, x(t), µx,u,ξ(t), y(t), µy,u,ξ(t), z(t), µz,u,ξ(·), r (t, θ) , u(t)) etc. So for any
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admissible control (u(·), ξ(·)) ∈ U1 × U2 ([0, T ]) and the corresponding state trajectory
(xu,ξ (·) , yu,ξ (·) , zu,ξ (·) , ru,ξ(·, ·)) , (x (·) , y (·) , z (·) , r(·, ·)), we consider the following adjoint
equations of McKean-Vlasov type, which are independent to singular control. In what follows, we
simply write µx,u,ξ(t) = E(xu,ξ(t)) etc.

dΦu(t) = −{Oxf (t) Φu(t) + E(Ox̃f (t) Φu(t)) + Oxσ (t)Qu(t) + E [Ox̃σ (t)Qu(t)]

+
∫

Θ
[Oxg(t, θ)Ku(t) + E (Ox̃g(t, θ)Ku(t)) + Oxγ (t, θ)Ru (t, θ)

+ E (Ox̃γ(t, θ)Ru (t, θ)) + Ox`(t, θ) + E(Ox̃`(t, θ))]m (dθ)}dt

+Qu(t)dW (t) +
∫

Θ
Ru (θ, t)N (dθ, dt) ,

Φu(T ) = −{Oxh (T )Ku(T ) + E [(Ox̃h (T ))Ku(T )]}+ Oxφ(T ) + E(Ox̃φ(T )).

−dKu(t) =
∫

Θ
[Oyg (t, θ)Ku(t) + E (Oỹg (t, θ)Ku(t)) + Oy`(t, θ) + E (Oỹ` (t, θ))]m (dθ) dt

+
∫

Θ
[Ozg(t, θ)Ku(t) + E (Oz̃g(t, θ)Ku(t)) + Oz`(t, θ) + E (Oz̃` (t, θ))]m (dθ) dW (t)

−
∫

Θ
[Org(t, θ)Ku(t) + Or`(t, θ)]N(dθ, dt)

Ku(0) = −{Oyϕ (y(0), E (y(0))) + E [Oỹϕ (y(0), E (y(0)))]} .
(212)

Note that the first adjoint equation (backward) corresponding to the forward component turns out to
be a linear McKean-Vlasov backward SDE with jumps, and the second adjoint equation (forward)
corresponding to the backward component turns out to be a linear McKean-Vlasov forward SDE with
jumps.
We define the Hamiltonian functionH : [0, T ]×R×R×R×R×R×R×R×U1×R×R×R×R→ R,
associated with the singular stochastic control problem (209)-(210) as follows

H (t, x, x̃, y, ỹ, z, z̃, u, r(·),Φ(·), Q(·), K(·), R(·, ·)) = −Φu(t)f (t, x, x̃, u)−Qu(t)σ (t, x, x̃, u)

−
∫

Θ
[Ku(t)g (t, x, x̃, y, ỹ, z, z̃, r(·), u) +Ru (t, θ) γ (t, x, x̃, u, θ)) + ` (t, x, x̃, y, ỹ, z, z̃, r(·), u)]m (dθ) .

(213)
If we denote by H(t) := H(t, x(t), x̃(t), y(t), ỹ(t), z(t), z̃(t), r(t, ·), u(t),Φ(t), Q(t), K(t), R(t, ·)),
then the adjoint equation (212) can be rewritten as the following stochastic Hamiltonian system:

dΦu(t) = {Hx (t) + E [Hx̃ (t)]} dt+Q(t)dW (t) +
∫

Θ
R (t, θ)N (dθ, dt) ,

Φu(T ) = −{hx (T )Ku(T ) + E [(hx̃ (T ))Ku(T )]}+ φx(T ) + E(φx̃(T )).

−dKu(t) = [Hy (t) + E (Hỹ (t))] dt+ [Hz (t) + E (Hz̃ (t))] dW (t)

−
∫

Θ
[gr(t, θ)K

u(t) + `r(t, θ)]N(dθ, dt)

Ku(0) = −{ϕy (y(0), E (y(0))) + E [ϕỹ (y(0), E (y(0)))]}.

(214)

It is a well known fact that under assumptions (H1) and (H2), the adjoint equations (212) or
(214) admits a unique solution (Φu(t), Qu(t), Ku(t), Ru(t, ·)) ∈ L2

F([0, T ] ;R) × L2
F([0, T ] ;R) ×

L2
F([0, T ] ;R) × M2

F([0, T ] ;R). Moreover, since the derivatives of f, σ, γ, g, h, ϕ, φ with respect to
(x, x̃, y, ỹ, z, z̃, r) are bounded, we deduce from standard arguments that there exists a constant C > 0
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such that

E

[
sup
t∈[0,T ]

|Φu(t)|2 + sup
t∈[0,T ]

|Ku(t)|2 +

∫ T

0

|Qu(t)|2 dt+

∫ T

0

∫
Θ

|Ru (t, θ)|2m (dθ) dt

]
< C. (215)

20. Necessary conditions for optimal mixed continuous-singular
control of McKean-Vlasov FBSDEJs

In this section, we establish a set of necessary conditions for a stochastic singular control to be optimal
where the system evolves according to controlled McKean-Vlasov FBSDEJs. Convex perturbation
techniques for both continuous and singular parts are applied to derive our McKean-Vlasov stochastic
maximum principle.
The following theorem constitutes the main contribution of this work.
Let (x∗(·), y∗(·), z∗(·), r∗(·, ·)) be the solution of the McKean-Vlasov FBSDEJs-(209) and
(Φ∗(·), Q∗(·), K∗(·), R∗(·, ·)) be the solution of adjoint equation (212) corresponding to the optimal
singular control (u∗(·), ξ∗(·)) .
Theorem 4.3.1. (Necessary condition for optimal mixed control in Integral form). Let Conditions
(H1), (H2) and (H3) hold. If (u∗(·), ξ∗(·)) and (x∗(·), y∗(·), z∗(·), r∗(·, ·)) is an optimal solution of
the McKean-Vlasov singular control problem (209)-(210). Then the maximum principle holds, that is
for all (u, ξ) ∈ U1 × U2 :

0 ≤ E
∫ T

0
OuH(t, λ∗(t, θ), E(λ∗(t, θ)), u∗,Λ∗(t, θ))(u− u∗(t))dt

+E
∫

[0,T ]
(M(t) + C(t)Φ∗(t) +D(t)K∗(t))d (ξ − ξ∗) (t),

a.e., t ∈ [0, T ] ,

(216)

where (λ∗(t, θ), E(λ∗(t, θ))) , (x∗(t), E(x∗(t)), y∗(t), E(y∗(t)), z∗(t), E(z∗(t)), r∗(t, θ)) and
Λ∗(t, θ) , (Φ∗(t), Q∗(t), K∗(t), R∗(t, θ)).
To prove Theorem 3.1 we need some preliminary results given in the following Lemmas.
We derive the variational inequality (216) in several steps, from the fact that

J (u∗(·), ξ∗(·)) ≤ J (uε(·), ξε(·)) , (217)

where (uε(·), ξε(·)) is the so called convex perturbation of optimal control (u∗(·), ξ∗(·)) defined as
follows

uε(t) = u∗(t) + ε (u(t)− u∗(t)) and ξε(t) = ξ∗(t) + ε (ξ(t)− ξ∗(t)) ,
where ε ∈ [0, 1] is sufficiently small, (u(·), ξ(·)) is an arbitrary element of Ft−measurable random
variable with values in U1 × U2 which we consider as fixed from now on.
We emphasize that the convexity of U1 × U2 has the consequence that the perturbed control
(uε(·), ξε(·)) ∈ U1 × U2 ([0, T ]) where

(uε(t), ξε(t)) = (u∗(t), ξ∗(t)) + ε [(u(t), ξ(t))− (u∗(t), ξ∗(t))] .
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Variational equations. Now, we introduce the following new variational equations which have
a McKean-Vlasov type. Let (xε1(·), yε1(·), zε1(·), rε1(·, ·)) be the solution of the following forward-
backward stochastic system described by Brownian motions and Poisson jumps of McKean-Vlasov
type

dxε1(t) = {fx(t)xε1(t) + fx̃(t)E (xε1(t)) + fu(t)u(t))} dt

+ {σx(t)xε1(t) + σx̃(t)E (xε1(t)) + σu(t)u(t)} dW (t)

+
∫

Θ
[γx(t, θ)x

ε
1(t) + γx̃(t, θ)E (xε1(t)) + γu(t, θ)u(t)]N(dθ, dt)

+ C(t)dξ(t), xε1(0) = 0,

dyε1(t) =
∫

Θ
{gx(t, θ)xε1(t) + gx̃(t, θ)E(xε1(t)) + gy(t, θ)y

ε
1(t) + gỹ(t, θ)E(yε1(t))

+ gz(t, θ)z
ε
1(t) + gz̃(t, θ)E(zε1(t)) + gr(t, θ)r

ε
1(t, θ) + gu(t, θ)u(t)}m(dθ)dt

+ zε1(t)dW (t)−
∫

Θ
rε1(t, θ)N(dθ, dt) +D(t)dξ(t)

yε1(T ) = [hx(T ) + E (hx̃(T )))]xε1(T ).

(218)

Duality relations. Our first Lemma below deals with the duality relations between Φ∗(t), xε1(t) and
K∗(t), yε1(t). This Lemma is very important for the proof of our main result.

Lemma 4.3.1. We have

E (Φ∗(T )xε1(T ))

= E
∫ T

0

[
Φ∗(t)fu(t)u(t) +Q∗(t)σu(t)u(t) +

∫
Θ
R∗(t, θ)γu(t, θ)u(t)m(dθ)

]
dt

− E
∫ T

0

∫
Θ
{xε1(t)gx(t, θ)K

∗(t) + xε1(t)E(gx̃(t, θ)K
∗(t)) + xε1(t)`x(t, θ)

+ xε1(t)E(`x̃(t, θ))}m(dθ)dt+ E
∫

[0,T ]
Φ∗(t)C(t)dξ(t),

(219)

similarly, we get

E (K∗(T )yε1(T )) = −E {[ϕy (0) + E (ϕỹ (0))] yε1(0)}

+E
∫ T

0

∫
Θ
{K∗(t)gx(t, θ)xε1(t) +K∗(t)gx̃(t, θ)E (xε1(t))

+K∗(t)gu(t, θ)u(t))− yε1(t)`y(t, θ)− yε1(t)E(`ỹ(t, θ))

−zε1(t)`z(t, θ)− zε1(t)E(`z̃(t, θ))

−rε1(t, θ)`r(t, θ)}m(dθ)dt+ E
∫

[0,T ]
K∗(t)D(t)dξ(t),

(220)

and

E {[φx(T ) + E(φx̃(T ))]xε1(T )}+ E {[ϕy (0) + E (ϕỹ (0))] yε1(0)}

= −E
∫ T

0

∫
Θ
{xε1(t)`x(t, θ) + xε1(t)E(`x̃(t, θ)) + yε1(t)`y(t, θ) + yε1(t)E(`ỹ(t, θ))

+ zε1(t)`z(t, θ) + zε1(t)E(`z̃(t, θ)) +rε1(t, θ)`r(t, θ) + `u(t, θ)u(t)}m(dθ)dt

+ E
∫ T

0
Hu(t)u(t)dt+ E

∫
[0,T ]

[Φ∗(t)C(t) +K∗(t)D(t)] dξ(t).

(221)
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Proof.
Proof of duality relation (219). By applying integration by parts formula for Poisson jump processes
to Φ∗(t)xε1(t), we get

E (Φ∗(T )xε1(T ))

= E
∫ T

0
Φ∗(t)dxε1(t) + E

∫ T
0
xε1(t)dΦ∗(t)

+ E
∫ T

0
Q∗(t) [σx(t)x

ε
1(t) + σx̃(t)E (xε1(t)) + σu(t)u(t)] dt

+ E
∫ T

0

∫
Θ

[γx(t, θ)x
ε
1(t) + γx̃(t, θ)E(xε1(t)) + γu(t, θ)u(t)]R(t, θ)m(dθ)dt

= I1(ε) + I2(ε) + I3(ε) + I4(ε).

(222)

A simple computation shows that

I1(ε) = E
∫ T

0
Φ∗(t)dxε1(t) = E

∫ T
0
{Φ∗(t)fx(t)xε1(t) + Φ∗(t)f

x̃
(t)E (xε1(t))

+ Φ∗(t)fu (t)u(t)} dt+ E
∫

[0,T ]
Φ∗(t)C(t)dξ(t),

(223)

and

I2(ε) = E
∫ T

0
xε1(t)dΦ∗(t)

= −E
∫ T

0
{xε1(t)fx (t) Φ∗(t) + xε1(t)E (fx̃(t)Φ

∗(t))

+xε1(t)σx (t)Q∗(t) + xε1(t)E (σx̃(t)Q
∗(t))

+
∫

Θ
[xε1(t)gx (t, θ)K∗(t) + xε1(t)E (gx̃(t, θ)K

∗(t))

+xε1(t)γx (t, θ)R (t, θ) + xε1(t)E(γx̃ (t, θ)R (t, θ))

+ xε1(t)`x(t, θ) + xε1(t)E(`x̃(t, θ))m (dθ)]} dt.

(224)

By standard arguments, we get

I3(ε) = E

∫ T

0

Q∗(t)σx(t)x
ε
1(t)dt+E

∫ T

0

Q∗(t)σx̃(t)E (xε1(t)) dt+E

∫ T

0

Q∗(t)σu(t)u(t)dt, (225)

and

I4(ε) = E
∫ T

0

∫
Θ
γx(t, θ)x

ε
1(t)R(t, θ)m(dθ)dt+ E

∫ T
0

∫
Θ
γx̃(t, θ)E(xε1(t))R(t, θ)m(dθ)dt

+ E
∫ T

0

∫
Θ
γu(t, θ)u(t)R(t, θ)m(dθ)dt.

(226)

The duality relation (219) follows immediately from combining (222)∼(226).

Proof of duality relation (220). Let us turn to second duality relation (220). By applying integration
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by parts formula for Poisson jump process to K∗(t)yε1(t), we get

E (K∗(T )yε1(T ))

= E (K∗(0)yε1(0)) + E
∫ T

0
K∗(t)dyε1(t) + E

∫ T
0
yε1(t)dK∗(t)

− E
∫ T

0

∫
Θ
zε1(t)[gz(t, θ)K

∗(t) + E (gz̃(t, θ)K
∗(t))

+ `z(t, θ) + E (`z̃ (t, θ))]m (dθ) dt

− E
∫ T

0

∫
Θ

[rε1(t, θ)(gr(t, θ)K
∗(t) + `r(t, θ))]m(dθ)dt.

= Ĩ1(ε) + Ĩ2(ε) + Ĩ3(ε) + Ĩ4(ε) + Ĩ5(ε).

(227)

From (219) we obtain

Ĩ2(ε) = E
∫ T

0
K∗(t)dyε1(t)

= E
∫ T

0

∫
Θ
{K∗(t)gx(t, θ)xε1(t) +K∗(t)gx̃(t, θ)E (xε1(t))

+K∗(t)gy(t, θ)y
ε
1(t)

+K∗(t)gỹ(t, θ)E (yε1(t)) +K∗(t)gz(t, θ)z
ε
1(t) +K∗(t)gz̃(t, θ)E (zε1(t))

+K∗(t)gr(t, θ)r
ε
1(t, θ) + K∗(t)gu(t, θ)u(t)}m(dθ)dt

+E
∫

[0,T ]
K∗(t)D(t)dξ(t),

(228)

from (212) we obtain

Ĩ3(ε) = E
∫ T

0
yε1(t)dK∗(t)

= −E
∫ T

0

∫
Θ
yε1(t)gy (t, θ)K∗(t) + yε1(t)E (gỹ(t, θ)K

∗(t))

+ yε1(t)`y(t, θ) + yε1(t)E (`ỹ (t, θ))}m(dθ)dt,

(229)

and
Ĩ4(ε) = −E

∫ T
0

∫
Θ

[zε1(t)gz(t, θ)K
∗(t) + zε1(t)E (gz̃(t, θ)K

∗(t))

+ zε1(t) `z(t, θ) + zε1(t)E (`z̃ (t, θ))]m(dθ)dt

Ĩ5(ε) = −E
∫ T

0

∫
Θ

[rε1(t, θ)gr(t, θ)K
∗(t) + rε1(t, θ)`r(t, θ)]m(dθ)dt.

(230)

Since Ĩ1(ε) = E (K∗(0)yε1(0)) = −E {[ϕy (0) + E (ϕỹ (0))] yε1(0)} , the duality relation (220) fol-
lows immediately by combining (227)∼(230).

Proof of duality relation (221). Combining (219) and (220) we get

E (Φ∗(T )xε1(T )) + E (K∗(T )yε1(T ))

= −E {[ϕy (0) + E (ϕỹ (0))] yε1(0)} − E
∫ T

0

∫
Θ

{xε1(t)`x(t, θ) + xε1(t)E(`x̃(t, θ)) + yε1(t)`y(t, θ)

+ yε1(t)E(`ỹ(t, θ)) + `u(t, θ)u(t) + zε1(t)`z(t, θ) + zε1(t)E(`z̃(t, θ)) + rε1(t, θ)`r(t, θ)}m(dθ)dt

+ E

∫ T

0

Hu(t)u(t)dt+ E

∫
[0,T ]

[Φ∗(t)C(t) +K∗(t)D(t)] dξ(t).
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From (214) and (218), we get

E (Φ∗(T )xε1(T )) + E (K∗(T )yε1(T )) = E {[φx(T ) + E(φx̃(T ))]xε1(T )} ,

which implies that

E {[φx(T ) + E(φx̃(T ))]xε1(T )}+ E {[ϕy (0) + E (ϕỹ (0))] yε1(0)}

= −E
∫ T

0

∫
Θ

{xε1(t)`x(t, θ) + xε1(t)E(`x̃(t, θ)) + yε1(t)`y(t, θ) + yε1(t)E(`ỹ(t, θ))

+ zε1(t)`z(t, θ) + zε1(t)E(`z̃(t, θ)) + rε1(t, θ)`r(t, θ) + `u(t, θ)u(t)}m(dθ)dt

+ E

∫ T

0

Hu(t)u(t)dt+ E

∫
[0,T ]

[Φ∗(t)C(t) +K∗(t)D(t)] dξ(t).

This completes the proof of (221). �
To this end we give the following estimations.

Lemma 4.3.2. Under Assumptions (H1) and (H3), the following estimations holds

E( sup0≤t≤T |xε1(t)|2)→ 0, as ε→ 0,

E( sup0≤t≤T |yε1(t)|2) + E
∫ T

0
[|zε1(s)|2 +

∫
Θ
|rε1(s, θ)|2m(dθ)]ds→ 0, as ε→ 0,

(231)

sup0≤t≤T |E (xε1(t))|2 → 0, as ε→ 0,

sup0≤t≤T |E (yε1(t))|2 +
∫ T
t
|E (zε1(s))|2 ds+

∫ T
0

∫
Θ
|E (rε1(s, θ))|2m(dθ)ds→ 0, as ε→ 0,

(232)
E( sup0≤t≤T |xε(t)− x∗(t)|

2)→ 0, as ε→ 0,

E( sup0≤t≤T |yε(t)− y∗(t)|
2) + E

∫ T
0
|zε(t)− z∗(t)|2 dt

+E
∫ T

0

∫
Θ
|rε(t, θ)− r∗(t, θ)|2m(dθ)dt→ 0, as ε→ 0,

(233)

and

E( sup0≤t≤T

∣∣∣∣1ε [xε(t)− x∗(t)]− xε1(t)

∣∣∣∣2)→ 0, as ε→ 0.

E( sup0≤t≤T

∣∣∣∣1ε [yε(t)− y∗(t)]− yε1(t)

∣∣∣∣2)→ 0, as ε→ 0.

E
∫ T

0

∣∣∣∣1ε [zε(s)− z∗(s)]− zε1(s)

∣∣∣∣2 ds→ 0, as ε→ 0.

E
∫ T

0

∫
Θ

∣∣∣∣1ε [rε(s, θ)− r∗(s, θ)]− rε1(s, θ)

∣∣∣∣2m(dθ)ds→ 0, as ε→ 0.

(234)

Let us also point out that the above estimates can be proved by using similar arguments developed in
(Lemma 3.2 [24]), so we omit its proofs.
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Lemma 4.3.3. Let Assumptions (H1) and (H3) hold. The following variational inequality holds

τ (ε) ≤ E

∫ T

0

∫
Θ

[`x(t, θ)x
ε
1(t) + `x̃(t, θ)E [xε1(t)] + `y(t, θ)y

ε
1(t) + `ỹ(t, θ)E [yε1(t)]

+ `z(t, θ)z
ε
1(t) + `z̃(t, θ)E [zε1(t)] + `r(t, θ)r

ε
1(t, θ) + `u(t, θ)u(t)]m(dθ)dt

+ E [(φx(T )xε1(T ) + φx̃(T )E (xε1(T )))] + E [(ϕy(0)yε1(0) + ϕỹ(0)E (yε1(0)))]

+ E

∫
[0,T ]

M(t)d(ξ − ξ∗)(t).

Proof. From (217) we have

J (u(·), ξ(·))− J (u∗(·), ξ∗(·))

= E
{∫ T

0

∫
Θ

[`(t, xu,ξ(t), E(xu,ξ(t)), yu,ξ(t), E(yu,ξ(t)), zu,ξ(t), E(zu,ξ(t)), ru,ξ (t, θ) , u(t))

−`(t, x∗(t), E(x∗(t)), y∗(t), E(y∗(t)), z∗(t), E(z∗(t)), r∗ (t, θ) , u∗(t)]m (dθ) dt

+ [φ (x(T ), E(x(T )))− φ (x∗(T ), E(x∗(T )))] + [ϕ (y(0), E (y(0)))− ϕ (y∗(0), E (y∗(0)))]

+
∫

[0,T ]
M(t)d (ξ(t)− ξ∗(t))

}
≥ 0,

(235)
by applying Tylor’s formula, we have

1

ε
E {(φ(xε(T ), x̃ε(T ))− φ(x∗(T ), x̃∗(T ))}

=
1

ε
E

{∫ 1

0

φx(x
∗(T ) + λ [xε(T )− x∗(T )] , x̃∗(T ) + λ [x̃ε(T )− x̃∗(T )])dλ (xε(T )− x∗(T ))

+

∫ 1

0

φx̃(x
∗(T ) + λ [xε(T )− x∗(T )] , x̃∗(T ) + λ [x̃ε(T )− x̃∗(T )])dλ (x̃ε(T )− x̃∗(T )))

}
+ τ(ε).

From estimate (234), we get

1

ε
E {(φ(xε(T ), x̃ε(T ))− φ(x∗(T ), x̃∗(T ))}

→ E[ (φx(x
∗(T ), x̃∗(T ))xε1(T ) + φx̃(x

∗(T ), x̃∗(T ))E (xε1(T )))]

= E [(φx(T )xε1(T ) + φx̃(T )E (xε1(T )))] , as ε→ 0.

(236)

Similarly, we obtain

1

ε
E {(ϕ(yε(0), ỹε(0))− ϕ(y∗(0), ỹ∗(0))} (237)

−→ E {(ϕy(y∗(0), ỹ∗(0))yε1(0) + ϕỹ(y
∗(0), ỹ∗(0))E (yε1(0)))}

= E [(ϕy(0)yε1(0) + ϕỹ(0)E (yε1(0)))] , as ε→ 0.
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and

1

ε
E
∫ T

0

∫
Θ

[`(t, xε(t), E(xε(t)), yε(t), E(yε(t)), zε(t), E(zε(t)), rε (t, θ) , uε(t))

−`(t, x∗(t), E(x∗(t)), y∗(t), E(y∗(t)), z∗(t), E(z∗(t)), r∗ (t, θ) , u∗(t))]m (dθ) dt

→ E
∫ T

0

∫
Θ

[`x(t, θ)x
ε
1(t) + `x̃(t, θ)E [xε1(t)] + `y(t, θ)y

ε
1(t) + `ỹ(t, θ)E [yε1(t)]

+`z(t, θ)z
ε
1(t) + `z̃(t, θ)E [zε1(t)] + `r(t, θ)r

ε
1(t, θ) + `u(t, θ)u(t)]m(dθ)dt, as ε→ 0.

(238)

The desired result follows by combining (235)∼(238). This complete the proof of Lemma 3.3 �
Proof of Theorem 3.1. The desired result follows immediately from ((221) Lemma 3.2) and Lemma
3.3. �

21. Sufficient conditions for optimal mixed control of McKean-
Vlasov FBSDEJs

The sufficient condition of optimality is of significant importance in the stochastic maximum principle
for computing optimal controls. In this section, we will prove that under some additional hypotheses,
the maximality condition on the Hamiltonian function is a sufficient condition for optimality.

Conditions (H4). We assume:
(i) The functional H (t, ·, ·, ·, ·, ·, ·, ·, ·,Φ∗(t), Q∗(t), K∗(t), R∗(·, ·)) is convex with respect to
(x, x̃, y, ỹ, z, z̃, r, u) for a.e.t ∈ [0, T ] , P− a.s.
(ii) The maps φ (·, ·) , ϕ (·, ·) are convex with respect to (x, x̃) and h(·, ·) is concave with respect to
(x, x̃) .

Now we are able to state and prove the sufficient conditions for optimality for our control problem
(209)−(210), which is the main result of this work. Let (u∗(·), ξ∗(·)) be a given admissible control,
(x∗(·), y∗(·), z∗(·), r∗(·, ·)) and (Φ∗ (·) , Q∗ (·) , K∗ (·) , R∗(·, ·)) be the solution to (209) and (212) re-
spectively, associated with (u∗(·), ξ∗(·)).
Theorem 4.4.1. Let conditions (H1)-(H4) hold. If for any (u(·), ξ(·)) ∈ U1×U2 ([0, T ]) the following
maximality relation holds

E
∫ T

0
Hu(t, λ

∗(t, θ), E(λ∗(t, θ)), u∗,Λ∗(t, θ))(u− u∗(t))dt ≥ 0,

E
∫

[0,T ]
(M(t) + C(t)Φ∗(t) +D(t)K∗(t))d (ξ − ξ∗) (t) ≥ 0,

a.e., t ∈ [0, T ] ,

(239)

then we have
inf

(u(·),ξ(·))∈U1×U2([0,T ])
J (u(·), ξ(·)) = J (u∗(·), ξ∗(·)) . (240)

i.e., the regular-singular admissible control (u∗(·), ξ∗(·)) ∈ U1 × U2 ([0, T ]) is an optimal control.
To prove Theorem 4.1, we need the following auxiliary result, which deals with the duality re-

lations between Φ∗(t), [x(t)− x∗(t)] and K∗(t), [y(t)− y∗(t)] . This Lemma is very important for
proving our sufficient maximum principle.
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Lemma 4.4.1. Let (x(·), y(·), z(·), r(·, ·)) be the solution of state McKean-Vlasov FBSDEJs-(209)
corresponding to any admissible control (u(·), ξ(·)). We have

E [Φ∗(T ) (x(T )− x∗(T ))] = E
∫ T

0
Φ∗(t) [f(t, x(t), E(x(t)), u(t)) − f(t, x∗(t), E(x∗(t)), u∗(t))] dt

+ E
∫ T

0
H∗x(t) (x(t)− x∗(t)) dt+ E

∫ T
0
E[H∗x̃(t)] (E(x(t))− E(x∗(t)))dt

+ E
∫ T

0
Q∗(t) [σ(t, x(t), E(x(t)), u(t)) − σ(t, x∗(t), E(x∗(t)), u∗(t))] dt

+ E
∫ T

0

∫
Θ
R∗(t, θ) [γ (t, x(t), E(x(t), u(t), θ)− γ (t, x∗(t), E(x∗(t), u∗(t), θ)]m(dθ)dt

+ E
∫

[0,T ]
Φ∗(t)C(t)d(ξ(t)− ξ∗(t)).

(241)
Similarly

E [K∗(T ) (y(T )− y∗(T ))] = −E (ϕy (y(0), E (y(0))) (y∗(0)− y(0)))

− E (ϕỹ (y(0), E (y(0)))) (E (y∗(0))− E (y(0)))

+ E
∫ T

0

∫
Θ
K∗(t) {g(t, λ(t, θ), E(λ(t, θ)), u(t))− g(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t))}m (dθ) dt

+ E
∫ T

0
Hy(t) (y(t)− y∗(t)) dt+ E

∫ T
0
E(Hỹ(t)) (E(y(t))− E(y∗(t))))dt

+ E
∫ T

0
H∗z (t) (z(t)− z∗(t)) dt+ E

∫ T
0
E(H∗z̃ (t)) (E(z(t))− E(z∗(t))) dt

+ E
∫ T

0

∫
Θ
H∗r (t) [r(t, θ)− r∗(t, θ)]m (dθ) dt+ E

∫
[0,T ]

K∗(t)D(t)d(ξ(t)− ξ∗(t)),
(242)

and

E [Φ∗(T ) (x(T )− x∗(T ))] + E [K∗(T ) (y(T )− y∗(T ))]

+E (ϕy (y(0), E (y(0))) (y∗(0)− y(0))) + E[ϕỹ (y(0), E (y(0)))] (E (y∗(0))− E (y(0)))

= E
∫ T

0
Φ∗(t)(f(t, x(t), E(x(t)), u(t)− f(t, x∗(t), E(x∗(t)), u∗(t)))dt

+E
∫ T

0
Q∗(t)[σ(t, x(t), E(x(t)), u(t))− σ(t, x∗(t), E(x∗(t)), u∗(t))]dt

+E
∫ T

0

∫
Θ
K∗(t)[g(t, λ(t, θ), E(λ(t, θ)), u(t)))− g(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t))]m (dθ) dt

+E
∫ T

0
H∗x(t) (x(t)− x∗(t)) dt+ E

∫ T
0
E [H∗x̃(t)] (E(x(t))− E(x∗(t)))dt

+E
∫ T

0
H∗y (t) (y(t)− y∗(t)) dt+ E

∫ T
0
E(H∗ỹ (t)) (E(y(t))− E(y∗(t))))dt

+E
∫ T

0
H∗z (t) (z(t)− z∗(t)) dt+ E

∫ T
0
E(H∗z̃ (t)) (E(z(t))− E(z∗(t))) dt

+E
∫ T

0

∫
Θ
H∗r (t) [r(t, θ)− r∗(t, θ)]m (dθ) dt+ E

∫
[0,T ]

[Φ∗(t)C(t) +K∗(t)D(t)] d(ξ(t)− ξ∗(t)),
(243)

Proof. First, by simple computations, we get

d (x(t)− x∗(t)) = [f(t, x(t), E(x(t)), u(t))− f(t, x∗(t), E(x∗(t)), u∗(t))] dt

+ [σ(t, x(t), E(x(t)), u(t))− σ(t, x∗(t), E(x∗(t)), u∗(t)] dW (t)

+
[∫

Θ
(γ(t, x(t), E(x(t)), u(t), θ)− γ(t, x∗(t), E(x∗(t)), u∗(t), θ))

]
N(dθ, dt)

+ C(t)d(ξ(t)− ξ∗(t)),

(244)
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d (y(t)− y∗(t)) =
∫

Θ
[g(t, λ(t, θ), E(λ(t, θ)), u(t))− g(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t))]dt

+ (z(t)− z∗(t)) dW (t) +
∫

Θ
[r(t, θ)− r∗(t, θ)]N(dθ, dt)

+D(t)d(ξ(t)− ξ∗(t)).
(245)

By applying integration by parts formula to Φ∗(t) (x(t)− x∗(t)) and the fact that x(0) − x∗(0) = 0,
we get

E {Φ∗(T ) (x(T )− x∗(T ))} = E
∫ T

0
Φ∗(t)d (x(t)− x∗(t)) + E

∫ T
0

(x(t)− x∗(t)) dΦ∗(t)

+E
∫ T

0
Q∗(t)[σ(t, x(t), E(x(t)), u(t))− σ(t, x∗(t), E(x∗(t)), u∗(t))]dt

+E
∫ T

0

∫
Θ
R∗(t, θ) [γ(t, x(t), E(x(t)), u(t), θ)− γ(t, x∗(t), E(x∗(t)), u∗(t), θ)]m (dθ) dt

= I1 + I2 + I3 + I4.
(246)

From (244), we obtain

I1 = E
∫ T

0
Φ∗(t)d (x(t)− x∗(t))

= E
∫ T

0
Φ∗(t)[f(t, x(t), E(x(t)), u(t))− f(t, x∗(t), E(x∗(t)), u∗(t))]dt

+ E
∫ T

0
Φ∗(t)C(t)d(ξ(t)− ξ∗(t)),

(247)

similarly, by applying (214), we get

I2 = E
∫ T

0
(x(t)− x∗(t)) dΦ∗(t)

= E
∫ T

0
(x(t)− x∗(t)) [H∗x(t) + E(H∗x̃(t))]dt

= E
∫ T

0
H∗x(t) (x(t)− x∗(t)) dt+

∫ T
0
E(H∗x̃(t)) (E(x(t))− E(x∗(t)))dt.

(248)

By standard arguments, we obtain

I3 = E

∫ T

0

Q∗(t)[σ(t, x(t), E(x(t)), u(t))− σ(t, x∗(t), E(x∗(t)), u∗(t))]dt, (249)

and

I4 = E

∫ T

0

∫
Θ

R∗(t, θ) [γ(t, x(t), E(x(t), u(t), θ)− γ(t, x∗(t), E(x∗(t), u∗(t), θ)]m (dθ) dt. (250)

The duality relation (241) follows from combining (247)∼(250) together with (246).
Let us turn to second duality relation (242). By applying integration by parts formula to
K∗(t) [y∗(t)− y(t)] , we get

E (K∗(T ) (y∗(T )− y(T ))) = E {K∗(0) (y∗(0)− y(0))}
+ E

∫ T
0
K∗(t)d (y(t)− y∗(t)) + E

∫ T
0

(y(t)− y∗(t)) dK∗(t)
+ E

∫ T
0

(z(t)− z∗(t)) [H∗z (t) + E(H∗z̃ (t))]dt

+ E
∫ T

0

∫
Θ
H∗r (t) [r(t, θ)− r∗(t, θ)]m (dθ) dt

= I1 + I2 + I3 + I4 + I5.

(251)
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Let us turn to the first term I2. From (245) we get

I2 = E
∫ T

0
K∗(t)d (y(t)− y∗(t))

= E
∫ T

0

∫
Θ
K∗(t)[g(t, λ(t, θ), E(λ(t, θ)), u(t))− g(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t))]m (dθ) dt

+ E
∫

[0,T ]
K∗(t)D(t)d(ξ(t)− ξ∗(t)),

(252)
from (214), we obtain

I3 = E
∫ T

0
(y(t)− y∗(t)) dK∗(t) = E

∫ T
0

(y(t)− y∗(t)) (H∗y (t) + E(H∗ỹ (t)))dt

= E
∫ T

0
H∗y (t) (y(t)− y∗(t)) dt+ E

∫ T
0
E(H∗ỹ (t)) (E(y(t))− E(y∗(t))))dt.

(253)

I4 = E
∫ T

0
(z(t)− z∗(t)) [H∗z (t) + E(H∗z̃ (t))] dt

= E
∫ T

0
H∗z (t) (z(t)− z∗(t)) dt+ E

∫ T
0
E(H∗z̃ (t)) (E(z(t))− E(z∗(t))) dt,

(254)

and

I5 = E

∫ T

0

∫
Θ

H∗r (t) [r(t, θ)− r∗(t, θ)]m (dθ) dt. (255)

From (212) and the fact that

I1 = E {K∗(0) (y∗(0)− y(0))}

= −E
{

[ϕy (y(0), E (y(0))) + E(ϕỹ(y(0), E (y(0)))] (y∗(0)− y(0))
}

= −E [ϕy (y(0), E (y(0))) (y∗(0)− y(0))]− E(ϕỹ (y(0), E (y(0))))[E (y∗(0))− E(y(0))],
(256)

the duality relation (242) follows immediately by combining (252)∼(256) together with (251). Fi-
nally, inequality (243) follows from combining (241) and (242). �

Proof of Theorem 4.4.1. Let (x(·), y(·), z(·), r (·, ·)) be the solution of the state equation (209)
and (Φ (·) , Q (·) , K (·) , R (·, ·)) be the solution of the adjoint equation (212), corresponding to
(u(·), ξ(·)) ∈ U1 × U2 ([0, T ]) .

By concavity of H (t, ·, ·, ·, ·, ·, ·, ·, ·,Φ∗(t), Q∗(t), K∗(t), R∗(t, θ)) with respect to
(x, x̃, y, ỹ, z, z̃, r, u), we obtain

H(t, λ(t, θ), E(λ(t, θ)), u(t),Φ∗(t), Q∗(t), K∗(t), R∗(t, θ))

−H(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t),Φ∗(t), Q∗(t), K∗(t), R∗(t, θ))

≥ H∗x(t)(x(t)− x∗(t)) + E(H∗x̃(t))(E(x(t)− x∗(t))) +H∗y (t)(y(t)− y∗(t))

+E(H∗ỹ (t))(E(y(t)− y∗(t))) +H∗z (t)(z(t)− z∗(t))) + E(H∗z̃ (t))(E(z(t)− z∗(t)))
+
∫

Θ
H∗r (t)(r(t, θ)− r∗(t, θ)))m (dθ) +H∗u(t)(u(t)− u∗(t)).
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Integrating this inequality with respect to t and taking expectations, with the help of (239) we get

E
∫ T

0
(H(t, λ(t, θ), E(λ(t, θ)), u(t),Φ∗(t), Q∗(t), K∗(t), R∗(t, θ))

−H(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t),Φ∗(t), Q∗(t), K∗(t), R∗(t, θ)))dt

≥ E
∫ T

0

{
H∗x(t)(x(t)− x∗(t)) + E(H∗x̃(t))(E(x(t)− x∗(t))) +H∗y (t)(y(t)− y∗(t))

+E(H∗ỹ (t))(E(y(t)− y∗(t))) +H∗z (t)(z(t)− z∗(t))) + E(H∗z̃ (t))(E(z(t)− z∗(t)))

+
∫

Θ
H∗r (t)(r(t, θ)− r∗(t, θ)))m (dθ)

}
dt.

(257)

Now, using (243) in Lemma 4.3.1 and definition of the Hamiltonian (213) and the fact that

E
∫ T

0
[H(t, λ(t, θ), E(λ(t, θ)), u(t),Φ∗(t), Q∗(t), K∗(t), R∗(t, θ))

−H(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t),Φ∗(t), Q∗(t), K∗(t), R∗(t, θ))]dt

= E
∫ T

0
Φ∗(t)(f(t, x(t), E(x(t)), u(t)− f(t, x∗(t), E(x∗(t)), u∗(t)))dt

+E
∫ T

0
Q∗(t)[σ(t, x(t), E(x(t)), u(t))− σ(t, x∗(t), E(x∗(t)), u∗(t))]dt

+E
∫ T

0

∫
Θ
K∗(t)[g(t, λ(t, θ), E(λ(t, θ)), u(t)))− g(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t))]m (dθ) dt

+E
∫ T

0

∫
Θ
R∗(t, θ)[γ(t, x(t), E(x(t)), u(t), θ))− γ(t, x∗(t), E(x∗(t)), u∗(t), θ))]m (dθ) dt

+E
∫ T

0

∫
Θ

[`(t, λ(t, θ), E(λ(t, θ)), u(t)))− `(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t))]m (dθ) dt,

we get

E [Φ∗(T ) (x(T )− x∗(T ))] + E [K∗(T ) (y(T )− y∗(T ))]

+E (ϕy (y(0), E (y(0))) (y∗(0)− y(0))) + E[ϕỹ (y(0), E (y(0)))] (E (y∗(0))− E (y(0)))

+E
∫ T

0

∫
Θ

[`(t, λ(t, θ), E(λ(t, θ), u(t)))− `(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t))]m (dθ) dt

−E
∫

[0,T ]
[Φ∗(t)C(t) +K∗(t)D(t)] d(ξ(t)− ξ∗(t))

= E
∫ T

0
[H(t, λ(t, θ), E(λ(t, θ)), u(t),Φ∗(t), Q∗(t), K∗(t), R∗(t, θ)))

−H(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t),Φ∗(t), Q∗(t), K∗(t), R∗(t, θ)))]dt

+E
∫ T

0
H∗x(t) (x(t)− x∗(t)) dt+ E

∫ T
0
E [H∗x̃(t)] (E(x(t))− E(x∗(t)))dt

+E
∫ T

0
H∗y (t) (y(t)− y∗(t)) dt+ E

∫ T
0
E(H∗ỹ (t)) (E(y(t))− E(y∗(t))))dt

+E
∫ T

0
H∗z (t) (z(t)− z∗(t)) dt+ E

∫ T
0
E(H∗z̃ (t)) (E(z(t))− E(z∗(t))) dt

+E
∫ T

0

∫
Θ
H∗r (t) (r(t, θ)− r∗(t, θ))m (dθ) dt,

(258)
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combining (257), (258) we get

E [Φ∗(T ) (x(T )− x∗(T ))] + E [K∗(T ) (y(T )− y∗(T ))]

+E (ϕy (y(0), E (y(0))) (y∗(0)− y(0))) + E[ϕỹ (y(0), E (y(0)))] (E (y∗(0))− E (y(0)))

+E
∫ T

0

∫
Θ

[`(t, λ(t, θ), E(λ(t, θ)), u(t)))− `(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t))]m (dθ) dt

−E
∫

[0,T ]
[Φ∗(t)C(t) +K∗(t)D(t)] d(ξ(t)− ξ∗(t)) ≥ 0,

by the fact that E
∫

[0,T ]
[M(t) + Φ∗(t)C(t) +K∗(t)D(t)] d(ξ(t)− ξ∗(t)) ≥ 0 (see (239))

E [Φ∗(T ) (x(T )− x∗(T ))] + E [K∗(T ) (y(T )− y∗(T ))] + E (ϕy (y(0), E (y(0))) (y(0)− y∗(0)))

+E[ϕỹ (y(0), E (y(0)))] (E (y(0))− E (y∗(0)))

+E
∫ T

0

∫
Θ

[`(t, λ(t, θ), E(λ(t, θ)), u(t)))− `(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t))]m (dθ) dt

+E
∫

[0,T ]
M(t)d(ξ(t)− ξ∗(t)) ≥ 0.

Since Φ(T ) = −{hx (T )K(T ) + E [(hx̃ (T ))K(T )]} + φx(T ) + E(φx̃(T )) and y(T ) =
h (x(T ), E (x(T ))) we get

−E [{hx (T )K∗(T ) + E [(hx̃ (T ))K∗(T )]} (x(T )− x∗(T ))]

+E[(φx(T ) + E(φx̃(T ))) (x(T )− x∗(T ))]

+E [K∗(T ) (h (x(T ), E (x(T )))− h (x∗(T ), E (x∗(T ))))]

+E (ϕy (y∗(0), E (y∗(0))) (y(0)− y∗(0))) + E[ϕỹ (y∗(0), E (y∗(0)))] (E (y(0))− E (y∗(0)))

+E
∫ T

0

∫
Θ

[`(t, λ(t, θ), E(λ(t, θ)), u(t))− `(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t))]m (dθ) dt

+E
∫

[0,T ]
M(t)d(ξ(t)− ξ∗(t)) ≥ 0,

(259)
from the concavity of h(·, ·), the convexity of φ(·, ·) and ϕ(·, ·), we get

0 ≤ E
∫ T

0

∫
Θ

[`(t, λ(t, θ), E(λ(t, θ)), u(t))− `(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t))]m (dθ) dt

+E [φ (x(T ), E(x(T )))− φ (x∗(T ), E(x∗(T )))] + E [ϕ (y(0), E (y(0)))− ϕ (y∗(0), E (y∗(0)))]

+E
∫

[0,T ]
M(t)d (ξ(t)− ξ∗(t)) .

(260)
Combining (259) and (260) and the fact that

J (u(·), ξ(·))− J (u∗(·), ξ∗(·))

= E
{∫ T

0

∫
Θ

[`(t, λ(t, θ), E(λ(t, θ)), u(t))− `(t, λ∗(t, θ), E(λ∗(t, θ)), u∗(t))]m (dθ) dt

+ [φ (x(T ), E(x(T )))− φ (x∗(T ), E(x∗(T )))] + [ϕ (y(0), E (y(0)))− ϕ (y∗(0), E (y∗(0)))]

+
∫

[0,T ]
M(t)d (ξ(t)− ξ∗(t))

}
,
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we get
J (u(·), ξ(·)) ≥ J (u∗(·), ξ∗(·)) .

Finally, since (u(·), ξ(·)) is an arbitrary admissible control of U1 × U2 ([0, T ]), we have

J (u∗(·), ξ∗(·)) = inf
(u(·),ξ(·))∈U1×U2([0,T ])

J (u(·), ξ(·)) ,

the desired result follows. �

22. Application: mean-variance portfolio selection problem with
interventions control

It is well known that mean-variance portfolio selection problem introduced by Markowitz [43] is a
time-inconsistent control problem, in the sense that it does not satisfy Bellman’s optimality principle
and therefore the usual dynamic programming approach fails. In this section, we will apply our time-
inconsistent maximum principle of optimality to study mean-variance portfolio selection problem
mixed with a recursive utility functional optimization in a financial market involving singular control.

We first come back to Example 1 and solve the optimal regular-singular control problem (206)-
(208). We note that the cost functional (208) becomes a time-inconsistent control problem. Let
U1×U2 be a compact convex subset of R × R. We denote U1 × U2 ([0, T ]) the set of admissible
Ft−predictable portfolio strategies (u (·) , ξ(·)) valued in U1×U2.
Now, we start our attempt to solve our mean-variance portfolio selection problem mixed with a recur-
sive utility functional, time-inconsistent solutions, (206)-(208) by writing down the Hamiltonian and
the adjoint processes for this system. The Hamiltonian functional (213) gets the form

H (t, x, x̃, y, ỹ, z, z̃, r(·), u,Φ, Q,K,R(·, ·))

= [ρ(t)x(t) + (ς(t)− ρ(t))u(t)] (Φ(t) +K(t))

+ σ(t)u(t)Q(t)− αK(t)y(t) +
∫

Θ
A (t, θ)u(t)R (t, θ)m (dθ) .

According to the maximum condition ((216), Theorem 3.1), and since (u∗(·), ξ∗(·)) is optimal we
immediately get

(ς(t)− ρ(t)) (Φ∗(t) +K∗(t)) + σ(t)Q∗(t) +

∫
Θ

A (t, θ)R∗ (t, θ)m (dθ) = 0. (261)

The adjoint equation (212) being
dΦ∗(t) = −ρ(t) (K∗(t) + Φ∗(t)) dt+Q∗(t)dW (t) +

∫
Θ
R∗ (t, θ)N (dθ, dt) .

Φ∗(T ) = δ (x∗(T ) + E(x∗(T )))− 1−K∗(T ),

dK∗(t) = −αK∗(t)dt, K∗(0) = −1, t ∈ [0, T ] .

(262)
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In order to solve the above equation (262) and to find the expression of optimal portfolio strategy
(u∗(·), ξ∗(·)) we conjecture a process Φ∗(t) of the form

Φ∗(t) = ψ1(t)x∗(t) + ψ2(t)E (x∗(t)) + ψ3(t), (263)

where ψ1(·), ψ2(·) and ψ3(·) are deterministic differentiable functions. (See Hafayed and Abbas [17],
Hafayed [23], Li [49], Anderson and Djehiche [5], for other models of conjecture). From last equation
in (262), which is a simple ordinary differential equation (ODE in short), we get immediately

K∗(t) = − exp (−αt) . (264)

Noting that from (206), we get

d(E(x∗(t)) = {ρ(t)E(x∗(t)) + (ς(t)− ρ(t))E(u∗(t))} dt.

Applying Itô’s formula to (263) (see Hafayed [24], Lemma 3.5, Appendix) in virtue of SDE-(206),
we get

dΦ∗(t) = ψ1(t) {[ρ(t)x∗(t) + (ς(t)− ρ(t))u∗(t)] dt+ σ(t)u∗(t)dW (t)

+
∫

Θ
A (t−, θ)u

∗(t)N (dθ, dt)
}

+ x∗(t)ψ′1(t)dt

+ ψ2(t) [ρ(t)E(x∗(t)) + (ς(t)− ρ(t))E(u∗(t))] dt+ E (x∗(t))ψ′2(t)dt+ ψ′3(t)dt,

which implies that

dΦ∗(t) = {ψ1(t) [ρ(t)x∗(t) + (ς(t)− ρ(t))u∗(t)] + x∗(t)ψ′1(t)

+ ψ2(t) [ρ(t)E(x∗(t)) + (ς(t)− ρ(t))E(u∗(t))]

+ ψ′2(t)E (x∗(t)) + ψ′3(t)} dt+ ψ1(t)σ(t)u∗(t)dW (t)

+
∫

Θ
ψ1(t)A (t−, θ)u

∗(t)N (dθ, dt) ,

Φ∗(T ) = ψ1(T )x∗(T ) + ψ2(T )E (x∗(T )) + ψ3(T ),

(265)

where ψ′1(t), ψ′2(t), and ψ′3(t) denotes the derivatives with respect to t.
Next, comparing (265) with (262), we get

−ρ(t) (K∗(t) + Φ∗(t)) = ψ1(t) [ρ(t)x∗(t) + (ς(t)− ρ(t))u∗(t)] + x∗(t)ψ′1(t)

+ψ2(t) [ρ(t)E(x∗(t)) + (ς(t)− ρ(t))E(u∗(t))] + ψ′2(t)E (x∗(t)) + ψ′3(t),
(266)

Q∗(t) = ψ1(t)σ(t)u∗(t), (267)

R∗(t, θ) = ψ1(t)A (t, θ)u∗(t). (268)

By looking at the terminal condition of Φ∗(t), in (265), it is reasonable to get

ψ1(T ) = δ, ψ2(T ) = −δ, ψ3(T ) = −1−K∗(T ). (269)
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Combining (266) and (263) we deduce that ψ1(·), ψ2(·) and ψ3(·) satisfying the following ordinary
differential equation 

ψ′1(t) = −2ρ(t)ψ1(t), ψ1(T ) = δ,

ψ′2(t) = −2ρ(t)ψ2(t), ψ2(T ) = −δ,

ψ′3(t) + ρ(t)ψ3(t) = ρ(t) exp {−αt} ,

ψ3(T ) = exp {−αT} − 1.

(270)

By solving the first two equations in (270) we obtain

ψ1(t) = −ψ2(t) = δ exp

{
2

∫ T

t

ρ(s)ds

}
. (271)

Using Integrating factor method for the third equation in (270), we get

ψ3(t) = χ(t)−1

[
exp (−αT )− 1−

∫ T

t

χ(s)ρ(s) exp {−αs} ds

]
, (272)

where the integrating factor is χ(t) = exp(
∫ T
t
ρ(s)ds), χ(T ) = 1. Combining (261), (264), (267) and

(268) we get

u∗(t) = (ρ(t)− ς(t))ψ1(t) (x∗(t)− E(x∗(t))) + ψ3(t)− exp {−αt}
ψ1(t)

(
σ2(t) +

∫
Θ
A2 (t, θ)m (dθ)

) , (273)

and

E(u∗(t)) =
(ρ(t)− ς(t)) [ψ3(t)− exp {−αt}]
ψ1(t)

(
σ2(t) +

∫
Θ
A2 (t, θ)m (dθ)

) . (274)

Let ξ∗(·) satisfies the maximum condition (239), we get: for any η(·) ∈ U2 ([0, T ])

E

∫
[0,T ]

(M(t) +GΦ∗(t) + βK∗(t))d (η − ξ∗) (t) ≥ 0,

where (Φ∗(t), K∗(t)) is the adjoint processes corresponding to optimal control u∗(·).
Now, we define a set

B = {(w, t) ∈ Ω× [0, T ] : M(t) +GΦ∗(t) + βK∗(t) > 0} , (275)

and let η(·) ∈ U2 ([0, T ]) such that

dη(t) =

{
0 : if M(t) +GΦ∗(t) + βK∗(t) > 0,
dξ∗(t) : if M(t) +GΦ∗(t) + βK∗(t) ≤ 0.

(276)

By a simple computations it is easy to get

0 ≤ E

∫
[0,T ]

(M(t) +GΦ∗(t) + βK∗(t))d (η(t)− ξ∗(t))

= E

∫
[0,T ]

(M(t) +GΦ∗(t) + βK∗(t))IB(t, w)d (−ξ∗) (t)

= −E
∫

[0,T ]

(M(t) +GΦ∗(t) + βK∗(t))IB(t, w)dξ∗(t),
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this implies that ξ∗(·) satisfies for any t ∈ [0, T ] :

E

∫
[0,T ]

(M(t) +GΦ∗(t) + βK∗(t))IB(t, w)dξ∗(t) = 0.

Finally, from (275) and (276) we can easy shows that the optimal singular control ξ∗(·) has the form

ξ∗(t) = η(t) +

∫ t

0

I{(w,s)∈Ω×[0,T ]: M(s)+GΦ∗(s)+βK∗(s)≤0}(s, w)ds.

Finally, we give the explicit optimal portfolio section strategy in feedback form involving both x∗(·)
and E(x∗(·)).

Theorem 4.5.1 The optimal portfolio strategies (u∗ (·) , ξ∗(·)) of our mean-variance portfolio selec-
tion mixed with a recursive utility optimization problem involving singular control (206)-(208) is
given in the state feedback form by

u∗(t, x∗(t), E(x∗(t)) = (ρ(t)− ς(t))ψ1(t) (x∗(t)− E(x∗(t))) + ψ3(t)− exp {−αt}
ψ1(t)

(
σ2(t) +

∫
Θ
A2 (t, θ)m (dθ)

) ,

E(u∗(t, x∗(t), E(x∗(t))) = (ρ(t)− ς(t)) ψ3(t)− exp {−αt}
ψ1(t)

(
σ2(t) +

∫
Θ
A2 (t, θ)m (dθ)

) ,
ξ∗(t) = η(t) +

∫ t

0

I{(w,s)∈Ω×[0,T ]: M(s)+GΦ∗(s)+βK∗(s)≤0}(s, w)ds,

where ψ1(·) and ψ3(·) are given by (271), (272) respectively.

Conclusion. In this work, mixed stochastic optimal control problem for McKean-Vlasov FBSDEJs
has been formulated and discussed. Necessary and sufficient conditions of optimal control for sys-
tems governed by McKean-Vlasov FBSDEJs are proved by means of convex perturbation techniques
for both continuous and singular parts. In our combined singular McKean-Vlasov control problem
(209)-(210), there are two types of jumps for the state processes (xu,ξ(·), yu,ξ(·), zu,ξ(·), ru,ξ(·, ·)), the
inaccessible ones which come from the Poisson martingale measure N(·, ·) and the predictable ones
which come from the singular control part ξ(·). As an illustration, using these results, mean-variance
portfolio selection problem: time-inconsistent solution has been discussed. An open question is to
derive a general maximum principle for optimal singular control of McKean-Vlasov fully coupled
forward-backward stochastic differential equations with random Poisson jumps.
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Part VI

Appendix

The following result gives a case of the Itô formula for jump diffusions of mean-field type.

Lemma A1. Suppose that the processes x1(t) and x2(t) are given by: for j = 1, 2, t ∈ [s, T ] :

dxj(t) = f (t, xj(t), E(xj(t)), u(t)) dt+ σ (t, E(xj(t)), u(t)) dW (t)

+

∫
Θ

g
(
t, xj(t

−), E(xj(t)), u(t), θ
)
N (dθ, dt) ,

xj(s) = 0,

then we get

E (x1(T )x2(T )) = E

[∫ T

s

x1(t)dx2(t) +

∫ T

s

x2(t)dx1(t)

]
+E

∫ T

s

σ∗ (t, x1(t), E(x1(t)), u(t))σ (t, x2(t), E(x2(t)), u(t)) dt

+E

∫ T

s

∫
Θ

g∗ (t, x1(t), E(x1(t)), u(t), θ) g (t, x2(t), E(x2(t)), u(t), θ)µ(dθ)dt.

Applying a similar method as in [16, Lemma 2.1], for the proof of the above Lemma.

Proposition A2. [9, Appendix] Let G be the predictable σ−field on Ω × [0, T ], and f be a G ×
B (Θ)−measurable function such that

E

{∫ T

0

∫
Θ

|f (w, s, θ)|2 µ (dθ) ds

}
< +∞.

Then for all p ≥ 2 there exists a positive constant C = C (p, T, µ (Θ)) such that

E

{
sup
t∈[0,T ]

∣∣∣∣∫ t

0

∫
Θ

f (w, s, θ)N (ds, dθ)

∣∣∣∣p
}
≤ CE

{∫ T

0

∫
Θ

|f (w, s, θ)|p µ (dθ) ds

}
.
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