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ABSTRACT
Robust and multi-modal optimisation are two important topics that
have received significant attention from the evolutionary computa-
tion community over the past few years. However, the two topics
have usually been investigated independently and there is a lack of
work that explores the important intersection between them. This is
because there are real-world problems where both formulations are
appropriate in combination. For instance, multiple ‘good’ solutions
may be sought which are distinct in design space for an engineering
problem – where error between the computational model queried
during optimisation and the real engineering environment is be-
lieved to exist (a common justification formulti-modal optimisation)
– but also engineering tolerances may mean a realised design might
not exactly match the inputted specification (a robust optimisation
problem). This paper conducts a preliminary examination of such
intersections and identifies issues that need to be addressed for
further advancement in this new area. The paper presents initial
benchmark problems and examines the performance of combined
state-of-the-art methods from both fields on these problems.

CCS CONCEPTS
•Theory of computation→Evolutionary algorithms; •Com-
puting methodologies→ Uncertainty quantification;
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1 INTRODUCTION
Decision makers in design situations often prefer to have multi-
ple good (or optimal) solutions available before making a final
selection, a famous example of this is the Second Toyota Paradox
[15]. There are various reasons why returning multiple distinct
high-quality solutions to the problem owner may be advantageous
in real-world applications. Designs which are of the same/similar
quality but are markedly different in composition can offer useful
insight to the problem owner of the particular problem being solved.
They also provide mitigation against a number of implementation
risks such as: (1) some designs may not be directly/easily machin-
able; (2) sourcing components through the supply chain/required
factory configurations/additional machinery requirements impose
additional costs not initially envisaged; and (3) the computational
emulator of the cost function may be in error in certain regions,
thereby assigning some designs misleading quality during optimisa-
tion. Note that point (3) assumes embodied optimisation is not being
undertaken, as in e.g. [13], which would remove this particular risk,
but is often a relatively expensive optimisation route.

When multiple, distinct, good solutions are sought, the problem
is often cast as a multi-modal optimisation problem. Here, given the
feasible search domainX , and a local neighbourhood function N (x),
which returns the neighbours of a d-dimensional putative design x,
multi-modal optimisation seeks to return all high quality designs
which are also optimal in their neighbourhood (here ‘high quality’
may be defined in terms of global quality, or some quality threshold).
Intuitively, we can think of such optimisers as trying to find the
highest peaks in the fitness landscape. Multi-modal optimisation
has been an active research area in the evolutionary computation
(EC) community for a number of years now, with multi-modal
optimisation competitions (cast in terms of finding multiple distinct
global optima) running in a number of major conferences, and large
enough to require recent survey papers, see e.g. [10].

By contrast, robust optimisation deals with problems where the
realised performance of a design is uncertain. This may be e.g. due
to operating conditions varying (for instance an aircraft wing has to
performwell in a number of different environments and conditions),
or may be due to machining tolerances leading to variations in
manufactured designs (and therefore variation in performance).
In these situations the task is to find a design whose observed
performance is robust to the source of variation experienced in the
problem. This may be in terms of worst case expected performance,
average performance, etc. As with multi-modal optimisation, the
robust optimisation area has proved fruitful for the application of
EC approaches, and various test problems have been developed
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over the years, alongside the real-world application of developed
algorithms.

Curiously, the combination of both problems does not appear
to have been tackled. Such real-world problems, however, do in-
variably exist in many engineering design situations. This paper
proposes initial benchmark problems for robust multi-modal opti-
misation and evaluates the effectiveness of some state-of-the-art
multi-modal optimisers on these problems – both when applied in
an unmodified fashion, and when augmented with techniques used
for robust optimisation.

2 EXPERIMENTAL SETUP
As a first study of the intersection between the two topics of robust
and multi-modal optimisation, we integrate existing methods from
the robust field into multi-modal optimisation algorithms. We test
their performance on modified standard benchmarks from both
fields. Specifically, we examine the performance of two algorithms
from the field of evolutionary multi-modal optimisation which
have previously been ranked first in the IEEE CEC and GECCO
“Niching Methods for Multimodal Optimization" competitions: the
covariance matrix self-adaptation with repelling subpopulations
algorithm (RS-CMSA) [2] and the niching migratory multi-swarm
optimiser (NMMSO) [4].1 According to [2], RS-CMSA is the most
successful method on the CEC2013 benchmark problems [9] and
the second best optimiser is NMMSO. The NMMSO algorithm has
an interesting property – that of keeping track of all the modes as
opposed to keeping track of only the best mode seen so far, which
may prove useful when applied to the intersection of the two fields.
This property is particularly appealing since in robust settings, the
algorithm does not usually possess full information on the robust
landscape, instead having only a noisy approximation to it (thereby
inserting error into the quality evaluation of a mode).

There are various different robust quality measures used in the
literature, including worst case performance and 95% confidence.
Here we use the popular expected fitness measure, which we refer
to as the effective fitness, and aim to maximise. When the underlying
distribution of the disturbance is known, we can write the effective
fitness as feff(x) =

∫ ∞

−∞
f (x + δ )pdf(δ )dδ , where pdf(δ ) is the proba-

bility density function of the disturbance δ . Unfortunately, for most
practical problems an approximation must be made via numerical
integration for bounded disturbance, and where the function eval-
uation budget is limited, Monte Carlo sampling to estimate this
quality value becomes computationally infeasible. Instead various
approaches have been developed in the literature to exploit and
weight the previously evaluated designs in the disturbance set of
a proposed new design, along with determining new samples to
improve the estimate of feff(x), f̂eff(x), used by an optimiser to assign
the estimated robust quality to a design.

For both MMO algorithms, we incorporate the most recent ro-
bust optimisation method for generating f̂eff(x), namely archive
sample approximation (ASA) [3]. As with many of the robust meth-
ods [8, 12], ASA exploits the archive of already visited solutions
to obtain a more accurate estimate of feff. ASA works by taking
Latin hypercube samples (LHS), referred to as reference points,
in the disturbance neighbourhood of a solution, and the one that

1See e.g. http://www.epitropakis.co.uk/gecco2017/ for competition details.

minimises the Wasserstein distance between the disturbance neigh-
bourhood set and the target disturbance distribution is evaluated to
update the estimate of feff [3]. The points in the disturbance set are
then weighted by the number of their reference point’s neighbours.
RS-CMSA and NMMSO augmented with ASA works in exactly
the same way as their original versions apart from replacing f (x)
with f̂eff which is obtained using ASA, and keeping an archive of
all visited solutions for RS-CMSA. To better quantify the effect of
equipping the algorithms with an explicit mechanism for handling
robust optimisation (i.e. ASA), we ran both algorithms without ASA
and report the results obtained for these control experiments.

2.1 Test Problems
We study 13 test functions with different landscape properties, both
in relation to robustness and to multi-modality (see Table 1). All
problems are maximisation problems. Figure 1 shows visualisations
of the original test functions together with the transformed land-
scapes obtained after applying the disturbance distributions spec-
ified in Table 2. For additional visualisations of the test problems
up to d = 3, see the online supplementary material (http://pop-
project.ex.ac.uk). Test functions TP1-4 are inverted versions of their
original definitions in the robust literature, and are defined below.

TP1:

f1(x) = −

d∑
i=1

Q1(xi ), x ∈ [−2, 2]d

where

Q1(xi ) =



(xi + 1)2 − 1.4 + 0.8| sin(6.283xi )|
,−2 ≤ xi < 0,

−0.6 · 2−8 |xi−1 | − 0.958887 + 0.8| sin(6.283xi )|
, 0 ≤ xi ≤ 2,

0 , otherwise.

TP2:

f2(x) = −

(
d +

d∑
i=1

Q2(xi )

)
, x ∈ [0, 10]d

where

Q2(xi ) = 2 sin(10e−0.2xi xi )e−0.25xi .

TP3:

f3(x) =
1
d

d∑
i=1

Q3(xi ), x ∈ [0, 1]d

where

Q3(xi ) =



exp
(
−2 ln(2)

(
xi−0.1
0.8

)2)
| sin(5πxi )|0.5

, 0.4 < xi ≤ 0.6

exp
(
−2 ln(2)

(
xi−0.1
0.8

)2)
sin6(5πxi )

, otherwise.

TP4:

f4(x) =
1
d

d∑
i=1

Q4(xi ), x ∈ [0, 1]d ,

http://www.epitropakis.co.uk/gecco2017/


Robust Multi-Modal Optimisation GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

-2 -1 0 1 2

0

0.5

1

1.5

2

(a) TP 1

0 2 4 6 8 10
-3

-2

-1

0

1

(b) TP 2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

(c) TP 3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

(d) TP 4

0 10 20 30
0

50

100

150

200

(e) TP 5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

(f) TP 6

0 0.2 0.4 0.6 0.8 1
0

0.5

1

(g) TP 7

(h) TP 8 (i) TP 9 (j) TP 10

(k) TP 11 (l) TP 12 (m) TP 13

Figure 1: Test functions in 1-D and 2-D. Original and robust (effective) landscapes are plotted, together with the global optima
(purple squares on the original landscape; red stars on the robust landscape). In 1-D, the original landscape is plotted with
a blue-dashed line and the robust landscape with a solid black line. In 2-D, the original and robust landscapes are plotted as
upper and lower panels respectively, with the global optima for both landscapes marked on each plot.

where

Q4(xi ) =


0.5 exp

(
−0.5 (xi−0.4)

2

0.052
)
,xi < 0.4696;

0.6 exp
(
−0.5 (xi−0.5)

2

0.022
)
, 0.4696 ≤ xi ≤ 0.5304;

0.5 exp
(
−0.5 (xi−0.6)

2

0.052
)
, otherwise.

TP1-2 have been taken from [3], and test problems TP3-4 from
[12].2 We have modified the disturbances used for test functions
2Note that our definitions of TP1-4 fix typographical errors in [3, 12].
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Table 1: Different test problem categories with respect to the difference between the robust and original landscapes.

Category Description Test Problem
Identical Optima The robust and original global optima have identical locations in design space. TP13

Neighbourhood Optima Each robust global optimum lies in the neighbourhood/basin of an original
global/local optimum. TP2, TP6-9, TP10-12

Local-Global-Flip Each robust global optimum is a local optimum in the original landscape. TP1, TP3, TP5, TP10
Max-Min-Flip Each robust global maximum is a minimum in the original landscape. TP4

TP3-4 by modifying the disturbance bounds and changing the dis-
tributions from truncated normal distribution to uniform in order
to generate robust landscapes with different properties. TP1-4 have
rugged landscapes with local optima in both the original and robust
functions. They become more difficult to optimise with increased
d due to the scale-up in the number of local optima. In TP1 and
TP3, a local-global flip occurs where the global optimum of the
robust function is a local optimum in the original function. In TP2,
a weaker type of local-global flip occurs, in which the global opti-
mum of the robust function lies in the the basin of a local optimum
in the original function. In TP4, a max-min flip occurs where the
global maxima of the robust function are minima of the original
function. Note that for TP2 and TP3, since the robust optimum
lies directly over a local optimum in the original function – which
has a much wider basin than the original global optimum – it may
be found without the use of robust optimisation measures, if the
search algorithm is incapable of detecting the narrow global basin
during its exploration of the design space.

TP5-13 are taken from the widely used standard multimodal
benchmarks collated in the IEEE CEC2013 special session on multi-
modal optimization [9]. TP5 is the Five-Uneven-Peak Trap function,
TP6 is the Equal Maxima function, TP7 is the Uneven Decreasing
Maxima function, TP8 is the Himmelblau function, TP9 is the Six-
Hump Camel Back function, TP10 is the Shubert function, TP11 is
the Vincent function, and TP12 and TP13 are the Modified Rastrigin
function but with different disturbance distributions (see below). A
detailed description of TP5-13’s landscape properties can be found
in [9]. We applied different disturbance distributions to these func-
tions to transform them into robust problems. Not all distributions
implemented were symmetric: for example we used a corner dis-
turbance with TP6-TP12 to shift the location of each robust global
optimum to either a local optimum in the original landscape or to
the attraction basin of the original global optimum. We applied two
different disturbances to the Modified Rastrigin function: a corner
disturbance distribution for TP12 and a symmetric one for TP13,
in order to generate two test problems with different robustness
categories. The symmetric disturbance in TP13 maintains the same
optima properties in the original landscape, including their location,
but reduces the objective values across the entire search space.

A summary of the different robust test problem categories is
shown in Table 1. The categories are adapted directly from [12]. The
parameters used for each test problem, including the disturbance
distribution, are presented in Table 2. Note that we truncated the
disturbance for solutions with disturbance region exceeding the
problem boundaries.

2.2 Parameter Settings
We took the most recent available author implementations of RS-
CMSA3 and NMMSO4. We modified the implementation of RS-
CMSA to keep an archive of all visited solutions, and updated
NMMSO to include the extra sampled points in its search history
archive. For both algorithms, we used the default parameters from
their original publications [2, 3]. The size of the Latin hypercube
sample used in ASA was fixed at 3d following the settings used
in [3], with a maximum value of 35 for d ≥ 5. The remaining
parameter settings, including the different values of the problem
dimension d and the maximum number of function evaluations,
MaxEval, are shown for each problem in Table 2. We executed 30
runs of each algorithm on each test problem.

3 RESULTS
To examine the behaviour of the different algorithms during the
run, we report snapshots of the results achieved at the following
time points: 10−2×MaxEval, 10−1×MaxEval, and when MaxEval
has been reached. We report the peak ratio [9], the best feff, and the
absolute error achieved by the algorithms [3]. The peak ratio (PR)
is defined as PR = 1

Gr R
∑R
i=1 дi , where Gr is the number of known

robust global optima, R is the number of runs, and дi is the number
of robust global optima identified in the ith run (given a particular
quality tolerance ϵ). For each run, robust global optima дi are identi-
fied using a modified version of the algorithm in [9], by calculating
the true feff of the modes returned. The true feff of a given solution
is obtained via numerical integration. The absolute error (AE) is
defined as AE = 1

|M |

∑
m∈M

���feff(m) − f̂eff(m)

���, whereM is the set of
modes returned by the algorithm and |M | denotes set cardinality.
We report these measures over the 30 runs executed using median
and median absolute deviation (MAD) as alternatives to mean and
standard deviation, as the former pair is less sensitive to outliers
and gives a more robust measure of the variability [5]. Statistical
analyses were performed using the single-tailed Wilcoxon rank-
sum test (with a 5% significance level) and corrected for multiple
comparisons using the Holm-Bonferroni method (also known as
the sequentially rejective Bonferroni test) [6], as it is has more
statistical power than the widely used Bonferroni correction.

Table 3 shows the best feff out of all the returned modes and Table
4 shows the AE 5. Interestingly, when considering the feff of the
best f̂eff, on a number of problems a better solution is found earlier
in the run snapshot, which then progressively degrades due to the

3Version 1.3 https://www.coin-laboratory.com/codes.
4Git commit version 12, https://github.com/fieldsend/ieee_cec_2014_nmmso/.
5Note that results for TP1-4 with d = 1 are available in the online supplementary
material, which can be found at http://pop-project.ex.ac.uk.

https://www.coin-laboratory.com/codes
https://github.com/fieldsend/ieee_cec_2014_nmmso/
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Table 2: The test functions and their parameters. The first four problems are adapted from standard robust benchmarks and
the remainder are adapted from the CEC2013 special session on multimodal optimization [9]. The three distances shown can
be used in designing new performance measures. The niche radius r is only used for post-processing of the results.

d δ
minimum distance

r
# global optima MaxEval

Original Robust Original-
Robust Original Robust

TP1 2, 5, 10 δ ∼ U (−0.2, 0.2) - -
√
d4

√
d0.01 1 1

d = 2, 104
d = 5, 2.5 × 104
d = 10, 5 × 104

TP2 2, 5, 10 δ ∼ U (−1, 1) - -
√
d10.76

√
d0.01 1 1

TP3 2, 5, 10 δ ∼ U (−0.05, 0.05) - -
√
d0.15

√
d0.01 1 1

TP4 2, 5, 10 δ ∼ U (−0.06, 0.06) -
√
d0.009

√
d0.002

√
d0.005 1 2d

TP5 1 δ ∼ U (−3, 3) 30 - 7.5 0.01 2 1

5 × 104
TP6 1 δ ∼ U (0, 0.1) 0.2 0.2 0.05 0.01 5 5
TP7 1 δ ∼ U (0, 0.05) - - 0.14 0.01 1 1
TP8 2 δ ∼ U (−2.4, 0) 3.89 - 1.39 0.01 4 1

TP9 2 δx ∼ U (0, 1.14),
δy ∼ U (0, 0.66) 1.44 1.42 0.22 0.5 2 2

TP10 2 δ ∼ U (−2, 0) 0.88 4.13 2.3 0.5 d3d 3d
2 × 105TP11 2 δ ∼ U (0, 0.975) 0.29 - 0.67 0.01 6d 1

TP12 2 δ ∼ U (−0.1, 0) 0.25 0.25 0.07 0.1 12 12
TP13 2 δ ∼ U (−0.05, 0.05) 0.25 0.25 0 0.1 12 12

landscape pulling the algorithm away from the robust solution.6
NMMSO+ASA achieves best AE performance on 16 of the 21 test
problems. The algorithm attains highest feff on 9 test problems when
considering all returned modes, but not when considering the feff
of the best returned f̂eff. The case is different for RS-CMSA+ASA,
which achieves highest feff on 3 test problems when considering
the feff of its best f̂eff, but does not achieve the highest feff on any
of the problems when considering feff of all of the returned modes.
We note that without any added measures for robust optimisation,
NMMSO is able to achieve best feff performance on 9 of the test
problems when considering all returned modes (see Table 3). This
is likely due to its mechanism of keeping track of all modes visited
– this enables the algorithm to locate a greater number of local
optima in the original landscape. It is thus not surprising that the
algorithm achieves the best feff on all of the problems in the identical
optima and local-global-flip categories, apart from TP10, which is
likely due to the narrow basins of local optima in this problem.

Table 5 shows the PR values obtained with accuracy level ϵ = 0.1
from max feff 7. RS-CMSA and NMMSO are able to find all robust
optima of TP13, which is not surprising given that the problem is
of the identical optima category. We also note that NMMSO and
NMMSO+ASA achieve the highest PR values on all but four of the
test problems, namely TP9-10 and the d = 10 versions of TP1-2.
Indeed, none of the algorithms considered in this paper were able
to find the robust optima of these four landscapes.

4 DISCUSSION
The crossover between robust and multi-modal optimisation raises
a number of issues and areas worthy of further research. Perhaps

6See the online supplementary material, which reports the feff of the best f̂eff returned
by each algorithm on each test problem.
7For results obtained with ϵ = 10−2, 10−3, 10−4 and 10−5 , see the online supplemen-
tary material.

the two most important issues to be addressed are: (i) the need for
new benchmark problems, inspired by real-world applications with
domain-specific robustness categories (e.g. computational biology
problems, for which there are no general results regarding how the
number of optima scale with problem dimension etc.); and (ii) the
concomitant need for new performance measures quantifying the
success of a given algorithm in locating robust optima in these new
landscape classes. Here, we have introduced some initial bench-
marks composed of a modified combination of test problems from
both fields, but recognise that this is initial work in this interface
domain. There already exist a number of multi-modal test problem
generators that yield tunable test functions with desirable prop-
erties, such as regular and irregular distributions of optima and a
controllable number of global and local optima [1, 14]. One way
to develop good benchmarks for this new field would be to adapt
such generators to generate versatile robust multi-modal functions
that fall under the different robust categories shown in Table 1.

Various performance measures are proposed and used in the
multi-modal-optimisation field; however, most of these measures
require prior knowledge of the number of optima, their locations
in the design space, and their objective values [10]. These require-
ments are usually difficult to satisfy when robust settings are con-
sidered, since the transformation of the original landscape (when
the disturbance distribution is known) involves integrating the
function; in most cases, this is analytically intractable and accurate
numerical integration is limited to a small number of dimensions.
Thus, requiring prior knowledge of the properties of all optima
(or global optima) could limit the design of benchmarks to easy
separable problems or non-separable problems with small d . The
importance of performance measures that do not require any prior
knowledge of the number of optima or their properties is not only
a challenge for assessing the performance of robust-multimodal
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Table 3: Median and MAD values (brackets) for the best feff of all returned modes. The highest feff value for each problem in
each snapshot is marked in bold. Results that are significantly better than all other results are underlined and marked in red.
Note that all values are rounded. The difference between equal best medians due to rounding is shown in square brackets.
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TP1
d= 2 1.89 1.78

(0.08)
1.74
(0.07)

1.11
(0.05)

1.11
(0.05)

1.89
(0.00)

1.83
(0.02)

1.83
(0.03)

1.76
(0.10)

1.89
(0.00)

1.88
(0.01)

1.83
(0.00)

1.82
(0.07)

d= 5 4.73 4.19
(0.11)

4.02
(0.14)

2.93
(0.20)

2.94
(0.21)

4.45
(0.14)

4.36
(0.06)

4.28
(0.18)

4.15
(0.22)

4.67
(0.01)

4.55
(0.04)

4.54
(0.07)

4.44
(0.08)

d= 10 9.47 7.82
(0.15)

7.59
(0.23)

5.69
(0.42)

5.69
(0.42)

8.36
(0.16)

8.11
(0.19)

7.23
(0.32)

7.54
(0.32)

8.98
(0.08)

8.72
(0.11)

8.71
(0.18)

8.58
(0.11)

TP2
d= 2 -0.83 -1.08

(0.10)
-1.12
(0.19)

-1.68
(0.25)

-1.68
(0.25)

-1.14
(0.01)

-0.87
(0.03)

-1.62
(0.18)

-1.43
(0.27)

-1.14
(0.00)

-0.84
(0.01)

-1.62
(0.18)

-1.15
(0.31)

d= 5 -2.08 -3.14
(0.13)

-3.02
(0.27)

-4.22
(0.35)

-4.22
(0.33)

-2.85
(0.14)

-2.68
(0.15)

-4.12
(0.29)

-3.52
(0.43)

-2.88
(0.07)

-2.46
(0.10)

-4.06
(0.27)

-3.26
(0.34)

d= 10 -4.17 -6.43
(0.35)

-6.65
(0.28)

-8.57
(0.78)

-8.57
(0.78)

-6.04
(0.25)

-6.11
(0.26)

-8.57
(0.69)

-8.18
(0.51)

-6.01
(0.12)

-5.84
(0.22)

-8.36
(0.63)

-6.35
(0.64)

TP3
d= 2 0.68 0.63

(0.02)
0.60
(0.03)

0.24
(0.13)

0.24
(0.13)

0.67
(0.00)

0.67
[8.86E-03]

(0.01)

0.60
(0.00)

0.60
(0.03)

0.67
(0.00)

0.67
[3.58E-03]

(0.00)

0.60
(0.00)

0.61
(0.02)

d= 5 0.68 0.57
(0.03)

0.54
(0.04)

0.33
(0.06)

0.33
(0.05)

0.64
(0.01)

0.61
(0.02)

0.56
(0.06)

0.53
(0.04)

0.66
(0.01)

0.64
(0.01)

0.61
(0.01)

0.60
(0.02)

d= 10 0.68 0.53
(0.02)

0.51
(0.02)

0.29
(0.07)

0.29
(0.07)

0.59
(0.02)

0.56
(0.01)

0.51
(0.01)

0.47
(0.02)

0.64
(0.01)

0.62
(0.01)

0.61
(0.01)

0.59
(0.01)

TP4
d= 2 0.42 0.40

(0.00)
0.39
(0.01)

0.15
(0.12)

0.15
(0.12)

0.40
(0.00)

0.41
(0.00)

0.38
(0.00)

0.39
(0.01)

0.40
(0.00)

0.42
(0.00)

0.38
(0.00)

0.41
(0.00)

d= 5 0.42 0.39
(0.00)

0.38
(0.01)

0.15
(0.03)

0.15
(0.04)

0.40
(0.00)

0.40
[8.91E-04]

(0.00)

0.38
(0.01)

0.38
(0.01)

0.40
(0.00)

0.41
(0.00)

0.38
(0.01)

0.39
(0.00)

d= 10 0.42 0.38
(0.01)

0.37
(0.02)

0.13
(0.04)

0.13
(0.04)

0.39
(0.00)

0.39
[4.41E-03]

(0.00)

0.27
(0.03)

0.27
(0.03)

0.40
(0.00)

0.40
[4.93E-03]

(0.00)

0.38
(0.00)

0.38
(0.00)

TP5 112.00 112.00
(0.00)

110.78
(1.18)

73.01
(7.41)

73.01
(7.41)

112.00
(0.00)

111.79
(0.21)

86.00
(0.00)

92.65
(7.02)

112.00
(0.00)

111.98
(0.02)

86.00
(0.00)

95.94
(1.56)

TP6 0.60 0.31
(0.00)

0.60
(0.00)

0.34
(0.20)

0.34
(0.20)

0.31
(0.00)

0.60
(0.00)

0.34
(0.03)

0.56
(0.02)

0.31
(0.00)

0.60
(0.00)

0.34
(0.03)

0.59
(0.01)

TP7 0.80 0.55
(0.00)

0.75
(0.03)

0.13
(0.12)

0.13
(0.12)

0.55
(0.00)

0.80
(0.01)

0.46
(0.00)

0.65
(0.12)

0.55
(0.00)

0.80
(0.00)

0.46
(0.00)

0.74
(0.04)

TP8 176.45 132.39
(0.70)

168.53
(3.96)

-95.81
(179.62)

-95.81
(179.62)

132.58
(0.00)

172.50
(2.85)

85.23
(47.35)

153.89
(12.08)

132.58
(0.00)

175.75
(0.59)

132.59
(0.00)

175.91
(0.42)

TP9 0.95 -0.55
(0.01)

0.36
(0.03)

-1.13
(0.87)

-1.13
(0.87)

-0.56
(0.00)

0.39
(0.01)

-0.56
(0.17)

0.20
(0.12)

-0.56
(0.00)

0.39
(0.00)

-0.56
(0.00)

0.37
(0.02)

TP10 3.75 1.42
(0.49)

2.03
(0.30)

-0.24
(0.00)

-0.06
(0.25)

1.28
(0.18)

2.33
(0.27)

-0.24
(0.00)

0.07
(0.34)

1.85
(0.14)

2.75
(0.26)

-0.24
(0.00)

0.20
(0.47)

TP11 0.93 0.77
(0.00)

0.92
(0.01)

0.77
(0.00)

0.88
(0.04)

0.77
(0.00)

0.93
(0.00)

0.77
(0.00)

0.93
[5.82E-04]

(0.00)

0.77
(0.00)

0.93
(0.00)

0.77
(0.00)

0.93
[1.14E-03]

(0.00)

TP12 -5.46 -13.28
(0.04)

-5.50
(0.03)

-13.35
(0.00)

-6.22
(0.54)

-13.35
(0.00)

-5.47
(0.01)

-13.35
(0.00)

-5.77
(0.24)

-13.35
(0.00)

-5.46
(0.00)

-13.35
(0.00)

-5.71
(0.17)

TP13 -5.46
-5.46
[3.76E-07]

(0.00)

-5.49
(0.02)

-5.46
(0.00)

-5.85
(0.26)

-5.46
(0.00)

-5.47
(0.00)

-5.46
[4.33E-12]

(0.00)

-5.83
(0.23)

-5.46
(0.00)

-5.46
[1.30E-03]

(0.00)

-5.46
[4.33E-12]

(0.00)

-5.80
(0.23)
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Table 4: Median andMAD values (brackets) for the absolute error (AE). The lowest AE value for each problem in each snapshot
is marked in bold. Results that are significantly better than all others are underlined and marked in red. Note that all values
are rounded. The difference between equal best medians due to rounding is shown in square brackets.

MaxEval/100 MaxEval/10 MaxEval

N
M
M
SO

N
M
M
SO

+A
SA

RS
CM

SA

RS
CM

SA
+A

SA

N
M
M
SO

N
M
M
SO

+A
SA

RS
CM

SA

RS
CM

SA
+A

SA

N
M
M
SO

N
M
M
SO

+A
SA

RS
CM

SA

RS
CM

SA
+A

SA

TP1
d= 2 0.54

(0.06)
0.28
(0.07)

0.23
(0.11)

0.23
(0.11)

0.83
(0.04)

0.23
(0.03)

0.68
(0.07)

0.33
(0.08)

0.96
(0.01)

0.13
(0.01)

0.90
(0.08)

0.33
(0.08)

d= 5 1.04
(0.10)

0.75
(0.13)

0.36
(0.12)

0.33
(0.10)

1.41
(0.08)

0.86
(0.06)

0.74
(0.08)

0.48
(0.08)

2.11
(0.04)

0.75
(0.06)

1.16
(0.09)

0.63
(0.07)

d= 10 1.53
(0.09)

1.34
(0.10)

0.40
(0.24)

0.40
(0.24)

1.93
(0.05)

1.61
(0.09)

2.57
(0.18)

1.23
(0.20)

2.98
(0.06)

1.92
(0.05)

3.92
(0.10)

1.70
(0.09)

TP2
d= 2 1.14

(0.16)
0.40
(0.12)

0.26
(0.25)

0.26
(0.25)

1.70
(0.11)

0.41
(0.09)

1.87
(0.16)

0.69
(0.25)

1.79
(0.07)

0.41
(0.06)

1.99
(0.14)

0.59
(0.22)

d= 5 2.24
(0.33)

1.20
(0.20)

1.15
(0.27)

1.14
(0.36)

2.93
(0.30)

1.11
(0.09)

2.04
(0.30)

1.28
(0.33)

3.73
(0.19)

0.96
(0.08)

2.34
(0.24)

1.43
(0.26)

d= 10 3.56
(0.27)

2.55
(0.37)

1.15
(0.70)

1.15
(0.70)

4.08
(0.26)

2.94
(0.28)

5.98
(0.48)

2.29
(0.41)

4.95
(0.20)

2.62
(0.19)

6.16
(0.42)

3.05
(0.28)

TP3
d= 2 0.16

(0.03)
0.08
(0.02)

0.06
(0.03)

0.06
(0.03)

0.22
(0.01)

0.07
(0.01)

0.22
(0.02)

0.08
(0.02)

0.21
(0.00)

0.05
(0.00)

0.23
(0.02)

0.09
(0.02)

d= 5 0.14
(0.01)

0.09
(0.01)

0.05
(0.01)

0.05
[5.77E-04]

(0.01)

0.16
(0.01)

0.11
(0.01)

0.09
(0.01)

0.07
(0.00)

0.20
(0.01)

0.10
(0.01)

0.13
(0.02)

0.08
(0.01)

d= 10 0.10
(0.01)

0.08
(0.01)

0.02
(0.02)

0.02
(0.02)

0.12
(0.01)

0.10
(0.01)

0.17
(0.01)

0.09
(0.01)

0.16
(0.01)

0.12
(0.01)

0.19
(0.02)

0.11
(0.01)

TP4
d= 2 0.11

(0.02)
0.04
(0.01)

0.01
(0.01)

0.01
(0.01)

0.13
(0.01)

0.03
(0.01)

0.09
(0.01)

0.04
(0.01)

0.14
(0.00)

0.03
(0.00)

0.15
(0.01)

0.04
(0.01)

d= 5 0.10
(0.01)

0.05
(0.01)

0.01
(0.00)

0.01
[2.73E-03]

(0.00)

0.13
(0.01)

0.04
(0.01)

0.03
[4.01E-03]

(0.00)

0.03
(0.00)

0.14
(0.00)

0.03
(0.00)

0.10
(0.01)

0.04
(0.00)

d= 10 0.08
(0.01)

0.05
(0.01)

0.02
(0.01)

0.02
(0.01)

0.11
(0.01)

0.06
(0.01)

0.04
(0.01)

0.03
(0.01)

0.14
(0.01)

0.04
(0.00)

0.11
(0.01)

0.06
(0.01)

TP5 71.03
(2.00)

35.16
(2.88)

26.12
(19.41)

26.12
(19.41)

73.31
(3.48)

44.85
(3.16)

82.48
(5.47)

52.99
(11.77)

71.86
(2.23)

43.20
(1.37)

85.15
(6.75)

73.62
(4.86)

TP6 0.66
(0.02)

0.23
(0.02)

0.37
(0.18)

0.37
(0.18)

0.63
(0.03)

0.34
(0.02)

0.64
(0.03)

0.40
(0.09)

0.61
(0.02)

0.34
(0.01)

0.64
(0.03)

0.43
(0.04)

TP7 0.26
(0.01)

0.10
(0.02)

0.19
(0.11)

0.19
(0.11)

0.24
(0.01)

0.16
(0.02)

0.35
(0.06)

0.20
(0.09)

0.23
(0.01)

0.18
(0.01)

0.36
(0.05)

0.25
(0.04)

TP8 129.00
(12.16)

19.10
(5.66)

82.61
(38.48)

82.61
(38.48)

137.64
(13.96)

14.98
(2.82)

123.26
(27.94)

49.86
(15.65)

158.52
(21.67)

16.30
(2.77)

128.50
(7.95)

31.79
(6.74)

TP9 1.42
(0.10)

0.20
(0.04)

0.68
(0.51)

0.68
(0.51)

1.40
(0.12)

0.21
(0.03)

1.34
(0.21)

0.50
(0.22)

1.34
(0.05)

0.24
(0.02)

1.49
(0.18)

0.40
(0.10)

TP10 83.36
(7.33)

22.09
(2.59)

186.97
(0.00)

83.19
(23.44)

73.88
(2.50)

25.55
(1.70)

186.97
(0.00)

83.19
(19.93)

38.57
(0.88)

18.77
(1.12)

186.97
(0.00)

83.19
(18.39)

TP11 0.76
(0.03)

0.13
(0.01)

0.61
(0.04)

0.04
(0.02)

0.83
(0.01)

0.13
(0.02)

0.78
(0.01)

0.03
(0.01)

0.83
(0.01)

0.11
(0.01)

0.83
(0.00)

0.03
(0.00)

TP12 11.35
(0.05)

1.39
(0.20)

11.35
(0.00)

2.35
(0.60)

11.35
(0.00)

1.31
(0.09)

11.35
(0.00)

2.31
(0.50)

11.35
(0.00)

1.06
(0.05)

11.35
(0.00)

2.22
(0.36)

TP13 3.46
(0.00)

1.19
(0.12)

3.46
(0.00)

2.80
(0.32)

3.46
(0.00)

0.82
(0.05)

3.46
(0.00)

2.80
(0.28)

3.46
(0.00)

0.60
(0.02)

3.46
(0.00)

2.79
(0.32)
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Table 5: Peak ratio (PR) values for ϵ = 0.1. The highest PR value for each problem in each snapshot is marked in bold.

MaxEval/100 MaxEval/10 MaxEval

N
M
M
SO

N
M
M
SO

+A
SA

RS
-C
M
SA

RS
-C
M
SA

+A
SA

N
M
M
SO

N
M
M
SO

+A
SA

RS
-C
M
SA

RS
-C
M
SA

+A
SA

N
M
M
SO

N
M
M
SO

+A
SA

RS
-C
M
SA

RS
-C
M
SA

+A
SA

TP1
d= 2 0.47 0.30 0.00 0.00 1.00 0.97 0.70 0.43 1.00 1.00 0.80 0.57
d= 5 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.87 0.07 0.03 0.00
d= 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TP2
d= 2 0.13 0.30 0.00 0.00 0.03 0.80 0.00 0.23 0.00 1.00 0.00 0.43
d= 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00
d= 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TP3
d= 2 0.87 0.73 0.03 0.03 1.00 1.00 0.97 0.80 1.00 1.00 1.00 0.87
d= 5 0.43 0.43 0.00 0.00 1.00 0.93 0.50 0.27 1.00 1.00 0.97 0.97
d= 10 0.17 0.03 0.00 0.00 0.63 0.33 0.03 0.00 1.00 1.00 0.77 0.80

TP4
d= 2 0.54 0.38 0.03 0.03 0.99 0.68 0.31 0.27 1.00 0.85 0.59 0.45
d= 5 0.06 0.04 0.00 0.00 0.21 0.17 0.03 0.03 0.53 0.56 0.09 0.06
d= 10 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.03 0.03 0.00 0.00

TP5 1.00 0.20 0.00 0.00 1.00 0.40 0.00 0.00 1.00 0.77 0.00 0.00
TP6 0.06 0.82 0.06 0.06 0.06 0.99 0.06 0.21 0.05 1.00 0.06 0.42
TP7 0.13 0.83 0.00 0.00 0.03 1.00 0.00 0.30 0.07 1.00 0.00 0.70
TP8 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.17 0.00 0.10
TP9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TP10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TP11 0.00 0.97 0.00 0.83 0.00 1.00 0.00 0.90 0.03 1.00 0.00 0.93
TP12 0.00 0.12 0.00 0.01 0.00 0.42 0.00 0.02 0.00 0.78 0.00 0.03
TP13 1.00 0.14 0.64 0.01 1.00 0.52 1.00 0.01 1.00 0.84 1.00 0.02

optimisation algorithms but has also been a long-standing chal-
lenge in the multimodal field for developing meaningful measures
applicable to real-world multimodal problems [7, 11].
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