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Animal ‘personality’ – the phenomenon of consistent individual differences in behaviour within 3 

populations – has been documented widely, yet its functional significance and the reasons for its 4 

persistence remain unclear. One possibility is that among-individual behavioural variation is linked to 5 

fitness-determining traits via effects on resource acquisition. In this study, we test this idea, using 6 

rockpool prawns (Palaemon elegans) to test for a correlation between ‘high-risk exploration’ and the 7 

ability to monopolise a limited resource. Modified open field trials (OFTs) confirmed that consistent 8 

among-individual (co)variation in high-risk exploratory behaviours does exist in this species, and 9 

multivariate analysis shows trait variation is consistent with a major axis of personality variation. 10 

Subsequent feeding trials in size-matched groups where competition was possible revealed a high 11 

repeatability of feeding duration, used here as a proxy for RHP (resource holding potential). We 12 

found significant negative correlations between feeding duration and two ‘risky’ behaviours, such 13 

that individuals that took fewer risks fed more. Our results are not consistent with the widely 14 

hypothesised idea of a ‘proactive syndrome’ in which bolder, risk-taking personalities are positively 15 

associated with RHP. Rather they suggest the possibility of a trade-off, with some individuals 16 

successful at monopolising limited, high-value resources, while others are more willing to engage in 17 

potentially risky exploration (which may increase the likelihood of encountering novel resource 18 

patches). We speculate that alternative strategies for acquiring limited resources might thereby 19 

contribute to the maintenance of personality variation observed in wild populations.  20 



The existence of consistent among-individual differences in behaviour, or ‘animal personality’, has 21 

been documented widely in many types of behaviours and in a variety of organisms (Bell, Hankinson, 22 

& Laskowski, 2009; Réale, Dingemanse, Kazem, & Wright, 2010; Japyassú & Malange, 2014). A key 23 

question arising from these findings is why personality persists in wild populations (Sih, Bell, & 24 

Johnstone, 2004). Superficially, complete flexibility of behaviour would appear to be the optimal 25 

strategy when the local environment is changeable. However, studies of other trait types have 26 

emphasised the need to understand costs and limits associated with plasticity (Scheiner, 1993; 27 

DeWitt, Sih, & Wilson, 1998) that are, in general, not well characterised for behaviour (Ghalambor, 28 

Angeloni, & Carroll, 2010). Such costs (including the machinery required to make accurate 29 

predictions in fluctuating environments) are likely to limit the extent of behavioural plasticity as an 30 

adaptive strategy (Dall, Houston, & McNamara, 2004), yet the functional significance of consistent 31 

individual differences remains obscure: does personality provide adaptive advantages, act as an 32 

evolutionary constraint, or is it some combination of the two (Dall et al., 2004; Réale, Reader, Sol, 33 

McDougall, & Dingemanse, 2007; Wolf & Weissing, 2010)? Theoretical treatments have proposed 34 

multiple adaptive explanations for the emergence and maintenance of personality variation (e.g., 35 

Wolf, Van Doorn, Leimar, & Weissing, 2007; Wolf & Weissing, 2010; Wolf & McNamara, 2012), and 36 

researchers are beginning to respond to the call for empirical investigations into links between 37 

behavioural types and traits that could contribute to an individual’s overall fitness (Dingemanse & 38 

Réale, 2005; Smith & Blumstein, 2008).  39 

A comprehensive explanation for the existence and maintenance of personality variation is thus 40 

likely to depend (at least in part) upon how behavioural differences contribute to life history 41 

variation (Stamps, 2007). Correlations between personality variation and life history traits have been 42 

shown in invertebrates (Sinn, Apiolaza, & Moltschaniwskyj, 2006; Niemelä, Lattenkamp, & 43 

Dingemanse, 2015), fish (Adriaenssens et al., 2010; Ballew, Mittelbach, & Scribner, 2017), birds 44 

(Dingemanse, Both, Drent, & Tinbergen, 2004; Patrick & Wiemerskirch, 2014), and mammals (Boon, 45 

Réale, & Boutin, 2007; Seyfarth, Silk, & Cheney, 2012). While the interpretation of any such 46 



correlations is complicated by the fact that within-individual trade-offs between different life-history 47 

traits largely determine fitness variation (Simpson, 1955; Stearns, 1989), a universal limiting factor to 48 

life-history trait expression is resource availability (Zera & Harshman, 2001). An increased ability to 49 

acquire a limited resource would allow an individual to invest more in all traits, and thereby increase 50 

its overall fitness (van Noordwijk & de Jong, 1986; Reznick, Nunney, & Tessier, 2000; Bolnick et al., 51 

2011). Where intraspecific competition over a limited resource occurs, an individual’s capacity to 52 

monopolise that resource also provides an indication of its competitive ability, or ‘resource holding 53 

potential’ (RHP; Parker, 1974; Lindström, 1992). Observations of some measure of RHP might 54 

therefore provide insights into fitness variation (Parker, 1974; Smith, 1974), and can also be used at 55 

the individual level to determine associations with other traits of interest. While studies have 56 

typically focused on the effects of morphological differences (in particular, body size) on competitive 57 

outcomes (Tricarico, Benvenuto, Buccianti, & Gherardi, 2008; Briffa, Sneddon, & Wilson, 2015; Ida & 58 

Wada, 2017), there is increasing recognition that consistent individual behavioural differences may 59 

play a role in determining individual success (Rudin & Briffa, 2012; Camerlink, Arnott, Farish, & 60 

Turner, 2016; Lane & Briffa, 2017). 61 

Here, we set out to test for the existence of a link between personality and the ability to monopolise 62 

a limited food resource using the Rockpool Prawn, Palaemon elegans. One of the most frequently 63 

studied personality traits is ‘boldness’, usually defined as an axis of variation in tendency to engage 64 

in risky behaviours (e.g. exploration of novel environments; Wilson, Clark, Coleman, & Dearstyne, 65 

1994). A previous study on this species used a variety of assays that each recorded a single 66 

behaviour nominally considered a distinct personality trait, finding some evidence of consistent 67 

individual differences and correlations across time and situations (Chapman, Hegg, & Ljunberg, 68 

2013). However, the explanatory importance of single behaviours can vary between contexts and 69 

species (Carter, Feeney, Marshall, Cowlishaw & Heinsohn, 2013). As a consequence, empirical 70 

investigations of personality are increasingly seeking to infer personality variation by placing 71 

individuals on axes of variation defined from repeated observations of multiple behaviours (e.g., 72 



Carter & Feeney, 2012; White, Kells, & Wilson, 2016; Houslay, Vierbuchen, Grimmer, Young, & 73 

Wilson, 2017). We follow that trend in this study, where we observed individuals repeatedly in 74 

modified open field trials (OFT; Walsh & Cummins, 1976), measuring movement behaviours in a 75 

novel and ‘risky’ environment. At the end of the OFT period we created small groups of these 76 

individuals for repeated group resource acquisition trials. In crustaceans, a limited food resource is 77 

expected to induce intraspecific competition for its acquisition (e.g. Barki, Karplus, & Goren, 1992; 78 

Sneddon, Huntingford, & Taylor, 1997; Stewart, McKenzie, Simon, & Baker, 2010). Since the ability to 79 

monopolise a limited resource is already known to be influenced by size in P. elegans (Evans 80 

& Shehadi-Moacdieh, 1988), we size-matched individuals in these groups in order to better identify 81 

any additional influence of among-individual behavioural variation as measured by the OFTs.  82 

We predicted that (1) there would be consistent individual differences among multiple exploratory 83 

and/or risk-related behaviours assayed in the modified OFTs, (2) those behaviours would be 84 

correlated in such a way as to be consistent with a continuum of parameters traditionally described 85 

as being ‘shy-bold’ (Wilson et al., 1994), and (3) there would be a clear association between these 86 

correlated risk-related behaviours and an individual’s repeatable RHP (measured as the among-87 

individual variation in feeding duration in group resource acquisition trials). We did not, however, 88 

have a clear prediction for the direction of such an association. Boldness is commonly positively 89 

correlated with resource acquisition (Biro & Stamps, 2008) and/or competitive ability (e.g. Sih, Cote, 90 

Evans, Fogarty, & Pruitt, 2012), a relationship that suggests the presence of a ‘proactive syndrome’ 91 

(reviewed in Briffa et al., 2015). However, there is increasing recognition that the sign of such 92 

correlations may be dependent on the details of the study system in question (Briffa et al., 2015). In 93 

P. elegans, alternative strategies for resource acquisition may be present and maintained through 94 

balancing selection (Wolf & McNamara, 2012). For instance, individuals that take more risks through 95 

exploration might find new resources quickly but be unable to defend them, while more socially 96 

dominant individuals may be better able to monopolise existing resources. In such a scenario, 97 

individuals with higher RHP could be seen to exhibit nominally ‘shy’ behaviours such as increased 98 



refuge use, when in fact this ‘shyness’ is borne out of an ability to control limited shelter space and 99 

thus a reduced necessity to take risks. This would be in line with the results of Evans & Shehadi-100 

Moacdieh (1988), who found that shelter residents are more likely to repel intruders, suggesting 101 

that refuge space itself is a limited resource in this species. It would also support their prediction 102 

that it appears to be ‘more adaptive’ for weaker P. elegans to avoid direct confrontation, as 103 

competitive scenarios produce fewer agonistic interactions when individuals are competitively 104 

asymmetrical. In their case weaker individuals were smaller, but in our size-matched trials other 105 

competitive asymmetries could arise. In this case, we predict a negative correlation between 106 

nominally ‘bold’ tendencies (to engage in risky exploration when shelter was available) and RHP.  107 

METHODS 108 

Capture and Tagging 109 

We collected data in 4 blocks between the 16th April and 12th June 2016. Each block comprised a 2-110 

week period during which wild-caught animals were housed in the laboratory and subjected to 111 

behavioural trials and morphological measurements. At the start of each data collection block we 112 

captured 40 prawns (N = 160 in total) from rock pools on Gyllyngvase Beach, Falmouth, on the south 113 

coast of Cornwall, UK (lat: 50.144116, long: -5.068408) and transported them to the laboratory in a 114 

sealed container filled with seawater and enriched with rock shelters. In the laboratory prawns were 115 

kept in a 120 cm x 60 cm x 30 cm aerated home tank, filled to a depth of 25 cm, which was 116 

maintained at a constant temperature of 11.5oC and a salinity of 33-35 parts per thousand. The 117 

home tank was kept in a regular 7am-7pm day-night cycle and was enriched with rocks and sections 118 

of 3 cm diameter plastic piping for prawns to use as refuges. 119 

 After a 24-hour acclimatisation period we weighed and tagged the prawns. We used coloured 120 

implant elastomer for tagging (Northwest Marine Technology, 121 

http://www.nmt.us/products/vie/vie.shtml), allowing us to differentiate between individuals during 122 

data-collection blocks and when taking pre and post-mortem measurements. Tagging involved the 123 

http://www.nmt.us/products/vie/vie.shtml


injection of a small amount of elastomer under the left and right sides of the third tail carapace 124 

segment. By using 6 colours and injecting two tags for each individual (one on either side of the tail) 125 

it was possible to uniquely tag 36 prawns. The 4 other individuals were retained for use in case of 126 

mortality. Pre-trial weight was also recorded during tagging, for use when size-matching individuals. 127 

We then allowed a further 24 hours for recovery before starting behavioural trials. Trials consisted 128 

of a ‘boldness’ testing phase followed by assays of resource acquisition (described below). Prawns 129 

were fed twice daily on commercial fish food during acclimatisation and open field trials. Morning 130 

feeds (9am) consisted of cyclops (Ocean Nutrition) accompanied by crustacean pellets (Tetra-131 

Crusta). Evening feeds (4:30pm) consisted of bloodworm (Tropical Marine Centre), again 132 

accompanied by crustacean pellets.  133 

 At the end of each data collection block, we euthanised individuals through rapid cooling to induce 134 

torpor, followed by transfer to a sealed plastic bag and freezing at -20OC for later examination. We 135 

took post-mortem morphological measurements from all individuals after euthanasia. We measured 136 

and recorded carapace length (measured as the tip of the rostrum to the furthest point of the tail), 137 

weight, and the length of each first periopod (measured as the full length of each clawed 138 

appendage) post-mortem. For analysis, we calculated average weight (from the initial live weight 139 

taken during tagging and the post-mortem weight) across the two-week experimental period. We 140 

also recorded the gravid status of each individual (Appendix A1). 141 

Open Field Trials (OFTs) 142 

We used a modified form of the standard OFT paradigm, a commonly used test for boldness (Burns, 143 

2008; Toms, Echevarria, & Jouandot, 2010), in which our arena also included a shelter (Fig. 1a), to 144 

characterise among-individual (co)variation in several putatively correlated behaviours. We carried 145 

out 3 trials per individual over consecutive days. On each day individuals were transferred in a 146 

haphazard order to a 45.5 cm x 19 cm x 29.5 cm experimental tank, filled to a depth of 6 cm. The 147 

experimental tank was lit from above, and surrounded by opaque barriers to minimise the effects of 148 



outside stimuli on an individual’s behaviour. We included a shelter at one end of the tank that was 149 

graduated in height, from 3 cm above the floor at the tank end and 6 cm (i.e. surface level) at the 150 

distal edge. Viewed from above the shelter extends 6 cm from the wall, although for tracking 151 

purposes we included another 3 cm of horizontal distance in a ‘shelter zone’. We then defined 152 

additional edge (near to shelter and/or tank wall) and central zones.  153 

At the beginning of each trial we placed the individual in a clear plastic cylinder in the centre of the 154 

central zone. We removed the cylinder after 30 seconds, then allowed a further 30 seconds of 155 

acclimation before recording 270 seconds of subsequent activity using a Sunkwang C160 video 156 

camera suspended above the tank. After every 5 behavioural trials we replaced a litre of water in the 157 

experimental tank with a litre from the home-tank to limit any build-up of specific chemical cues (a 158 

variation on the method used in Chapman et al., 2013; see also Warren & Calaghan, 1975; Houslay 159 

et al., 2017 for similar methods). After the completion of each trial we transferred the animal to a 160 

holding tank, where they were kept until all 36 tagged individuals had been trialled and could be 161 

returned to the home tank. We extracted data on the following behaviours from each of the videos 162 

using the tracking software Viewer II (BIOBSERVE Behavioural Research): the time spent in the 163 

central zone (TIC), the time spent in the shelter zone (TIS), tracklength (i.e. the distance the 164 

individual travelled during the trial), and the percentage area of the experimental space (excluding 165 

the shelter zone) that the individual covered.  166 

Resource Acquisition Trials 167 

For each block, after all OFTs were completed, we grouped individuals into five groups of 6 animals 168 

for use in competitive feeding trials. Individuals were approximately size-matched (Appendix A2 and 169 

Table A1) within each group in order to limit the effect of a prawn’s morphology on RHP and 170 

increase the likelihood of agonistic interactions (Evans & Shehadi-Moacdieh, 1988). The largest 6 171 

individuals were placed into one group irrespective of actual size because the variance within the 172 

largest individuals was far greater, meaning size-matching within 0.1g was unfeasible. We felt it was 173 



important for these individuals to be included as the nature of the limited resource made the 174 

feeding trials better suited to larger individuals as fewer could feed simultaneously. In other groups, 175 

where possible, size-matching was carried out so that an individual would weigh within 0.1g of its 176 

conspecifics within a group.  177 

Space constraints meant that it was only possible to house 5 groups simultaneously, so we retained 178 

the other 6 individuals (comprising of those which did not clearly fit into any one group, and the 179 

smallest individuals) in case of mortality. We placed each group into a separate enriched 36 cm x 19 180 

cm x 23 cm tank within the main home tank (Appendix A3 and Fig. A1). Groups were housed in these 181 

resource acquisition tanks (RATs) for the duration of the feeding trials (Fig. 1b). We gave groups 48 182 

hours to acclimatise to their new surroundings and social groups before feeding trials commenced.  183 

We carried out 3 feeding trials per group, with a 24-hour rest spell between each trial. At each 184 

feeding trial, we lowered a mesh parcel containing a fully defrosted 5g cube of brine shrimp (JMC 185 

Aquatics, http://www.jmc-aquatics.co.uk/product/jmc-frozen-fish-food-100gm-pack/) into the 186 

group’s RAT at the opposite end from the shelter rock (Fig. 1b). Once the food parcel had been 187 

placed in the tank, we observed the tank for 15 minutes and used the keylogging software JWatcher 188 

2.0 (Blumstein, Daniel, & Evans, 2012) to record the amount of time each individual (identifiable 189 

from tags by the naked eye) spent feeding. We provided all animals with brine shrimp (unparcelled) 190 

at the end of their group’s trial in an attempt to minimise differing levels of satiation between 191 

prawns across trials. Prawns were not fed again between trials.  192 

Note that feeding trials were conducted within groups in RATs because our pilot investigations 193 

showed that animals were unwilling to feed in dyadic trials after transfer to novel environments. We 194 

were unable to measure actual food intake, as our pilot studies showed that easily quantifiable food 195 

items (crustacean pellets) were too large and satiated prawns too quickly. We were also unable to 196 

distinguish competitive interactions between specific individuals, as pilot investigations found too 197 

many (often simultaneous) competitive interactions to track in real time using JWatcher 2.0. Video 198 



recordings were not a viable solution to this as elastomer tags were only distinguishable by the 199 

naked eye. While this design means winners and losers are not identified in the dyadic context 200 

typical of RHP studies, time spent feeding actually provides a continuous – and possibly more 201 

informative – measure of competitive ability within the group.  202 

Limited food supplies are widely used to predict resource competition in a range of species (e.g. 203 

Wise, 2006; Dennenmoser & Thiel, 2007; Pafilis, Meiri, Foufopoulos, & Valakos, 2009). In 204 

crustaceans, the introduction of a novel food resource, such as the one we presented here, is highly 205 

likely to elicit aggressive interactions and interference competition between individuals (Evans & 206 

Shehadi-Moacdieh, 1988; Barki et al., 1992; Dennenmoser & Thiel, 2007). In our study, the parcelling 207 

of the food source meant that only 1-2 prawns (or, in the case of the smallest individuals <0.5g, 208 

sometimes 3 prawns) could feed simultaneously. Moreover, factors such as the length of time spent 209 

in a potentially competitive setting have previously been shown to be a good predictor of the 210 

frequency of competitive interactions (Richter, Gras, Hodges, Ostner, & Schülke, 2015). Time at or 211 

near a food resource and number of feeding events have also been used as an effective measure of 212 

competitive success in crustaceans at high experimental group densities (Barki et al., 1992; Tran, 213 

O’Grady, Colborn, Van Ness, & Hill, 2014). High population densities have themselves also often 214 

been used as proxies for competition in other species (Tuck, Chapman, & Atkinson, 1997; Bolnick, 215 

2004; Nicolaus, Tinbergen, Ubels, Both, & Dingemanse, 2016). These factors, coupled with the fact 216 

that competitive interactions in P. elegans often occur without any obvious physical contact (Evans 217 

& Shehadi-Moacdieh, 1988), suggest that time spent feeding should be a useful measure of RHP. 218 

Post-hoc, this assessment appeared to hold true; of the 120 individuals we assayed, only one did not 219 

feed across any of its three resource-acquisition trial repeats, and only 56 of the 360 observations 220 

across all trials and repeats were of non-feeding individuals. Competitive displacements and 221 

charging behaviours were also frequently observed (pers. obs.), as indicated in our feeding 222 

frequency data (Appendix A4 & Fig. A2), where individuals that spent more time feeding also had 223 



more feeding events, often leaving a resource to exclude another individual before returning and 224 

continuing to feed. 225 

Statistical Analyses 226 

We analysed all data using linear mixed effects models fitted in ASreml-R 3.0 (Butler, Cullis, Gilmour, 227 

& Gogel, 2009) in R version 3.4.1 (R Core Team, 2017). TIC and feeding duration were square root-228 

transformed, after which visual inspection of residuals from all models suggested all behaviours 229 

conformed to the assumption of residual normality. For multivariate analyses, behavioural 230 

measurements were scaled to standard deviation units prior to analysis (following transformation if 231 

necessary), enabling more meaningful comparison of effect sizes across traits and assisting 232 

multivariate model fitting (described below).  For testing the significance of random effects we 233 

compared nested models using likelihood ratio tests (LRTs), in which we estimated χ2
nDF as twice the 234 

difference in model log likelihoods, with the number of degrees of freedom (nDF) equal to the 235 

number of additional parameters in the more complex model. When testing a single random effect, 236 

we assumed the test statistic to be asymptotically distributed as an equal mix of χ2
0 and χ2

1 (denoted 237 

as χ2
0,1; Visscher, 2006). Fixed effects (described below) were included as statistical controls only and 238 

are not directly relevant to hypotheses being tested so no statistical inference is presented. 239 

Among-individual behavioural (co)variation in OFT behaviours  240 

We fitted a series of nested models to partition multivariate OFT behavioural variation (area 241 

covered, TIC, TIS and tracklength) into a between-individual covariance matrix (subsequently 242 

denoted ID) and a corresponding within-individual (i.e. residual) component. Each model included 243 

trait-specific fixed effects of repeat and experimental block. Our nested models featured different 244 

covariance specifications to test the expectation that there would be among-individual variance and 245 

covariance structure consistent with the presence of an axis of variation in nominally ‘bold’ 246 

tendencies.  247 



Model 1A has no random effects, such that all phenotypic variance (conditional on the fixed effects) 248 

is allocated to the residual component R (which can be considered ‘within-individual’ here). We 249 

specified R as a ‘diagonal’ matrix, where variances for each behavioural trait are estimated but all 250 

among-trait covariance terms are set to zero. Model 1B includes individual ID as a random effect, 251 

with among-individual component ID also specified as a diagonal matrix. Model 1C allows among-252 

trait covariance in R (i.e. estimating the off-diagonals in the residual covariance matrix). Model 1D 253 

extends 1C by also allowing among-trait covariance in ID. We then used likelihood ratio tests to 254 

provide global tests (i.e. across all traits) for i) among-individual behavioural variation (1B vs 1A), ii) 255 

among-trait covariation (1C vs 1B), and iii) significant contribution of individual differences to this 256 

among-trait covariation (1D versus 1C).  257 

Note that since behaviours were scaled to standard deviation units prior to analysis, the among-258 

individual variance (VI) terms on the diagonal of ID can be viewed as analogous to repeatabilities 259 

(since repeatability = VI/VP, and the observed phenotypic variance VP is 1). We also estimated the 260 

‘adjusted repeatability’ of each behavioural trait from separate univariate models, where VP in this 261 

case is the sum of among-individual and residual variance after having conditioned on fixed effects 262 

(Nakagawa & Schielzeth, 2010). 263 

To aid the interpretation of covariance terms contained in ID, we calculated the corresponding 264 

among-individual correlations rI. We also subjected ID to eigen decomposition to determine the 265 

proportion of among-individual variation captured by each principal component (see Houslay & 266 

Wilson, 2017 for further discussion of this approach). We used this eigen decomposition to assess 267 

whether a single major axis of variation could indeed explain most of the among-individual variation 268 

(consistent with the expectation of a nominal ‘shy-bold’ axis of personality). We estimated 269 

uncertainty on the trait loadings associated with each principal component (eigenvector) using a 270 

parametric bootstrap approach (as described by Boulton, Grimmer, Rosenthal, Walling, & Wilson, 271 

2014, Houslay et al., 2017). 272 



Testing correlations between OFT behaviours and morphology 273 

We extended model 1D by adding an additional morphological response variable to test whether 274 

aspects of morphological variation were significantly correlated with among-individual differences in 275 

OFT behaviours. Residual (co)variances involving morphology were not identifiable as they were 276 

measured only once, so these were constrained to be zero. We then fitted a reduced model where 277 

we also constrained the among-individual correlations between behaviour and the morphological 278 

trait to zero, and compared these models using a likelihood ratio test on 4 degrees of freedom. We 279 

repeated this process for carapace length, body weight, and the size of the individual’s longest 280 

periopod (walking appendage). 281 

Among-individual correlation between OFT behaviours and feeding duration 282 

We fitted a further multivariate mixed model (Model 2) that enabled us to investigate the 283 

relationship between feeding duration and OFT behaviours. Fixed effects were repeat and 284 

experimental block for all traits, and also the effect of group tank for feeding duration. Model 2 285 

extends model 1D by the inclusion of feeding duration as an additional response, fitting a fully 286 

unstructured covariance matrix at the among-individual level (ID). As feeding duration was not 287 

measured in the same trial as other behaviours, observation level (residual or within-individual) 288 

correlations involving feeding are not statistically identifiable and therefore were constrained to be 289 

zero. To test the overall significance of the among-individual correlations between feeding duration 290 

and the 4 OFT behaviours, we fitted a reduced model where we also constrained these to zero, and 291 

compared these models using a likelihood ratio test on 4 degrees of freedom. 292 

We again used parametric bootstrapping to estimate 95% confidence intervals around each element 293 

of the ID matrix from Model 2. While this allows statistical inferences to be made on individual 294 

variance/covariance/correlation estimates within the matrix, we caution that the confidence 295 

intervals estimated are necessarily approximate and based on assumed multivariate normality (see 296 

Boulton et al., 2014; Houle & Meyer, 2015 for discussion). Given our particular interest in the 297 



strength of relationships between feeding duration and each of the OFT behaviours, we also used 298 

bivariate models to directly test significance for each of that subset of among-individual correlations. 299 

Finally, to check for any effects of within-group size differences on among-individual (co)variation in 300 

feeding duration, we re-ran those univariate and bivariate models in which feeding duration was a 301 

response variable, incorporating relative carapace length (i.e. centred at the mean of each size-302 

matched feeding trial group) as an additional covariate on this trait.  303 

Ethical Note 304 

The study was subject to ethical review and approval at the University of Exeter. No additional 305 

permits or licences were required. Numbers of individuals captured, housed and euthanised were 306 

kept to a minimum without compromising the explanatory power of the study. Tagging was carried 307 

out using the least invasive method possible by injecting tags between the carapace and the muscle. 308 

Outside of trials, prawns were housed in diverse, enriched environments and disturbance was kept 309 

to a minimum. Euthanasia was carried out as humanely as possible: noting that the concentration of 310 

MS222 (Tricain mesylate) required for anaesthesia would suffocate this species, induction of torpor 311 

before freezing was deemed the best way to minimise welfare impact on the animals.  312 

RESULTS 313 

Among-Individual (co)Variation in OFT Behaviours 314 

Our comparisons of models 1A-1D showed evidence of among-individual variance in multivariate 315 

phenotype, as well as covariance structure driven in part by individual-level effects (Table 1).  316 

The among-individual variance-covariance matrix ID (as estimated from Model 2) is given in Table 2, 317 

in which the VI estimates for each trait (analogous to behavioural repeatabilities) are on the diagonal 318 

of the matrix and range from 0.22-0.38. All are nominally significant based on approximate 95% CI. 319 

Table 3 shows adjusted repeatabilities (i.e. repeatability calculated after controlling for confounding 320 

effects; Nakagawa & Schielzeth, 2010) estimated separately for each trait, which are very similar. 321 



We found a number of significant pairwise relationships between OFT behaviours in ID (rI; Table 2, 322 

above-diagonals), and the results of our eigen analysis revealed that the first eigenvector (EV1) 323 

captured 68% of the among-individual (co)variation. This result suggests that a ‘latent variable’ 324 

described the majority of the (co)variation in the behavioural traits that we measured, consistent 325 

with the idea of a single underlying axis of variation. Figure 2 summarises the trait loadings, along 326 

with 95% confidence intervals from the parametric bootstrap, for both EV1 and EV2, which accounts 327 

for a further 24% of the observed variation (although noting that EV2 must be orthogonal to EV1, 328 

and therefore any interpretation of the EV2 loadings comes with the caveat that they are to some 329 

extent dependent upon those of EV1). For EV1, area covered and tracklength load heavily in the 330 

same direction, with TIS loading strongly in the other direction. The estimate of trait loading for TIC 331 

is in the same direction as area covered and tracklength, but the confidence intervals cross zero. 332 

These loadings mean that individuals could be placed along an axis of variation, with those that 333 

spend a lot of time in the shelter at one end (covering little to no area and travelling little to no 334 

distance), and individuals that covered a lot of area and travelled a greater distance at the other 335 

(spending little to no time in the shelter).  336 

We found no evidence of among-individual correlations between these OFT behaviours and any of 337 

the morphological traits measured (carapace length: χ2
4 = 1.9, P = 0.76; body weight: χ2

4 = 3.4, P = 338 

0.49; longest periopod: χ2
4 = 1.0, P = 0.91). 339 

Among-Individual Correlations between Feeding Trial and OFT Traits 340 

We found that feeding duration was highly repeatable (adjusted repeatability = 0.54 SE 0.05) over 341 

the course of the resource acquisition trials in size-matched groups (Table 3), and that there was a 342 

significant overall relationship between among-individual variation in feeding and exploratory 343 

behaviours as measured in the OFTs (χ2
4 = 15.0, P = 0.005). From the results shown in Table 2, this 344 

appeared to be driven primarily by a negative relationship between TIC and feeding duration. 345 



Likelihood ratio tests from bivariate models showed that this was indeed statistically significant 346 

(rTIC,RHP = -0.41 SE 0.05,χ2
1 = 6.4, P = 0.011; Figure 3a), as was the negative relationship between area 347 

covered and feeding duration (rArea,RHP = -0.35 SE 0.16,χ2
1 = 4.2, P = 0.040; Figure 3b). While the 348 

bootstrapped 95% confidence intervals shown in Table 2 do (just) span zero for rArea,Feeding, we 349 

reiterate that these are approximate indicators of nominal significance at α=0.05 and therefore do 350 

not represent strongly contradictory results.  351 

Incorporating relative carapace length as a fixed effect in the univariate and bivariate models 352 

featuring feeding duration (to control for any effects of size variation within size-matched groups) 353 

showed only minor effects on among-individual (co)variation. Relative carapace length has a 354 

positive, though marginally non-significant, effect on feeding duration (estimate = 0.93 SE 0.50, F1,99 355 

= 3.46, P = 0.066), and has a negligible effect on the proportion of variation explained by among-356 

individual differences (adjusted repeatability = 0.53 SE 0.05, χ2
0,1 = 86.2, P < 0.001). In the bivariate 357 

model of feeding duration and area covered, the correlation remains similar but becomes marginally 358 

non-significant (rArea,RHP = -0.32 SE 0.16,χ2
1 = 3.2, P = 0.068). The correlation between feeding 359 

duration and TIC remained significant and strongly negative after the inclusion of relative carapace 360 

length as an additional covariate on feeding duration (rTIC,RHP = -0.39 SE 0.15,χ2
1 = 5.6, P = 0.017). 361 

DISCUSSION 362 

We found strong support for the existence of among-individual behavioural (co)variation, and thus 363 

personality, in this species. Our investigation of the ID matrix among behaviours assayed in the open 364 

field trials (OFTs) also suggests a single underlying major axis of variation, consistent with our 365 

predictions. Finally, we found that variation in repeatable exploratory behaviours is related to 366 

individual differences in our measure of RHP. Specifically, greater feeding duration was associated 367 

with lower time spent in the centre and lower area covered in the OFT, indicating that individuals 368 



that consistently appeared more risk-averse and less exploratory were actually more able to 369 

monopolise a food resource in the group feeding trials. 370 

Having assayed multiple exploratory behaviours in the modified OFT (all of which demonstrated 371 

significant repeatabilities with estimates in line with previous work on exploratory and bold-type 372 

behaviours; Bell et al., 2009), our eigen analysis shows that the majority of the among-individual 373 

(co)variation in these behaviours falls on a single axis (EV1). Trait loadings suggest that we could 374 

describe this axis as the predicted single ‘shyness-boldness’ continuum (Wilson et al., 1994), where 375 

the ‘behavioural type’ ranges from those that remain in the shelter (travelling a shorter distance, 376 

and covering little area) to those that travel further and cover more of their surrounding area (and 377 

staying outside of the shelter). The second axis (EV2) might plausibly reflect variation in the degree 378 

or ‘styles’ (Koolhaas et al., 1999) of coping with stress induced by being away from the shelter (and 379 

thus putatively at higher predation risk). EV2 suggests that – when outside of the shelter – some 380 

individuals travel a long distance but stay in (apparently) safer zones nearer the wall. Meanwhile, 381 

other individuals explore the arena more fully, covering a greater area and spending more time in 382 

the centre. However, we suggest caution is warranted here as EV2 is necessarily dependent on EV1 383 

(as these axes must be orthogonal to one another), and captures only 24% of variance in ID. 384 

Nonetheless – in the context of the loadings of EV1 – the strong loading of TIC and area covered 385 

opposite tracklength and the lack of loading of TIS on EV2 provide some indication that high values 386 

of TIC and area covered generally denote exploratory, risky behaviour, while high values of 387 

tracklength and low values of TIS might not.   388 

Our results also provide a clear indication that among-individual behavioural variation has its own 389 

impact on RHP (as measured by the duration spent feeding in an environment where competition 390 

was possible), independent of morphology. OFT behaviours are not themselves correlated with 391 

morphological traits, while the link between OFT behaviour and RHP was found in the presence of 392 

experimental (i.e. size-matching) and statistical (to account for remaining within-group variation) 393 



controls for morphological variation. We note, however, that body size is expected to be a strong 394 

determinant of RHP in crustaceans in general (e.g. Barki et al., 1992; Renison, Boersma, & Martella, 395 

2002; Palaoro, Dalosto, Costa, & Santos, 2014) and in P. elegans specifically (Evans & Shehadi-396 

Moacdieh, 1988). The regular dispersal of intertidal species caused by high levels of disturbance 397 

(Günther, 1992) should make both morphology and behavioural type relevant to an individual’s 398 

ability to monopolise resources, as similarly sized individuals might often find themselves competing 399 

to exclude one-another when their location on shore changes.   400 

While OFT behaviour and RHP thus appear to be coupled in this species, the associations detected 401 

are not consistent with the idea of a ‘proactive syndrome’ in P. elegans. Specifically, TIC and area 402 

covered had statistically significant negative correlations with feeding time. While TIC did not load 403 

significantly on EV1, it did load in the same direction as area covered, and these traits are 404 

significantly positively correlated with one another. Both of these behaviours are therefore likely to 405 

indicate an individual’s propensity to engage in high-risk exploration, with higher values representing 406 

nominally ‘bolder’ individuals.  Furthermore, the small additional (co)variation explained by EV2, 407 

possibly indicative of stress, could provide some indication of why only TIC and area covered show a 408 

significant association with feeding time. Again, interpretation of EV2 must be cautious, but given its 409 

possible implications that tracklength and TIS might not be purely associated with high-risk 410 

exploration, we would not expect the bivariate correlation between those behaviours and feeding 411 

duration to be significant. It is important to note that our resource acquisition trials also included a 412 

shelter component, which could allow ‘bolder’ individuals to simply emerge from shelter first and 413 

thus monopolise the resource. In such a situation we would expect a negative correlation between 414 

TIS and feeding duration (i.e. individuals that spend less time in the shelter during the OFT would 415 

spend more time feeding in the group feeding trials), yet this correlation was close to zero (with a 416 

very small positive estimate).  417 



The range of behavioural phenotypes suggested by our analyses could potentially be maintained in 418 

natural populations by frequency-dependent selective processes (Dall et al., 2004; Wolf & 419 

McNamara, 2012), and/or life-history trade-offs leading to equal fitness returns for alternative 420 

strategies (Barta & Giraldeau, 1998; Taborsky & Brockmann, 2010). Recent work in other species 421 

also suggests that individuals that explore further afield take more risks (e.g. Stuber et al., 2013), but 422 

risk takers can be at a competitive disadvantage when living at higher population densities (e.g. 423 

Nicolaus et al., 2016). Trading off investment into competitive behaviours in favour of riskier 424 

strategies (as suggested by Biro & Stamps, 2008) could allow certain prawns to fill a behavioural 425 

niche largely uncontested by more dominant individuals, explaining the observed negative 426 

correlation between riskier exploration and feeding duration. This type of pattern has been shown in 427 

the hermit crab Pagurus bernhardus, where individuals trade off fecundity and boldness (Bridger, 428 

Bonner, & Briffa, 2015), and shyer individuals are also better able to defend their shells from eviction 429 

attempts (Courtene-Jones & Briffa, 2014). It is also consistent with the hypothesis presented by Wolf 430 

et al. (2007), where reduced future certainty of access to local resources (which could be brought 431 

about by lower RHP) should lead to an increased investment into risky behaviour (i.e. exploration in 432 

this instance). While an alternative explanation might be that some individuals feed less in order to 433 

invest in other fitness-related activities (such as finding mating opportunities) rather than risky 434 

behaviour, the correlations we find between feeding time and OFT behaviours are more indicative of 435 

an interaction between high-risk exploration and RHP. 436 

If the propensity for high-risk exploratory behaviour is highly plastic as a 'strategy' for resource 437 

acquisition, we might also predict that exploratory risk-taking should be highly variable across longer 438 

periods. Individuals should then vary in how they invest into competition or risky exploration 439 

depending on their social environment (i.e. presence and phenotypes of conspecific 440 

competitors).There is ample evidence for the existence of individual-by-environment interactions 441 

(IxE) in behaviour (Japyassú & Malange, 2014), including reductions in individual repeatability in 442 

certain risk-related behaviours over longer time frames (e.g. Boulton et al., 2014), and variation 443 



among individuals in the extent to which social experience affects their level of boldness (e.g. Frost, 444 

Winfrow-Giffen, Ashley, & Sneddon, 2007). Future studies could investigate this by manipulating an 445 

individual’s hierarchical position across time-points, for example, by placing them in groups of 446 

disproportionately larger or smaller individuals and exploring how this affects their behavioural 447 

phenotype. We also acknowledge that one shortcoming of the methods presented here was our 448 

inability to measure actual food intake. As such, while time spent feeding provides one aspect of 449 

success in a potentially competitive environment, giving a good representation of an individual’s 450 

capacity to displace others and keep them away from a limited and valuable resource, it may not 451 

give a complete representation of RHP (or indeed of resource obtained).  452 

Overall, our study shows strong support for consistent individual differences in behaviour in 453 

P.elegans, adding to the growing body of literature supporting the existence of complex behavioural 454 

variation across a variety of invertebrate phyla (Kralj-Fišer & Schuett, 2014). Our results provide 455 

compelling evidence for a link between personality and RHP in this species and, specifically, for a 456 

negative relationship between putatively high-risk exploration behaviour and the ability to 457 

monopolise a limited food resource. The sign of this association is consistent with the hypothesis 458 

that alternative strategies for obtaining food resources may contribute to the maintenance of 459 

consistent individual differences in behaviour. More generally, our results highlight the importance 460 

of delving more extensively into associations between personality and fitness-related traits, 461 

including performance in competition, across a wide range of species. 462 
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APPENDIX 665 

A1: Gravid Status 666 

Although sex could not be readily determined, many females were carrying eggs (including all 667 

individuals in our last block) and so gravid status was recorded and its effects analysed. Preliminary 668 

models indicated that gravid status had no impact on OFT behaviours or feeding time. 669 

A2: Size-matching  670 

Table A1 shows that our size-matching was highly successful in controlling for carapace length and 671 

average weight, with variation in morphological traits within feeding groups showing very little 672 

deviation from the group mean. We were somewhat less successful in controlling for chela length, 673 

but preliminary analyses showed this trait and average weight had no significant effect on RHP and 674 

that both were strongly correlated with carapace length. 675 

A3: Feeding trial housing and enrichment 676 

We deemed it appropriate to house prawns in 5 separate 36 cm x 19 cm x 23 cm tanks during the 677 

feeding trials because the higher depth of water in the home tank meant each smaller tank 678 

experienced the same conditions and because preliminary analysis found that tank identity had no 679 

impact on feeding time. See figure A1 for detail. 680 

A4: Feeding frequency measurement 681 

A feeding event was deemed to have begun when an individual made extended contact with the 682 

food resource with either set of chela or its walking legs and to have ended when an individual had 683 

fully detached from the food source. This means that agonistic exchanges taking place on the food 684 

source itself (presenting large chela, locking large chela) are not captured in this data (although 685 

displacements arising from these interactions are). This measure of frequency was deemed 686 

appropriate as prawns could still have been feeding with their second, smaller periopods (secondary 687 

walking appendages) while still attached to the resource. We used our feeding frequency 688 



measurements to help confirm that feeding duration was a reasonable proxy for RHP (see main 689 

text).  The strong relationship shown in Figure A2 lends support to this view. We also incorporated 690 

feeding frequency into an earlier iteration of Model 2 but found that it did little to improve the 691 

model fit due to its strong relationship with feeding duration. 692 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLES 

 

 

 

 

 

 

 

Multivariate model comparisons showing tests of among-individual variation, 
among-trait covariance, and among-individual trait covariance. Models were 
fitted as described in main text and compared by likelihood ratio test. 

 

Among-individual (ID) variance-covariance matrices estimated from the full model including both open field 
and feeding trials (in italics). Among-individual variances (VI, analogous to repeatabilities over the full range of 
behavioural measurements) are given on the diagonals (in bold), with among-individual between-trait 
covariances (COVI) below and the corresponding correlations (rI) above. 95% confidence intervals in 
parentheses are based on 5000 bootstrapped ID matrices. Correlations are marked with ** where the 
proportion of parametric bootstrap samples that did not have the same sign as our estimate was <0.05 
(equivalent to the p-value from a one-tailed test). 

 

Table 1. Among-individual variation 

 

Table 2. OFT and feeding covariance 

 



 693 

 694 

Adjusted repeatabilities for each behaviour measured in the open field trials 
(OFTs) and feeding trials. 

 

Table 3. Repeatability 

 

Within-group means for morphological measures, with standard errors shown in parentheses. 

 

Table A1. Morphology 

 



FIGURE 1 

 

 

 

 

 

 

 

 

 

 

Figure 1. Tank set-ups for each set of trials.  

(a) (above) shows the starting set-up for each open field trial showing the dimensions of each of the zones (denoted by the 

dashed lines) and a prawn in the central cylinder. Due to the nature of the tracking software the shelter zone necessarily 

extended 3 cm beyond the actual shelter (the end of which is denoted by the solid line).  

(b) (below) shows the setup at the start of each competitive feeding trial. 



FIGURE 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Trait loadings on the first two eigenvectors (EV1, left; EV2, right), from the I matrix for open field trial (OFT) 

behavioural variation. Lines represent 95% confidence intervals, calculated from 5000 bootstrapped replicates. Loadings are 

considered nominally significant if CIs do not cross zero (dashed vertical line). Arithmetic sign of loading denotes groups of 

behaviours that load in opposing directions (i.e., EV1 represents an axis where one extreme features individuals that cover 

more area, travel greater distance and spend less time in the shelter; the other extreme those that spend greater time in the 

shelter, covering less area and travelling a lower distance). 

 



FIGURE 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Individual-level predictions (BLUPs) from separate bivariate models demonstrate the relationship between 
among-individual variation in resource holding potential (the ability to monopolise a limited resource, or RHP) and (a) time 
in the centre (TIC), (b) area covered. All traits were centred at zero and divided by their standard deviation prior to analysis 
(note also that RHP and time in the centre were square root-transformed before this standardisation step, to ensure that 
model residuals met the assumption of multivariate normality). In both panels, the plotted regression slope (black line) was 
calculated directly from the (co)variance estimates from the bivariate model. Light grey lines show the standard errors 
around the predicted value for each trait. 



FIGURE A1 

 

 

 

 

 

 

 

Figure A1. Prawn housing within resource acquisition tanks (RATS) in the main home tank during feeding trials. 

 



FIGURE A2 695 

 

 

 

 

 

 

 

 

 

Figure A2. Mean values for feeding duration and number of feedings demonstrate the strong trend towards individuals who 
fed for longer also having more feeding events. Light grey lines show the standard errors around mean feeding duration 
(vertical) and mean number of feedings (horizontal). 
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