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Much like Heisenberg’s uncertainty principle in quantum mechanics, there exists a thermodynamic
uncertainty relation in classical statistical mechanics that limits the simultaneous estimation of energy
and temperature for a system in equilibrium. However, for nanoscale systems deviations from standard
thermodynamics arise due to non-negligible interactions with the environment. Here we include inter-
actions and, using quantum estimation theory, derive a generalised thermodynamic uncertainty relation
valid for classical and quantum systems at all coupling strengths. We show that the non-commutativity
between the system’s state and its effective energy operator gives rise to additional quantum fluctu-
ations that increase the uncertainty in temperature and modify the heat capacity. Surprisingly, these
quantum fluctuations are described by the average Wigner-Yanase-Dyson skew information, a quantity
intimately connected to measures of coherence. For temperature estimation we demonstrate that the op-
timal signal-to-noise ratio is constrained not only by the heat capacity, but an additional dissipative term
arising from the non-negligible interactions. Practically this will inform the design of optimal nanoscale
thermometers. On the fundamental side the results shed light on the interplay between classical and
non-classical fluctuations in quantum thermodynamics.

Bohr suggested that there should exist a form of com-
plementarity between temperature and energy in ther-
modynamics similar to that of position and momentum
in quantum theory [1]. His reasoning was that in order
to assign a definite temperature T to a system it must
be brought in contact with a thermal reservoir, in which
case the energy U of the system fluctuates due to ex-
changes with the reservoir. On the other hand, to assign
a sharp energy to the system it must be isolated from the
reservoir, rendering the system’s temperature T uncer-
tain. Based on this heuristic argument Bohr conjectured
the thermodynamic uncertainty relation:

∆β ≥ 1

∆U
, (1)

with β = (kBT )−1 the inverse temperature. While (1)
has since been derived in various settings [2–11], it was
Mandelbrot who first based the concept of fluctuating
temperature on the theory of statistical inference. Con-
cretely, for a thermal system in canonical equilibrium,
∆β can be interpreted as the standard deviation asso-
ciated with estimates of the parameter β. Mandelbrot
proved that (1) sets the ultimate limit on simultaneous
estimates of energy and temperature in classical statis-
tical physics [2].

The notion of fluctuating temperature has been proved
fundamental in the emerging field of quantum thermom-
etry, where advances in nanotechnology now allow tem-
perature sensing at sub-micron scales [12–24]. Using
the tools of quantum metrology [25], the relation (1)
can also be derived for weakly coupled quantum sys-
tems [13, 14, 16], where the equilibrium state is best
described by the canonical ensemble. Within the grand-
canonical ensemble the impact of the indistinguishability
of quantum particles on the estimation of temperature
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and the chemical potential has also been explored [26].
Relation (1) informs us that when designing an accu-
rate quantum thermometer one should search for systems
with Hamiltonians that produce a large energy variance
[16].

Recently there has been an emerging interest into
the effects of strong coupling on temperature estima-
tion [15, 17, 27]. Below the nanoscale the strength of
interactions between the system and the reservoir may
become non-negligible, and the local equilibrium state
of the system will not be of Gibbs form [28–30]. In this
regime thermodynamics needs to be adapted as the equi-
librium properties of the system must now depend on the
interaction energy [31–43]. We will see that the internal
energy U and its fluctuations ∆U are determined by a
modified internal energy operator, denoted by Ê∗S , that
differs from the bare Hamiltonian of the system [38, 42].
This modification brings into question the validity of (1)
for general classical and quantum systems, and the aim
of this paper is to investigate the impact of strong cou-
pling on the thermodynamic uncertainty relation.

Taking into account quantum properties of the effec-
tive internal energy operator and its temperature depen-
dence, we here derive the general thermodynamic uncer-
tainty principle valid at all coupling strengths. Formally
this result follows from a general upper bound on the
quantum Fisher information for exponential states. We
prove that quantum fluctuations arising from coherences
between energy states of the system lead to increased
fluctuations in the underlying temperature. Most inter-
estingly, the non-classical modifications to (1) are quan-
tified by the average Wigner-Yanase-Dyson skew infor-
mation [44–47], which is a quantity closely linked to mea-
sures of coherence [48], asymmetry [49] and quantum
speed limits [50]. We then demonstrate that the skew
information is also linked to the heat capacity of the
system through a modified fluctuation-dissipation rela-
tion. This result is used to find a new upper bound on
the achievable signal-to-noise ratio of an unbiased tem-
perature estimate, and we illustrate our bound with an
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example of a damped harmonic oscillator.

Results

I. QUANTUM AND CLASSICAL FLUCTUATIONS IN
PARAMETER ESTIMATION.

A. The Wigner-Yanase-Dyson skew information.

Our analysis throughout the paper will rely on dis-
tinguishing between classical and non-classical fluctua-
tions of observables in quantum mechanics, and we first
present a framework for quantifying these different forms
of statistical uncertainty for arbitrary mixed states.

Let us consider a quantum state ρ̂ and an observable
Â. Wigner and Yanase considered the problem of quan-
tifying the quantum uncertainty in observable Â for the
case where ρ̂ is mixed [44]. However, they observed that
the standard measure of uncertainty, namely the variance
Var[ρ̂, Â] := tr[ρ̂ δÂ2] with δÂ = Â−〈Â〉, contains clas-
sical contributions due to mixing, and thus fails to fully
quantify the non-classical fluctuations in the observable
Â. This problem can be resolved by finding a quan-
tum measure of uncertainty Q[ρ̂, Â] and classical mea-

sure K[ρ̂, Â] such that the variance can be partitioned
according to

Var[ρ̂, Â] = Q[ρ̂, Â] +K[ρ̂, Â]. (2)

Following the framework introduced by Luo [51], these
functions are required to fulfil the following conditions:

(i) Both terms should be non-negative, Q[ρ̂, Â] ≥ 0

and K[ρ̂, Â] ≥ 0, so that they can be interpreted
as forms of statistical uncertainty.

(ii) If the state ρ̂ is pure, then Q[ρ̂, Â] = Var[ρ̂, Â] while

K[ρ̂, Â] = 0 as all uncertainty should be associated
to quantum fluctuations alone.

(iii) Q[ρ̂, Â] must be convex with respect to ρ̂, so that it
decreases under classical mixing. Correspondingly,
K[ρ̂, Â] must be concave with respect to ρ̂.

The following function, known as the Wigner-Yanase-
Dyson (WYD) skew information [44] was shown to be a
valid measure of quantum uncertainty:

Qa[ρ̂, Â] := −1

2
tr
[
[Â, ρ̂a][Â, ρ̂1−a]

]
; a ∈ (0, 1), (3)

with the complimentary classical uncertainty given by

Ka[ρ̂, Â] := tr
[
ρ̂a δÂ ρ̂1−aδÂ

]
; a ∈ (0, 1). (4)

While conditions (i) and (ii) are easily verified, the con-

vexity/concavity of Qa[ρ̂, Â] and Ka[ρ̂, Â] respectively
can be proven using Lieb’s concavity theorem [52].

The presence of the parameter a demonstrates that
there is no unique way of separating the quantum and

classical contributions to the variance. We here follow
the suggestion made in [46, 47] and average over the
interval a ∈ (0, 1) to define two new quantities:

Q[ρ̂, Â] :=

∫ 1

0

da Qa[ρ̂, Â], (5)

K[ρ̂, Â] :=

∫ 1

0

da Ka[ρ̂, Â]. (6)

It is not only the Qa[ρ̂, Â] and Ka[ρ̂, Â] that separate
the quantum and classical fluctuations of a quantum ob-
servable Â in a state ρ̂ according to Eq. (2), but also the

averaged Q[ρ̂, Â] and K[ρ̂, Â]. This follows from the
linearity of the integrals in (5) and (6) which also pre-
serve the conditions (i)-(iii). Throughout the remainder

of the paper we will consider Q[ρ̂, Â] and K[ρ̂, Â] as the
relevant measures of quantum and classical uncertainty,
respectively. While this may appear to be an arbitrary
choice, we will subsequently prove that the average skew
information is intimately connected to thermodynamics.

B. Bound on the quantum Fisher information for
exponential states.

We now prove that the average skew information is
linked to the quality of a parameter estimate for a quan-
tum exponential state. A quantum exponential state is

of the form ρ̂θ = e−Âθ/Z where Z = tr[e−Âθ ] and Âθ is
a hermitian operator that is here assumed to depend an-
alytically on a smooth parameter θ. For any state of full
rank, an operator Âθ can be found such that the state
can be expressed in this form, i.e. all full rank states are
exponential states.

We first recall the standard setup for estimating the
parameter θ [53]. First one performs a POVM mea-

surement M̂(ξ), where
∫
dξ M̂(ξ) = Î and ξ denotes

the outcomes of the measurement which may be con-
tinuous or discrete. The probability of obtaining a par-
ticular outcome is p(ξ|θ) = tr[M̂(ξ)ρ̂θ]. The measure-
ment is repeated n times with outcomes {ξ1, ξ2, ..ξn},
and one constructs a function θ̃ = θ̃(ξ1, ξ2, ..ξn) that
estimates the true value of the parameter. We de-
note the average estimate by 〈θ̃〉, where 〈(..)〉 =∫
dξ1...dξn p(ξ1|θ)...p(ξn|θ)(..), and assume the esti-

mate is unbiased, ie. 〈θ̃〉 = θ. In this case the mean-
squared error in the estimate is equivalent to the vari-
ance, which is denoted by ∆θ2 = 〈θ̃2〉 − θ2.

The celebrated quantum Cramér-Rao inequality sets a
lower bound on ∆θ, optimised over all possible POVMs
and estimator functions [25, 53–56]:

∆θ ≥ 1√
nF (θ)

, (7)

where F (θ) is the quantum Fisher information (QFI).
The bound becomes tight in the asymptotic limit n→∞
[25]. If the exponential state belongs to the so-called

exponential family, which is true if Âθ = θX̂ + Ŷ for
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commuting operators X̂, Ŷ , then the bound is also tight
in the single-shot limit (n = 1) [56]. The QFI with

respect to θ is defined by F (θ) := tr[ρ̂θL̂
2
θ], where L̂θ

is the symmetric logarithmic derivative which uniquely
satisfies the operator equation ∂θρ̂θ = 1

2{L̂θ, ρ̂θ} [55].
Here {. . . } denotes the anti-commutator.

We now state a general upper bound on F (θ) valid
for any exponential state:

Theorem 1 For an exponential state ρ̂θ = e−Âθ/Z the
QFI with respect to the parameter θ is bounded by

F (θ) ≤ K[ρ̂θ, B̂θ]. (8)

Here K[ρ̂θ, B̂θ] is defined in (6), and B̂θ is the hermitian

observable B̂θ := ∂θÂθ. The bound becomes tight in the
limits where ρ̂θ is maximally mixed.

This theorem demonstrates that the strictly classical
fluctuations in B̂θ constrain the achievable precision in
estimates of θ. The proof of the theorem is given in
Appendix A.

We note that for states σ̂θ that fulfil the von-Neumann
equation ∂θσ̂θ = −i [Aθ, σ̂θ] a connection between skew
information Q1/2 and parameter estimation has previ-
ously been made by Luo [57]. While the particular de-
pendence on θ implied by this equation is relevant for
unitary parameter estimation [25], this dependence will
not be relevant for temperature estimation since thermal
states do not generally fulfil this von-Neumann equation.
In contrast, we will see in the next section that Theorem
1 has implications for the achievable precision in deter-
mining temperature.

II. GENERALISING THE THERMODYNAMIC
UNCERTAINTY RELATION.

A. Thermometry for strongly-coupled systems.

We will now use the results of the previous section
to derive a new uncertainty relation between energy and
temperature for a quantum system strongly interacting
with a reservoir. To achieve this we will first discuss the
appropriate energy operator for such a system, and then
proceed to generalise (1).

A quantum system S that interacts with a reservoir R
is described by a Hamiltonian

ĤS∪R := ĤS ⊗ ÎR + ÎS ⊗ ĤR + V̂S∪R, (9)

where ĤS and ĤR are the bare Hamiltonians of S and
R respectively, while V̂S∪R is an interaction term of ar-
bitrary strength. We will consider situations where the
environment is large compared to the system, i.e. the op-
erator norms fulfil ||ĤR|| � ||ĤS ||, ||V̂S∪R||. We make
no further assumptions about the relative size of the cou-
pling ||V̂S∪R|| between the system and the environment,

and the system’s bare energy ||ĤS ||. The global equi-
librium state at temperature T for the total Hamilto-

nian S ∪R is of Gibbs form π̂S∪R(T ) = e−βĤS∪R/ZS∪R
where β = (kBT )−1 and ZS∪R = trS∪R[e−βĤS∪R ] is the
partition function for S ∪ R. The Boltzmann constant
kB will be set to unity throughout.

Due to the presence of the interaction term the re-
duced state of S, denoted π̂S(T ) = trR[π̂S∪R(T )], is

generally not thermal with respect to ĤS , unless the cou-
pling is sufficiently weak, i.e. ||ĤS || � ||V̂S∪R||. There-

fore the partition function determined by ĤS can no
longer be used to calculate the internal energy of the sys-
tem [38]. To resolve this issue one can rewrite the state

of S as an effective Gibbs state π̂S(T ) := e−βĤ
∗
S(T )/Z∗S ,

where

Ĥ∗S(T ) := − 1

β
ln

(
trR[e−βĤS∪R ]

trR[e−βĤR ]

)
, (10)

is the Hamiltonian of mean force [31, 33–40, 42, 43].

The operator Ĥ∗S(T ) acts as a temperature-dependent
effective Hamiltonian describing the equilibrium proper-
ties of S through the effective partition function Z∗S =

trS [e−βĤ
∗
S(T )]. The free energy associated with Z∗S also

appears in the open system fluctuation relations [33, 58].
The internal energy of S can be computed from

this partition function via US(T ) := −∂β lnZ∗S . It is
straightforward to show that US(T ) is just the differ-
ence between the total energy, US∪R = −∂β lnZS∪R,

and the energy of the reservoir, ŨR = −∂β lnZR with

ZR = trR[e−βĤR ], in the absence of any coupling to

S, i.e. US(T ) = US∪R(T ) − ŨR(T ). In other words,
US(T ) is the energy change induced from immersing the
subsystem S into the composite state S ∪R [32, 39].

Seifert has remarked [38] that US(T ) can be expressed

as an expectation value, US(T ) = 〈Ê∗S(T )〉, of the fol-
lowing observable:

Ê∗S(T ) := ∂β
[
βĤ∗S(T )

]
. (11)

One can interpret Ê∗S(T ) as the effective energy operator
describing the system, and we will refer to its eigenstates
as “the system energy states”. The introduction of this
operator allows one to consider fluctuations in the en-

ergy ∆US =

√
Var[π̂S , Ê∗S ]. It is important to note that

Ê∗S(T ) depends explicitly on the coupling V̂S∪R and the
temperature T .

Our first observation is that, in general, Ê∗S(T ) differs

from both the bare system Hamiltonian ĤS and the mean
force Hamiltonian Ĥ∗S(T ). Indeed, this effective energy
operator for the system contains the bare energy part
as well as an energetic contribution from the coupling,
Ê∗S(T ) = ĤS + ∂β [β (Ĥ∗S(T )− ĤS)]. Moreover, Ê∗S(T )

does not even commute with ĤS and Ĥ∗S(T ). This non-
commutativity implies that the state π̂S(T ) exists in a
superposition of energy states, aside from the trivial sit-
uation in which [ĤS + ĤR, V̂S∪R] = 0. As expected, in
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the limit of weak coupling Ê∗S(T ) reduces to the bare

Hamiltonian ĤS .

We are now ready to state the generalised thermody-
namic uncertainty relations for strongly coupled quan-
tum systems. Following the approach taken by De
Pasquale et al [15], we consider the QFI FS(β) asso-
ciated with the inverse temperature β. According to the
quantum Cramér-Rao bound this functional quantifies
the minimum extent to which the inverse temperature
fluctuates from the perspective of S, and we denote
these fluctuations by ∆βS . Given that the state of S
takes the form π̂S(T ) := e−βĤ

∗
S(T )/Z∗S we can immedi-

ately apply Theorem 1 by identifying B̂θ = Ê∗S(T ) with

θ = β, leading to FS(β) ≤ K[π̂S , Ê
∗
S ]. Applying (7)

for the single-shot case (n = 1) and using the fact that

K[π̂S , Ê
∗
S ] = ∆U2

S −Q[π̂S , Ê
∗
S ], we obtain the following

thermodynamic uncertainty relation:

∆βS ≥
1√

∆U2
S −Q[π̂S , Ê∗S ]

≥ 1

∆US
. (12)

This is the main result of the paper and represents the
strong-coupling generalisation of (1). It can be seen that
the bound on the uncertainty in the inverse tempera-
ture is increased whenever quantum energy fluctuations
are present. These additional fluctuations are quantified
by the non-negative Q[π̂S , Ê

∗
S ], increasing which implies

a larger lower bound on ∆βS . One recovers the usual
uncertainty relation when Q[π̂S , Ê

∗
S ] can be neglected,

which is the case when the interaction commutes with
the bare Hamiltonians of S and R or when the interac-
tion is sufficiently weak. We note that Q[π̂S , Ê

∗
S ] van-

ishes for classical systems and (12) reduces to the origi-
nal uncertainty relation (1), but with energy fluctuations

quantified by Ê∗S instead of the bare Hamiltonian ĤS .

If one repeats the experiment n times, then the un-
certainty in the estimate can be improved by a factor of
1/
√
n [53]. We remark that in the weak coupling limit,

where Ĥ∗S(T ) ' βĤS , the state of S belongs to the ex-
ponential family, and hence the bound on ∆βS becomes
tight for a single measurement in agreement with (1).

However, when V̂S∪R is non-negligible the Hamiltonian
of mean force cannot generally be expressed in the lin-
ear form Ĥ∗S(T ) = βX̂S + ŶS . This means in general
it is necessary to take the asymptotic limit in order to
saturate (12).

B. Fluctuation-Dissipation relation beyond
weak-coupling.

We now detail the impact of strong interactions on
the heat capacity of the quantum system and the impli-
cations for the precision of temperature measurements.
For a fixed volume of the system, the heat capacity is de-
fined as the temperature derivative of the internal energy

US(T ) [34, 35], i.e.

CS(T ) :=
∂US
∂T

. (13)

In standard thermodynamics where the system is de-
scribed by a Gibbs state the fluctuation-dissipation rela-
tion (FDR) states that the heat capacity is proportional
to the fluctuations in energy [3], i.e. CS(T ) = ∆U2

S/T
2.

However, example studies of open quantum systems of
the form (9) have shown that the heat capacity can be-
come negative at low temperatures [34, 35, 59, 60], thus
implying it cannot be proportional to a positive variance
in general.

Our second result, proven in Appendix B, indeed
shows that there are two additional contributions to the
fluctuation-dissipation relation due to strong-coupling:

CS(T ) =
∆U2

S

T 2
− Q[π̂S , Ê

∗
S ]

T 2
+
〈
∂T Ê

∗
S

〉
, (14)

implying that CS(T ) can be less than ∆U2
S/T

2 and even
negative. We see that the first correction is due to
the quantum fluctuations in energy given by the aver-
age WYD information Q[π̂S , Ê

∗
S ], which only vanishes

in the classical limit where [Ê∗S(T ), π̂S(T )] = 0. The
second correction is a dissipation term stemming from
the temperature dependence of the internal energy op-
erator (11). Notably this term can still be present in
the classical limit where the energy operator may de-
pend on temperature if the coupling is non-negligible.
As expected both terms can be dropped in the limit of
vanishing coupling and the standard FDR is recovered.

C. Bound on the signal-to-noise ratio for estimates of
the temperature.

Let us denote the uncertainty in the temperature
from a given unbiased estimation scheme by ∆TS , with
measurements performed on S alone. It is known
[13, 14, 16, 61] that in the weak-coupling limit, the op-
timal signal-to-noise ratio for estimating T from a single
measurement is bounded by CS(T ):(

T

∆TS

)2

≤ CS(T ). (15)

This bound is tight for a single measurement of T and
implies that precise measurements of the temperature
require a large heat capacity. The result follows straight-
forwardly from the quantum Cramér-Rao inequality and
the standard FDR.

Using our modified FDR (14), we here give the strong-
coupling generalisation of the bound (15). Considering
estimates of T rather than the inverse temperature β,
a simple change of variables reveals that the QFI with
respect to T is related to that of β, FS(β) = T 4FS(T ).

From Theorem 1 we again have T 4FS(T ) ≤ K[π̂S , Ê
∗
S ],

and combining this with (14) and (7) we obtain:(
T

∆TS

)2

≤ CS(T )−
〈
∂T Ê

∗
S

〉
. (16)
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FIG. 1. Average WYD skew information. Plot of quantum

energetic fluctuations

√
Q[π̂S , Ê∗S ]/~ω as a function of T

for different coupling strengths.

This is our third result and demonstrates that the opti-
mal signal-to-noise ratio for estimating the temperature
of S is bounded by both the heat capacity and the added
dissipation term, which can be both positive or nega-
tive. This bound is independently tight in both the high
temperature and weak-coupling limits. In these regimes
the POVM saturating (16) is given by the maximum-
likelihood estimator measured in the basis of the rele-
vant symmetric logarithmic derivative [53]. We stress
that (16) is valid in the classical limit, in which case it is
always tight. We remark that the RHS of (16) can alter-
natively be expressed in terms of the skew information,
in which case (T/∆TS)2 ≤ ∆U2

S/T
2 −Q[π̂S , Ê

∗
S ]/T 2.

III. EXAMPLE.

While the bound (16) is tight in the high temperature
limit, for general open quantum systems the accuracy of
the bound is not known. We show that the bound is very
good for the example of a damped harmonic oscillator
linearly coupled to N harmonic oscillators in the reservoir
[37, 62, 63]. Experimentally, such a model describes
the behaviour of nano-mechanical resonators [64] and
BEC impurities [65]. Here the system Hamiltonian is

ĤS = p̂2

2M + Mω2x̂2

2 , while the reservoir Hamiltonian is

ĤR =
∑N
j=1

( p̂2j
2Mj

+
Mjω

2
j x̂

2
j

2

)
and the interaction term

is given by

V̂S∪R =

N∑
j=1

(
− λj x̂⊗ x̂j +

λ2
j

2Mjω2
j

x̂2

)
. (17)

To allow a fully analytical solution, the reservoir frequen-
cies are chosen equidistant, ωj = j∆ and the continuum
limit is taken so that ∆ → 0 (and N → ∞). The cou-
pling constants are chosen as the Drude-Ullersma spec-

trum [66], λj =

√
2γMjMω2

j∆

π

ω2
D

ω2
D+ω2

j
, where γ is the

damping coefficient controlling the interaction strength
and ωD is a large cutoff frequency.

FIG. 2. Bound on temperature signal-to-noise ratio. Plot
of the optimal signal-to-noise ratio of an unbiased temper-
ature estimate, (T/∆TS)2opt (coloured), as a function of
T and γ. The mesh plot shows the upper bound given
by (16).

As shown by Grabert et al. [62], the resulting Hamilto-
nian of mean force for the oscillator can be parameterised
by a temperature-dependent mass and frequency,

Ĥ∗S(T ) =
p̂2

2MT

+
MTω

2
T x̂

2

2
= ~ωT

(
n̂T +

1

2

)
, (18)

where MT and ωT are given through the expectation
values of p̂2 and x̂2 in the global thermal state, see Ap-
pendix C for detailed expressions. In its diagonal form
the mean-force Hamiltonian contains a temperature-
dependent number operator, n̂T = â†T âT , with annihila-

tion operator âT =
√

AT
2~ (x̂+ i

AT
p̂) with AT = MT ωT .

The internal energy operator is now obtained by
straightforward differentiation, see (11), and given by

Ê∗S(T ) = αT Ĥ
∗
S(T )− gT

â2
T + (â†T )2

2
, (19)

where αT = 1− ω′T
ωT
T and gT = ~ωTT A′T

AT
. Using this op-

erator we obtain analytic expressions for CS(T ), FS(T ),

Q[π̂S , Ê
∗
S ] and 〈∂T Ê∗S〉 in Appendix C.

Figure 1 shows the square root of the average skew in-
formation Q[π̂S , Ê

∗
S ] in units of ~ω as a function of tem-

perature for different coupling strengths. As expected
we see that the quantum fluctuations in energy vanish
in the high temperature limit, while fluctuations grow
with increased coupling strengths due to increased non-
commutativity between Ê∗S(T ) and the state π̂S of the

oscillator. Interestingly we see that Q[π̂S , Ê
∗
S ] decays

exponentially to zero in the low temperature limit, im-
plying that the state of the oscillator commutes with the
internal energy operator in this regime. Whether this is
a general feature or specific to the example here remains
an open question.

Figure 2 shows the optimal signal-to-noise ratio for
estimating T determined by the Cramér-Rao bound (7),
(T/∆TS)2

opt = T 2FS(T ), as a function of temperature T
and coupling strength γ. The bound we derived in (16)
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given by the heat capacity and an additional dissipa-
tion term is also plotted and shows very good agreement
with the optimum estimation scheme quantified by the
quantum Fisher information. The bound clearly becomes
tight in the high-temperature limit (T → ∞) indepen-
dent of the coupling strength. Conversely the bound is
also tight in the weak-coupling limit (γ → 0) indepen-
dent of the temperature. The optimum and the bound
both converge exponentially to zero as T → 0, albeit
with different rates of decay. Outside of these limits
the difference between the bound and (T/∆TS)2

opt has
a maximum, and at the temperature and coupling for
which this maximum occurs the bound is roughly 30%
greater than (T/∆TS)2

opt.

Discussion

In this paper we have shown how non-negligible in-
teractions influence fluctuations in temperature at the
nanoscale. Our main result (12) is a thermodynamic un-
certainty relation extending the well-known complemen-
tarity relation (1) between energy and temperature to all
interaction strengths. This derivation is based on a new
bound on the quantum Fisher information for exponen-
tial states which we prove in Theorem 1. As Theorem 1
is valid for any state of full-rank, the bound will be of
interest to other areas of quantum metrology. Our un-
certainty relation shows that for a given finite spread in
energy, unbiased estimates of the underlying tempera-
ture are limited to a greater extent due to coherences
between energy states. These coherences only arise for
quantum systems beyond the weak coupling assumption.
We found that these additional temperature fluctuations
are quantified by the average Wigner-Yanase-Dyson skew
information, thereby establishing a new link between
quantum and classical forms of statistical uncertainty in
nanoscale thermodynamics. With coherence now under-
stood to be an important resource in the performance
of small-scale heat engines [67–69], our findings suggest
that the skew information could be used to unveil further
non-classical aspects of quantum thermodynamics. This
complements previous results that connect skew informa-
tion to both unitary phase estimation [57] and quantum
speed limits [50].

Our second result (14) is a generalisation of the well-
known fluctuation-dissipation relation to systems beyond
the weak coupling regime. This further establishes a
connection between the skew information and the sys-
tem’s heat capacity CS(T ). Proving that the heat ca-
pacity, with its strong coupling corrections, vanishes in
the zero-temperature limit in accordance with the third
law of thermodynamics remains an open question. The
appearance of the skew information in (14) suggests that

quantum coherences may play a role in ensuring its va-
lidity. Recent resource-theoretic derivations of the third
law [70, 71] could provide a possible avenue for exploring
the impact of coherences.

By applying the fluctuation-dissipation relation to
temperature estimation we derive our third result, an
upper bound (16) on the optimal signal-to-noise ratio
expressed in terms of the system’s heat capacity. No-
tably the bound implies that when designing a probe to
measure T , its bare Hamiltonian and interaction with
the sample should be chosen so as to both maximise
CS(T ) whilst minimising the additional dissipation term〈
∂T Ê

∗
S

〉
. It is an interesting open question to consider

the form of Hamiltonians that achieve this optimisation
in the strong coupling scenario. Furthermore, one ex-
pects that improvements to low-temperature thermome-
try resulting from strong interactions, such as those ob-
served in [27], will be connected to the properties of the
effective internal energy operator. In particular, it is clear
from (16) that any improved scaling of the QFI at low
temperatures must be determined by the relative scaling
of CS(T ) and

〈
∂T Ê

∗
S

〉
, and exploring this further re-

mains a promising direction of research. Advancements
in nanotechnology now enable temperature sensing over
microscopic spatial resolutions [72, 73], and understand-
ing how to exploit interactions between a probe and its
surroundings will be crucial to the development of these
nanoscale thermometers.

The presented approach opens up opportunities for
exploring the intermediate regime between the limiting
cases [74, 75] of standard thermodynamics with negli-
gible interactions and those where correlations play a
prominent role [41, 76, 77]. The results establish a new
connection between abstract measures of quantum infor-
mation theory, such as the quantum Fisher information
and skew information, and a material’s effective ther-
modynamic properties. This provides a starting point
for future investigations into nanoscale thermodynam-
ics, extending into the regime where the weak coupling
assumption is not justified.
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Appendix A: Proof of Theorem 1

We begin by considering an exponential state ρ̂θ dependent on smooth parameter θ of the form ρ̂(θ) = e−Âθ/Z,

where Z = tr[e−Âθ ] and Âθ is some positive hermitian operator. Suppressing the dependence on θ for now, let us

denote the spectral decomposition by ρ̂θ =
∑
n pn|ψn〉〈ψn| where the eigenstates satisfy Âθ|ψn〉 = λn|ψn〉. We

arrange the sum in decreasing order, so that pn ≥ pm if n < m. The QFI with respect to θ is then F (θ) := tr[ρ̂θL̂
2
θ],

where L̂θ is the operator satisfying

∂θρ̂θ =
1

2
{ρ̂θ, L̂θ}. (A1)

By expanding both sides of (A1) in the basis of ρ̂θ, one may show that the QFI can be written as follows [78]:

F (θ) = 2
∑
n,m

|〈ψn|∂θρ̂θ|ψm〉|2

pn + pm
. (A2)

We define the operator B̂θ = ∂θÂθ and note that Var[ρ̂θ, B̂θ] = tr[δB̂2
θ ρ̂θ] where δB̂θ = B̂θ + ∂θ lnZ. Given the

exponential form of ρ̂θ, we use the following integral expression to expand the derivative [79]:

∂θ e
−Â(θ) := −

∫ 1

0

da e−(1−a)Â(θ)∂θ[Â(θ)]e−aÂ(θ), (A3)

where a ∈ R is a real number. Using this the QFI becomes

F (θ) = 2
∑
n,m

|〈ψn|∂θe−(Âθ+lnZ)|ψm〉|2

pn + pm
,

=
2

Z2

∑
n,m

1

pn + pm

∣∣∣∣〈ψn|∫ 1

0

da e−(1−a)ÂθδB̂θ e
−aÂθ |ψm〉

∣∣∣∣2,
=
∑
n

pn
∣∣〈ψn|δB̂θ|ψn〉∣∣2 +

4

Z2

∑
n<m

1

pn + pm

∣∣〈ψm|B̂θ|ψn〉∣∣2[ ∫ 1

0

da e−
(
aλm+(1−a)λn

)]2

,

=
∑
n

pn
∣∣〈ψn|δB̂θ|ψn〉∣∣2 + 4

∑
n<m

(pn − pm)2

pn + pm

∣∣〈ψn|B̂θ|ψm〉∣∣2 1

(ln pn − ln pm)2
, (A4)

Let us now use the following expression for the variance:

Var[ρ̂θ, B̂θ] =
∑
n,m

pn + pm
2

∣∣〈ψn|δB̂θ|ψm〉∣∣2,
=
∑
n

pn
∣∣〈ψn|δB̂θ|ψn〉∣∣2 +

∑
n 6=m

pn + pm
2

∣∣〈ψn|δB̂θ|ψm〉∣∣2,
=
∑
n

pn
∣∣〈ψn|δB̂θ|ψn〉∣∣2 +

∑
n<m

(pn + pm)
∣∣〈ψn|δB̂θ|ψm〉∣∣2, (A5)

Comparing this with (A4) we now add and subtract the sum
∑
n<m(pn + pm)

∣∣〈ψn|δB̂θ|ψm〉∣∣2 to the RHS of (A4),
obtaining

F (θ) = Var[ρ̂θ, B̂θ] +
∑
n<m

[(
2(pn − pm)

ln(pn/pm)

)(
2(pn − pm)

(pn + pm) ln(pn/pm)

)
− (pn + pm)

]∣∣〈ψn|B̂θ|ψm〉∣∣2, (A6)

http://arxiv.org/abs/1707.09228
http://arxiv.org/abs/1707.09228
http://dx.doi.org/ 10.1088/1367-2630/aa964f
http://dx.doi.org/ 10.1088/1367-2630/aa964f
http://dx.doi.org/10.1103/PhysRevA.90.032114
http://dx.doi.org/10.1103/PhysRevA.90.032114
http://dx.doi.org/ 10.1088/0253-6102/61/1/08
http://dx.doi.org/ 10.1088/0253-6102/61/1/08
http://dx.doi.org/10.1063/1.1705306
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We now turn to the average WYD skew information of observable B̂θ, which is given by (5):

Q[ρ̂θ, B̂θ] = −1

2

∫ 1

0

da tr
[
[B̂θ, ρ̂

a
θ ][B̂θ, ρ̂

1−a
θ ]

]
. (A7)

It follows from the analysis of [46] that for a full-rank state Q[ρ̂θ, B̂θ] can also be expanded in the eigenbasis of ρ̂θ,
yielding

Q[ρ̂θ, B̂θ] =
∑
n<m

(
pn + pm −

2(pn − pm)

ln pn − ln pm

)∣∣〈ψn|B̂θ|ψm〉∣∣2. (A8)

We now bound the QFI following on from (A6):

F (θ) = Var[ρ̂θ, B̂θ] +
∑
n<m

[(
2(pn − pm)

ln(pn/pm)

)(
2(pn − pm)

(pn + pm) ln(pn/pm)

)
− (pn + pm)

]∣∣〈ψn|B̂θ|ψm〉∣∣2,
≤ Var[ρ̂θ, B̂θ] +

∑
n<m

[
2(pn − pm)

ln(pn/pm)
− (pn + pm)

]∣∣〈ψn|B̂θ|ψm〉∣∣2,
= Var[ρ̂θ, B̂θ]−Q[ρ̂θ, B̂θ],

= K[ρ̂θ, B̂θ], (A9)

where in the second line we used the fact that (pn − pm)/ ln(pn/pm) ≥ 0 since pn ≥ pm for n < m, and the
inequality

x− 1

x+ 1
≤ ln

√
x; x ≥ 1, (A10)

identifying x = pn/pm ≥ 1. This allowed us to use(
2(pn − pm)

(pn + pm) ln(pn/pm)

)
≤ 1, (A11)

for each term inside the sum. In the third line we used the expression (A8) for the skew information, and we
employed (2) in the final line. This completes the proof of Theorem 1.

Appendix B: Derivation of (14)

Denote the operator δÊ∗S := Ê∗S(T ) − 〈Ê∗S(T )〉 as the deviation in internal energy, dropping the temperature
dependence for now. Using (5) we now evaluate the average WYD skew information of the internal energy:

Q[π̂S , Ê
∗
S ] = Var[π̂S , Ê

∗
S ]−K[π̂S , Ê

∗
S ],

= Var[π̂S , Ê
∗
S ]−

∫ 1

0

da tr[π̂1−a
S δÊ∗S π̂

a
S δÊ

∗
S ],

= Var[π̂S , Ê
∗
S ]−

∫ 1

0

da tr[e−(1−a)(βĤ∗S+lnZ∗S)δÊ∗Se
−a(βĤ∗S+lnZ∗S)δÊ∗S ],

= Var[π̂S , Ê
∗
S ] + tr[δÊ∗S ∂β π̂S ],

= Var[π̂S , Ê
∗
S ] + tr[Ê∗S ∂β π̂S ],

= Var[π̂S , Ê
∗
S ]− T 2tr[Ê∗S ∂T π̂S ],

= Var[π̂S , Ê
∗
S ]− T 2∂T tr[Ê∗S π̂S ] + T 2tr[∂T Ê

∗
S π̂S ],

= Var[π̂S , Ê
∗
S ]− T 2CS(T ) + T 2

〈
∂T Ê

∗
S

〉
, (B1)

where we used the relation δÊ∗S = ∂β(βĤ∗S + lnZ∗S) and (A3) in the the fourth line, and the fact that the operator
∂β π̂S is traceless in the fifth line. Rearranging both sides completes the derivation of (14).
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Appendix C: Example

As stated in the main text the mean force Hamiltonian of the probe is given by Ĥ∗S(T ) = ωT (n̂T + 1
2 ), with

n̂T = â†T âT and âT =
√

AT
2 (x̂+ i p̂

AT
). We will set ~ = 1 throughout and AT is given by AT =

√
〈p̂2〉/〈x̂2〉, where

the effective mass and frequency are given respectively by

MT = ω−1
T

√
〈p̂2〉
〈x̂2〉

, (C1)

ωT = 2T arcoth(2
√
〈p̂2〉〈x̂2〉). (C2)

We can diagonalise the state of the probe in terms of the number states of n̂T , so π̂S(T ) = e−βĤ
∗
S(T )/Z∗S =∑∞

n=0 pn|n〉〈n| where

pn =
e−βεn

Z∗S
, Z∗S = 2 sinh−1

(
βωT

2

)
, (C3)

and εn = ωT (n+ 1
2 ). Furthermore, from the main text the internal energy operator is given by

Ê∗S(T ) = αT Ĥ
∗
S(T )− gT

â2
T + (â†T )2

2
, (C4)

with αT = 1− ω′T
ωT
T and gT = ωTT

A′T
AT

. The functions gT and αT are determined by the effective mass and frequency

of the oscillator defined above, so we need to calculate 〈x̂2〉 and 〈p̂2〉. In the continuum limit N → ∞ the exact
expressions for the quadratures are found to be [62]:

〈x̂2〉 =
1

Mβω2
+

~
Mπ

3∑
i=1

[
(λi − ωD)Γ(1 + β~λi

2π )

(λi+1 − λi)(λi−1 − λi)

]
, (C5)

〈p̂2〉 = Mω2〈x̂2〉+
~MγωD

π

3∑
i=1

[
λiΓ(1 + β~λi

2π )

(λi+1 − λi)(λi−1 − λi)

]
, (C6)

where Γ(z) is the digamma function and λi are the characteristic frequencies of the oscillator. In the limit of a large
cutoff frequency, ωD � ω, γ the frequencies are given by

λ1 =
γ

2
+

√
γ2

4
− ω2,

λ2 =
γ

2
−
√
γ2

4
− ω2,

λ3 = ωD − γ. (C7)

Due to the complicated dependence on T we will not present the exact analytic expressions for gT and αT , but we
will proceed to calculate CS(T ), FS(T ) and 〈∂T Ê∗S〉. The average internal energy is found to be

〈Ê∗S〉 = αT 〈Ĥ∗S(T )〉, (C8)

〈Ĥ∗S(T )〉 =
ωT
2

coth

(
βωT

2

)
. (C9)

The heat capacity can now be calculated by differentiating the average energy:

CS(T ) = ∂T 〈Ê∗S〉,

= α′T
ωT
2

coth

(
βωT

2

)
+ αT

ω′T
2

coth

(
βωT

2

)
− αTωT (ω′Tβ − ωTβ2)

4sinh2

(
βωT

2

) ,

=
1

2
coth

(
βωT

2

)
(α′TωT + αTω

′
T )− αTωTβ(ω′T − ωTβ)

4sinh2

(
βωT

2

) . (C10)
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In order to calculate the QFI (A2) and skew information (A8) we will need to obtain the elements Enm =

|〈n|δÊ∗|m〉|2, where δÊ∗ = Ê∗S − 〈Ê∗S〉. Firstly one finds the following:

〈n|δÊ∗|m〉 = 〈n|Ê∗S |m〉 − 〈Ê∗S〉δn,m,

= αT 〈n|Ĥ∗S(T )|m〉 − gT 〈n|
â2
T + (â†T )2

2
|m〉 − 〈Ê∗S〉δn,m,

= αT (εn − 〈Ĥ∗S(T )〉)δn,m − gT
(√

m
√
m− 1

2
δn,m−2 +

√
n
√
n− 1

2
δm,n−2

)
, (C11)

where δn,m represents the Kronecker-Delta function. Squaring both sides yields

Enm = α2
T (εn − 〈Ĥ∗S(T )〉)2δn,m +

g2
T

4

(
(n+ 2)(n+ 1)δn+2,m + (m+ 2)(m+ 1)δm+2,n

)
, (C12)

The variance in internal energy is given by (A5), so that

Var[π̂S , Ê
∗
S ] =

∞∑
n,m=0

pnEnm,

= α2
TVar[π̂S , Ĥ

∗
S ] +

g2
T

2

∞∑
n=0

pn(n+ 1)(n+ 2),

= α2
TVar[π̂S , Ĥ

∗
S ] + g2

T sinh

(
βωT

2

) ∞∑
n=0

(n+ 1)(n+ 2)e−βωT (n+ 1
2 )

= α2
TVar[π̂S , Ĥ

∗
S ] + 2g2

T sinh

(
βωT

2

)(
e−

βωT
2

(1− e−βωT )3

)
,

=
α2
Tω

2
T

4 sinh2
(
βωT

2

) + 2g2
T sinh

(
βωT

2

)(
e−

βωT
2

(1− e−βωT )3

)
, (C13)

where we used the series
∑∞
n=0(n+ 1)(n+ 2)xn = 2/(1− x)3 for |x| < 1 and that the variance of Ĥ∗S(T ) is

Var[π̂S , Ĥ
∗
S ] =

ω2
T

4 sinh2
(
βωT

2

) . (C14)

We now compute the QFI, using (A2) and the fact that pn ± pn+2 = pn(1± e−2βωT ):

T 4FS(T ) =

∞∑
n=0

pnEnn + 4
∑
n<m

(pn − pm)2

(pn + pm) ln2( pnpm )
Enm,

= α2
TVar[π̂S , Ĥ

∗
S ] +

g2
T

β2ω2
T

∞∑
n=0

(pn − pn+2)2

pn + pn+2
(n+ 2)(n+ 1),

= α2
TVar[π̂S , Ĥ

∗
S ] +

g2
T (1− e−2βωT )2

β2ω2
T (1 + e−2βωT )

∞∑
n=0

pn(n+ 2)(n+ 1),

= α2
TVar[π̂S , Ĥ

∗
S ] +

g2
T

β2ω2
T

sinh

(
βωT

2

)(
(1− e−2βωT )2

(1 + e−2βωT )

)(
e−

βωT
2

(1− e−βωT )3

)
,

=
α2
Tω

2
T

4 sinh2
(
βωT

2

) +
g2
T

β2ω2
T

sinh

(
βωT

2

)(
(1− e−2βωT )2

(1 + e−2βωT )

)(
e−

βωT
2

(1− e−βωT )3

)
, (C15)

We also require the average skew information, which can be obtained using (A8):

Q[π̂S , Ê
∗
S ] =

∑
n<m

(
pn + pm −

2(pn − pm)

ln pn − ln pm

)
Enm,

=
g2
T

4

∞∑
n=0

(
pn + pn+2 −

2(pn − pn+2)

ln pn − ln pn+2

)
(n+ 2)(n+ 1),

= g2
T sinh

(
βωT

2

)
e−

βωT
2

(1− e−βωT )3

(
1 + e−2βωT − T

ωT
(1− e−2βωT )

)
. (C16)
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To calculate the term 〈∂T Ê∗〉 we use (14) from the main text:

〈∂T Ê∗S〉 = CS(T ) +
Q[π̂S , Ê

∗
S ]− Var[π̂S , Ê

∗
S ]

T 2
,

= CS(T )− g2
T

TωT
sinh

(
βωT

2

)(
(1− e−2βωT )

(1− e−βωT )3

)
e−

βωT
2 . (C17)
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