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Abstract 

 

Radar quantitative precipitation estimates (QPEs) and forecasts (QPFs) are 

useful in urban hydrology because they can provide real time or forecasted 

rainfall information for flood forecasting/warning systems. Sewer flooding is a 

disruptive problem in England and Wales. Wastewater companies have reported 

that more than 4,700 customers are at risk of internal sewer flooding. Currently 

in the UK, mitigating sewer flooding before it occurs is difficult to achieve 

operationally because of the lack of accurate and specific data. As radar rainfall 

data is available from the UK Met Office, particularly radar QPFs with a maximum 

lead time of 6 hours, these datasets could be used to predict sewer flooding up 

to this maximum lead time. 

This research investigates the uses of radar Quantitative Precipitation Forecasts 

and Quantitative Precipitation Estimates to support short term decisions of sewer 

network operation in reducing the risk of sewer flooding. It is achieved by 

increasing the accuracy of deterministic radar quantitative precipitation forecasts, 

developing on probabilistic radar quantitative precipitation forecasts, and using 

spatial variability of radar quantitative precipitation estimates to estimate flood 

extents in sewer catchments from the North East of England. Radar rainfall data 

used in the case study is also sourced from this region of size 184 km x 140 km.  

The temporal and spatial resolutions of rainfall forecasts are important to 

producing accurate hydrological output. Hence, increasing these resolutions is 

identified to improving deterministic radar quantitative precipitation forecasts for 

hydrological applications. An interpolation method involving temporal 

interpolation by optical flow and spatial interpolation by Universal Kriging is 

proposed to increase the resolution of radar QPF from a native resolution of 15 

mins and 2-km to 5 mins and 1-km. Key results are that the interpolation method 

proposed outperforms traditional interpolation approaches including simple linear 

temporal interpolation and spatial interpolation by inverse distance weighting. 

Probabilistic radar quantitative precipitation forecasts provide information of the 

uncertainty of the radar deterministic forecasts. However, probabilistic 

approaches have limitations in that they may not accurately depict the uncertainty 
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range for different rainfall types. Hence, postprocessing probabilistic quantitative 

precipitation forecasts are required. A Bayesian postprocessing approach is 

introduced to postprocess probability distributions produced from an existing 

stochastic method using the latest radar QPE. Furthermore, non-normal 

distributions in the stochastic model are developed using gamma based 

generalised linear models. Key successes of this approach are that the 

postprocessed probabilistic QPFs are more accurate than the pre-processed 

QPFs in both cool and warm seasons of a year. Furthermore, the postprocessed 

QPFs of all the verification events better correlate with their QPE, thus improving 

the temporal structure. 

Spatial variability of radar QPE/QPF data influences flood dynamics in a sewer 

catchment. Moreover, combination of different percentiles of probabilistic QPFs, 

per radar grid, over a sewer catchment would produce different spatial 

distributions of rainfall over the area. Furthermore, simulating many probabilistic 

QPFs concurrently is computationally demanding. Therefore, generalised linear 

models have been used to estimate model flood variables using a spatial analysis 

of radar QPE. Spatial analysis involves using indexes representing specific 

information of the spatial distribution of rainfall. The novelty of this estimation 

method includes faster estimations of flood extents. The main points of success 

of this approach are that more detailed spatial analysis of large sewer catchments 

produce more accurate flood estimations that could be used without running 

hydraulic simulations. This makes the approach suitable for probabilistic sewer 

flood forecasting in real-time applications. 

A business case is proposed to use the outputs of this research for commercial 

applications. Probabilistic sewer flood forecasting is evaluated and 

recommended for industry application using a financial appraisal approach for 

Northumbrian Water Limited. The business case shows that the methods could 

be adopted by the wastewater company to mitigate sewer flooding before it 

occurs. This would support decision making and save costs with better 

intervention management. 
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1 Introduction 

 

1.1 Background and motivation 

 

Prolonged or heavy rainfall is the primary cause of sewer flooding in the UK. Due 

to urbanisation, imperviousness in many urban areas has increased. Therefore, 

urban runoff is accumulated quickly and the time for the runoff to reach the outlet 

of the catchment decreases (i.e. reduction of time of concentration). This 

overwhelms the sewer network as it reaches full hydraulic capacity quickly, which 

causes surcharge or flooding problems. When the combined stormwater and 

sewage escapes back onto the surface (i.e. pluvial flooding) flooding streets, 

pathways, road and houses causing costly damage. Moreover, sewage may 

escape back through toilets within households causing internal sewer flooding. 

Most sewer systems in the UK are combined systems with a small proportion of 

separate systems handling rainfall only. Combined systems carry both sewage 

and stormwater to the wastewater treatment plant. When the system becomes 

overloaded with stormwater entering the network, Combined Sewer Overflows 

(CSOs) release sewage to the river and results in water pollution problems. 

Sewer flooding is a disruptive problem in England and Wales, with more than 

4,700 customers at risk of internal sewer flooding (Ofwat, 2011). Research shows 

that the intensity of rainfall is projected to increase and would occur at shorter 

durations (Ref). Therefore, the risk of sewer flooding is likely to increase. 

Flood management strategies include developing new structural measures such 

as upgrading separate systems, constructing Sustainable Urban Drainage 

Systems (SUDs) and investing into new technological hardware (Esteves, 2013; 

Brown et al., 2010). However, these strategies can be expensive and take a long 

time before they are operational and for their benefits to be evaluated. They would 

also cause disruption to sewerage services which should be minimised. Hence, 

non-structural approaches have been used to reduce the risk of sewer flooding. 

Particularly, the use of radar rainfall forecasts has been studied for flood risk 

management in urbanised areas. 
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1.1.1 Radar rainfall data 

 

There are three approaches of quantifying rainfall measurements. They include 

the use of rain gauges, weather radar and satellite data. Radar rainfall data has 

become popular in urban hydrology. The advantage of radar rainfall is the extents 

of representing spatial rainfall values, which is a limitation of point rainfall sources 

such as rain gauges (Einfalt et al., 2004). Although, rain gauges are considered 

the most accurate source for measuring rainfall. Satellite sources uses 

electromagnetic waves to detect rainfall. An example is METEOSAT – the 

European geostationary satellite – which uses visible and infrared (Golding, 

2000; Golding et al., 1998; Koriche and Rientjes, 2016). However, satellite 

sources are not reliable for measuring fine rates of rainfall rates. This is 

exacerbated in night time conditions due to infrared only being available and thus 

satellites are unreliable for producing rainfall data. 

Therefore, radar rainfall has increasingly been used in hydrology, particularly for 

studying storm characteristics (i.e. evolution, distribution etc.) due to the wide 

spatial availability of rainfall values. This allows studying impacts of different 

storms on catchments. Generally, radar rainfall shows more uncertainty for 

predicting higher intensity rainfall. However, these storms are more easily 

detected in comparison to light intensity rainfall or drizzles. Figure 1.1 shows 

probability of detection of rainfall as a function of the range of the measured 

rainfall from the radar. This figure explains two attributes of radar rainfall: the first 

attribute is that the probability of detecting rainfall is reduced for increasing 

distances, and the second is that higher intensity rainfall is more likely to be 

detected.  
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Figure 1.1. Probability of detection against the range for two rainfall events: light 

rain (solid line and triangle) and heavy rain (dashed line and circles) (Golding, 

2000). 

Various radar uncertainties have been extensively explored. However, in urban 

hydrology the catchments are usually smaller decreasing the time of runoff 

accumulating. This has specific requirements of radar rainfall in urban hydrology. 

For example, temporal and spatial resolutions of radar rainfall data in urban 

hydrology were recommended by Schilling (1991) to be between 1-5 min and 1 

km, respectively. The uncertainty range of the rainfall intensity should be less 

than 10% and in the range of 10 – 150 mm/h. The applications of radar rainfall 

have been distinguished as offline or online applications (Einfalt et al., 2004). 

offline applications include the development of network models, analysing the 

impact of different storms over a catchment, or the study of extreme rainfall 

events. Online applications include qualitative control, quantitative control of 

sewer systems, operational application such as flood warning and management, 

and the use of forecasts for flood forecasting.  

Another advantage of radar technology is that the data could be extrapolated to 

the near future to product rainfall forecasts, particularly at real-time settings. 

Quantitative Precipitation Forecasts (QPFs) could be generated from radar 

Quantitative Precipitation Estimates (QPEs) this way and have been used for 

online hydrological applications (Bowler et al., 2004). One of the fundamental 
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properties of rainfall forecasts is that the longer the forecast horizon, the higher 

the uncertainty. This is also true for increasing intensity (i.e. higher uncertainty 

associated to higher rainfall intensities). Figure 1.2 demonstrates this for rainfall 

intensity as the Root Mean Square Error (RMSE) of the rainfall forecast field 

against the observed rainfall is increasing for higher rainfall values. high intensity 

Rainfalls have been of greater focus because these are normally dynamic and of 

short duration (i.e. convective storms), which are often difficult to predict in 

hydrology, especially over small catchments. 

 

Figure 1.2. The RMSE against precipitation (rainfall) intensity (Barillec and 

Cornford, 2009).  

QPFs are categorised in three ways depending on their forecast horizons: 

nowcasts, short-range forecasts and medium-range forecasts (Golding, 2000). 

Nowcasts estimate rainfall between 0 – 6 hours into the future and commonly 

produced using radar QPE in extrapolation techniques. Most short-range 

forecasts estimate rainfall between 12 – 72 hours into the future. These forecasts 

are primarily generated from Numerical Weather Prediction (NWP) models that 

depend on mathematical methods and assumptions to construct rainfall values. 

Medium-range estimate rainfall typically beyond 2 days (i.e. 48 hours) into the 

future. The uncertainty at this range is large and meteorological services make 
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use of probabilistic forecasting by predicting the probability distribution of rainfall. 

These approaches outperform deterministic methods at this forecast range and 

make use of storm characteristics such as evolution, growth and decay.   

Two types of forecasts are recognisable in meteorological and hydrological 

studies: they are deterministic and probabilistic forecasts (Golding, 2000). 

Deterministic forecasts are single valued forecasts that are commonly used to 

indicate an estimate of the rainfall. Probabilistic forecasts provide a range of 

forecasts with a probability of occurrence assigned to each one. The fundamental 

difference between deterministic and probabilistic forecasts is that the latter 

provides information of the uncertainty of the deterministic forecast. Probabilistic 

forecasts are integral part of decision making systems are thus useful for online 

hydrological applications. Typically, they make use of probability distribution 

functions, which show the probability of occurrence for different rainfall 

intensities. Figure 1.3 shows a probability distribution function for a varying rainfall 

values of a QPF. Higher intensity QPF values are more unlikely to occur (i.e. 

lower probability of occurrence) but they have higher potential of damage. Thus, 

more preparedness is required. The figure demonstrates how thresholds are 

defined directly from a probability distribution function to mitigate flooding. 

 

Figure 1.3. Example of decision making process using the probability distribution 

function (Event probability density) for rainfall forecast (Basin rainfall in the next 

few hours) (Fabry and Seed, 2009).  

Some flooding occurs 
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Repeatedly stated in radar rainfall and urban hydrology is the inherent 

uncertainties of radar technology. These uncertainties begin from the hardware 

and the physical processes involved measuring rainfall reflectivity from raindrops, 

and mathematical methods used to quantify rainfall estimates also introduce 

uncertainty. There are issues associated to radar rainfall adjustment techniques 

to uncertainties in extrapolation and numerical schemes generating radar rainfall 

forecasts. Furthermore, radar rainfall forecasts include several uncertainties that 

require further analysis to make flood forecasting more reliable. This is explored 

in detail in this project. 

 

1.1.2 Flood forecasting in urban hydrology 

 

Flood management would normally include policy control, design, planning and 

operational management. Infrastructural approaches ensure development of 

flood protection and SUDs. However, real-time monitoring and management of 

flooding is recognised to be useful and cost-effective way of reducing the impact 

of flooding operationally. This would help reduce investment to expensive 

infrastructure based interventions and increase preparedness. This is achieved 

by increasing the lead time to take measures to control the flood before it occurs. 

Approaches of operational flood warning systems have been developed 

extensively in the past. Generally, the stages for an operational flood warning 

system consists of: detection, forecasting, warning and response (Werner et al., 

2005)(see Figure 1.4). Detection involves collecting the data from sources such 

as rain gauge, radar, satellites etc in real-time. Forecasting is the stage where 

the real-time data is input to hydrological models to produce estimates of model 

variables used to generate flood warnings. The warning stage involves translating 

the predictions of the forecasting stage to warnings for specific mitigating bodies. 

This is considered a crucial stage in the operational flood warning system as the 

level of mitigation depends on how the warning is communicated. The last stage 

is response, which determines the level of mitigation required based on the flood 

warning.  
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Figure 1.4. Stages in a flood warning system (Werner et al., 2005). 

As explained in section 1.1.1, QPFs could be used hydrological models for 

forecasting. This is an example of an online application of radar QPFs. Real-time 

flood forecasting systems could be classified in terms of the way the QPF is used 

in the model or for determining the response in the case that a model is not used. 

Four systems describing different ways QPFs could be part of real-time flood 

forecasting are described as follows (Hénonin et al., 2013):  

Empirical scenarios – scenarios of flooding have been collected based historical 

data or from experience. An intervention may be directly related to this such as 

the use of resources, access of knowledge or people. The rainfall is used as input 

to select the scenario, hence there is no use of models or direct need of 

technology. Therefore, it is simple and may not be robust. 

Pre-simulated scenarios – offline simulations of floods are conducted and these 

become the historical data by which real-time QPFs are used to select from. 

Hydrological models are used to produce pre-simulated scenarios. The main 

disadvantage of this approach is that of the difficulty of updating the scenarios in 

the case that hydrological model needs to be modified.  

Real-time data assimilation – this uses real-time QPFs as input to hydrological 

models in online settings. Real-time data is used to produce simulations and the 

output is used to determine the warning and response. This system is considered 

reliable and may be supported with pre-simulated scenarios (i.e. offline 

simulations) to reduce computational time. The main disadvantages of this 

approach is forecast accuracy and updating model parameters. 

Real-time data assimilation with feedback – like the real-time data assimilation 

approach but with active feedback to the drainage system. Remote control and 

automated features enable changing physical components of the drainage 

system using the forecasting system in real-time. The limitations of this approach 



37 

 

the risk of equipment or systems failure in the automation and remote control of 

the drainage system. 

The focus of this project is on developing forecasting methodologies (forecasting 

stage in Fig. 4) and not on conceptualising operational flood warning systems. 

Furthermore, concepts of pre-simulated scenarios together with data-assimilation 

are key components to some methodologies developed in this study. They are to 

support flood forecasting in real-time settings. 

 

1.1.3 Motivations for sewer flood forecasting in the water sector 

 

Damage caused by flooding could be categorised in three ways: direct, indirect 

and social (König et al., 2002). Direct damages are immediate physical 

consequences of flooding in the affected area. For example, inundated roads, 

pathways and houses. Indirect damages include disruption of services or 

systems that have been affected by the direct consequences. Examples include 

traffic disruption, spread of disease, labour costs and mitigating expenses. Social 

damage includes economic and psychological impacts. This could be loss of 

money for businesses, unsatisfied customers, increased/decreased house prices 

and perceptions of flood risk when buying a house. In the case of sewer flooding, 

the damages mitigated by governmental bodies and the wastewater companies 

include all three of these categories. For wastewater companies, reducing social 

damages of sewer flooding is crucial for maintaining profitability and economic 

sustainability. 

Damage caused by flooding needs to be mitigated. Presently in the water sector, 

damage associated with sewer flooding is mitigated predominantly after the flood 

occurs. Post-analysis of the hydrological characteristics is done and damage is 

evaluated for deciding on the interventions to mitigate the flooding. Several 

wastewater companies attempt to plan mitigation based on predicting sewer 

flooding. However, these systems are simple and rely on coarse datasets and 

knowledge that are not consistent and lack robustness (e.g. such as use of radar 

QPE to approximate flood locations). These systems are like the empirical 

scenario operational flood warning system described in section 1.1.2. However, 
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objective systems that are reliable or holistic are not actively operational presently 

in the UK water sector. Therefore, there is no active means to predict sewer 

flooding in the UK so that actions could be taken before the flood occurs. 

As the UK water sector is driven to satisfy customers, which is a key objective for 

maintaining competitiveness the motivation to develop a sewer flood forecasting 

system is explored using impersonal customer data. The following section 

describes customer response to various sewer flooding and their causes. This 

was conducted by Ofwat (2004) with three UK wastewater companies 

participating providing impersonal customer data. 
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Customer research  

Table 1.1. Percentage of various sewer flooding due to different causes (Ofwat, 

2004). 

Causes Internal 

hydraulic 

flooding 

Internal 

flooding 

due to 

other 

causes 

Flooding in 

unoccupied 

cellars 

External 

flooding 

Overload 66% 32% 19% 40% 

Blockage 17% 48% 52% 38% 

Equipment failure 7% 9% 4% 6% 

Collapse 4% 19% 16% 6% 

Other 1% 2% 2% 1% 

Don’t know 18% 17% 17% 21% 

Number of cases 190 178 134 146 

 

Table 1.2. Percentage of various sewer flooding due to different types of rainfall 

(Ofwat, 2004). 

Type of rainfall Internal 

hydraulic 

flooding 

Internal 

flooding 

due to 

other 

causes 

Flooding in 

unoccupied 

cellars 

External 

flooding 

Dry 3% 20% 25% 12% 

Light rain/drizzle 1% 8% 8% 5% 

Heavy rain 81% 53% 43% 63% 

Prolonged rain 24% 28% 20% 23% 

Other 1% 2% 2% 1% 

Don’t know 1% 6% 13% 4% 

Number of cases 190 178 134 146 
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Table 1.1 shows the percentage of customer who have experienced sewer 

flooding for different types and causes. Table 1.2 shows the percentages of these 

sewer flooding cases but based on different types of rainfall. Most of the customer 

base have been affected by internal hydraulic flooding in comparison to other 

internal sewer flooding types and external flooding. The primary cause of internal 

hydraulic flooding is overload (i.e. the lack of hydraulic capacity) due to rainfall. 

Overload of sewer systems is also the primary cause of external sewer flooding 

followed by blockages. Blockages may occur due to non-rainfall sources, such 

as Fats, Oils and Grease (FOG) or tree root intrusion. Data in Table 1.2 shows 

that across all the various sewer flooding most of the sewer floods had occurred 

due to heavy rainfall. This is followed by prolonged rainfall (except for flooding in 

unoccupied cellars, which has the second largest majority of customers flooded 

due to no rainfall. This might be due to cellars being lower than ground level and 

closer to damaged or disconnected piping increasing the susceptibility to 

flooding). Note that the percentages across each cause of sewer flooding due to 

type of rainfall or type of sewer flood do not total 100%. This is because the 

percentages include more than one customer in the customer base (i.e. a 

customer may have experienced more than one type of sewer flood or 

experienced sewer flooding from different types of rainfall). 

Based on this customer research, rainfall is a primary contributor to sewer 

flooding and particularly heavy or prolonged rainfall causes the most damage. 

This motivates the study to use rainfall data to predict sewer flooding to support 

decision making in sewer operations. This would help the water sector develop 

an operational flood warning system for sewer flooding so that actions could be 

taken before the floods occurs. Thus, as part of this thesis a business case (see 

section 6) is presented for the water sector to use the research to tackle sewer 

flooding. 
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1.2 Aims and objectives 

 

The aim of this research project is to: 

Investigate the applications of radar Quantitative Precipitation Forecasts 

and Quantitative Precipitation Estimates to support short term decisions of 

sewer network operation in reducing the risk of sewer flooding. 

 

The focus is to use radar rainfall forecasts to predict sewer flooding. As explained 

in section 1.1.1, there are various uncertainties in radar rainfall data and this has 

impacts on forecasting applications. To fulfil the aim the following objectives have 

been identified: 

1. Gather case studies of radar quantitative precipitation forecasts/estimates 

and sewer models. 

2. Assess effectiveness of rainfall estimation and quantifying uncertainty in 

radar data for flood modelling applications. 

3. Improve radar deterministic quantitative precipitation forecasts. 

4. Increase the accuracy of radar probabilistic quantitative precipitation 

forecasts. 

5. Conduct analysis of the spatial variation characteristics of radar 

quantitative precipitation data associated to the sewer network model. 

6. Develop business case for methodologies developed in the project. 

 

1.3 Scope and thesis structure 

 

The uses of weather radar in hydrology are wide and include different research 

areas in both meteorology and hydrology. Recent contributions have been 

classified in various categories highlighting the focus of research (Moore et al., 

2012). The areas are weather radar theory and technology, rainfall estimation, 

rainfall forecasting (nowcasting and numerical weather prediction), uncertainty 

estimation, hydrological impact and design, hydrological applications and flood 

forecasting and water management in urban hydrology. This classification is 

useful for showing the broad areas of how radar rainfall could be used in 

hydrology. This thesis focuses on the following areas: 



42 

 

Rainfall estimation – this involves assessing the methods that produce estimates 

of radar QPE. Radar QPE is initially estimated using radar processes and then 

improved via adjustment techniques. 

Uncertainty estimation – after radar rainfall is estimated inherent uncertainties are 

then explored. Inherent uncertainties of radar technology are propagated to radar 

rainfall forecasts. These uncertainties could be quantified using statistical 

techniques and could further be postprocessed. Various methods are discussed 

for uncertainties in radar QPFs. 

Hydrological applications and flood forecasting – rainfall forecasts could be used 

in hydrological modelling to form part of a flood forecasting system. After ensuring 

the rainfall estimate is sufficiently accurate and the uncertainty is quantified, 

hydrological output of rainfall forecasts could be used for real-time applications. 

Further uncertainty sources and practicality issues in flood forecasting are 

explored. 

A schematic of the thesis components is shown in Figure 1.5 along with the 

objectives that are associated to them. The following components are related to 

the areas stated above: 

• Improving deterministic radar Quantitative Precipitation Forecasts 

(Rainfall estimation) 

• Probabilistic radar Quantitative Precipitation Forecasts (Uncertainty 

estimation) 

• Estimating flood extent using spatial analysis of radar Quantitative 

Precipitation Estimates (Hydrological applications and flood forecasting) 
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Figure 1.5. Thesis structure showing the connections between the components 

and objectives they fulfil. 

Thesis structure 

This thesis has seven chapters that correspond to the components shown in 

Figure 1.5. They are explained as follows: 

Chapter 1: Introduction 

Background and motivation of the research project is provided along with the 

commercial motivations. Aims and objectives, scope and originality and 

contribution to knowledge. 

Chapter 2: Literature review of radar quantitative precipitation 

estimates/forecasts: rainfall estimation, uncertainty estimation and hydrological 

applications 

  Probabilistic radar Quantitative 

Precipitation Forecasts 

 

Literature review of radar quantitative precipitation 

estimates/forecasts: rainfall estimation, uncertainty 

estimation and hydrological applications 

B
u

si
n

es
s 

ca
se

 

Summary, conclusions and future work 

 

 

Objective 1 

Objective 2 

Objective 3 

Objective 4 

Objective 5 

Objective 6 

 

 

 

 

 

 

 
 

 

Improving deterministic radar 

Quantitative Precipitation Forecasts 

Introduction 

   
Estimating flood extent using spatial 

analysis of radar Quantitative 

Precipitation Estimates 
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A literature review is conducted for the three research areas identified: rainfall 

estimation, uncertainty estimation and hydrological applications. The review 

identifies the key approaches, their strengths and limitations and gaps for these 

research areas.  

Chapter 3: Improving deterministic radar Quantitative Precipitation Forecasts 

Deterministic radar QPFs are improved using temporal and spatial interpolation. 

This chapter demonstrates that higher resolution QPFs could be obtained without 

acquiring additional datasets and the increased resolution is useful for 

hydrological modelling. Furthermore, the case study used in Chapters 3, 4 and 5 

is also introduced. 

This chapter is based on the publication (in review) (Iqbal et al., 2017): 

Iqbal, A., Xuan, Y., Butler, D., and Fu, G. (2017) Improving the accuracy of 

temporally and spatially interpolated radar Quantitative Precipitation Forecasts. 

Journal of Hydrology. 

Chapter 4: Probabilistic radar Quantitative Precipitation Forecasts 

Probabilistic radar QPFs are generated and postprocessed using a Bayesian 

approach. A two-step application of a Markov Chain Monto Carlo algorithm is 

used to update the forecasts to make them more accurate in varying rainfall 

storms. 

Chapter 5: Estimating flood extent using spatial analysis of Quantitative 

Precipitation Estimates 

Flood extents are estimated using spatial analysis of radar QPE over a sewer 

catchment without running online hydrological simulations. This chapter shows 

that spatial variability of radar QPE could be used for real-time probabilistic sewer 

flood forecasting. 

Chapter 6: Business case 

A business case is developed using the methods and analysis conducted in this 

research project. This is aimed for the water sector to develop an operational 

sewer flood warning system. 

Chapter 7: Summary, conclusions and future work 
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A summary of the research project is provided along with the main conclusions 

associated to each objective in section 1.2. Further work is recommended to 

extend the research based on the methods developed. 

 

1.4 Originality and contribution to knowledge 

 

The following explain the originality and contribution to knowledge of this research 

project: 

1. Improving deterministic radar Quantitative Precipitation Forecasts 

• Applied optical flow theory to temporally interpolate radar QPF to increase 

the temporal resolution, which is more accurate than linear-based 

interpolation. 

• Applied a Kriging method to increase the spatial resolution of radar QPF. 

• Showed that temporal interpolation by optical flow and spatial interpolation 

by Universal Kriging outperforms combinations of simple linear temporal 

interpolation and spatial interpolation by Inverse Distance Weighting and 

Universal Kriging. 

2. Probabilistic radar Quantitative Precipitation Forecasts 

• Applied a probabilistic forecasting model previously used for NWP/rain-

gauge to radar QPE/QPF data. 

• Modified a probabilistic forecasting model to apply a generalised linear 

model to representing non-normal distributions of radar QPE/QPF data.  

• Developed a Bayesian based postprocessing method that provides new 

Probability Distribution Functions (PDFs) using latest radar QPE data 

updating pre-processed PDFs generated from historical radar QPE/QPF 

data. This postprocessing method produces probabilistic QPFs that are 

more accurate than the pre-processed probabilistic QPFs. 

3: Estimating flood extent using spatial analysis of Quantitative Precipitation 

Estimates 
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• Applied spatial indexes from literature to extract spatial information of 

radar QPE over a sewer catchment.  

• Conducted a spatial analysis of radar QPE related to flood extents over 

four sewer catchments in the North-East of England using historical data. 

• Developed a flood forecasting approach using spatial analysis of radar 

QPE over specific sewer catchments and generalised linear models to 

estimate flood extents. The approach could be used for probabilistic QPFs 

as many forecasts would require simulating but simple statistical models 

reduce computational time. Thus, this approach is ideal for real-time flood 

forecasting. 

• Shown that spatial information of spatial indexes of large sewer 

catchments is more useful to predicting flood extents than small sewer 

catchments. 
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2 Literature Review 

This project focuses on radar quantitative precipitation estimates and forecasts. 

Specifically, the uncertainties of these rainfall data are explored and a 

hydrological analysis involving these data sets is conducted for sewer flooding.  

Radar technology exhibits uncertainty that is inherent in the processes producing 

rainfall estimates. In the following review of literature, radar rainfall estimation is 

discussed, the methods by which uncertainties in radar rainfall data are evaluated 

followed by a review of statistical techniques used to quantify these uncertainties. 

Finally, the uncertainties in hydrological applications involving radar rainfall 

forecasts are discussed. 

 

2.1 Rainfall estimation 

2.1.1 Inherent uncertainties in radar rainfall 

 

The main physical components of radar consists primarily of the transmitter, 

antenna and receiver (Dai, 2014). The transmitter produces a signal which is a 

form of electromagnetic radiation where the frequency and power are controlled. 

The antenna concentrates the transmitted signal into a beam that is typically 

between 1 – 2 degrees wide. Usually, the signal transmitted and received is 

measured in decibels. Radar produces rainfall estimates by sending out a signal 

towards the rainfall storm. The signal is then reflected from the droplets of the 

rainfall and is received by the radar transmitter, which calculates the rainfall 

intensity based on the information received (Bringi and Chandrasekar, 2001; 

Collier, 1989). Immediately, there are potential issues that may hinder the quality 

of the receiving signal. For example, attenuation is commonly observed in signal 

transmission and this reduces the quality of the rainfall estimate (Met Office, 

2013). Secondly, ground clutter at the location of the radar obstructs the signal 

received (Met Office, 2013). There are other issues also. For example, the radar 

signal may not reach the heavier rainfall because of light rainfall masking heavier 

rainfall (Met Office, 2013). Hence the radar would record underrepresented 

rainfall values. These physical obstructions contribute to the inherent 

uncertainties of radar technology, which propagate through to the calculation of 

rainfall estimate. However, the way rainfall estimates are calculated is another 
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source of uncertainty. The reflectivity of the signal is typically represented as 𝑍 

and the rainfall intensity is represented as 𝑅 (in mm/h). The relationship between 

these two variables shows how 𝑅 is calculated. This is referred to as the 𝑍 − 𝑅 

relationship and is given as 𝑍 = 𝑥𝑅𝑦 where 𝑥 and 𝑦 are values dependant on the 

droplet size of the rainfall (Einfalt et al., 2004; Fournier, 1999; Hasan et al., 2014; 

Smith,  et al., 2007). This is deduced empirically from the droplets detected by 

the signal. Particularly, the reflectivity 𝑍 is a three-dimensional field that is 

determined from the distribution of the droplet size. This size distribution is 

referred to as drop size distribution (DSD) and is calculated by fitting a theoretical 

distribution to the empirical droplet size (Einfalt et al., 2004). The DSD varies for 

different types of rainfall storms due to varying droplet sizes. Hence, for a known 

category of rainfall, the coefficients 𝑥 and 𝑦 differ and Table 2.1 present examples 

of 𝑍 − 𝑅 relationships for the some identifiable rainfall storms (Einfalt et al., 2004).  

Table 2.1. Example Z-R relationships for various rainfall storms (Einfalt et al., 

2004). 

𝒁 − 𝑹 relationship Type of rainfall storm or climate 

𝑍 = 200𝑅1.6 Stratiform (or frontal) 

𝑍 = 250𝑅1.2 Tropical climates 

𝑍 = 300𝑅1.4 Convective 
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Figure 2.1. Comparisons of example Z-R relationships for different rainfall storms 

(Einfalt et al., 2004).  

Furthermore, Figure 2.1 shows the 𝑍 − 𝑅 relationships in Table 2.1 plotted for 

different values of rainfall intensities 𝑅. This demonstrates that the biggest 

differences between the 𝑍 − 𝑅 relationships of different rainfall are especially 

observed for higher rainfall intensities.  

The selection of the appropriate 𝑍 − 𝑅 relationship is of high importance. A 

common way to choose the appropriate 𝑍 − 𝑅 relationship is to formulate a DSD 

which would help deduce values for 𝑥 and 𝑦 (Einfalt et al., 2004). However, a 

second way to choose a 𝑍 − 𝑅 relationship is to relate the reflectivity measured 

in the atmosphere to ground observations (i.e. rainfall intensities produced from 

rain gauge networks) (Krajewski and Smith, 2002). This integral process 

assumes that the biggest uncertainties of radar rainfall are associated with the 

differences between the radar reflectivity at the surface and the reflectivity 

captured in the atmosphere where factors such as bright band, incomplete beam 

filling, hail contamination etc would affect this measurement parameter 

(Krajewski and Smith, 2002). This provides means to reduce the errors between 

reflectivity measurements at the atmosphere and ground. The algorithm for this 

approach treats the 𝑍 − 𝑅 relationship as an empirical formula and finds the ‘best’ 
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values for the coefficients 𝑥 and 𝑦 based on a known criterion. This optimisation 

exercise is not limited to factors such as the statistical approach, sample size or 

an instrument, all that are factors considered when calculating the 𝑍 − 𝑅 

relationship using the DSD approach. The advantage of this is that the calculation 

of the 𝑍 − 𝑅 relationship performs better in nonlinear relationships between 𝑍 and 

𝑅 (Krajewski and Smith, 2002). Nonlinearity may occur due to the random errors 

found in the radar reflectivity measurements, which particularly occurs for high 

intensity rainfall. 

Latest radar technology incorporates these selection techniques, particularly with 

the introduction of dynamic selection of 𝑍 − 𝑅 relationships which has vastly 

improved estimates during periods exhibiting different types of rainfall (Einfalt et 

al., 2004). Such radar is referred to as dual-polarisation where sources of 

uncertainty such as effects of ground clutter and attenuation are minimised (Bringi 

and Chandrasekar, 2001; Collier, 1989). These improvements have helped 

produce better rainfall estimates in recent years. Particularly, the dynamic 

adjustment of the 𝑍 − 𝑅 relationship had allowed meteorologists and hydrologists 

to closely study extreme or heavy rainfall. 

However, whilst the inherent uncertainties in radar rainfall have been reduced 

with the use of better technological hardware and algorithms, the process by 

which the rainfall is produced is still an estimate. This means that a substantial 

portion of the inherent uncertainties are still propagated through to the rainfall 

data. 

 

2.1.2 Rain gauge adjustment 

 

The use of rain gauges has been the traditional method to measure rainfall data. 

This measures the rainfall accumulation at high temporal resolutions (typically 1-

min) at specific points at ground level. For tipping-bucket rain gauges, the 1-min 

resolutions are achieved by use of interpolation algorithms, such as cubic spline 

(CS) algorithm (Wang et al. 2006). Hence, rainfall data from rain gauges is the 

most accurately measured rainfall estimate. The reflectivity produced by the radar 

measures a specific point in three-dimensional space in the atmosphere, which 
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may not represent the true state of rainfall characteristics in comparison to the 

ground. This was discussed earlier as the differences in measuring reflectivity at 

ground level and the atmosphere could be large. The uncertainty of the estimated 

rainfall in the interval between these two regions could be more than 20% when 

producing radar rainfall data at 5-min temporal resolutions (Einfalt et al., 2004). 

Therefore, rain gauges produce more accurate rainfall estimates than radar 

rainfall. 

The main advantage of radar rainfall over rain gauge rainfall is the estimation of 

rainfall at different spatial locations (i.e. gridded rainfall). Rain gauge can only 

provide data where the gauge is installed and so they do not provide extensive 

information on the spatial variability of rainfall storms, unless a dense rain gauge 

network is installed at any region. However, this is an onerous and expensive 

task, which is remedied by radar due to its capability of providing wide information 

of spatial variability at every time step. This makes radar rainfall suitable for 

studying different types of storms (Einfalt et al., 2004). Though, the accuracy of 

the radar rainfall estimate is limited based on the distance of the spatial point from 

the radar hardware. It is noted that the spatial accuracy of points near the radar 

are generally higher than points further from the radar. Hence, it is beneficial for 

hydrologists to use radar data that has been produced from multiple radar which 

minimises this uncertainty on the resulting rainfall data sets.  

Temporal, spatial and intensity resolutions are crucial parameters of radar rainfall 

(Einfalt et al., 2004). The accuracy of the rainfall intensity is particularly important 

when studying heavy rainfall as the higher the intensity the more uncertainty is 

associated to the estimate. This is because at high reflectivity values the 

relationship with the rainfall intensity in 𝑍 − 𝑅 relationship is nonlinear. Hence, 

this is another source of uncertainty with radar rainfall. Based on the uncertainties 

associated with the temporal, spatial and intensity resolutions, radar rainfall 

should be adjusted with other types of measurement data. Correcting radar 

rainfall with rain gauge data reduces the uncertainties between the 

measurements taken from the atmosphere and the ground, and this is the most 

common way to improve the accuracy of radar rainfall.  
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2.1.3 Methods to adjust radar rainfall 

 

In literature, there are a several methods for correcting radar rainfall with rain 

gauge data (Borga et al., 2002; Gjertsen et al., 2003; Goudenhoofdt and Delobbe, 

2009a; Rafieeinasab et al., 2015; Segond et al., 2007; Wang et al., 2015; Wang 

et al., 2013). These vary from simple approaches such as using scaling factors 

being applied at every radar grid (i.e. using mean field bias) or more sophisticated 

methods employing geostatistical techniques. Meteorological services produce 

radar rainfall products that incorporate these adjustment methods using rain 

gauge data. The National Weather Service (NWS) in the United States uses 

mean field bias correction applied to its radar rainfall (called BMOSAIC), which 

applies a spatially uniform multiplicative adjustment factor to the gridded rainfall 

data points (Seo et al., 2010). They also use local bias correction which applies 

a spatially non-uniform adjustment factor, which performs especially well for 

storms exhibiting highly varied rainfall spatially. The use of mean (or local) field 

bias correction provides sufficiently good results for minimum resource 

requirements. This means that adjustment procedure would take less time to 

process. In fact, in their work the mean field bias correction method had 

outperformed the other adjustment methods, including methods incorporating 

geostatistical techniques (Habib et al., 2012). However, the authors had 

scrutinised the accuracy of the rain gauges used in the study and highlight that 

the limited performance of other merging techniques was due to this reason. The 

rain gauge rainfall generally underestimated estimates with an overall hit bias of 

-10.2% (Einfalt et al., 2004). For context, when rain gauges are averaged to reach 

temporal resolutions of 1 mins, the MAE is 22% for intensities above 3 mm/h, 

which reduced to 5% for temporal resolution of 7 mins. Particularly for 

geostatistical techniques, the accuracy of rain gauge data is important which 

determines the accuracy of the corrected radar estimates. Furthermore, the 

density of rain gauge networks also determines the accuracy of the correct radar 

rainfall data (Einfalt et al., 2004).  

Recently, geostatistical techniques have been employed to determine the spatial 

variability of rain gauge data in a specified region. Various techniques show to 

improve the accuracy of radar rainfall. For example, Yeung et al., (2017) had 

explored a co-kriging interpolation scheme whereby radar rainfall estimates were 
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combined with interpolated rain gauges in the field. The results show that the co-

kriging method was useful to detecting the spatial structure of the rain gauge field 

at a high level. However, it struggled to represent rainfall values at locations of 

gauges during extreme events. Lin and Lee (2011) had also used co-kriging to 

merge radar rainfall and rain gauge data and concluded that co-kriging generally 

underestimates rainfall in regions lacking rain gauges. Another method, called 

modified co-kriging had shown in the same study to outperform co-kriging. 

However, modified co-kriging requires the computation of semi-variograms, 

which is a more resource-heavy task hence requiring more time to process. 

However, generating semi-variograms introduces further uncertainty. 

Furthermore, modified co-kriging requires more radar rainfall data points and this 

may not be available in scenarios where the availability of radar rainfall is sparse. 

Wang et al., (2015c, 2015b) use block kriging to interpolate rain gauge data at 

radar rainfall points. The covariance of this interpolated rainfall field is then 

derived which represents the uncertainty of the rain gauge estimates. Similarly, 

the covariance of the radar rainfall field is obtained. Based on these covariances, 

the two rainfall fields are optimally merged using a Kalman filter. This is an 

example of Bayesian based merging method that is dynamically applied thus 

making it suitable for real time applications. The advantages of this is that the 

error realisations of the rainfall field would differ at every time step thus correcting 

the radar rainfall field with more precision. Results show large improvement over 

mean field bias correction. However, the preservation of peaks in the rainfall field 

was weak and a ‘smoothing effect’ had been noted. Similarly, Berndt et al., (2014) 

compare different geostatistical techniques with addition of smoothing the rainfall 

fields to make them more accurate. It had been shown that the smoothing 

process improved the merging of radar and rain gauge rainfall data. However, 

there was noticeable loss of spatial field structure of rainfall. This highlights the 

requirement to preserve the spatial structure of the rainfall field.  

Goudenhoofdt and Delobbe (2009) had developed a method to improve radar 

rainfall estimation by directly correcting the errors in radar measurements in the 

atmosphere and the ground, a consequence of this is so called VPN. They 

perform VPN correction followed by rain gauge merging using mean field and 

local bias correction methods. Particularly, they use Ordinary Kriging (OKR) and 

another variant of OKR called External Drift Kriging. The latter method had shown 
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the biggest improvements on the accuracy of corrected radar rainfall estimates, 

even more than methods using mean field or local bias correction. External Drift 

Kriging treats the radar field as the secondary data (i.e. interpolations are 

performed for the radar rainfall field at rain gauge locations). As such, defining 

the instantaneous, anisotropic and non-stationary spatial variability model using 

the radar field was shown to be more accurate than using other estimators such 

as interpolating rain gauge (Sempere-Torres et al., 2012). 

The merging techniques discussed highlight that the radar rainfall 

estimates/forecasts could be made more accurate using other sources of rainfall. 

They would typically ensure that radar data are of high quality suitable for 

hydrological applications. However, radar rainfall forecasts present additional 

challenges when applied to hydrological analysis. The next section discuss how 

radar rainfall forecasts are produced and what challenges are associated to their 

accuracy and applications in short range flood forecasting. 

 

2.1.4 Radar rainfall forecasts 

 

NWP models provide quantitative information of future precipitation. However, 

these models lack the resolution capacities to represent the rainfall structure at a 

spatial scale with reasonable accuracy sufficient for hydrological applications. 

Especially, they are not useful to produce rainfall forecasts at very near periods 

in the future. Hence, based on the wide availability of radar rainfall, extrapolation 

schemes have been developed to use the motion and intensity parameters of the 

gridded data to produce forecast rainfall up to several hours into the future 

(Mueller et al., 2003). This is referred to as Nowcasting, which uses radar rainfall 

to produce QPFs up to 6 hours (Pierce et al., 2004; Ruzanski et al., 2011). 

Ruzanski et al. (2011) describes that radar Nowcasts could be classified in four 

ways: area-based, object-based, statistical and probabilistic. In hydrology, 

Nowcasting is most commonly referred to using principles of area-based 

Nowcasting. This involves using the radar field to estimate the motion of the storm 

and predict the future precipitation. Object-based Nowcasting focuses on 

identifying regions in the radar field that shows high reflectivity. Coherent features 

of the storm such as size and shape are used to predict future precipitation. 
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Statistical and probabilistic Nowcasting takes a step further to study the 

atmospheric properties of storms to produce more accurate forecasts. 

Probabilistic Nowcasting represent percentiles of rainfall intensity values and this 

provides a holistic way of assessing future precipitation. Probabilistic 

methodologies are discussed in section 2.2. Examples of object-based 

Nowcasting systems include the Thunderstorm Identification, Tracking, Analysis, 

and Nowcasting (TITAN) algorithm (Dixon et al., 1993). An example of a statistical 

Nowcasting system is the Terminal Weather Convective Forecast System (Boldi 

et al., 2002; Sharif et al., 2005)and Auto-Nowcaster (ANC) developed at the 

National Center for Atmospheric Research (NCAR) (Mueller et al., 2003; Sharif 

et al., 2005). 

The UK Met Office have rainfall products, referred to as Nimrod, that generate 

Nowcasts in the same way. The forecasting horizon is very short (i.e. around 1 – 

2 hours) for single radar but this can be extended by combining data from multiple 

radar to produce short range forecasts with longer lead times (Golding, 2000). 

However, the lead time could be further extended by merging radar rainfall 

forecasts with NWP models that have longer forecasting capabilities. An example 

of a system that incorporates this technique is the STEPS system by the UK Met 

Office (Bowler et al., 2006). Convective storms are dynamic and have highly 

fluctuating rainfall intensities over short durations. The forecast horizon is thus 

shorter for such storms and this presents the challenge of increasing the 

alertness in hydrological applications for such storms (Einfalt et al., 2004). Olsson 

et al. (2013) found that extreme events of short duration were concentrated over 

small spatial regions (and even over singular radar grids) whereas extreme 

events of long duration were more spatially uniform and involved large regions in 

the catchment. Einfalt et al., (2004) highlights that this a difficulty in urban rainfall 

forecasting and further states that highly accurate radar rainfall forecasts are 

required especially for catchments of small size.  

Nowcasting has been applied to urban flood forecasting in several studies 

(discussed separately in section 2.3), which have demonstrated key attributes of 

Nowcasts. Schellart et al., (2012) demonstrate the uses of Nowcasting in sewer 

flow prediction. The outputs of their study show that the forecasting skill reduces 

with longer forecast horizons and for small spatial scales. Furthermore, 

distinctions between frontal and convective storms were made where frontal 
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events showed to better predict sewer flow. Furthermore, Achleitner et al., (2009) 

showed that forecasting of sewer variables had been constrained by the forecast 

horizon, with large bias observed for forecasts above 90 minutes. Like the study 

outputs of Schellart et al., (2012), they found that the forecast skill increases with 

increasing spatial scales. The benefits of using radar Nowcasting demonstrates 

that flood forecasting is feasible in sewer catchments with reasonable accuracy 

(Sharif et al., 2005). However, radar Nowcasts may exhibit large uncertainty. 

Most of these uncertainties originate from the radar estimate - as discussed 

earlier - and this is propagated through to extrapolation schemes (or other 

methods) by which the forecasts are produced. Extrapolation techniques (i.e. 

Nowcasting algorithms) are not the focus of this project as this is predominantly 

meteorological. However, in recent hydrological literature, a characteristic of 

radar rainfall studied closely, and to a lesser extent of radar forecasts, is the 

temporal and spatial resolutions of the data. 

 

2.1.5 Resolution requirements in urban flood forecasting using radar rainfall 

 

The temporal and spatial resolution of radar rainfall data are important attributes 

considered in hydrology. Wang et al. (2015a) state that resolutions of radar 

estimates (typically 1-km, 10-min) may be insufficient for urban scale 

applications. Sharif et al. (2005) also demonstrated the improved accuracy of 

flood forecasting was attributed to the high resolution of radar estimates. Given 

this, it is important to select precipitation data with appropriate temporal and 

spatial resolutions for hydrological purposes (Wang et al., 2015). The size of 

catchment, for example, is a factor determining what resolution would be 

appropriate to obtaining relatively accurate model outputs (Emmanuel et al., 

2012). Small spatial regions present larger deviations between in the forecasted 

model variables (Vieux and Vieux, 2005). Hence, for these sized catchments they 

require precipitation data of suitable temporal and spatial resolutions to produce 

sufficiently accurate forecast output (Wang et al., 2015). Berne et al. (2004) 

recommended that for a 1000 ha (10 km2) catchment a respective spatial and 

temporal resolution of 3-km and 5-min would be sufficient to conduct accurate 

analysis. Loewe et al., (2014) suggested that a 1-km spatial resolution would be 
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appropriate for real-time hydrological predictions, which  would involve the most 

up-to-date data being used by the model in real time, and mean a higher demand 

on data and time to update the model to the required performance standards in 

comparison with offline models. Schellart et al., (2012) compared the impacts of 

15-min and 5-min time steps of rain gauges on sewer flow predictions and 

demonstrated how the increased temporal resolution highlighted peaks that 

would have been missed or not fully represented from lower resolution data 

sources. Higher resolution data will show more spatial and temporal information 

in comparison to lower resolution sets in each location or time, therefore they are 

more useful for real-time flood hydrological predictions.  

High resolution data may be limited in availability. This is especially the case 

where both the temporal and spatial resolutions are required to be high. Looking 

at a finer scale, a temporal resolution of 2-min to model at street level and 

individual properties in urban areas is recommended but this would depend on 

the availability of data with very high temporal resolutions (Rico-Ramirez et al., 

2015; WaPug, 2004). Furthermore, it has been demonstrated that for radar 

estimates with a particular temporal resolution there is an optimal spatial 

resolution which would minimise the uncertainties in the data (Schellart et al., 

2012). Hence, this presents a challenge in sourcing the highest available 

temporal and spatial resolutions.   

When the required radar QPFs are not available at sufficiently high resolutions, 

various techniques exist to improve their resolutions. Previous research 

investigated temporal interpolation of  radar QPEs to match corresponding rain 

gauge data (Wang et al., 2015). Seo and Krajewski (2015) explored improving 

temporal errors in radar precipitation by considering advection parameters in a 

linear interpolation method. Whilst their method struggled to demonstrate any 

improvement in events with little precipitation, there was a clear improvement in 

the accuracy of precipitation estimates for events with heavier precipitation. 

Increasing the resolution of radar data preserves the small-scale precipitation 

structures which would be of direct relevance and interest in hydrological 

applications. 
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Temporal interpolation 

Previous work has identified the uncertainties present in temporal gaps of radar 

rainfall. Piccolo and Chirico (2005) and Shucksmith et al., (2011) applied analysis 

of movement and evolution of rainfall storms to radar data with high resolutions. 

They demonstrated that temporal gaps significantly impact the accuracy of the 

rainfall data. They recommended that temporal interpolation is necessary to 

reduce these uncertainties. Fabry et al., (1994) had developed an advection 

based extrapolation scheme that computed rainfall accumulations. This inspired 

later work producing higher temporal resolution radar rainfall using a temporal 

interpolation method (Nielsen et al., 2014). The concept taken from Fabry et al., 

(1994) includes the consideration of advection parameters as vector fields 

distributed over the radar field. These vector fields represent the movement of 

rainfall storms and have shown to estimate interpolated points to a reasonable 

level of accuracy. However, due to the complexity of parameterising changes of 

rainfall at very short periods, two assumptions are made in this interpolation 

method: the vector field between two radar maps are constant, and evolution of 

rainfall changes linearly over one radar map to another. The interpolation method 

consists of three main stages: (1) advection-based extrapolation forward in time, 

(2) advection-based extrapolation backward in time, and then (3) merge the two 

extrapolations to form one combined interpolated radar rainfall dataset. This 

method had been adopted by Wang et al., (2015a) with a modification that 

includes occlusion reasoning. This ensures that the interpolated radar maps 

change smoothly without anomalous magnitudes of rainfall values emerging in 

the data sets (Herbst et al., 2009; Sadek et al., 2012) 

Furthermore, Wang et al., (2015a) derive vector fields in the radar maps using 

optical flow estimation instead of Continuous-TREC (or CO-TREC) (Li and 

Schmid, 1994; Mecklenburg et al., 2000). This is a modified version of Tracking 

Radar Echoes by Correlation (TREC) which was developed by Rinehart and 

Garvey (1978). These two approaches essentially divide the rainfall field into 

contiguous rain areas (CRAs), or blocks, and then calculate the optimal advection 

vector at each block using a correlation method. CO-TREC improves the TREC 

method by minimising the divergence of the velocities in neighbouring blocks, 

which would cause gaps in various regions in the radar image. Furthermore, a 

smoothing constraint is introduced as part solving the advection equations. 
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Another method to obtain advection vectors is the Variational Echo Tracking 

(VET) method which similarly relies on correlation methods using a block based 

approach but additionally considers radial velocities (Laroche and Zawadzki, 

1994, 1995). However, this additional data is not always available. Optical flow 

approaches use a Lagrangian approach directly instead of using correlation 

methods and the optical flow constraint equation is solved before the smoothness 

constraint. This reduces computational processing of the algorithm for obtaining 

the advection vectors that are more accurate (Bowler et al., 2004). 

Optical flow is commonly used for temporal interpolation of image sequences 

outside of meteorological and hydrological studies. For example, Ehrhardt et al., 

(2006) had showed that optical flow based interpolation proved to be more 

accurate than linear or shape based interpolation for interpolated medical image 

sequences. In the same study, linear based interpolation is stated to be the most 

commonly used interpolate method and shape-based is usually the most 

accurate against the other methods (not including optical flow based 

interpolation). Furthermore, optical flow techniques have been used in 

nowcasting extrapolation schemes to produce radar rainfall forecasts (Bowler et 

al., 2004). Hence, its versatility and accuracy is proven to be useful in short term 

rainfall forecasting (Cheung and Yeung, 2012; Krajewski and Smith, 2002) 

Artificial Neural Networks (ANNs) have been commonly used in hydrological 

studies (Coppola et al., 2005; Darsono and Labadie, 2007; Kasiviswanathan and 

Sudheer, 2016; Koizumi, 1999; Lallahem et al., 2005; Maier et al., 2010; Samani 

et al., 2007; Siswantoro et al., 2016; Trichakis et al., 2009). This is an example of 

a data-driven approach that does not depend on specific parameters of the data 

to develop nonlinear relationships between the independent and dependant 

variables. As they are data-driven, it treats the processing as ‘black box’ and the 

nonlinearity of ANNs is advantageous over linear statistical approaches. ANNs 

are thus considered as alternative methods to statistical approaches and have 

been previously used to predict hydrological variables on a temporal scale 

(Tapoglou et al., 2014). Hence, ANNs could be applied in temporal interpolation 

problems in hydrology. These models are discussed in detail in section 2.3.2. 
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Spatial interpolation 

There are many methods of spatial interpolation, and these are comprehensively 

articulated and evaluated by Li and Heap (2008). In this publication, a range of 

techniques are classified broadly in two categories: non-geostatistical and 

geostatistical. Also, Tapoglou et al., (2014) describes these categories as 

mechanical and statistical/probability-based, respectively. The non-geostatistical 

techniques use empirical parameters that include methods Inverse Distance 

Weighting (IDW), regression models, splines and local trend surfaces, Fourier 

series and trend surface analysis. Geostatistical techniques allow for the analysis 

of the uncertainty of the spatial structure of the data. They feature more strict 

assumptions on the spatial variability of rainfall and rely on fundamental concepts 

in probability theory (Tapoglou et al., 2014). This is the main benefit of using 

geostatistical techniques. This is because approximation of the uncertainty helps 

explore more specific ways to improve the accuracy. The techniques in this 

category include Kriging methods (i.e. simple, ordinary, block Kriging etc) and 

multivariate variations of Kriging including co-Kriging and External Drift Kriging. 

In recent literature, geostatistical techniques, particularly Kriging methods, have 

been explored extensively chiefly due to providing information of the uncertainty 

of the spatial field (Cressie, 2015; Gotway et al., 1996; Schloeder et al., 2001). In 

comparison to IDW, Yasrebi et al., (2009) and Zare-mehrjardi et al., (2010) found 

that Kriging methods performed better than IDW. Several multivariate Kriging 

methods have been evaluated in section 2.1.3 (co-Kriging and External Drift 

Kriging). These methods are popular for merging radar and rain gauge rainfall 

fields and have proven to be effective in producing accurate estimates. However, 

in the field of radar rainfall forecasting this is limited because the spatial 

interpolation problem in this area must be conducted historically to correct it 

against observed rainfall sources (e.g. radar estimates or rain gauge data) and 

not in real-time. Hence, the choices of geostatistical techniques are smaller and 

their application are more constraining when improving rainfall forecasts. 

However, univariate techniques could be used as these require only one spatial 

field data set for interpolation, which is appropriate for rainfall forecasts. OKR is 

the most common type used in the field (Zhang and Wu, 2015). Its applications 

are seen across different studies in hydrology, computer vision and earth 

sciences. However, UKR has been often compared with OKR and in many cases 
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it has produced better results (Eom et al., 2006; Selby and Kockelman, 2013).  

This is due to the trend analysis that is integral to UKR. The benefits of this is that 

a trend function is defined for the spatial structure of the interpolated points, which 

is useful for determining predicting points in the rainfall field whose trend 

resembles a rainfall storm, as an example. Outside of geostatistical techniques, 

a Bayesian approach had been developed by Hussain et al., (2012). The benefit 

highlighted using this technique is that the spatio-temporal variability of the 

uncertainty and covariance models could also be used to interpolate spatial data, 

which is evidently lacking in Kriging methods. However, this study was limited to 

a single case study and more evidence of such techniques are required to prove 

its usefulness. Particularly, their work had focussed on spatio-temporal 

estimations of rainfall, which considers temporal uncertainties together with 

spatial uncertainties. Considering spatio-temporal aspects of rainfall has also 

been studied using Kriging. The benefit of this includes studying different rainfall 

in locations with different topographies and also in different seasons. 

2.2 Uncertainty estimation 

 

In section 2.1 the inherent uncertainties of radar due to the processes involving 

rainfall estimation had been explored. These uncertainties are propagated to 

radar rainfall forecasts and, particularly, uncertainty characteristics of this type of 

data have been identified (Boucher et al., 2012; Dale et al., 2014; Krzysztofowicz, 

2001; McCollor and Stull, 2008; Ramos et al., 2013; Verkade and Werner, 2011). 

Uncertainty characteristics include that the forecast uncertainty increases with 

lead time. Furthermore, the spatial area of rainfall is a factor determining the 

uncertainty extent as the accuracy generally increases with increasing area 

where the forecasts are sourced (Rezacova et al., 2007). This is because there 

is a larger area of validation of the forecasts. Furthermore, Rezacova et al., 

(2007) concluded that forecast uncertainties are high for local convective storms, 

particularly at short lead times. Whilst these studies have established that 

uncertainty is present and at varying extents in hydrological applications, the 

rainfall forecast itself is not indicative of the uncertainty. This is because 

deterministic (or singular) forecasts do not present information of the uncertainty 

(Berrocal et al., 2008) . This section explores literature that have focussed on 

quantifying uncertainty of rainfall forecasts in hydrology. 
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2.2.1 Exploring uncertainty of rainfall forecasts 

 

In hydrology, the total uncertainty is typically categorised in two ways: the input 

uncertainty and hydrological uncertainty (Regonda et al., 2013). The input 

uncertainty refers to uncertainties in rainfall and temperature data that are used 

in hydrological models. Moreover, the rainfall is considered the most important 

input uncertainty source (Gjertsen et al., 2003). Often, the uncertainties in rainfall 

are quantified separately to the hydrological uncertainties. Such systems that 

incorporate this way of quantifying the total uncertainty in the hydrological 

forecast are the Bayesian Forecasting System (BFS) by Krzysztofowicz (2001) 

and the Hydrologic Ensemble Forecast Service (HEFS) of the NWS (Demargne 

et al., 2013). Regonda et al., (2013) describe a source-specific approach to how 

the total predictive uncertainty could be explored. This states that input and 

hydrological uncertainties are modelled separately so that the residual 

uncertainty can be modelled stochastically (Demargne et al., 2013; Krzy, 1999; 

Seo et al., 2006; Seo et al., 2010). The purpose of this is that the uncertainty 

becomes random (i.e. lacking structure) which is advantageous because it would 

have less data requirements, hence making the stochastic modelling less 

complex. This provides a practical way of understanding uncertainty sources of 

hydrological forecasts. 

Krzysztofowicz (2001) had presented the BFS which constitutes several 

components that separately quantify the uncertainty in flood forecasting. This 

concept has been used extensively in later studies (Kelly and Krzysztofowicz, 

2000; Krzysztofowicz and Herr, 2001; Krzysztofowicz and Kelly, 2000). The 

purpose of the BFS is that it separates processing of different uncertainties. The 

three components representing different uncertainties are input uncertainty 

processor, hydrological uncertainty and the integrator uncertainty. An 

advantageous aspect of the BFS is that it is designed to update its components 

whilst maintaining statistical consistency (i.e. not deviating from the uncertainty 

relationships identified in the forecast data), which is conducive for operational 

use. However, Reggiani and Weerts (2007) modify the BFS by enhancing the 

input uncertainty processor. They had identified that rainfall is the most influential 
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forcing to hydrological models in short term flood forecasting (and assuming that 

at this scale temperature and evaporation are negligible). Hence, a large degree 

of uncertainty is attributed to this source. Furthermore, a Bayesian method is 

incorporated to this processor, where the prior knowledge of the historical 

forecasts is used to obtain the posterior forecasts (i.e. updated forecasts). This 

study highlights the significance of segregating the input and hydrological 

uncertainties. Seo et al., (2000) used the BFS to generate probabilistic forecasts 

that consider temporal and spatial factors of the data. However, the work was 

limited by operational issues. Nonetheless, it further highlighted benefits of 

segregating the input and hydrological uncertainties, as more scientific methods 

could be applied to the input data to determine total predictive uncertainty. 

Coccia and Todini (2011) and Montanari and Brath (2004) explain that there are 

three ways the uncertainty in forecasts are quantified, albeit in the context of 

streamflow forecasts. The first method generates probabilistic forecasts based 

on the initial conditions that generate the streamflow forecast (Cloke and 

Pappenberger, 2009). The second method quantifies uncertainty based on 

comparisons of forecast errors in historical data (Rene, 2014; Schaake et al., 

2007; Wood and Schaake, 2007). The third method uses Monte Carlo and 

resampling methods to explore the uncertainty (Montanari and Brath, 2004). In 

recent literature, probabilistic methods have been directly applied to the 

hydrological forecasts. Examples of these studies are (Bogner and 

Pappenberger, 2011; Coccia and Todini, 2011; Montanari and Grossi, 2008; 

Reggiani and Weerts, 2007; Smith, P. J. et al., 2012; Weerts et al., 2011). 

However, more focus has been invested in hydrological uncertainty whereby the 

hydrological variables in simulations are used to generate probabilistic forecasts 

(Bogner and Pappenberger, 2011; Brown and Seo, 2013; Chen and Yu, 2007; 

Hantush and Kalin, 2008; Montanari and Brath, 2004; Montanari and Grossi, 

2008; Seo et al., 2006; Zhao et al., 2011). Therefore, more work is required to 

explore probabilistic rainfall (or hydrological) forecasting based on uncertainties 

in the rainfall forecast. 
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2.2.2 Probabilistic rainfall forecasting 

 

Recent studies have attempted to assess the usefulness of probabilistic (or 

ensemble) forecasts in hydrology. For example, Hardy et al., (2016) produces 

probabilistic hydrological forecasts based on the input of high resolution forecasts 

obtained from the NWS Ensemble Prediction System (EPS). The STEPS model 

by the UK Met Office had been applied to predict flow in urban catchments 

(Liguori and Rico-Ramirez, 2012). Results show that these probabilistic forecasts 

are better at estimating flow prediction particularly for low intensity rainfall. 

However, several studies have focussed on the methods generating probabilistic 

rainfall forecasts (i.e. further exploring the input uncertainty before propagating 

them to hydrological models). Such studies have used Kalman Filter as part of a 

probabilistic forecasting framework (Georgakakos and Smith, 1990; Kitanidis and 

Bras, 1980; Young, 2002). The Kalman Filter is used to quantify the uncertainty 

for every discharge forecast produced. Each of these are accompanied with a 

probability of precipitation and, collectively, their discharge values indicate of the 

uncertainty range. However, many statistical models are simultaneously run to 

indicate the probability of the forecasts. This introduces uncertainty in selecting 

the appropriate model to calculate the probability of precipitation which is 

disadvantageous to the end user. Another method, called Generalised Likelihood 

Uncertainty Estimation (GLUE), had been introduced with the rationale that 

different parameter sets are equally possible and thus are all acceptable (Beven 

and Binley, 1992). This approach is based on Monto Carlo methods (the third 

method of quantifying the uncertainty of forecasts by Montanari and Brath (2004) 

and Coccia and Todini (2011) and has been used in several studies (Beven and 

Freer, 2001; Franks et al., 1998; Hossain and Anagnostou, 2005; Hunter et al., 

2005; Kuczera and E Parent, 1998; Montanari, 2005; Pappenberger et al., 2005). 

Many parameter sets are selected within a certain range and are used to run the 

rainfall forecasting model. However, several studies had shown that the 

predictive uncertainty is not always accurately estimated using this method 

(Mantovan and Todini, 2006; Montanari, 2005; Thiemann et al., 2001). 

Chen and Yu (2007) uses a ‘possibilistic’ approach whereby probability 

distributions are produced from the forecasts errors using fuzzy inference 

methods. Ben Bouallègue (2011) uses a similar approach to widen the samples 
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of probabilistic values produced with a probabilistic approach. Fu et al., (2011) 

present a method of imprecise evaluation of probabilistic sewer flooding 

forecasting with use of random set theory. They had concluded that an imprecise 

probabilistic approach is more suitable for stochastic uncertainty modelling when 

more than one probability distribution fits the sample data. The use of fuzzy 

approaches is useful as an alternative approach to probability-based methods. 

However, these studies have demonstrated that they can supplement probability-

based frameworks. 

Based on the first method to quantify uncertainty described by Montanari and 

Brath (2004) and Coccia and Todini (2011), several forecast products develop 

probabilistic forecasts using initial boundary conditions. For example, NWS has 

several forecast products that include short, medium and long-range ensemble 

rainfall forecasts purely from numerical models at a regional and global scale. 

These include the Short-Range Ensemble Forecast (SREF) and the Climate 

Forecast System (CFS). The UK Met Office have developed the STEPS 

probabilistic rainfall forecasting system which produces rainfall ensembles by 

merging radar Nowcasts with NWP forecasts (Bowler, N. E. et al., 2006). 

However, as these probabilistic forecasts are constructed predominantly using 

numerical models and altering the initial boundary conditions there are issued 

associated to the forecasts. There is a lack of dependence on the spatio-temporal 

variabilities influencing the uncertainty estimate. Hence, there is a bias or 

generalisation of the mean and bias that is not representative of the local spatial 

and temporal characteristics of the forecast source. The second method of 

quantifying uncertainty explained by Montanari and Brath (2004) and Coccia and 

Todini (2011) is thus used as a way of statistically calibrating rainfall forecasts 

which considers spatio-temporal aspects to reduce the bias of forecast errors 

using local observed data (Eckel and Walters, 1998; Montanari and Brath, 2004; 

Tapoglou et al., 2014). Producing probability distributions from the forecast errors 

of the forecast and observed data sets allows quantifying the uncertainty of 

deterministic forecasts (Buizza et al., 2005). 

An example of statistically calibrating rainfall forecasts based on the second 

method of quantifying the uncertainties is described as follows. Schaake et al., 

(2007) developed a methodology to construct probabilistic forecasts for 

deterministic rainfall and temperature forecasts for the Ensemble Streamflow 
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Prediction (ESP) for the National Weather Service River Forecast System 

(NWSRFS). Deterministic QPFs are used to produce marginal distributions 

based on forecast errors between historical forecast and observed rainfall data 

(or joint distributions for nonzero forecast and observed rainfall values). Then, 

random rainfall values are sampled from the marginal distributions using the 

‘Schaake Shuffle’ (McCollor and Stull, 2008). These random values are used to 

produce probabilistic forecasts in time series format. The method produces the 

probabilistic forecasts independently for a specific location. Hence, spatial 

dependence is not considered. Also, various assumptions are made in the 

statistics employed in the methodology. For example, variable transformations 

are used to model new variables using rainfall forecasts and observations with 

bivariate standard normal distribution. Wu et al., (2011) improves this method by 

modifying various statistical parameters. This includes introducing a mixed-type 

bivariate meta-Gaussian distribution for modelling part of the forecast and 

observed rainfall data. Results showed that producing probabilistic QPFs is more 

reliable and skilful using the modified stochastic models. Rene (2014) had 

adopted the approach of Schaake et al., (2007) and Wu et al., (2011) to generate 

probabilistic QPFs using historical NWP forecasts and rain gauge data. The key 

contribution of this study is that the concept of ensemble generation had been 

applied to urban pluvial flood forecasting, which presents different challenges in 

comparison to coastal or river flooding. The NWP forecast had a maximum lead 

time of 12 hours and so probabilistic forecasts were generated over this period 

with 1 hourly time steps. Furthermore, . Rene (2014) compared two sampling 

techniques which are Latin Hypercube Sampling (LHS) and Direct Quartile (DQ), 

instead of using the ‘Schaake Shuffle’. Their study showed that quantifying the 

uncertainty of NWP QPFs can be done with a good level of skill. However, the 

forecasts had the tendency to underestimate the observed rainfall during heavy 

rainfall events and overestimate the observed rainfall during light rainfall events.  

 

2.2.3 Postprocessing probabilistic rainfall forecasts 

 

NWP-based probabilistic rainfall forecasts are generated based on altering the 

parameters of the initial boundary conditions representative of the atmospheric 
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conditions influencing the forecast, and the mathematical assumptions made in 

producing the forecasts (Bowler et al., 2006). These are the two main sources of 

uncertainty of NWP-based probabilistic rainfall forecasts (Ebert, 2001). However, 

as they generate different variations of the forecast with the same temporal and 

spatial parameters, they do not provide information of the probability of 

precipitation and are thus strictly referred to as ensembles (Robertson et al., 

2013). The problems associated to the ensembles generated from NWP models 

is that the error range lacks depth and does not provide probability of 

precipitation. Furthermore, the ensembles produced are spatially and temporally 

independent, and so could not perform in local, operational settings (i.e. where 

spatial variability of rainfall would typically be considered in distributed 

hydrological modelling). Even when probability of precipitation is included in an 

ensemble forecasting system, the other issues stated could still hinder the skill of 

predicting rainfall. When probabilistic rainfall forecasts are produced this way (i.e. 

even from a radar-based probabilistic rainfall forecasting system), it is necessary 

to consider postprocessing them to increase their accuracy in better estimating 

the uncertainty, especially at specific spatial locations (Hamill et al., 2008; Kleiber 

et al., 2010; Schaake et al., 2007; Sloughter et al., 2007; Wilks, 2011; Wu et al., 

2011). 

It is evident in recent literature of the techniques used to postprocess probabilistic 

rainfall forecasts, particularly in the field of streamflow forecasts. For example, a 

probability model introduced by Sloughter et al., (2007) is used to model two 

components of probabilistic forecasting systems: the probability of precipitation 

and the rainfall values. The probability of precipitation is postprocessed using 

logistic regression and the rainfall values are postprocessed by using a gamma 

distribution model conditioned on the deterministic rainfall forecast. Furthermore, 

their approach introduced using a Bayesian technique to calculate the PDFs of 

the probabilistic rainfall forecasts across any rainfall value. This contribution 

would prevent probability models being produced for specific forecast thresholds 

that would be selected by the end-user. The main issue of this approach as 

highlighted by Robertson et al., (2013) is that when generalising this technique to 

other scenarios of rainfall forecasting there are many parameters to consider and 

this risks over fitting the models involved in the technique. Furthermore, 

Scheuerer (2014) states that the methods described in studies like Sloughter et 
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al., (2007) may alter the original scale of ensemble spread of the probabilistic 

rainfall forecasts. This may cause differing performances of estimating 

uncertainty in the postprocessed probabilistic rainfall forecasts at varying rainfall 

intensities (i.e. low intensity rainfall may have an exaggerated uncertainty range). 

Therefore, whilst methods developed in recent literature allow for better 

approximations of the probability distributions of forecast rainfall, it is crucial to 

consider updating the distributions to maintain or increase the skill of predicting 

the uncertainty based on varying rainfall types. 

The aforementioned methods by Schaake et al., (2007) and Wu et al., (2011) are 

considered postprocessing methods for NWP rainfall forecast as the probabilistic 

forecasts are produced from joint distributions between the forecast and 

observed data. However, these methods allow for various transformations and 

choices of distribution for the marginal distributions, which affects the skill of 

predicting the uncertainty. This could also be location dependant and the 

parameterisations involved in the methods are multifaceted. Furthermore, these 

methods are applied to singular spatial and temporal locations making the task 

of extracting the spatial and temporal structures a difficult one that needs to be 

done in addition to the probabilistic rainfall forecasting, which is computationally 

expensive (Khajehei and Moradkhani, 2017). Methods like the ‘Schaake Shuffle’ 

solve computational issues such as this by selecting probabilistic values based 

on the spatial and temporal structure of historical rainfall (Clark et al., 2004). 

However, considering the spatial and temporal structure of probabilistic rainfall 

forecasts has more recently been identified as an area of further work 

accompanying postprocessing probabilistic rainfall forecasts (Reggiani and 

Weerts, 2007). 

Bayesian methods have particularly been studied in recent literature to 

postprocess probabilistic rainfall forecasts. The Bayesian Joint Model (BJM) had 

been introduced by Wang et al., (2009) and Wang and Robertson (2011) to 

generate probabilistic rainfall forecasts for a sub-daily weather forecast in 

Australia. This method had been adopted by Robertson et al., (2013) which they 

drew comparisons with the methods of Schaake et al., (2007) and Wu et al., 

(2011) as joint distributions are similarly produced between the forecast and 

observed data. However, the purpose of using this Bayesian technique is that of 

simplifying the parametric transformation for data normalisation making it very 
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flexible as a probability model. Thus few parameters are required as part of the 

model development using the data in comparison with the methods of Schaake 

et al., (2007) and Wu et al., (2011). With fewer parameters involved the 

computational processing time is reduced and the uncertainty in the number of 

parameters involved is also reduced. The study shows the success of the BJM 

by accurately determining the uncertainty range for both small and large rainfall 

events. It also highlighted the effectiveness of using Bayesian inference methods 

to postprocess probabilistic rainfall forecasts. As the study by Robertson et al., 

(2013) had used sub-daily rainfall forecasts, they emphasised that these 

forecasts differ to rainfall forecasts of shorter range (i.e. such as radar Nowcasts). 

This is could be potentially explored due to the challenges associated to the 

accuracy of short range rainfall forecasts. It also highlights potentially exploring 

Bayesian inference methods to postprocess probabilistic rainfall forecasts at 

short forecast horizons. This is particularly conducive for real-time sewer flood 

applications. 

Another study had also explored the challenges of the methods by Schaake et 

al., (2007) and Wu et al., (2011). Khajehei and Moradkhani (2017) argues that 

these types of probability models use joint distributions to produce parametric 

transformations of data with non-Gaussian properties to a normal space (i.e. to 

model the joint distribution as a multivariate normal distribution, as also modelled 

by Rene (2014), is an assumption that could lead to inaccurate representation of 

the uncertainty of the ensembles (Brown and Seo, 2013; Madadgar et al., 2014). 

Furthermore, heavy or extreme rainfall may not follow a normal distribution (Katz 

et al., 2002). Due to this, Khajehei and Moradkhani (2017) suggested using 

copula functions to bypass parametric transformation of the forecast and 

observed rainfall variables. The advantage of this technique is that the marginal 

distributions are not required to be produced for the joint distribution of nonzero 

forecast and observed rainfall variables (Favre, 2004). The success of this 

approach was particularly noted in predicting the uncertainty estimates for 

extreme rainfall events. Hence, normal distributions may not be suitable for 

modelling rainfall.  

Other techniques that have been explored for postprocessing probabilistic rainfall 

forecasts preceding the more recent statistical techniques are linear regression, 

quantile regression (i.e. methods by Schaake et al., (2007), Wu et al., (2011) and 
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Robertson et al., (2013)), logistic regression (i.e. Sloughter et al., (2007)), neural 

networks (i.e. Koizumi (1999)) and binning techniques (i.e. Yussouf and Stensrud 

(2007)).  

 

2.3 Hydrological applications of radar rainfall forecasts 

 

Rainfall forecasts have been widely used for hydrological purposes, particularly 

for developing forecasting techniques for pluvial flooding, sewer flooding, river 

flooding, coastal flooding, surface flooding, landslides, flash floods and debris 

flow (Schellart et al., 2011; Hénonin et al., 2013; Faure et al., 2002; Parker et al., 

2011; Krzysztofowicz and Herr, 2001; Onyutha and Willems, 2017; Thompson 

and Frazier, 2014; Priest et al., 2011; Schellart et al., 2009; Liguori et al., 2012; 

Lee et al., 2013; Even et al., 2007; Wu and Lin, 2017; Olsson et al., 2013). The 

requirements of a forecasting system differ based on the source of the forecast 

data and the type of flood predicted. Thus, they present different challenges in 

determining the thresholds of uncertainty in operational forecasting settings. 

Particularly, the temporal and spatial resolution requirements of the forecast data 

is a requirement alongside other factors such as lead time for mitigating disasters 

(Golding, 2000). This section focuses on the potential of applying radar forecasts 

to sewer flood forecasting based on studies that have explored radar rainfall 

forecasts in different types of flood forecasting systems.  

 

2.3.1 Radar rainfall flood forecasting 

 

QPE/QPF data have been extensively used for hydrological flood modelling in 

operational settings. For example, NWP QPFs had been mainly used as part of 

Hydrological Ensemble Prediction Systems (HEPS) to analyse predictions based 

on propagating these forecasts into hydrological models (Cloke and 

Pappenberger, 2009). The propagation of the uncertainty of QPE and QPF data 

had also been evaluated by Rossa et al., (2011) to ascertain the feasibility of an 

operational flood forecasting system. However, recently radar QPE and QPF data 

had been explored for this application. Versini (2012) had used radar QPE and 
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QPF data to develop a road inundation warning system as a way of preventing 

flash flooding. Coustau et al., (2012) conducted a study to analyse the usefulness 

of radar QPE in a rainfall-runoff model. The purpose was to see the practicability 

of radar QPE capturing the variability of rainfall and accurately representing the 

initial wet conditions of the catchment. However, hydrological modelling was 

challenging when there are convective storms with more spatial variability. Their 

study demonstrates that radar data is useful for hydrological modelling for 

credibly representing flood scenarios, and it highlights potential for real-time 

applications. The popularity of radar data for flood modelling and forecasting is 

due to the wide spatial availability of rainfall data and the ability to generate radar 

forecasts at a short range (Moore et al., 2004). These are attributes that rain 

gauges lack despite generally being a more accurate rainfall source. Further 

benefits of radar QPE and QPF data are articulated by Germann et al., (2009). 

Much effort has been invested in assessing the uncertainty propagation to river 

flood forecasting systems (Borga et al., 2002; Vivoni et al., 2007). However, there 

is a need to understand these uncertainties in pluvial (or sewer) flood forecasting. 

Schellart et al., (2012), Rico-Ramirez et al., (2015) and Liguori et al., (2012) had 

conducted studies involving exploring the propagation of radar QPE in sewer 

drainage systems. Schellart et al., (2012) had evaluated the uncertainties 

associated to radar QPE and rain gauge, and had found distinguishable 

differences in the hydrological output. They concluded the temporal resolution of 

the rainfall source plays an important role on the uncertainty of hydrological 

output in a sewer model. Rico-Ramirez et al., (2015) had conducted similar 

analysis using a sewer model with the goal of determining the proportion of 

uncertainty related to the radar QPE and the sewer model. They showed that 

there are other uncertainty sources related to model calibration and measured 

sewer variable data, which should be considered as part of a flood forecasting 

system. 

Whilst several studies have explored forecasting (or Nowcasting) techniques, 

which is a constituent of the total flood uncertainty, the rainfall-runoff model is an 

integral component of the flood forecasting process. This may include combined 

use of rain gauge, QPE and QPF data. For example, Brezkova et al., (2012) study 

the operational feasibility of nowcasting methods for flash flood forecasting based 

on a continuous analysis of the state of hydrological conditions in the catchment. 
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This involves correcting the radar QPE data with rain gauge every 5 minutes and 

simultaneously producing hydrological simulations using the correct radar QPE 

and QPF at these time steps. (Šálek et al., 2004). Silvestro and Rebora (2014) 

similarly combine QPE estimation via rain gauge adjustment, implement a 

nowcasting procedure to produce probabilistic radar QPFs and then produce 

probabilistic hydrological forecasts, all in a single system. 

The concept of probabilistic QPFs were previously introduced to show estimates 

of the uncertainty accompanying deterministic QPFs. In flood forecasting, radar 

probabilistic QPFs have been highlighted as a promising solution to produce 

accurate flood forecasts in an operational system (Germann et al., 2009; Zappa 

et al., 2008). An ensemble generator developed at MeteoSwiss was used to 

produce the first operational system utilising hydrological forecasts based on 

radar probabilistic forecasts and a hydro-meteorological model in a mountainous 

region (Zappa et al., 2008). In their work, Liechti et al., (2013) had evaluated that 

the probabilistic QPFs used to produce hydrological forecasts outperformed 

deterministic values on all thresholds. Silvestro and Rebora (2014) highlighted 

that the output of different hydrological forecasts is particularly useful in that the 

user may assess the severity of the flooding incident. This is especially conducive 

for decision making. Furthermore, their study had concluded that a probabilistic 

approach requires additional processes, such as data assimilation or considering 

more data, to increase the accuracy of probabilistic hydrological output and tackle 

uncertainties in spatial structure and atmospheric dynamics. Villarini et al., (2010) 

proposes a probabilistic framework for flood forecasting system that uses 

deterministic radar QPFs, called the Flash Forecast Guidance System (FFGS) 

(Mogil et al., 1978). Their approach study different scenarios that exploit the 

uncertainties in two components of the FFGS: the first component focussing on 

the uncertainties in ascertaining the conditions issuing a flood warning, and the 

second component relates to representation of the forecast, hence the 

uncertainties in a deterministic QPF. The outputs of their study demonstrate that 

the probabilistic approach provides deeper information of flooding extents based 

on varying forecast scenarios. Particularly it pressed further research to focus on 

the error structure of the flood forecasting system components and to study 

extreme rainfall events. Several studies have highlighted considering the spatial 

structure of QPFs over a catchment, particularly in probabilistic frameworks 
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(Ahmadisharaf et al., 2016; Mei et al., 2014; Yang et al., 2012). It had been 

recommended by Yang et al., (2012) that uncertainties in spatial variation of 

QPFs should be modelled explicitly.  

 

2.3.2 Flood forecasting models 

 

Kimura et al. (2012) had described the potential of using high resolution X-band 

polametric radars to produce high resolution QPFs for real-time flood forecasting. 

However, they articulate uses of different flood forecasting models for assessing 

the efficiency of the flood forecasting process. Particularly, they explain that 

detailed models would increase computational processing and so take longer to 

produce operational forecasts. Whereas simplified models are flexible and 

require less computer resources but suffer from producing accurate hydrological 

estimates. Their analysis evaluates different physically based flood forecasting 

models. The main models described are as follows: 

Detailed models 

These models provide extensive tools for deep analysis of flooding and physically 

based processes associated to the hydrological system. Examples of these are 

commercial software models Infoworks ICM, ISIS 2D, MIKE FLOOD, TUFLOW 

and XPSTORM (Néelz and Pender, 2013). Other models include Soil 

Conservation Service rainfall-runoff model (Coustau et al., 2012; Xianzhao and 

Jiazhu, 2008) and HYDROG model (Brezkova et al., 2012). All characteristics of 

the drainage area model are modelled including pipes, manholes, weirs and 

pumps). Due to the many complex physical processes involved in detailed 

models, these require high computational resources and would generally require 

more time to simulate flooding. 

Simplified models 

These represent less computationally demanding versions of the detailed 

models. Various model parameters are modified to meet these requirements 

such as considering pipes with a diameter above a threshold and ignoring those 

smaller. Kimura et al., (2011) had shown that the prediction accuracy remained 

the same by taking this approach in comparison to using the detailed model. A 
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detailed model could thus be simplified strategically to maintain prediction 

accuracy, which is conducive for a real-time flood forecasting system to the 

improvements of processing times. 

Rainfall-runoff models that could be considered as simplified models are the 

Probability-Distributed Model by Moore (2007) which considers error prediction 

and state correction methods. It is also designed for real-time forecasting 

applications. It had been used by Jongh et al., (2012) in their operational flood 

forecasting system. 

More simplified models 

The aforementioned models could be simplified further by developing a simplified 

overland surface model. Hartnack et al., (2009) showed that such a model could 

greatly reduce the computational requirements whilst maintaining sufficient 

accuracy. Examples include CADDIES 2D (Ghimire et al., 2013). 

Statistical models 

Purely mathematical based models could be used to deduce the hydrological 

variables instead of using hydrological models. Kimura et al., (2010) had adopted 

a statistically-based model for predicting hydrological output using radar QPFs in 

real-time. This is especially useful for reducing the computational resources 

because there would be no requirement to run hydrological simulations. Though 

not often directly used for predicting hydrological output, the benefits of specific 

statistical methods could be useful for this application. Methods based on 

Generalised Linear Models (GLMs) had been applied to probabilistic rainfall 

forecasting applications (Yang et al., 2012). They included the use of Generalised 

Additive Models (GAMs), which are extensions of GLMs in that they allow 

parametric regression. The advantages of GLMs include that they are suitable for 

applications that are sensitive in time and space, thus being ideal for rainfall and 

flood modelling (Chandler and Wheater, 2002). 

Artificial Neural Network based models 

ANNs have commonly been used in hydrological studies. One of the core 

advantages of using a neural network over commonly used statistical methods is 

the nonlinearity of the model. Complex nonlinear relationships and imprecise data 

sets are manipulated with relative ease using ANNs, which would otherwise be 
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constraining using statistical approaches (Haykin, 1994). The makeup of ANNs 

are described as layers and network nodes (Tapoglou et al., 2014). Networks 

nodes are presented in three categories: input, output and hidden nodes. The 

output and hidden nodes are directly involved in the derivation of parameters 

based on the input parameters. Various topics of ANN including the uncertainty 

characteristics of the different ANN models and a thorough review is given by 

Kasiviswanathan and Sudheer (2016) and Maier et al., (2010), respectively. 

ANNs have been applied to various hydrological applications including the 

prediction of groundwater flow, well levels and identifying parameters in aquifers 

(Coppola et al., 2005; Lallahem et al., 2005; Nayak et al., 2006; Samani et al., 

2007; Tapoglou et al., 2014). Other studies using ANNs incorporated the 

prediction of floods and rainfall distribution (Duncan et al., 2012; Luk et al., 2000). 

The basic mechanisms of an ANN include a training method, which include back 

propagation, Genetic Algorithms and Differential Evolution (Coppola et al., 2007; 

Trichakis et al., 2009). Back propagation methods are the most commonly used 

and typically display good result in a range of applications. Also the activation 

method is an integral part of the ANN calculation and the sigmoid function is most 

commonly adopted (Trichakis et al., 2011). This is chiefly because the ANN is 

operating optimally in terms of extracting nonlinear relationships in the data sets 

using this function. 

The choice between using ANN or statistical approaches is debatable depending 

on the hydrological application and could be explored as a research topic of its 

own. However, this is outside the scope of this project and thus a rigorous 

evaluation is not required. Nonetheless, the benefits and drawbacks of this 

approach are articulated by Tu (1996). The main benefits are that the model is 

relatively less complex to setup, the ability to detect complex nonlinear 

relationships between the independent and dependant variables, the ability to 

detect relationships between the predictor variables and that multiple training 

methods could be applied improving the versatility of the model. The main 

drawbacks originate from the ‘black box’ aspects of the model process, which 

makes identifying causal relationships difficult. Also, higher computational 

resources may be required and the model may overfit data sets. 
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Kimura et al., (2012) applies ANN to each mesh point in an overland model. The 

purpose of this is to express relationships between the temporal and spatial 

rainfall information to flood depth. However, for this to be achievable at a good 

level of accuracy ample flooding data is required from the hydrological model. 

Furthermore, the data required to be setup for the ANN depends on the quality 

(i.e. accuracy) of the input (rainfall) and output (flood depth) data. 

Kimura et al., (2012) conclude that the models with lower computational 

requirements showed to be most effective in predicting hydrological flood 

variables using the radar data in operational settings. 

 

2.3.3 Influence of spatial variability on flood forecasting 

 

Spatial variability of rainfall over a catchment could be readily characterised using 

radar rainfall. This is has led to a several studies exploring the spatial variability 

of rainfall storms and their influence on hydrological models (Cole and Moore, 

2008, 2009; He et al., 2013; Looper and Vieux, 2012; Smith et al., 2007; Vieux et 

al., 2009). Particularly, several studies have focussed on the impacts of spatial 

variability of radar rainfall on flash flooding (Anquetin et al., 2010; de Lima and 

Singh, 2003; Douinot et al., 2016; Lay and Saulnier, 2007; Lobligeois et al., 2014; 

Morin and Yakir, 2014; Tramblay et al., 2010; Wood et al., 1988). However, there 

is the need to further study the hydrological variable responses based on varying 

spatial characteristics of rainfall. Much of previous work concentrate on radar-rain 

gauge adjustment and then characterising the spatial patterns over a catchment. 

Where hydrological models are used the number of rainfall events as case 

studies were limited (Emmanuel et al., 2015). Furthermore, it had been 

highlighted by Michaud and Sorooshian (1994) that distributed modelling is 

improved if spatial information of rainfall is considered in the hydrological process. 

Schellart et al., (2012) had shown that due to the spatial variation of rainfall 

presented by the radar rainfall in several events the estimates of sewer flow 

varied in comparison to estimates simulated using rain gauge data. Clearly, 

spatial variability of rainfall needs to be considered in hydrological modelling. 
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Emmanuel et al., (2012) outlines that the influence of rainfall variability has on 

runoff modelling is based on three factors: spatial and temporal patterns of the 

rainfall, catchment behaviour and the physical processes generating runoff. 

Depending on the spatial heterogeneity and duration of the rainfall storm, the 

flood dynamics could vary. Viglione et al., (2010) had found in their study that a 

storm with high spatial heterogeneity over a short duration would cause highly 

fluctuating flood responses in a catchment. Whereas, a storm that is largely 

uniform and longer in duration would have minimal impact on the hydrological 

flood response (Mei et al., 2014). However, their results are contested by a similar 

study conducted by Seo et al., (2012) who had demonstrated that a long duration 

uniformly structured storm may have large influence on the flood dynamics based 

on the storm movement. This shows that there are uncertainties in the spatial and 

temporal structure of rainfall in relation to the flood dynamics. 

Catchment behaviour had been particularly highlighted as a contributing factor to 

varied flood extents combined with spatially varying rainfall. Anquetin et al., 

(2010) and Delrieu et al., (2005) conclude that the spatial variability of rainfall 

particularly influences the flood extents based on the spatial distribution of the 

soil properties. This becomes significant for catchments that receive highly varied 

rainfall when the soil infiltration is high (Sangati et al., 2009). Different catchments 

have been identified by Segond et al., (2007) and are as follows: urban 

catchments, semiarid catchments located in locations commonly featuring 

convective storms and catchments located in mild climates. Urban catchments 

were the distinguishably sensitive to spatial and temporal variations of the rainfall 

storm. This was similarly the case with semiarid catchments receiving rainfall 

from convective storms that are highly varied as the flood extents widely 

fluctuated with different rainfall patterns. Catchments located in mild climates, 

however, showed the least flood dynamics against spatial varying rainfall patterns 

due to a smoothing effect noticed in the catchment runoff with rainfall of a 

temperate climate (Emmanuel et al., 2012; Rozalis et al., 2010). Furthermore, 

Zoccatelli et al., (2010) shown that the modelling efficiency is reduced to 30% for 

a catchment of size in a range of 36-167 km2 if spatial variability of rainfall is not 

considered. Thus, when conducting spatial analysis of radar rainfall over a 

catchment or sewer drainage area, it is crucial to combine analysis with sewer 

catchment characteristics. Moreover, this is particularly important for building a 
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flood forecasting framework (Ahmadisharaf et al., 2016; Foudi et al., 2015; Mei 

et al., 2014). 

The spatial patterns of rainfall over a catchment could be quantified with the 

development of spatial indexes. Smith et al., (2004) had characterised the spatial 

variability of rainfall by introducing indexes. Zoccatelli et al., (2011) had similarly 

introduced indexes representing the spatial moments of catchment rainfall. The 

two indexes provide specific information on the concentration of rainfall over the 

catchment relative to the outfall of the catchment, and the type of rainfall being 

concentrated or multimodal, respectively. These indexes had been adopted by 

later studies investigating the spatial variability of rainfall for several hydrological 

applications. For example, Douinot et al., (2016) use the spatial indexes by 

Zoccatelli et al., (2011) to combine a spatial analysis of rainfall with the FFG 

method. Emmanuel et al., (2015) use these spatial indexes in their method and 

propose additional two indexes as improvement over the original indexes. The 

study had shown that based on an evaluation of the original and additional 

indexes proposed, they perform similarly in explaining the hydrological output 

related to spatial variability of rainfall. Thus, the indexes are useful in describing 

various dynamics of hydrological variables based on spatial varying rainfall. 

These could be used as an alternative to simple statistical methods such as 

variance or mean. 

It is useful to consider analysing events in a historical or post-event analysis to 

obtain an understanding of the flood dynamics of spatially varying rainfall related 

to the catchment. Various studies have highlighted or conducted such analysis, 

which provides opportunities to study catchment response from extreme events 

(Borga et al., 2007; Morin and Yakir, 2014; Smith et al., 2007). Morin and Yakir 

(2014) describe that in literature two types of analysis had been conducted to 

understand impact of spatial distribution of rainfall on catchment response. One 

type of analysis considers using actual rainfall events and the subsequent 

hydrological output based on their simulations (performed by Younger et al., 

(2009)), and the second type considers synthetic rainfall with controlled spatial 

parameters to assess the hydrological response based on these varying 

characteristics (Sapriza-Azuri et al., 2015; van Werkohoven et al., 2008). Actual 

events are constraining in that they specify very specific conditions whereas 

synthetic events may not propagate realistic characteristics of rainfall. Hence, 
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Morin and Yakir (2014) propose combining the approaches by using actual 

rainfall storms in the hydrological model and then altering various characteristics 

such as changing the spatial structure of the rainfall grids. This sensitivity analysis 

is conducted to produce several hydrological outputs for which the flood dynamics 

could be better understood. This approach had been previously introduced by 

Moore et al., (2006) and Morin et al., (2006). Their study showed the flood extents 

of the catchment were strongly dependant on the spatio-temporal aspects of the 

convective rainfall, particularly the spatial structure of rainfall influenced by wind, 

direction and speed. However, their study was conducted for one type of 

catchment: a semiarid catchment and specifically for convective rainfall.  

In conclusion, considering the spatial variability of radar rainfall in flood modelling 

produces more accurate model outputs. The flood dynamics could be studied 

more closely in relation to the spatial variability especially by conducting historical 

analysis based on many rainfall events with varying spatial characteristics. This 

would become an essential component of flood forecast management. 
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3 Improving deterministic radar Quantitative Precipitation Forecasts 

3.1 Introduction 

 

Chapter 2 has discussed that the accuracy requirements of hydrological 

applications depend on the resolutions of the rainfall datasets.  One of the key 

approaches identified is to increase the resolution of rainfall data to meet the 

requirements of hydrological applications with sufficient accuracy. Higher 

resolution rainfall shows more spatial and temporal information in comparison to 

lower resolution datasets at any spatial or temporal period. However, higher 

resolution rainfall data may be limited in availability. This is especially the case 

where both the temporal and spatial resolutions are required to be high. When 

the required radar QPFs are not available at sufficiently high resolutions, various 

techniques exist to improve their resolutions.  

The aim of the work presented in this chapter is to improve radar QPFs by 

increasing the resolution that is suitable for hydrological applications. This will be 

achieved by: 1) temporal interpolation by the optical flow technique, and 2) spatial 

interpolation by UKR. The temporal and spatial interpolation approaches are 

demonstrated using radar based Nowcasts provided by the UK Met office, in 

which QPFs have a resolution of 15 min and 2 km and QPEs have a resolution 

of 5 min and 1 km. Results are compared with traditional interpolation techniques 

to validate the interpolation methodology. The interpolation process proposed in 

this chapter is of great practical use when higher resolution, more frequent, higher 

accuracy QPFs are needed, for example, in the case of urban flood forecasting 

or flash flood forecasting. Moreover, this approach is suitable for interpolating 

QPFs so that coincidental timesteps of the QPF/QPE datasets could be 

compared. This is particularly useful for hydrological applications where historical 

comparisons of coincidental timesteps could be used in interpolation techniques 

to improve the accuracy of QPFs. 

3.2 Interpolation process for improving the resolution of QPFs 

 

The method involves two processes where two interpolated datasets are 

produced. Table 3.1 shows the different rainfall data use or produced in this 
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study. QPF-5-1 and QPF-15-2 are the observed and forecast rainfall datasets at 

their native resolutions, respectively. L-QPF-5-2, OI-QPF-5-1, LK-QPF-5-1, LI-

QPF-5-1 and LS-QPF-5-1 are interpolated datasets produced using simple 

interpolated techniques. They are used in this study for validation purposes only, 

and are thus not part of the methodology. See section 1.2.4 for further details on 

validation experiments. 

Table 3.1. Different rainfall data used or produced in this study, including the 

observed QPE and QPFs with different resolution characteristics. 

 

QPF/E data 
reference 

Derivation of the QPF product Temporal 
resolution 

Spatial 
resolution 

QPE-5-1 
 
QPE data at native resolutions 
 

5-min 1-km 

QPF-15-2 
 
QPF data at native resolutions 
 

15-min 2-km 

O-QPF-5-2 

 
Optical-flow temporal interpolation of QPF-
15-2 from 15-min to 5-min 
 

5-min 2-km 

L-QPF-5-2 

 
Linear temporal interpolation of QPF-15-2 
from 15-min to 5-min 
 

5-min 2-km 

OK-QPF-5-1 

 
Kriging spatial interpolation of O-QPF-5-2 
from 2-km to 1-km 

 

5-min 1-km 

OI-QPF-5-1 

 
IDW spatial interpolation of O-QPF-5-2 
from 2-km to 1-km 

 

5-min 1-km 

LK-QPF-5-1 
Kriging spatial interpolation of L-QPF-5-2 
from 2-km to 1-km   

LI-QPF-5-1 

 
IDW spatial interpolation of L-QPF-5-2 
from 2-km to 1-km 

 

5-min 1-km 

LS-QPF-5-1 

 
Simple parting spatial interpolation of L-
QPF-5-2 from 2-km to 1-km 

 

5-min 1-km 
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Figure 3.1. The different stages of the interpolation process to temporally and 

spatially interpolate QPF data. 

As shown in Figure 3.1, temporal and spatial interpolation is carried out on QPF-

15-2 from a resolution of 15-min and 2-km to 5-min and 1 km which would make 

it match corresponding QPE-5-1 data. Temporal interpolation is carried out using 

movement vectors derived from optical flow estimation to derive O-QPF-5-2 with 

resolution of 5-min and 2-km. Spatial interpolation is carried out on O-QPF-5-2 

using universal Kriging to produce OK-QPF-5-1 with resolution of 5-min and 1-

km. 

 

3.2.1 Temporal interpolation of radar QPFs 

1.1.1.1 The optical flow approach 

 

The optical flow technique is used to obtain movement vectors, which can 

accurately represent detailed movement information in images. It is related to the 

motion of images that would be viewed by the observer, similar to how a stream 

of light can be characterised (Hongwei et al., 2015).It is typically superior to other 

similar methods in terms of accuracy and also computational speed (Ehrhardt et 

QPF-15-2 

15 min | 2 km 

O-QPF-5-2 

5 min | 2 km 

OK-QPF-5-1 

5 min | 1 km 

Temporal 

interpolation by 

optical flow 

estimation 

Spatial 

interpolation by 

universal Kriging 
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al., 2006; Wang et al., 2015). This method has previously been used in computer 

vision, laser technology and in studying fluid motion and the imaging processes 

in biological and medical applications (Lan et al., 2013; Andalibi et al., 2015; 

Hongwei et al., 2015; Wen et al., 2015; Barba-J et al., 2016). It has also been 

used to compute various distributions of the optical flow which highlights a key 

area in understanding the uncertainty of it in a number of applications (Simoncelli 

and Adelson, 1991).  The dominant attribute of this method is that of picking up 

small-scale image structures at fine temporal scales, making it ideal for 

processing computer images. In rainfall studies and forecasting, this method has 

been applied to capture the rainfall structures at short time steps and to produce 

radar QPFs as part of an extrapolation scheme (Bowler et al., 2004). 

For a specific coordinate 𝑿 in an image, the movement vector 𝒘 is computed 

using the optical flow equation (Ehrhardt et al. 2006): 

𝒘 =  −
∇𝑅 ∂𝑅

‖∇𝑅‖2       (3.1) 

𝒘 =  −
𝟐(∇𝑅(𝑿,𝑻𝒊)+ ∇𝑅(𝑿,𝑻𝒊+𝟏)) ∂𝑅

‖∇𝑅(𝑿,𝑻𝒊)+ ∇𝑅(𝑿,𝑻𝒊+𝟏)‖
2

+𝑒
    (3.2) 

Where 𝑅(𝑿, 𝑻𝒊) and 𝑅(𝑿, 𝑻𝒊+𝟏) are the intensities of the image at timestep 𝑻𝒊 and 

𝑻𝒊+𝟏, respectively, ∇𝑅 = (∇𝑅(𝑿, 𝑻𝒊) +  ∇𝑅(𝑿, 𝑻𝒊+𝟏))/2 is the spatial image 

gradient, and is approximated by averaging the neighbouring rainfall intensities, 

and 𝑒 is a stabilising constant estimated from local image properties (Ehrhardt et 

al. 2006).  

Previous research has used movement vectors to interpolate on a temporal scale 

(Schmid et al., 2002; Ehrhardt et al., 2006; Nielsen et al., 2014). The method 

described by Nielsen et al. (2014) uses forward and backward advection as part 

of a temporal interpolation algorithm between the radar rainfall image sequences, 

using movement vectors from Equation (3.2), and then combined them both in an 

interpolated radar data set. 

Equation (3.2) was used by Ehrhardt et al., (2006) to interpolate image 

sequences and it was demonstrated that it outperformed linear or shape-based 

interpolation. However, Brox et al., (2004) produced a variation model of the 

optical flow equation that incorporated four modifications: the conservation of the 

grey level (or rainfall intensity), the gradient constancy in relation to the grey level, 
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the smoothness of the flow field to consider areas where the gradient is 

inconsistent, and finally the consideration of a multiscale approach. The grey level 

is an issue in computer vision where the constancy can be violated between 

image sequences and this variation model takes this into account when deriving 

the movement fields (Charbal et al., 2016). This means interpolating radar image 

sequences using the variation model will ensure a smooth change of rainfall 

intensity in the interpolated time steps.  

Wang et al., (2015) adopted a similar temporal interpolation method and used a 

variation optical flow model described by Brox et al., (2004) to interpolate radar 

QPE with a temporal scale of 5-min to 1-min to match rain gauge values. 

However, their technique also takes into account the interpolation of those values 

situated near the boundaries of the rainfall field, which produces more accurate 

interpolations in these regions.  

The variation model was proposed as follows where 𝑿𝑻 is the coordinate of the 

rainfall intensity and 𝒘𝑻 =  (𝒖𝑻, 𝒗𝑻) is the movement vector to be derived in the 

x-direction (𝑢) and y-direction (𝑣), at timestep 𝑻: 

𝐸(𝒘𝑻) =  𝐸𝐷𝐴𝑇𝐴(𝒘𝑻)  +  𝑅𝐸𝐺 ∗  𝐸𝑆𝑀𝑂𝑂𝑇𝐻(𝒘𝑻),   (3.3) 

Where 𝑅𝐸𝐺 is a regularisation parameter and 𝐸(𝒘𝑻) is called an energy function 

that is the summation of two specific energy functions, 𝐸𝐷𝐴𝑇𝐴(𝒘𝑻)  and 

𝐸𝑆𝑀𝑂𝑂𝑇𝐻(𝒘𝑻), represented as follows: 

𝐸𝐷𝐴𝑇𝐴(𝒘𝑻)  =  ∫ 𝛹 ∗ (|𝐼(𝑿𝑻 +  𝒘𝑻) − 𝐼(𝑿𝑻)|2 +  𝛾 ∗ |∇𝐼(𝑿𝑻 +  𝒘𝑻) − ∇𝐼(𝑿𝑻)|2)
𝜔

∗

𝑑𝑥,           (3.4) 

and 

𝐸𝑆𝑀𝑂𝑂𝑇𝐻(𝒘𝑻)  =  ∫ 𝛹 ∗  (∇2𝒖𝑻 +  ∇2𝒗𝑻)
𝜔

∗ 𝑑𝑥   (3.5) 

𝐼(𝑿𝑻 +  𝒘𝑻) and 𝐼(𝑿𝑻) represent the intensities of the image at coordinates 𝑿𝑻 +

𝒘𝑻 and 𝑿𝑻, respectively. 𝛹 is an increasing concave function which ensures 

anomalous values do not have a significant impact on the resulting values. 𝜔 is 

the domain of the radar QPF. Based on an extensive literature review by (Roth 

et al., 2010) and experimentation, the weight values 𝑅𝐸𝐺 = 0.012 and 𝛾 = 50.0 

are used (Wang et al., 2015). Due to being outside the scope of application, it is 

not necessary to conduct a sensitivity analysis on these figures. The reference to 
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literature and initial experimentation is sufficient to prove the robustness of 

choosing these values. Though, the effects on the movement vectors of varying 

these values over different temporal and spatial locations could be explored as 

further study. 

The movement vectors between two consecutive radar QPF images, at 15-

minute time steps, are obtained using the variation model described by Brox et 

al., (2004). The interpolation algorithm described by Wang et al., (2015) is 

adopted in this study to use these vectors to deduce values between 𝑻 and 𝑻 +

𝟏𝟓 𝒎𝒊𝒏 radar images. 

1.1.1.2 Implementation of temporal interpolation 

The radar QPF has a 15-min temporal resolution (consecutive values at 𝑻 and 

𝑻 + 𝟏𝟓 𝒎𝒊𝒏 time steps) and the new interpolated data will produce two further 

values at the 𝑻 + 𝟓 𝒎𝒊𝒏 and 𝑻 + 𝟏𝟎 𝒎𝒊𝒏 time steps, between any two radar 

images at specific grid coordinates. 

In the following implementation, the number of interpolations per timestep is 𝑁, 

𝜟𝑻 is the timestep change of the radar QPF and 𝜟𝒕 is the timestep change of the 

radar QPE. In this study, we have 𝑁 = 3, 𝜟𝑻 = 15 mins and 𝜟𝒕 = 5 mins. The 

timestep of the radar QPE is represented by 𝒕. 

The variation optical flow equation is applied to obtain the movement vector 𝒘𝑻 

between two consecutive images in the forward direction, denoted by 𝒘𝑻
𝒇
. The 

rainfall intensities of the image are then represented using the coordinates of the 

grid location specified by 𝑿𝑻: 

𝒇𝑻 = 𝑿𝑻 − 𝛼 ∗ 𝒘𝑻
𝒇
      (3.6) 

𝒇𝑻+𝛥𝑻 = 𝑿𝑻 + (1 − 𝛼) ∗ 𝒘𝑻
𝒇
         (3.7) 

where 𝛼 =
𝑘

𝑁
  and 𝑘 is the 𝑘th interpolation between the two images. Here, only 

the 1st and 2nd interpolations are considered i.e. 𝑘 = 1 and 𝑘 = 2. 

Next, the intensities at these coordinates, 𝐼(𝒇𝑻) and 𝐼(𝒇𝑻+𝛥𝑻) can be used to 

obtain the interpolated intensities between the two images, denoted as 𝐼(𝑿𝑻+𝛥𝒕). 

However, as Wang et al., (2015) considered occlusion reasoning, there is a 
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condition that the difference between 𝐼(𝒇𝑻) and 𝐼(𝒇𝑻+𝛥𝑻) must be below a certain 

threshold. In other words, 

|𝐼(𝒇𝑻) − 𝐼(𝒇𝑻+𝛥𝑻)| < 𝐴     (3.8) 

where 𝐴 needs to be chosen for the threshold value. This ensures that the pixel 

change doesn’t indicate a significant decay or growth, which would produce 

inaccurate interpolated values. 

The interpolation process can then be done: 

𝐼(𝑿𝑻+𝒌𝛥𝒕) = (1 −  𝛼)  ∗  𝐼(𝒇𝑻) +  𝛼 ∗  𝐼(𝒇𝑻+𝛥𝑻)       (3.9) 

Now, if |𝐼(𝒇𝑻) − 𝐼(𝒇𝑻+𝛥𝑻)| > 𝐴 then this process will not be conducted.  Instead, 

the algorithm will be performed again but for the movement vector 𝒘𝑻
𝒃 in 

equations (3.6) and (3.7), between each consecutive image in the backward 

direction to get backward movement coordinates: 

𝒃𝑻 = 𝑿𝑻 − 𝛼 ∗ 𝒘𝑻
𝒃             (3.10) 

𝒃𝑻+𝛥𝑻 = 𝑿𝑻 + (1 − 𝛼) ∗ 𝒘𝑻
𝒃               (3.11) 

If the inequality in Equation (3.8) is still not met, then use a combination of the 

forward and backward interpolation processes i.e.: 

𝐼(𝑿𝑻+𝒌𝛥𝒕) = (1 −  𝛼)  ∗  𝐼(𝒇𝑻) +  𝛼 ∗  𝐼(𝒃𝑻+𝛥𝑻)   (3.12) 

Equation (3.9) using backward movement coordinates (i.e. backward 

interpolation) is used if the forward interpolation does not interpolate any value 

between two pixels. Equation (3.12) ensures that any values not interpolated are 

interpolated. The primary reason why interpolation in either forward or backward 

direction may not produce interpolated values is that the condition in equation 

(3.8) is not met. Any value of 𝐼(𝒇𝑻) within the radar image would meet  this 

condition providing a suitable value for 𝐴 H is selected. Hence, an appropriate 

value for 𝐴 is selected to ensure that the interpolation occurs using the pixels 

within the range of the radar image. For specific data, selecting the appropriate 

value for 𝐴 may be achieved by experimentation. 
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3.2.2 Spatial interpolation of radar QPF  

 

Kriging methods are versatile and are commonly used in hydrology, particularly 

for problems in groundwater analysis (Kumar and Remadevi, 2006). The concept 

was first introduced by Krige (1951), however, the derivation of the formulates 

equating the interpolated points were performed by Matheron (1971). The 

applications of Kriging methods have mainly been applied for spatial 

interpolation, although, its usefulness has been demonstrated in spatio-temporal 

interpolation problems (Ta’any et al., 2009). 

Kriging methods provide information on the uncertainty by estimating the error 

variance along with the exact estimations of the interpolated values(Cheng, 2013; 

Li, Lewis et al., 2015; Sepúlveda et al., 2012). It can be defined as a random 

value interpolation using nearby observations that are weighted according to the 

spatial covariance values (Guntaka et al., 2014). The commonly used Kriging 

methods are OKR and UKR (Aboufirassi and Mariño, 1983; Yan et al., 

2008)However, OKR is the most often used based in literature (Zhang and Wu, 

2015). Despite this, it had been shown that UKR produces better results based 

on several studies (Selby and Kockelman, 2013). Other Kriging methods are 

popular, such as co-Kriging and External Drift Kriging, and have shown to 

produce more accurate results in comparison to the non-geostatistical methods. 

However, these are multivariate methods that require secondary data and this 

study interpolates a single data set. 

UKR is used to spatially interpolate the QPF from 2-km grids to 1-km after it has 

been adjusted to the 5-min temporal resolution. The estimation of an unknown 

point 𝑿𝒖 using sample points 𝑿𝑻 at timestep 𝑻 in OK can be represented by 

(Emery, 2006; Tapoglou et al., 2014; Zhang and Wu, 2015): 

𝐼∗(𝑿𝒖) = ∑ 𝜆𝑇(𝑿𝒖)𝐼(𝑿𝑻𝒊̅)
𝑛
𝑖̅=1             (3.13) 

where 𝐼 and 𝐼∗ represent rainfall intensities of known and unknown points, 

respectively. 𝜆𝑇 is the weight function that is selected so that it is unbiased and 

results in minimal variance (Sepúlveda et al., 2012). This is calculated when 

solving the Lagrangian function, which is implicitly performed in the Kriging 

interpolation. 



88 

 

In the case of UKR, a trend analysis for the rainfall intensity 𝐼 in the study area is 

defined, which means that the expectation value (or the mean) is unknown and 

is calculated implicitly based on the function used for the trend with the different 

data points.  This is what distinguishes OKR and UKR (Freier and von Lieres, 

2015). A trend analysis is conducted as the study assumes that trends in rainfall 

intensities surrounding unknown points would have a significant influence on their 

values.  

𝐼 is represented in the following form with 𝑚 being the deterministic function and 

𝑌 the stochastic component representing the noise (Cressie 1993; Matheron 

1971; Freier & von Lieres 2015; Li et al., 2015; Selby & Kockelman 2013; Brus & 

Heuvelink 2007): 

𝐼(𝑿𝑻) = 𝑚(𝑿𝑻) + 𝑌(𝑿𝑻)      (3.14) 

A basic trend can be assumed with the deterministic component defined as,  

𝑚(𝑿𝑻) = ∑ 𝑣�̅�𝑞�̅�(𝑿𝑻)ℎ
�̅�=1        (3.15) 

which is simply a linear combination of functions 𝑞�̅� with coefficients 𝑣�̅�.  

For spatial points 𝑿𝑻 with rainfall intensity values defined as 𝐼(𝑿𝑻) separated by 

a distance vector ℎ, an empirical variogram 𝛾(ℎ) can be constructed using the 

expectation of [𝐼(𝑿𝑻  + ℎ) −  𝐼(𝑿𝑻 )]2, represented as (Moustafa and Yomota, 

1998; Schlather and Gneiting, 2006; Vieira et al., 1983): 

2𝛾(ℎ) = 𝐸{[𝐼(𝑿𝑻  + ℎ) −  𝐼(𝑿𝑻 )]2}    (3.16) 

Hence, for a given number of observation pairs 𝑁(ℎ) the variogram 𝛾(ℎ) can be 

estimated using (Bowman and Crujeiras, 2013; Moustafa and Yomota, 1998; 

Vieira et al., 1983): 

2𝛾(ℎ) =
1

�̅�(ℎ)
∑ [𝐼(𝑿𝑻  + ℎ) −  𝐼(𝑿𝑻 )]2𝑁(ℎ)

�̅�=1    (3.17) 

For the number of pairs of �̅�(ℎ), the methodology takes recommendation from 

Journel and Huijbregts (1978) of considering values of ℎ for which there are at 

least 30 pairs. Hence, �̅�(ℎ) is chosen to be 30 for consistency. The maximum 

and minimum distances are calculated implicitly in the empirical variogram. 

However, the number of lag bins is selected to be 10. These parameters would 

ensure of a good variogram to be calculated (Tapoglou et al., 2014). Furthermore, 
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as the variogram is calculated at every time step, the values for the sill, nugget 

and range will vary (and would be used when fitting a theoretical variogram). 

To reduce the sampling error of the data when using the variograms in further 

stages, it is common to fit the empirical variogram to theoretical models. There 

are several models to select from but the one used in this study is the spherical 

model, which is commonly used (Lebel and Bastin, 1985; Moustafa and Yomota, 

1998). Consider the covariance variogram 𝛾∗(ℎ) defined as: 

𝛾∗(ℎ) = 𝐶𝑜𝑣(0) − 𝐶𝑜𝑣(ℎ)    (3.18) 

Then the spherical model to be used is denoted as: 

𝛾𝑆
∗(ℎ) = 𝛽𝑛𝑢𝑔𝑔𝑒𝑡 +  𝛽𝑠𝑡𝑟𝑢𝑐 [ 

3

2
 (

ℎ

𝛽𝑐𝑜𝑟𝑟
) −  

1

2
( 

ℎ

𝛽𝑐𝑜𝑟𝑟
)

3

]        𝑓𝑜𝑟 0 ≤ ℎ ≤ 𝛽𝑐𝑜𝑟𝑟(3.19) 

𝛾𝑆
∗(ℎ) = 𝛽𝑛𝑢𝑔𝑔𝑒𝑡 +  𝛽𝑠𝑡𝑟𝑢𝑐                                                 𝑓𝑜𝑟 ℎ > 𝛽𝑐𝑜𝑟𝑟 (3.20) 

where 𝛽𝑛𝑢𝑔𝑔𝑒𝑡 is the nugget effect of the variogram, 𝛽𝑠𝑡𝑟𝑢𝑐𝑡 is the component 

representing the structural heterogeneity and 𝛽𝑐𝑜𝑟𝑟 is the correlation range of the 

variogram. Note that 𝛽𝑛𝑢𝑔𝑔𝑒𝑡 +  𝛽𝑠𝑡𝑟𝑢𝑐 is the sill of the variogram. 

Furthermore, the spherical model is chosen as it best chooses values for  and  

that closely resemble the empirical variogram. 

3.2.3 Measuring performance 

 

For quantitative measurements of performance, RMSE and BR are used in this 

study to compare the performance of final QPF data against the observed data.  

RMSE is the standard deviation of the difference between QPE and QPF data, 

which provides an indication of how close the QPF is to the observed rainfall. The 

values can be from 0 to infinity and values closer to zero are more accurate. The 

RMSE of the live QPF and QPE data, denoted 𝑄𝑃𝐹𝑖,𝑗 and 𝑄𝑃𝐸𝑖,𝑗, respectively, at 

grid 𝑗 is calculated as follows: 

𝑅𝑀𝑆𝐸𝑗 =  √∑ (𝑄𝑃𝐸𝑖,𝑗−𝑄𝑃𝐹𝑖,𝑗)
2𝑛

𝑖=1

�̅�
        (3.21) 

where �̅� is the number of time steps, 𝑄𝑃𝐸𝑖,𝑗 and 𝑄𝑃𝐹𝑖,𝑗are QPE and QPF values 

at the 𝑖𝑡ℎ time step, respectively. As there are QPF data in multiple grids 
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(representing the study area), the average RMSE, denoted 𝑅𝑀𝑆𝐸, over 𝐾 grids 

is calculated in the following way: 

𝑅𝑀𝑆𝐸 =
∑ 𝑅𝑀𝑆𝐸𝑗𝐾

𝑗=1

𝐾
    (3.22) 

BR provides an indication of the overestimation or underestimation of the QPF in 

comparison with the QPE, and is calculated at the 𝑗𝑡ℎ grid using: 

𝐵𝑅𝑗 =  
∑ 𝑄𝑃𝐸𝑖,𝑗

�̅�
𝑖

∑ 𝑄𝑃𝐹𝑖,𝑗
�̅�
𝑖

    (3.23) 

Similarly as calculating the average RMSE over 𝐾 grids, the average BR, denoted 

𝐵𝑅, is calculated as follows: 

𝐵𝑅 =
∑ 𝐵𝑅𝑗𝐾

𝑗=1

𝐾
     (3.24) 

A BR value of 1 show that the total QPF rainfall values over the forecast period 

at all of the grids matches the total QPE rainfall values over the same temporal 

and spatial locations. It can also indicate overestimation with value larger than 1 

or underestimation when BR value is less than 1.  

Comparison with different QPF data 

To demonstrate the benefits of the interpolation approaches suggested in this 

study, comparisons of the interpolated datasets are made with datasets that have 

been interpolated with simple approaches. Simple approaches are often used for 

relative ease of application. The following describes the simple interpolation 

approaches used to validate the methodology presented in this study: 

Simple linear temporal interpolation. Interpolated points of QPF-15-2 are 

calculated by averaging techniques between two timesteps on a temporal scale 

Simple parting spatial interpolation. QPF data at 2-km resolutions are 

interpolated to 1-km resolutions by dividing 2-km QPF grids to 1-km grids and 

using the value at the 2-km as the values of the 1-km grids. This approach is very 

simple to implement. 

Inverse Distance Weighting spatial interpolation. As explained in section 2, 

spatial interpolation techniques are classified in two categories: geostatistical and 

simple techniques. IDW is an example of a simple spatial interpolation technique. 
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Therefore, it is relatively simpler to implement. IDW calculates interpolated points 

based on the distance between interpolated and measured data points. The 

closer the measured point the more influence it has on the interpolated value. 

IDW does not use spatial uncertainty (i.e. covariance) to calculate interpolated 

values. 

Validation studies are organised in the following way: 

O-QPF-5-2 verses L-QPF-5-2 

Compares temporal interpolation by optical flow estimation and temporal 

interpolation using simple linear temporal interpolation. 

OK-QPF-5-1 verses OI-QPF-5-1 

Compares spatial interpolation by UKR and IDW after both QPF data have been 

temporally interpolated by optical flow estimation. 

OK-QPF-5-1 verses LK-QPF-5-1 

Compares temporal interpolation by optical flow estimation and temporal 

interpolation using simple linear temporal interpolation when both QPF data have 

been spatially interpolated by UKR. 

OK-QPF-5-1 verses LI-QPF-5-1 

Compares temporal and spatial interpolation by optical flow and UKR, 

respectively, with temporal and spatial interpolation by simple linear temporal 

interpolation and IDW, respectively. 

OK-QPF-5-1 verses LS-QPF-5-1 

Compares temporal and spatial interpolation by optical flow and UKR, 

respectively, with temporal and spatial interpolation by simple linear temporal 

interpolation and parting, respectively. 
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3.3 Case study 

3.3.1 Introduction to study area 

 

Figure 3.2. The UK radar network showing the four radars in the North East of 

England (highlighted in red) producing rainfall data for Northumbrian Water. 

Rainfall data 

The region sourced for the QPE/F data in this study and in Chapters 4 and 5 is in 

the North East of England and the data is provided for Northumbrian Water. This 

region is highlighted in Figure 3.2 which shows the weather radar network across 

the UK operated by the UK Met Office. Four radars are used to produce the 

precipitation data for the region of interest. They are Munduff Hill, High Moorsley, 

Hameldon Hill and Ingham, highlighted with a red point on the left image in Figure 

3.2. The source used for QPE data is referred to as Radar rain-rate and the 
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source for QPF data is referred to as Nowcasts. The four radars cover a region 

that has dimensions of 184 x 140 km. The QPE data has temporal and spatial 

resolutions of 5-mins and 1-km, respectively. The QPF data has temporal and 

spatial resolutions of 15-mins and 2-km, respectively. 

 

Source information of rainfall data 

The UK Met Office describe the processes generating Radar rain-rate and 

Nowcasts. The main processes are outlined as follows: 

Scanning – the radars scan the atmosphere measuring the rainfall reflectivity 

which is sent back to the UK Met Office (based in Exeter). 

Data processing – correction procedures and quality checks are conducted to 

produce accurate estimate of Radar rain-rate. Outputs of this stage is composite 

radar image. 

Nowcasting – using the Radar rain-rates extrapolation schemes are applied to 

produce Nowcasts up to 6 hours in the future. These are blended with NWP 

models. 

Post-processing – this processes Nowcasts to meet specific format requirements 

of customer use. 

Quality control of the data is crucial to producing accurate datasets. During the 

data processing stage, the QPE data is quality checked by removing noise, 

spurious echo and attenuation and reducing the impact of beam blockage. 

Furthermore, anomalies in reflectivity measurements are tackled by reducing 

differences between measurements taken in the atmosphere to the surface (i.e. 

Vertical Profile of Reflectivity (VPR)) and reducing effects from ‘bright banding’. 

Bright banding refers to inaccurate reflectivity measurements at a layer of liquid 

rainfall formed between rainfall zones with different temperatures. 

Rain gauge adjustment is conducted to reduce errors in the rainfall estimates at 

the surface. Conditions ensuring quality of correction includes using rain gauges 

within 100 km of the radar location, using measurements only where radar rainfall 

is estimated and have recorded rainfall within a certain time window. 
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Nowcasting process uses a series of algorithms that rely on movement vectors 

to calculate future rainfall. These schemes use ‘optical flow theory’ to derive 

movement and it is recognised as an industry-standard technique for obtaining 

movement vectors. 

3.3.2 Grid selection 

To interpolate a single 2-km QPF grid, the grids surrounding this specific grid 

need to be processed in the Kriging interpolation process. There are in total 

6440 QPF grids (corresponding to the 2-km QPF grids) and 25,760 QPE grids 

(corresponding to the 1-km QPE grids) in the Northumbrian Water radar 

domain. It would be advantageous to consider many QPF grid points in order to 

get more accurate interpolated QPE values, but to do so would be 

computationally demanding (Cheng, 2013). For this reason, for each event, the 

minimum number of QPE grids has been defined as the size of the study areas, 

which is chosen to be a 36-square region of 6 x 6 QPE grids. This has led to 

performing the whole procedure on a 100-km square region of 5 x 5 QPF grids. 

This would enable the interpolation of the 36 QPE grid values enclosed within 

the 100-km square region. However, the demerits of this approach are that it 

would be difficult to distinguish the spatial characteristics of rainfall, for example, 

storm development, or whether the rainfall is convective or frontal. However, 

although outside the scope of this study, different number of QPF grids could be 

explored in order to study the influence on the accuracy of the QPE values to be 

interpolated. 

3.3.3 Rainfall events for verification 

16 verification events are obtained from the four meteorological seasons between 

June 2016 and May 2017 to validate the methodology presented in this chapter. 

Specifically, four events are extracted from each meteorological season. 
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Figure 3.3. (a) The average QPE rainfall accumulation of each event across the 

four seasons over the six-hour forecast period over a 36 km2 (6 x 6 km2) region. 

(b) The spatial variation of the 16 verification events are presented in the four 

seasons. 

The average QPE rainfall accumulation over the study area for all 16 verification 

events are shown in Figure 3.3(a). This highlights that the interpolation processes 

would be tested on light and heavy rainfall events throughout four seasons. 

Spring and summer seasons are warm periods of the year and autumn and winter 

Events 1 - 4 Events 5 -8 Events 9 - 12 Events 13 - 16 

(a) 

(b) 
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are cool periods of the year. Hence, events in their respective seasons are also 

referred to the warm/cool period of the year. 

Figure 3.3(b) shows the different spatial characteristics of the 16 verification 

events based on the four seasons. The spatial metric used is the variation of the 

total QPE rainfall value over the forecast period of each grid in the study area. 

The four events in the summer period show the largest values for the variation 

followed by the events in the spring period. These two seasons are the warmer 

periods of the year and hence convective storms are typically observed in these 

periods, which often show large spatial variation. The cooler seasons are autumn 

and winter and the verification events in these periods have the lowest spatial 

variation, which is commonly observed in frontal storms typically seen in these 

periods. The interpolation process is thus tested for different types of rainfall with 

varying spatial characteristics. 
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3.4 Results and discussion 

 

The accuracy of the temporally and spatially interpolated QPFs of the verification 

events are presented in section 3.4.1 and 3.4.2 using rainfall maps, hyetographs, 

RMSE and BR values. Furthermore, due to the large uncertainties between the 

QPF/QPE sources of this study, specific events that show the QPF relatively 

close to the QPE are used to show to rainfall maps demonstrating the benefits of 

the interpolated QPF. 

3.4.1 Temporally interpolated QPF 

 

O-QPF-5-2 verses L-QPF-5-2 
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Figure 3.4. Hyetographs showing O-QPF-15-2, L-QPF-5-1 and QPE-5-1 data at 

a selected single QPF grid for spring events 1 - 4. 

L-QPF-15-2 O-QPF-5-2 QPE-5-1 

EVENT 1 

EVENT 2 

EVENT 3 

EVENT 4 
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Figure 3.5. Hyetographs showing O-QPF-15-2, L-QPF-5-1 and QPE-5-1 data at 

a selected single QPF grid for summer events 5 - 8. 

L-QPF-15-2 O-QPF-5-2 QPE-5-1 

EVENT 5 

EVENT 6 

EVENT 7 

EVENT 8 
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Figure 3.6. Hyetographs showing O-QPF-15-2, L-QPF-5-1 and QPE-5-1 data at 

a selected single QPF grid for autumn events 9 – 12. 

L-QPF-15-2 O-QPF-5-2 QPE-5-1 

EVENT 9 

EVENT 10 

EVENT 11 

EVENT 12 
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Figure 3.7. Hyetographs showing O-QPF-15-2, L-QPF-5-1 and QPE-5-1 data at 

a selected single QPF grid for winter events 13 – 16. 

L-QPF-15-2 O-QPF-5-2 QPE-5-1 

EVENT 13 

EVENT 14 

EVENT 15 

EVENT 16 
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The benefits of temporal interpolation are observed in Figure 3.7. Although, there 

are not any noticeable differences in performance between seasons, the figures 

show the performance for low/high QPF values, especially where peaks are 

observed or where the QPF over/underestimates the QPE. For example, events 

9 – 12 (autumn events) show several periods within the QPF where L-QPF-5-2 

overestimates the QPE. The O-QPF-5-2 data in the same periods are shown to 

decrease the overestimation of L-QPF-5-2 (i.e. time steps 240 – 360 in event 12). 

Events 5 – 8 (spring events) present some extreme characteristics of L-QPF-5-2 

such as in event 2 between time steps 0 – 115. This period shows forecast rainfall 

between 2 – 12 mm/h whereas the QPE-5-1 data shows little rainfall. However, 

the O-QPF-5-2 data shows several ‘downward peaks’ in this period, which is due 

to the movement vectors (in the temporal interpolation process) for the 

interpolated time steps indicating lower rainfall intensities. This proves the 

usefulness of optical flow in the temporal interpolation process as O-QPF-5-2 is 

more accurate in this period and overall. Conversely, in this season, a large peak 

is seen in the QPE of event 7 i.e. between time steps 30 – 90. Here, L-QPF-5-2 

under predicts the observed peak. Though, the movement vectors derived 

between time steps 30 – 90 of L-QPF-5-2 reflect the magnitude of rainfall intensity 

realised in the temporal interpolation process. Due to this, the observed peak is 

highlighted in O-QPF-5-1, which shows the success of the temporal interpolation 

process. 

Another observation from Figures 3.3 – 3.7 is the fluctuations of the O-QPF-5-2 

against the L-QPF-5-2. Although this is attributed to the interpolations matching 

the fluctuations of QPE-5-1 the fluctuations of O-QPF-5-2 could be made 

‘smoother’ by interpolating to higher resolutions (i.e. increase the interpolation 

from 5-min time steps to, say, 1-min time steps). In practice, this could be 

achieved using the interpolation methods proposed in this study. 
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Figure 3.8. Scatter graphs showing the RMSE values of O-QPF-5-2 and L-QPF-

15-2 over the six-hour forecast period across all nine QPF grids in the study area 

for events 1-4 (spring) and events 5 – 8 (summer). 

EVENT 1 EVENT 2 

EVENT 3 EVENT 4 

EVENT 5 EVENT 6 

EVENT 7 EVENT 8 

O-QPF-5-2 L-QPF-5-2 
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Figure 3.9. Scatter graphs showing the RMSE values of O-QPF-5-2 and L-QPF-

15-2 over the six-hour forecast period across all nine QPF grids in the study area 

for 9 – 12 (autumn) and 13 – 16 (summer). 

O-QPF-5-2 L-QPF-5-2 

EVENT 9 EVENT 10 

EVENT 11 EVENT 12 

EVENT 13 EVENT 14 

EVENT 15 EVENT 16 
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Figure 3.10. Scatter graphs showing the overall RMSE (top) and Bias Ratio (BR) 

(bottom) values of O-QPF-5-1 and L-QPF-5-1 against coincidental QPE-5-1 data 

for all verification events 1- 16. 

Figure 3.8 and Figure 3.9 show the RMSE values of O-QPF-5-2 and L-QPF-5-1 

against coincidental QPE-5-1 data over individual QPF grids in the study area. It 

O-QPF-5-1 VERSES L-QPF-5-1 

O-QPF-5-2 L-QPF-5-2 
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clear that temporal interpolation by optical flow estimation produces more 

accurate interpolated points in comparison to simple linear temporal interpolation. 

This is better observed in Figure 3.10 where the nearly all verification show lower 

RMSE values for O-QPF-5-2. The BR values of OK-QPf-5-2 have increased 

closer to 1 for all verification except for Events 1, 10 and 11, which show 

worsening of the overall overestimation/underestimation of the QPF. These 

events also show marginally worse performance for O-QPF-5-2 in the RMSE 

values. Worse performance of OK-QPF-5-2 is justified due to the additional 

interpolated points introduced that may fluctuate more readily than linear 

approaches. This may introduce higher variance of the data which may produce 

worse estimates in any temporal period. Linear interpolation introduces 

smoothing effect between measured points, which reduces variance of the data. 

Nonetheless, O-QPF-5-2 is shown to be more accurate than L-QPF-5-2 in this 

study. 
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3.4.2 Temporal and spatial interpolated QPF 

 

Visualising OK-QPF-5-1 
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Figure 3.11. Rainfall maps of Event 3 (above) between 03:15 and 04:00 and 

Event 4 (below) between 11:45 and 12:30 of QPF-15-2, OK-QPF-5-1 and QPE-

5-1 (scale is rainfall intensity (mm/h)). These demonstrate the effectiveness of 

the temporal and spatial interpolation methods. 

5 4 3 2 1 0 



108 

 

 

Figure 3.12. Hyetographs showing L-QPF-5-2, four OK-QPF-5-1 and QPE-5-1 

data at a selected single QPF grid for spring events 1 - 4. 

EVENT 1 

EVENT 2 

EVENT 3 

EVENT 4 

L-QPF-5-2 OK-QPF-5-1 QPE-5-1 
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Figure 3.13. Hyetographs showing L-QPF-5-2, four OK-QPF-5-1 and QPE-5-1 

data at a selected single QPF grid for summer events 5 - 8. 

EVENT 5 

EVENT 6 

EVENT 7 

EVENT 8 

L-QPF-5-2 OK-QPF-5-1 QPE-5-1 
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Figure 3.14. Hyetographs showing L-QPF-5-2, four OK-QPF-5-1 and QPE-5-1 

data at a selected single QPF grid for autumn events 9 - 12. 

EVENT 9 
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EVENT 11 

EVENT 12 

L-QPF-5-2 OK-QPF-5-1 QPE-5-1 
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Figure 3.15. Hyetographs showing L-QPF-5-2, four OK-QPF-5-1 and QPE-5-1 

data at a selected single QPF grid for winter events 1 - 16. 

L-QPF-15-2 OK-QPF-5-1 QPE-5-1 
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EVENT 14 

EVENT 15 

EVENT 16 
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The outputs of temporal and spatial interpolation of QPF-15-2 are visually 

demonstrated in the rainfall maps in Figure 3.11 and the hyetographs in Figure 

3.15, Figure 3.13, Figure 3.14 and Figure 3.15. In Figure 3.11, these snapshots 

of the study area are shown for Events 3 and 4 in a time window of 45 mins. Thus, 

four rainfall maps are shown for the QPF-15-2 and it shows the rainfall values 

with its native 2-km spatial resolution. The two events primarily differ in terms of 

rainfall intensity as Event 4 has generally higher rainfall values. For Event 4, it is 

seen in QPF-5-1 that the spatial interpolation procedure does reasonably well to 

produce different values for individual 1-km grids interpolated within the 2-km 

QPF grid. Particularly, in the rainfall maps at 12:00, the bottom-right region of OK-

QPF-5-1 shows heavier rainfall values which more resembles the colour region 

in the same region of the rainfall map of QPE-5-1. This is despite the bottom-right 

grid of QPF-15-2 showing lighter rainfall values, which indicates that the spatial 

interpolation produces more accurate results. This is also seen in the maps of 

Event 3 between times 03:15 and 03:30 where the interpolation phases show 

noticeably higher rainfall values in the top region of the study area, whereas the 

maps of QPF-15-2 don’t present this information. The temporally interpolated 

rainfall maps demonstrate accurate results in terms of capturing similar rainfall 

values overall in the maps. This is particularly seen in Event 4 at times 12:10 and 

12:20. Although, a small number of peaks at QPE grids have not been captured 

during the temporal interpolation process. This is seen at times 11:50 and 11:55. 

However, this is a difficult exercise for the interpolation process as further 

analysis would be required to preserve these types of peaks that usually 

necessitate a post processing technique coupling with the interpolation method 

(Wang et al., 2015b). Nonetheless, the temporal interpolation of the QPF has 

more accurately captured the rainfall patterns at a higher resolution. This is better 

seen in Figure 3.15, Figure 3.13, Figure 3.14 and Figure 3.15 where the OK-QPF-

5-1 data are visually closer to the QPE-5-1. The interpolation of QPF-15-2 is thus 

showing more information compared to its lower native temporal and spatial 

resolutions. This highlights the use of movement vectors in the optical flow 

technique as these influences the value of the interpolated points. This has 

particular effect on peaks in L-QPF-5-2 as these are lowered towards QPE-5-1 

(time steps 110 to 200 in Event 3, time steps 210 to 285 in Event 5 and time steps 

240 to 290 in Event 9). 
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OK-QPF-5-1 verses LS-QPF-5-1 

 

Figure 3.16. Scatter graphs showing the RMSE values of OK-QPF-5-1 and LS-

QPF-5-1 over the six-hour forecast period across all the QPF grids in the study 

area for events 1-4 (spring), 5-8 (summer), 9-12 (autumn) and 13-16 (winter). 

EVENT 1 EVENT 2 EVENT 3 EVENT 4 

EVENT 5 EVENT 6 EVENT 7 EVENT 8 

EVENT 9 EVENT 10 EVENT 11 EVENT 12 
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114 

 

 

Figure 3.17. Scatter graphs showing the overall RMSE (top) and Bias Ratio (BR) 

(bottom) values of OK-QPF-5-1 and LS-QPF-5-1 against coincidental QPE-5-1 

data for all verification events 1- 16. 

 

Figure 3.16 shows the accuracy of the spatial interpolation of QPF-15-2. These 

show RMSE values of OK-QPF-5-1 and LS-QPF-5-1 against QPE-5-1 over the 

OK-QPF-5-1 LS-QPF-5-1 

OK-QPF-5-1 VERSES LS-QPF-5-1 
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six-hour forecast period over the individual QPF grids in the study area. Figure 

3.16 and Figure 3.17 show that OK-QPF-5-1 is generally more accurate than LS-

QPF-5-1. Overall, the average RMSE value across all 16 events has reduced by 

8.86% from 3.27 mm to 2.95 mm. To compare the performances of the RMSE 

reduction over different seasons, it would require analysis of many events per 

season. This is due to various anomalies including highly spatially varied events 

or events that show extremely high peaks, which may produce a notably large 

reduction in the RMSE values for any season. Hence, this may not produce 

realistic comparisons. This is actually seen in Event 7 (summer) where the first 

QPF grid shows huge bias between the QPF and QPE values due to a very large 

peak in time steps 30 - 65. The RMSE for OK-QPF-5-1 at this location for this 

event has reduced by nearly 10 mm, which is the largest reduction compared to 

other events. Therefore, a broader performance between the warmer (spring and 

summer) and cooler (autumn and winter) seasons of the year is considered which 

includes more events per category (8 events). The average reduction of Events 

1 – 8 (spring and summer) is 8.74% whereas the average reduction of Event 9 – 

16 (autumn and winter) is 8.98%. By removing Event 7 (i.e. the only anomalous 

event in terms of magnitude of reduction of RMSE values), the average reduction 

of Events 1 – 8 reduces to 8.08%. Hence, based on this analysis, it is concluded 

that OK-QPF-5-1 performs marginally better for rainfall events in the cooler 

periods of the year. Reasons for this include that there is less spatial variation in 

this period, which makes interpolating points more accurate. 
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Figure 3.18. Boxplots of the RMSE and Bias Ratio (BR) of OK-QPF-5-1 and LS-

QPF-5-2 across the six-hour forecast period over the 36 km2 (6 x 6 km2) region 

for all 16 verification events (four seasons). 
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Figure 3.18 provides another visualisation demonstrating the accuracy of OK-

QPF-5-1. The RMSE and BR values are shown for OK-QPF-5-1 and LS-QPF-5-

1 across the entire 36 km2 (6 x 6 km2) study area (i.e. all data from the 36 grids 

are included as members of the boxplots).  

The RMSE and BR values for nearly all of the events show improvement for OK-

QPF-5-1 and therefore OK-QPF-5-1 is more accurate than LS-QPF-5-1 overall. 

The only event whose RMSE value is worse is event 7 (summer). This is due to 

the large peak seen in the QPE of this event and although the OK-QPF-5-1 has 

highlighted the peak, some QPF grids in the study area for this event show a 

temporal ‘lag’, which means that the peak is shown at a later time step. This would 

produce inaccurate results when comparing the data sets on a temporal scale, 

hence showing worse RMSE scores. This anomaly could be studied closely as 

further work which requires further analysis of the temporal interpolation process. 

However, despite the median RMSE value for this event being worse, the 

interquartile range has decreased. This highlights the success of the spatial 

interpolation because the four data points are each closer to the coincidental QPE 

data compared to the LS-QPF-5-1.  

Where RMSE/BR values are worse for OK-QPF-5-1, in the low likelihood that 

optical flow shows a peak that linear interpolation is unable to show, occasionally, 

the peak might be very large in comparison to the observed data. In this case, 

the linear interpolated value may be closer to the observed value in comparison 

to the peak. But this is not to say that overall linear interpolation is a better 

approach than optical flow, especially when this is seen in just a small number of 

events (e.g. Event 7 and 13). 

To briefly summarise this section, OK-QPF-5-1 is more accurate than LS-QPF-

5-1. Therefore the methods presented in this chapter are recommended over 

simple linear temporal interpolation and spatially aggregating 2-km values to four 

1-km values. 
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OK-QPF-5-1 verses OI-QPF-5-1 

 

Figure 3.19. Scatter graphs showing the RMSE values of OK-QPF-5-1 and OI-

QPF-5-1 over the six-hour forecast period across all the QPF grids in the study 

area for events 1-4 (spring), 5-8 (summer), 9-12 (autumn) and 13-16 (winter). 
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Figure 3.20. Scatter graphs showing the overall RMSE (top) and Bias Ratio (BR) 

(bottom) values of OK-QPF-5-1 and OI-QPF-5-1 against coincidental QPE-5-1 

data for all verification events 1- 16. 

Figure 3.19 and Figure 3.20 show comparisons of the RMSE and BR values of 

OK-QPF-5-1 and OI-QPF-5-1 for all the validation events. As two different spatial 

interpolation techniques follow a dataset that has been temporally interpolated 

OK-QPF-5-1 VERSES OI-QPF-5-1 

OK-QPF-5-2 OI-QPF-5-2 
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using the same technique (i.e. via optical flow estimation), this comparison 

directly compares the performance between UKR and IDW. Figure 3.19 shows 

the performance of OK-QPF-5-1 over individual 1-km grids over the study area. 

Based on this figure, differences between spatial interpolation by UKR is 

distinguished between the performance of IDW. For some grids, OK-QPF-5-1 

performs worse. Some of these worse performing grid locations are clustered in 

a particular region of the study area. For example, in Event 4 and 10, OK-QPF-

5-1 performs better for the top region of the study area (i.e. grids 1,2 and 3) and 

gradually perform worse for regions near the bottom of the study area (i.e. grids 

7,8 and 9). The opposite trend is observed in Event 11 (i.e. better performing grid 

locations near the bottom of study area). Reasons for this include that the 

variogram generated for UKR may require more data points near worse 

performing grid locations to better represent the uncertainties in interpolated 

points. It just so happens that at these worse performing grids locations, the 

simple spatial interpolation method, IDW, has produced better estimates direct 

usage of the measured rainfall intensities around the interpolated points. 

Nonetheless, overall, nearly all 16 verification events show that OK-QPF-5-1 is 

more accurate than OI-QPF-5-1. This is observed in the RMSE and BR values in 

Figure 3.20, which also show that spatial interpolation by UKR is better at 

reducing the overall overestimation/underestimation of the QPF than IDW. 

However, the performance differences between OK-QPF-5-1 and OI-QPF-5-1 is 

small. The average improvement of RMSE values of OK-QPF-5-1 over OI-QPF-

5-1 across all 16 verification events is 1.38%. For events in the cool seasons 

(Events 1 – 8), this figure is higher at 1.59% and lower for events in the warm 

seasons (Events 9 – 16) at 1.17%. This shows that based on the case study used, 

the performance of UKR is marginally better than IDW. 
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OK-QPF-5-1 verses LI-QPF-5-1 

 

Figure 3.21. Scatter graphs showing the RMSE values of OK-QPF-5-1 and LI-

QPF-5-1 over the six-hour forecast period across all the QPF grids in the study 

area for events 1-4 (spring), 5-8 (summer), 9-12 (autumn) and 13-16 (winter). 
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Figure 3.22. Scatter graphs showing the overall RMSE (top) and Bias Ratio (BR) 

(bottom) values of OK-QPF-5-1 and LI-QPF-5-1 against coincidental QPE-5-1 

data for all verification events 1- 16. 

Figure 3.21 and Figure 3.22 show comparisons between OK-QPF-5-1 and LI-

QPF-5-1. Figure 3.21 shows the RMSE values at individual 1-km grids in the 

study area and Figure 3.22 shows the average RMSE and BR values of all 16 

OK-QPF-5-1 VERSES LI-QPF-5-1 
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verification events. The two QPF data used in this comparison have different 

temporal and spatial interpolation methods applied. It has been shown that 

temporal interpolation by optical flow estimation performs better than simple 

linear temporal interpolation (see O-QPF-5-2 verses L-QPF-5-2). It has also been 

shown that UKR performs better than IDW for spatial interpolation of O-QPF-5-2 

(see OK-QPF-5-1 verses OI-QPF-5-1). Therefore, it is expected that OK-QPF-5-

1 performs better than LI-QPF-5-1. This is clearly observed in Figure 3.22 where 

OK-QPF-5-1 outperforms LI-QPF-5-1 in all 16 verification events. The overall 

RMSE value of OK-QPF-5-1 across the verification events has been reduced by 

4.58% - this is higher for events in the cool seasons (Events 1 – 8) with a 

reduction of 5.15% and lower for events in the warm seasons (Events 9 – 16) 

with a reduction 4.01%. 

This confirms that temporal interpolation by optical flow and spatial interpolation 

by UKR is recommended for producing more accurate higher resolution QPFs in 

comparison to simple linear temporal interpolation and spatial interpolation by 

IDW. 
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OK-QPF-5-1 verses LK-QPF-5-1 

 

Figure 3.23. Scatter graphs showing the RMSE values of OK-QPF-5-1 and LK-

QPF-5-1 over the six-hour forecast period across all the QPF grids in the study 

area for events 1-4 (spring), 5-8 (summer), 9-12 (autumn) and 13-16 (winter). 

 

 

EVENT 1 EVENT 2 EVENT 3 EVENT 4 

EVENT 5 EVENT 6 EVENT 7 EVENT 8 

EVENT 9 EVENT 10 EVENT 11 EVENT 12 

EVENT 13 EVENT 14 EVENT 15 EVENT 16 

OK-QPF-5-1 LK-QPF-15-1 



125 

 

 

Figure 3.24. Scatter graphs showing the overall RMSE (top) and Bias Ratio (BR) 

(bottom) values of OK-QPF-5-1 and LK-QPF-5-1 against coincidental QPE-5-1 

data for all verification events 1- 16. 

Figure 3.24 Shows RMSE and BR values of OK-QPF-5-1 and LK-QPF-5-1 

against coincidental QPE-5-1 data. Particularly, this analysis draws comparison 

between the temporal interpolation techniques. This is because the two different 

OK-QPF-5-1 LK-QPF-5-1 

OK-QPF-5-1 VERSES LK-QPF-5-1 
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temporal interpolation techniques are followed with the same spatial interpolation 

technique (i.e. UKR spatial interpolation). Similar analysis could be conducted for 

OI-QPF-5-1 and LI-PF-5-1. However, it is sufficient to show comparisons for one 

of them as O-QPF-5-2 and L-QPF-5-2 have already been compared. Based on a 

previous comparison of the two temporal interpolation techniques, temporal 

interpolation by optical flow estimation showed to outperform simple linear 

temporal interpolation. Figure 3.24 supports this result as OK-QP-5-1 

outperforms LK-QPF-5-1 with lower RMSE values and better BR values that 

suggest that OK-QPF-5-1 is better at reducing the 

overestimation/underestimation of the QPF against the QPE.  

The overall RMSE value of OK-QPF-5-1 across the verification events has been 

reduced by 2.56% - this is higher for events in the cool seasons (Events 1 – 8) 

with a reduction of 2.81% and lower for events in the warm seasons (Events 9 – 

16) with a reduction 2.31%. 

Table 3.2. Summary of average RMSE and BR values over all 16 verification 

events, against coincidental QPE-5-1 data, of each QPF data listed in Table 3.1  

 

Table 3.2 shows a summary of all the RMSE and BR values derived from this 

study. This draws comparisons between each QPF data other than comparisons 

with OK-QPF-5-1. Furthermore, Figure 3.25 shows the RMSE and BR values for 

OK-QPF-5-1, OI-QPF-5-1, LK-QPF-5-1 and LI-QPF-5-1 summarised in one 

figure. 

 O-QPF-

5-2 

L-QPF-

5-2 

OK-QPF-

5-1 

OI-QPF-

5-1 

LK-QPF-

5-1 

LI-QPF-

5-1 

LS-QPF-

5-1 

RMSE 

(mm/h) 

6.37 6.35 2.87 2.92 2.95 2.99 3.27 

BR 0.64 0.58 1.81 1.84 1.93 1.96 2.04 
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Figure 3.25. Scatter graphs showing the overall RMSE (top) and Bias Ratio (BR) 

(bottom) values of OK-QPF-5-1, OI-QPF-5-1, LK-QPF-5-1 and LI-QPF-5-1 

against coincidental QPE-5-1 data for all verification events 1- 16. 

 

 

 

 

OK-QPF-5-2 OI-QPF-5-2 LK-QPF-5-2 LI-QPF-5-2 LS-QPF-5-2 
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3.5 Summary and conclusions 

 

In this chapter, an interpolation process involving temporal and spatial 

interpolation has been developed to improve radar-based QPFs. This process 

was tested on NIMROD based Nowcast QPFs for the North-East England. 16 

verification events across four meteorological seasons are obtained between 

June 2016 and May 2017 to validate the interpolation process of this study. These 

verification events are temporally interpolated using optical flow and then spatially 

interpolated using UKR. Comparisons are made with simple temporal and spatial 

interpolation approaches to validate the methodology. The following conclusions 

can be drawn from the case study: 

• Across all the verification events, the RMSE values against the QPE of the 

temporally and spatially interpolated QPF against QPF data that had been 

interpolated temporally by linear methods and spatially by parting have 

reduced by 8.74% in warm periods and 8.98% in cool periods. 

• Across all the verification events, the RMSE values against the QPE of the 

temporally and spatially interpolated QPF against QPF data that had been 

interpolated temporally by linear methods and spatially by IDW have 

reduced by 4.01% in warm periods and 5.15% in cool periods. 

• Across all the verification events, the RMSE values against the QPE of the 

temporally and spatially interpolated QPF against QPF data that had been 

interpolated temporally by linear methods and spatially by UKR have 

reduced by 2.31% in warm periods and 2.81% in cool periods. 

• Across all the verification events, the RMSE values against the QPE of the 

temporally and spatially interpolated QPF against QPF data that had been 

interpolated temporally by optical flow and spatially by IDW have reduced 

by 1.17% in warm periods and 1.59% in cool periods 

• The BR values of temporally and spatially interpolated QPFs outperform 

those of other QPF that had been applied simple interpolation techniques 

in nearly all of the verification events. 

Therefore, the temporal and spatial interpolation method presented in this 

chapter proves to show better results for increasing the resolution of radar QPF 

for hydrological applications. 
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There is considerable uncertainty between the forecast and observed data 

sources used in this study and in order to verify the results, it would be 

reasonable to use different sets of QPF and QPE data. For future work, the 

preservation of peak magnitudes (so called ‘singularities’) in the QPF could 

further be investigated. Furthermore, the accuracy of the interpolated QPF 

could further be demonstrated by comparing it to extrapolated QPF (from QPE) 

at similar resolutions. For example, the OK-QPF-5-1 could be compared against 

Nowcast data from the UKMO with identical temporal and spatial resolutions. 

Overall, using the interpolation processes proposed in this study it is able to make 

comparisons of the hydrological outputs should the forecasts be used in real-time 

hydrological applications. Whilst such techniques could be implemented by, and 

acquired from, meteorological services this way of adjusting the data enables the 

user to explore different variables in the interpolation method to tailor it to different 

hydrological modelling purposes. Moreover, it is a cost effective and convenient 

manner of obtaining higher resolution – and thus more accurate – forecasts, 

especially as the higher resolution data may not readily be available. 
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4 Updating probabilistic radar Quantitative Precipitation Forecasts 

4.1 Introduction 

 

Whilst deterministic QPFs are used for flood forecasting, they do not present any 

information on the uncertainty of the rainfall forecast. Therefore, probabilistic 

QPFs are used in flood forecasting models as it provides information about the 

uncertainty of the deterministic rainfall forecast (Krzysztofowicz and Kelly, 2000; 

Nogueira and Barros, 2015; Regonda et al., 2013; Zhao et al., 2015).  Rainfall 

data are considered to be the most influential inputs into hydrological models 

(Mizukami and Smith, 2012). Hence, if the uncertainty of a QPF is propagated 

through a hydrological model, it could have significant effect on flood variables, 

particularly defining thresholds of these variables that cause flooding. The 

uncertainty estimates from these probabilistic model outputs can then be 

incorporated into decision-making systems, for example, to issue an emergency 

flood warning based on flood risk assessment or to perform appropriate 

intervention strategies (Khan and Valeo, 2015). 

Stochastic methods have been used to generate probabilistic QPFs but they may 

not perform well in different rainfall characteristics. Probabilistic QPFs are 

typically accompanied with a measure of total uncertainty in the form of PDFs. 

These can be generated from historical data or revised on the basis of priori 

knowledge (Reggiani and Weerts, 2007; Wood and Schaake, 2007). Schaake et 

al. (2007) suggested a stochastic method to produce probabilistic QPFs from 

historical PDFs. Rene (2014) produced probabilistic QPFs from deterministic 

QPFs based on NWP forecasts with a lead time up to 12 hours. In this method, 

however, the temporal structure across individual timesteps (e.g. hourly) is fixed 

throughout a forecast period due to the QPE values being assigned a probability 

from the distributions. This may produce probabilistic QPFs that do not represent 

the patterns of the estimated rainfall temporally. This highlights the need to 

consider the temporal structure of probabilistic QPFs. Furthermore, the 

construction of the probabilistic QPFs using the stochastic approach estimates 

the uncertainty purely based on forecast errors in historical data, and this may 

not fully represent the uncertainty for extreme events, such as low and high 
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rainfall. As a result, Rene (2014) underestimates high rainfall events and 

overestimates low rainfall events.  

Given the limitations discussed above, Bayesian inference methods can be used 

to post process probabilistic QPFs using the latest QPEs so that they are 

weighted against the historical rainfall data (Wasson, 2016). This would help 

better estimate the uncertainty of the deterministic QPF. The use of Bayesian 

methods for probabilistic QPFs is not in itself a new approach. Many studies have 

used Bayesian methods to quantify the uncertainty of deterministic QPFs for flood 

forecasting (Krzy, 1999; Krzysztofowicz and Herr, 2001; Reggiani and Weerts, 

2007). For example, Sloughter et al. (2007) used a Bayesian model averaging 

approach to predict the full PDF of future rainfall. Zhao et al. (2015) explored BJP 

to estimate forecast uncertainty by post processing raw daily streamflow 

forecasts. However, a stronger focus is needed to update existing PDFs with the 

most recent QPE data using Bayesian methods. This would produce the more 

accurate probabilistic QPFs by using the temporal structure of the latest rainfall 

storms. 

The use of Bayesian methods for post processing supports an application of a 

statistically self-calibrating system (i.e. updating model parameters with the latest 

input data), which is conducive for an operational flood forecasting system (Yu et 

al., 2016; (Krzy, 1999). Furthermore, probabilistic QPFs generated from a 

stochastic model using Bayesian methods produce reliable estimates over small 

temporal and spatial scales (Biondi and De Luca, 2012). This is particularly 

beneficial for applying radar rainfall data over small catchments, which is a 

feasible exercise due to the high temporal and spatial resolutions typically seen 

in this source of rainfall data (Einfalt et al., 2004). It is therefore clearly 

advantageous to explore post processing PDFs generated from stochastic 

models in order to increase the accuracy of the radar probabilistic QPFs. A 

disadvantage of post processing with a Bayesian approach is the increased 

computational effort. For this reason, it is noted that a bulk of any post processing 

should be conducted offline (Reggiani and Weerts, 2007) 

The aim of this chapter is to develop a two-stage Bayesian method to post 

process probabilistic QPFs considering the temporal structure of the latest radar 

QPE data. First, PDFs are produced using the forecast errors between 
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coincidental QPE and QPF historical values using the stochastic model 

implemented by Rene (2014). Second, these PDFs are then refined 

independently using two applications of Metropolis Hastings (MH) Monto Carlo 

Markov Chain (MCMC) using recent radar QPE data preceding the deterministic 

QPF and that is not included in the historical QPF/QPE in the stochastic model. 

This two-stage process is an integral component of the posterior predictive 

distribution which is estimated in the final stage of the post processing method to 

provide new PDFs. Two applications of MCMC are necessary to estimate new 

PDFs using both historical and recent QPE. Finally, probabilistic QPFs are 

generated from the new PDFs. Also, a GLM is used to determine the conditional 

distributions of nonzero QPF values and it replaces the use of the bivariate 

distribution in the stochastic model. 

Postprocessing probabilistic rainfall forecasts increases the accuracy of 

hydrological forecasts andhelps the preparedness for emergency response 

(Dottori et al., 2015). Hence, outputs of this study would assist decision makers 

in flood risk management in real-time settings. Particularly, in flood risk 

management, postprocessing probabilistic rainfall forecasts would be useful to 

accurately determining threshold values for flood management. 
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4.2 Post processing method 

 

Figure 4.1. Flow chart showing the different stages of the post processing method 

described in this study (Shaded boxes represent datasets). 
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Figure 4.1 shows the different stages of the postprocessing method. They are 

described below: 

Original Stochastic Model (OSM) 

Full explanations of the OSM are provided in section 4.2.1. The summary of each 

process/dataset are provided below. 

• Historical QPE/QPF (dataset) – coincidental temporal and spatial QPE 

and QPF values in a historical period are used to generate distributions 

based on the errors between the QPE/QPF  

• Produce a distribution of QPE conditional on QPF values with parameter 

∅𝐼𝑁𝐼𝑇𝐼𝐴𝐿 – Cumulative Distributions Functions (CDFs) are generated for 

QPE values conditioned on specific QPF values using the historical 

QPE/QPF data. Hence, depending on what QPF value is used, the 

parameter ∅𝐼𝑁𝐼𝑇𝐼𝐴𝐿 of the distribution is unique. 

Bayesian Post Processing Model (BPPM) 

Full explanations of the BPPM are provided in section 4.2.2, including why two 

applications of MCMC are required. The summary of each process/dataset are 

provided as follows: 

• Sample distribution – the distribution is sampled using ∅𝐼𝑁𝐼𝑇𝐼𝐴𝐿 to produce 

a dataset (denoted 𝐻 in this study) with a fixed size (see section 4.2.3 for 

more details). This dataset behaves as the likelihood of the first MCMC 

stage in the BPPM. 

• Assume a distribution for ∅𝐼𝑁𝐼𝑇𝐼𝐴𝐿 – an appropriate distribution is chosen 

for ∅𝐼𝑁𝐼𝑇𝐼𝐴𝐿. This is used as the prior distribution for the first MCMC stage 

in the BPPM. 

• MCMC Stage 1 – the output of this stage produces a posterior distribution 

for the parameter ∅𝐼𝑁𝐼𝑇𝐼𝐴𝐿 conditioned on the sampled dataset from the 

distribution (i.e. dataset 𝐻). 

• Recent QPE (dataset) – this is a dataset containing the latest QPE values 

that is not part of the historical QPE dataset. This is used to update the 

distribution. It is denoted 𝐷 in this study. 



135 

 

• Posterior ∅𝑖 behaves as prior for MCMC 2 – the posterior distribution for 

∅𝐼𝑁𝐼𝑇𝐼𝐴𝐿 in the first MCMC stage is used as the prior distribution for ∅𝐼𝑁𝐼𝑇𝐼𝐴𝐿 

in the second MCMC stage. 

• MCMC Stage 2 – the output of this stage produces a posterior distribution 

for the parameter ∅𝐼𝑁𝐼𝑇𝐼𝐴𝐿 conditioned on the dataset representing the 

latest QPE (i.e. dataset 𝐷). 

• Use ∅𝑗 in posterior predictive distribution to calculate best parameter 

∅𝐹𝐼𝑁𝐴𝐿 – the posterior distribution for the parameter ∅𝐼𝑁𝐼𝑇𝐼𝐴𝐿 produces a 

posterior parameter range ∅𝑗 which is used in a posterior predictive 

distribution to calculate ∅𝐹𝐼𝑁𝐴𝐿. This is then used in the OSM to ‘update’ 

the CDFs. 

4.2.1 Original Stochastic Model (OSM) 

1.1.1.1 Stochastic models 

 

The post processing method includes a stochastic model (i.e. OSM) implemented 

by Rene (2014) to generate initial probabilistic QPFs that would be further post 

processed using Bayesian methods. A QPF value could either be zero or 

nonzero, hence two separate stochastic models are implemented as part of this 

method. The stochastic models generate distributions (i.e. CDFs) of QPE 

conditional on specific QPF values. Each stochastic model is made up of three 

conditional probabilities that are calculated using historical forecast and observed 

rainfall data. Together, they are used to produce a CDF describing the 

exceedance probabilities of observing specific rainfall values conditioned on a 

zero QPF rainfall value (zero QPF model) or a nonzero QPF rainfall value 

(nonzero QPF model). 

Assuming  𝑆 and �̇� are the QPE (observed) and QPF (forecast) rainfall intensity, 

respectively, and 𝑥 is a random realisation. The nonzero and zero rainfall forecast 

can be calculated using Equations (4.1) and (4.2), respectively, depending on 

whether �̇�  is nonzero or zero. For a nonzero rainfall forecast �̇� = y, where y > 0, 

the CDF is defined as: 

𝑃(𝑆 ≤ 𝑥 | �̇� = 𝑦) = 𝑃(𝑆 ≤ 𝑥 | 𝑆 > 0, �̇� = 𝑦)𝑃(𝑆 > 0 | �̇� = 𝑦) + 𝑃(𝑆 = 0 | �̇� = 𝑦) 

(4.1) 
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For a zero-rainfall forecast �̇� = 0, the CDF is defined as:   

𝑃(𝑆 ≤ 𝑥 | �̇� = 0) = 𝑃(𝑆 ≤ 𝑥 | 𝑆 > 0, �̇� = 0)𝑃(𝑆 > 0 | �̇� = 0) + 𝑃(𝑆 = 0 | �̇� = 0)

 (4.2) 

The full implementation of the OSM by Rene (2014) is described in 

Implementation of Original Stochastic Model. 

The components for the zero-forecast model (Equation (4.1)) are estimated in the 

following way: 

𝑃(𝑆 > 0 | �̇� = 0) and 𝑃(𝑆 = 0 | �̇� = 0) are obtained empirically from the QPF/QPE 

data. 𝑃(𝑆 ≤ 𝑥 | 𝑆 > 0, �̇� = 0) is obtained by extracting datasets from the historical 

QPE and fitting it to a distribution. 

The components for the nonzero forecast model (Equation (4.2)) are estimated 

in the following way: 

𝑃(𝑆 = 0 | �̇� = 𝑦) is obtained by fitting the dataset {𝑆 = 0 | �̇� = 𝑦} to a logistic 

regression or to a distribution. 𝑃(𝑆 > 0 | �̇� = 𝑦) is thus estimated by calculating 

1 − 𝑃(𝑆 = 0 | �̇� = 𝑦). The component 𝑃(𝑆 ≤ 𝑥 | 𝑆 > 0, �̇� = 𝑦)  requires the dataset 

{𝑆 > 0, �̇� = 𝑦} which could contain �̇� values that do not have corresponding 𝑆 

rainfall values, such as intense rainfall values from extreme events, and therefore 

would not be fitted to a distribution. The study by Rene et al. (2014) used a 

bivariate normal distribution to predict the probabilities of observed rainfall, 

although, this may not accurately depict the probabilities for extreme forecast 

rainfall values (Katz et al., 2002). In the case of the historical data used in this 

study, the nonzero QPE dataset did not follow a normal distribution (p << 0.05 

using the Kolmogorov–Smirnov test) and was found to follow a Gamma 

distribution (at the 5% significance level using the Chi-Square Goodness-of-Fit 

Test). Given the reasons above, 𝑃(𝑆 ≤ 𝑥 | 𝑆 > 0, �̇� = 𝑦) is calculated using  a 

gamma distribution (Albert, 2009),  

𝛽𝐼𝑁𝐼𝑇𝐼𝐴𝐿𝛼𝐼𝑁𝐼𝑇𝐼𝐴𝐿

𝛤(𝛼𝐼𝑁𝐼𝑇𝐼𝐴𝐿)
 𝑆𝛼𝐼𝑁𝐼𝑇𝐼𝐴𝐿−1𝑒−𝛽𝐼𝑁𝐼𝑇𝐼𝐴𝐿𝑆   (4.3) 

where 𝛤 is the gamma function and 𝛼𝐼𝑁𝐼𝑇𝐼𝐴𝐿 and 𝛽𝐼𝑁𝐼𝑇𝐼𝐴𝐿 are the gamma shape 

and rate parameters, respectively. The parameters 𝛼𝐼𝑁𝐼𝑇𝐼𝐴𝐿 and 𝛽𝐼𝑁𝐼𝑇𝐼𝐴𝐿 are 

estimated using GLM as described below.  
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1.1.1.2 Generalised Linear Model 

 

The GLM is used to calculate the shape and rate parameters of the gamma 

distribution, 𝛼𝐼𝑁𝐼𝑇𝐼𝐴𝐿 and 𝛽𝐼𝑁𝐼𝑇𝐼𝐴𝐿, respectively (or ∅𝐼𝑁𝐼𝑇𝐼𝐴𝐿 =

(𝛼𝐼𝑁𝐼𝑇𝐼𝐴𝐿 , 𝛽𝐼𝑁𝐼𝑇𝐼𝐴𝐿))(n.b. the rate parameter is the inverse of the scale parameter). 

A natural log link is used to set up the GLM: 

ln(𝐸(𝑆)) = 𝑏0 + 𝑏1�̇�     (4.4) 

Where 𝐸(𝑆) is the expectation of 𝑆 and 𝑏0 and 𝑏1are the coefficients of the GLM.  

Values for coefficients 𝑏0 and 𝑏1 are calculated by finding the maximum likelihood 

estimate of the expectation of 𝑆. Similarly, the maximum likelihood estimate of 

the shape parameter 𝛼𝐼𝑁𝐼𝑇𝐼𝐴𝐿  of the gamma distribution of 𝑆, is also derived using 

𝐸(𝑆) in the GLM. the rate parameter 𝛽𝐼𝑁𝐼𝑇𝐼𝐴𝐿 can then be calculated using (De 

Smith, 2013): 

𝛽𝐼𝑁𝐼𝑇𝐼𝐴𝐿 = 𝐸(𝑆)𝛼𝐼𝑁𝐼𝑇𝐼𝐴𝐿      (4.5) 

 𝑉𝑎𝑟(𝑆)𝛼𝐼𝑁𝐼𝑇𝐼𝐴𝐿 = 𝐸(𝑆)2    (4.6) 

𝑉𝑎𝑟(𝑆)𝛽𝐼𝑁𝐼𝑇𝐼𝐴𝐿 = 𝐸(𝑆)    (4.7) 

Implementation of modified OSM  

The procedures to implement the modified OSM are described in this section. 

For the nonzero QPF model (Equation (4.1)), the components are calculated as 

follows: 

Step 1: Component 𝑃(𝑆 = 0 | �̇� = 𝑦) is calculated by extracting {𝑆 = 0 | �̇� > 0} 

and fitting the data to a gamma distribution. Then using the fitted gamma 

parameters, a PDF is generated and the value for �̇� = 𝑦 is derived. 

Step 2: Component 𝑃(𝑆 > 0 | �̇� = 𝑦) is calculated by performing 1 − 𝑃(𝑆 =

0 | �̇� = 𝑦) 

Step 3: Component 𝑃(𝑆 ≤ 𝑥 | 𝑆 > 0, �̇� = 𝑦) is calculated by extracting {𝑆 > 0, �̇� >

0} and generating a GLM based on a gamma distribution where the predictor 

variable is �̇� and the predicted variable is 𝑆. Then, using the outputs of the GLM, 

derive the maximum likelihood estimates of the expectation of 𝑆 and the value of 
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the shape parameter, 𝛼. Use these values in equation (4) to obtain the rate 

parameter, 𝛽. 

For the zero QPF model (Equation (4.2)), the components are calculated as 

follows: 

Step 1: Calculate the joint probabilities (the size of  {𝑆, �̇�} is denoted 𝑁): 

1. 𝑃(𝑆 = 0, �̇� = 0) = |{𝑆 = 0, �̇� = 0}|/𝑁 

2. 𝑃(𝑆 > 0, �̇� = 0) = |{𝑆 > 0, �̇� = 0}|/𝑁 

3. 𝑃(𝑆 = 0, �̇� > 0) = |{𝑆 = 0, �̇� > 0}|/𝑁 

4. 𝑃(𝑆 > 0, �̇� > 0) = |{𝑆 > 0, �̇� > 0}|/𝑁 

Step 2: Estimate component 𝑃(𝑆 = 0 |  �̇� = 0) =
𝑃(𝑆=0,�̇�=0)

𝑃(𝑆=0,�̇�=0)+ 𝑃(𝑆>0,�̇�=0)
 

Step 3: Estimate component 𝑃(𝑆 > 0 |  �̇� = 0) =
𝑃(𝑆>0,�̇�=0)

𝑃(𝑆=0,�̇�=0)+ 𝑃(𝑆>0,�̇�=0)
 

Step 4: Component 𝑃(𝑆 ≤ 𝑥 | 𝑆 > 0, �̇� = 0) is calculated by extracting {𝑆 > 0, �̇� =

0} and fitting the data to a gamma distribution. Then using the fitted gamma 

parameters, a CDF is generated. 

4.2.2 Bayesian Post Processing Model (BPPM) 

 

The BPPM is used to deduce a new value of the parameter of the distribution 

∅𝐹𝐼𝑁𝐴𝐿. This is done using two MCMC processes. The first MCMC stage extracts 

the range of parameters of ∅𝐼𝑁𝐼𝑇𝐼𝐴𝐿 based on the historical dataset. The second 

MCMC stage extracts the range of parameters within the parameter range of the 

first MCMC stage based on recent QPE. Hence, a new approximation of ∅𝐼𝑁𝐼𝑇𝐼𝐴𝐿 

is evaluated together within the uncertainty range of the historical and recent 

QPE. It is expected that this two-stage implementation of MCMC updates the 

distribution of the historical datasets to more accurately represent the current 

rainfall uncertainties whilst still representing the uncertainties in the historical 

datasets. 
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Sampling the distribution with parameter ∅𝑰𝑵𝑰𝑻𝑰𝑨𝑳 

In the historical QPE/QPF datasets, the size of 𝑆 varies for different �̇�. So, if a 

large 𝑆 is used as the likelihood of the first MCMC stage this would require more 

computational resources and thus the post processing method would take longer 

to execute. By sampling from the initial distributions of the stochastic model, the 

size of 𝑆 is appropriately selected and kept the same across all values of �̇� for 

which CDFs are to be generated for. Thus, the post processing method would 

take a shorter time to execute. Hence, a sampled dataset 𝐻 from the distribution 

of 𝑆 with parameters ∅𝐼𝑁𝐼𝑇𝐼𝐴𝐿 is used as the likelihood of MCMC stage 1 instead 

of using the historical dataset of 𝑆. 

Post processing using the latest rainfall data 

In this study, the shape and rate parameters are assumed to be independent. 

The distributions 𝑃(𝑆 ≤ 𝑥 | 𝑆 > 0, �̇� = 0), for zero forecasted QPF, or 𝑃(𝑆 ≤

𝑥 | 𝑆 > 0, �̇� = 𝑦) and 𝑃(𝑆 = 0 | �̇� = 𝑦), for nonzero forecasted QPF, in the 

stochastic model (Equations (4.1) and (4.2)) are updated in a posterior predictive 

distribution described as follows: 

𝑃(𝑆 ≤ 𝑥|𝐷) =  ∫ 𝑃(𝑆 ≤ 𝑥|∅𝑗)𝑃(∅𝑗|𝐷)𝑑∅𝑗     (4.8) 

Where 𝐷 is a set representing the most recent, consecutive timesteps of the QPE 

data and ∅𝑗 = (𝛼𝑗 , 𝛽𝑗) is a set of gamma parameters after the second MCMC 

process (described later). This set is obtained by quantifying 𝑃(∅𝑗|𝐷) in a two-

stage application of a MH MCMC algorithm described in section 2.2.1. 

Introduction to MH 

A popular numerical integration method to perform MCMC is the MH sampling 

technique (Han et al., 2014). This method is especially useful in estimating the 

forecast uncertainty and is therefore necessary in revising the PDFs used to 

produce probabilistic QPFs (Montanari and Brath, 2004).  

The MH algorithm is described as follows. By choosing a target distribution – or 

the posterior distribution – a specific function needs to be selected or derived, 

expressed as 𝐾, which is called the transition kernel. An arbitrary value for the 

sample variable is selected and the process is performed a large number of times 
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until the samples fit approximately in the target distribution (Chib and Greenberg, 

1995; Flötteröd and Bierlaire, 2013; Renshaw, 2004). 

The transition kernel is expressed as: 

𝐾(∅𝑖, ∅𝑗) =  𝑞(∅𝑖, ∅𝑗)𝑣(∅𝑖 , ∅𝑗)𝑑∅𝑗 + �̅�(∅𝑗)𝛿∅𝑖(𝑑∅𝑗)    (4.9) 

Where ∅𝑖 and ∅𝑗 represent two different samples of the parameters,  𝑞(∅𝑖 , ∅𝑗) is 

the proposal distribution, �̅�(∅𝑗) = 1 − ∫ 𝑞(∅𝑖, ∅𝑗)𝑣(∅𝑖, ∅𝑗)𝑑∅𝑗 and 

 𝛿∅𝑖(𝑑∅𝑗) = {
1, ∅𝑖  ∈ (∅𝑖, ∅𝑖 + 𝑑∅𝑖)
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝑣(∅𝑖, ∅𝑗) is referred to as the acceptance probability and is expressed as: 

𝑣(∅𝑖, ∅𝑗) = 𝑚𝑖𝑛 [
 𝜋(∅𝑗)𝑞(∅𝑖,∅𝑗)

 𝜋(∅𝑖)𝑞(∅𝑗,∅𝑖)
, 1]    

In both of the MCMC processes in this study, 𝑞 is chosen in the implementation 

to be a multivariate normal distribution where samples representing the gamma 

distribution parameters are chosen. However, the posterior distribution, or the 

target distribution, will differ in the two MCMC processes. 

MCMC Stage 1 

In the first MH MCMC process, the posterior distribution is expressed as follows 

where ∅𝑖 = (𝛼𝑖, 𝛽𝑖) is a set of gamma parameters after running this process: 

𝑃(∅𝑖|𝐻) = 𝑃(𝛼𝑖, 𝛽𝑖|𝐻) =  𝑃(𝛼)𝑃(𝛽)𝑃(𝐻|𝛼, 𝛽)    (4.10) 

Here, 𝑃(𝛼) and 𝑃(𝛽) are the prior distributions of the initial gamma parameters 

𝛼𝐼𝑁𝐼𝑇𝐼𝐴𝐿 and 𝛽𝐼𝑁𝐼𝑇𝐼𝐴𝐿 where 𝛼 and 𝛽 are random realisations of the gamma 

parameters. The exponential distribution is chosen for these prior distributions 

based on the outputs of deviance information criteria. Thus, the updated 

parameter values, denoted ∅𝐹𝐼𝑁𝐴𝐿 = (𝛼𝐹𝐼𝑁𝐴𝐿, 𝛽𝐹𝐼𝑁𝐴𝐿), would be better estimated. 

The rates of the exponential distributions (for the prior distributions) are chosen 

by calculating the gamma shape and rate parameters of a set 𝐴 ⊂ 𝐻 using the 

expectation of 𝐴, 𝐸(𝐴), and the variance of 𝐴, 𝑉𝑎𝑟(𝐴), in equations 4.6 and 4.7.  
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𝛼𝐴 and 𝛽𝐴 are the mean shape and rate values in the prior distribution. As an 

exponential distribution is chosen for the prior distribution the rate of 𝑃(𝛼) is 
1

𝛼𝐴
 

and the rate of 𝑃(𝛽) is 
1

𝛽𝐴
 using the relationship 𝐸(𝛼) =  

1

𝛽
. (De Smith, 2013). 

As in the GLM, the likelihood function 𝑃(𝐻|𝛼, 𝛽) is also gamma distribution where 

𝛼 and 𝛽 are sampled from the prior distributions of equation (4.10).  

1.1.1.3 MCMC Stage 2 

The second MH MCMC process uses the posterior distributions in Equation 

(4.10) as the prior distributions so that the posterior distribution of the second MH 

MCMC process is represented as follows: 

𝑃(∅𝑗|𝐷 ) = 𝑃(𝛼𝑗 , 𝛽𝑗|𝐷) =  𝑃(𝛼𝑖|𝐻)𝑃(𝛽𝑖|𝐻)𝑃(𝐷|𝛼, 𝛽)  (4.11) 

The likelihood function 𝑃(𝐷|𝛼, 𝛽) uses 𝐷 and is also gamma distribution where 𝛼 

and 𝛽 are sampled from the prior distributions in equation (4.11). In the posterior 

distribution of equation (4.8), we are only interested in the percentiles forming the 

set  ∅𝑗 of parameters. The distribution itself is not essential for use in this study. 

Hence, after running this MH MCMC process the gamma parameters ∅𝑗 are 

inputted into the posterior predictive distribution stated earlier, in a computational 

estimation for 𝑃(𝑆 ≤ 𝑥|𝐷): 

∑ 𝑃(𝑆 ≤ 𝑥|∅𝑗�̅�
)𝑁

�̅�=1      (4.12) 

Where 𝑁 is equal to the number of parameter samples considered in the MCMC 

processes, which is 10,000 (after discarding the initial 500 results as “burn in”). 

This value is chosen in the case study of this study. 

Equation (4.12) produces a distribution for a continuous set of 𝑥 and the gamma 

parameters of this distribution,∅𝐹𝐼𝑁𝐴𝐿, are used in equations (4.1) and (4.2) to 

produce an updated CDF. 

4.2.3 Producing probabilistic QPFs 

 

In the OSM, the QPF is provided at each lead time at which CDFs are generated. 

The method of producing probabilistic QPFs is that rainfall values are sampled 

by the exceedance probabilities from each CDF at every lead time. These rainfall 
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values are put together to form another single QPF across the forecast period 

with the temporal resolution equal to the difference between the lead times. This 

single QPF generated is a probabilistic QPF. The same process is performed for 

different exceedance probabilities to form several probabilistic QPFs. 

In this study, CDFs are generated in hourly lead times that are 1, 2, 3, 4, 5 and 6 

hours, based on the maximum lead time of 6 hours of Nowcast QPFs. Using 

shorter lead times requires running the stochastic model more times and also 

post processing them which is computationally demanding. Hence, choice of 

hourly lead times would enable the methodology to be tested with reasonable 

computational effort. 

Values represented by percentiles lower than 0.1 would not be sufficiently large 

enough to compare performance. Also, it is assumed that these percentiles and 

those above 0.95 would not normally be considered in operational settings due 

to them representing the extremities of the event. Hence, for measuring 

performance and presenting results, the CDFs are sampled using exceedance 

probabilities between 0.1 and 0.95 with an increment of 0.05 (i.e. 18 probabilistic 

forecasts are produced). 

Hence 18 probabilistic QPFs are produced representing the uncertainty of a 

deterministic QPF. 

4.2.4 Performance indicators 

 

Hyetographs show the range of the rainfall intensities of the probabilistic QPF 

temporally generated from the OSM and the BPPM. For quantitative 

measurements of improvement, the accumulated rainfall of the probabilistic 

QPFs over the six-hour forecast period, RMSE and Pearson’s 𝑟 values are 

calculated.  

The probabilistic QPFs represent the uncertainty range of the QPF and the QPE 

is expected to fall within this range. It is an indicator of performance if the QPE is 

closer to the mean probabilistic QPF as it shows that the QPE is less likely to fall 

outside of the updated uncertainty range. The mean probabilistic QPF is referred 

to as the mean rainfall intensity values of the probabilistic QPFs at each timestep. 
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The accumulated rainfall amounts of the probabilistic QPFs are compared 

against the QPE over the 6 hour forecast period. As the timestep of a probabilistic 

QPF is 1 hour (up to 6 hours), the accumulation, denoted �̅�𝑝, of the probabilistic 

QPF of the exceedance probability (or percentile), 𝑝, is calculated using the 

following expression: 

�̅�𝑝 = ∑ 𝑆𝑖
𝑝6

𝑖=1      (4.13) 

Where 𝑆𝑖
𝑝
 is the rainfall intensity of the probabilistic QPF of the 𝑝 percentile at the 

𝑖th timestep. Accumulated rainfall would be considered as a measurement of 

performance because it is a factor determining the flood extent over a catchment 

in hydrological modelling. A value that is closer to the accumulated rainfall of the 

QPE would indicate better performance.  

RMSE in this study is described as the standard deviation of the difference 

between the probabilistic QPF of percentile 𝑝 and the QPE, over the six-hour 

forecast period. This would indicate how close the magnitudes of the intensities 

are between the two data. RMSE values range from zero to infinity so the closer 

the value to zero the better the performance. 

The fluctuating path of a QPF could also be measured against the fluctuating path 

of the QPE, which indicates the linear dependence of the two data. 𝑟 calculates 

the strength of this linear dependence by using the covariance and standard 

deviations of two random variables (Zhou et al., 2016). Values range between -1 

and 1 and the closer 𝑟 is to 1 the stronger the probabilistic QPF is positively 

correlated with the QPE. Negative values show that the probabilistic QPF is 

increasing over the forecast period whilst the QPE is decreasing, or vice versa.  

Considering the fluctuating path over a time period is important in hydrological 

applications where forecasting of model variables would need to be performed in 

real time. This is particularly the case for flood forecasting where peaks occurring 

at specific timesteps would need to be forecasted early enough so that early 

decisions could be made within short time frames. In this study, a positive 

correlation between the probabilistic QPFs and the QPE is desired. However, in 

the case of negative correlation, a less negative correlation would indicate 

improvement despite weaker correlations. It is therefore an indicator of success 

if updated probabilistic QPFs have a higher 𝑟 with the QPE. 
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4.3 Case studies 

4.3.1 frontal and convective storms 

 

The case study presented in section 3.3.1 is used in this chapter. Two studies 

are used in this chapter to test the post processing method described in this 

chapter. These studies are chosen by considering the differing storm 

characteristics in any given year. A distinct characteristic that is identifiable is 

whether the storm occurs in the warm seasons (spring and summer) or cool 

seasons (autumn and winter) of the year. Typically, convective storms are 

predominant in the warm seasons and frontal storms are predominant in the cool 

seasons (Rico-Ramirez et al., 2015). Frontal storms are considered in this study 

as the QPFs of these storms evolve more linearly due to the large scale of such 

rainfall that develops slowly on a temporal scale (Barillec and Cornford, 2009). 

This would enable the methodology to be tested appropriately with the 

assumption that recent rainfall characteristics are indicatory of future rainfall 

within a Nowcast range. The post processing method is tested in order to draw 

comparison of performance between frontal and convective events. Hence, study 

events from each period are distinguished in this study: 

Frontal storms - the historical data used to generate the CDFs in the OSM are 

sourced between September 2015 and February 2016. These are in line with the 

meteorological autumn and winter seasons in the northern hemisphere. Hence, 

the study events are also sourced from the same seasons but between 

September 2016 and February 2017. 

Convective storms) – similar to how the historical and study events had been 

selected for frontal storms, the historical data for this case study are selected 

between June 2016 and August 2016. The study events are selected between 

June 2017 and August 2017. These periods represent the meteorological spring 

and summer seasons in the northern hemisphere. 

The period sourced for historical and study events is short due to limited data 

availability. However, the spatial coverage of the data is 184 x 140km (see 

section 3.3). This ensures that there are many data points used in the historical 

QPF and QPE to extract the uncertainty of these two data. 
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4.3.2 Historical data used to generate CDFs 

 

The historical QPE/F data are obtained from matching data sets in the warm/cool 

seasons where comparisons are made between the data sets. This is used to 

obtain the forecast errors in the stochastic model to generate the probability 

distributions for all of the components in the stochastic model. This requires 

obtaining QPE/QPF data points at every grid cell in the radar domain of 

dimensions 184 x 140 km. The temporal and spatial resolution of the historical 

QPE/F data is chosen to be that of the QPF, which is 15-min and 2-km, 

respectively. Spatially, there would be repeated statistical comparisons of the 

same 2-km QPF value against four 1-km QPE data points. Instead, the mean of 

these four values is used as the coincidental QPE data point against the 2-km 

QPF value. Therefore, across the whole QPF domain (92 x 70 km due to the 2-

km resolution), there are in total 6440 (92 x 70) data points. Also, there are six 

subsets of the QPF historical data set that represent the six forecast periods of 

1,2,3,4,5 and 6 hrs (i.e. each QPF value in a single subset has a fixed forecast 

horizon despite being a continuous period with 15 timesteps). Hence, with a total 

of 11,712 15-min timesteps in a warm/cool season, 452,551,680 (11,712 x 6440 

x 6) QPE/F comparisons are performed for the stochastic model. 

𝐻 is set to have a size of 1000 as this would allow the BPPM to be performed at 

reasonable computational speed. 48 previous timesteps of the QPE, prior to the 

QPF, representing the 6 hours of data, are used in the BPPM. 

It is worth to note that a radar domain of 184 x 140 km is large that the specific 

location characteristics may not be distinguishable (i.e. rainfall in London may 

be very different to Edinburgh). However, it was not possible to conduct this 

type of analysis due to limited data. Data is only available for the North East of 

England. However, for future work this analysis is recommended. 

4.3.3 Study events 

 

A study event is defined to be a full QPF (to six hours in the future) at any point 

during a storm and it may have zero/nonzero values at the six forecast horizons. 

As the historical data uses QPE/F data during the warm or cool season, study 
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events are chosen in the respective period for consistency of performance. 

Periods of rainfall are identified in either the warm or cool season. Next, QPF grid 

cell is selected in the QPF radar domain that shows sufficient rainfall across the 

6-hour forecast period. This procedure is used to extract four study events for 

each case study. Hence, there are eight study events that have been used as 

case studies.  

In addition to the eight study events, a further two events are also used to verify 

the postprocessing method. These events show storm characteristics that are not 

pronouncedly observed in the eight study events and would present further 

information about the performance of the postprocessing method. The two events 

have been extracted from the warm seasons. This is due to this period showing 

more varying storm characteristic (which is typically expected of convective 

storms). Hence, in total ten study events are used to verify the postprocessing 

method. 

Events 1 – 4 are representative of frontal storms (events from the cool seasons) 

and are part of frontal storm study. Events 5 – 8 are representative of convective 

storms (events from the warm seasons) and are part of convective storm study. 

Different characteristics of study events 1 - 8 are presented in Figure 4.2. These 

include the accumulated rainfall of the QPF and QPE data, the peak rainfall 

intensity of the QPE and the variance of the QPE data. The variance is calculated 

using all the data points of the QPE across the 6-hour forecast period (or storm 

duration). Hence it is a quantification of the temporal variance. In the bottom of 

figure of Figure 4.2 it is observed that events in case study 2 (from the warm 

seasons) present larger variance values in comparison to the events in frontal 

storm study (from the cool seasons). This shows that the warm events show more 

variance in rainfall intensities in any given duration of rainfall, which is commonly 

observed in convective rainfall storms. Secondly, these events (Events 5 – 8) 

also have larger peak intensities compared to Events 1 – 4 (see middle figure in 

Figure 4.2) which is another attribute of convective storms. This is also a reason 

why storms observed in the warm seasons are more difficult to predict. 

Interestingly, the accumulated rainfall of the QPF and QPE data sets are also 

generally distinguishable between the cool and warm seasons. Events from the 

cool seasons show QPFs that overestimate the QPE, whereas events from the 

warm seasons show QPFs that underestimate the QPE (see top figure of Figure 
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4.2). This explains the dynamic nature of convective storms as the actual rainfall 

is made more difficult to predict in comparison to the more linearly developing 

frontal storms. As the peaks in convective storms are commonly larger than 

peaks in frontal storms, it is hence more likely that the QPF of warm events under 

predict the QPE.  
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Figure 4.2. Accumulated rainfall amount of the QPF/QPE (top), peak rainfall 

intensity (middle) and variance (bottom) of the QPE across the 6-hour forecast 

period of study events 1 – 8. 

Cool seasons  
(Case study 1) 

Warm seasons 
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QPE QPF 
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4.4 Frontal storms 

4.4.1 Hyetographs of probabilistic QPFs of OSM and BPPM 

 

Figure 4.3 show the hyetographs of pQPFs of BPPM and OSM, QPE and QPF. 

Figure 4.4 shows the hyetograph of previous QPE preceding the QPE/QPF. This 

is used as the recent QPE used in the BPPM. 
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Figure 4.3. Hyetographs of the pQPFs of the OSM (left) and BPPM (right) with 

QPE and QPF across the 6-hour forecast period (hourly timesteps) for the four 

study events from the cool seasons. 

The QPE in Event 1 (see Fig. 3) shows relatively low intensity with a peak on the 

third hour. The BPPM have reduced the pQPFs to lower intensity values 

(explained in Accumulation and RMSE section). This is better observed in Fig. 4 

where the mean pQPF is closer to the QPE by 13.3%.  
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The QPF in Event 2 (see Figure 4.3) heavily overpredicts the observed rainfall by 

162.5% as the QPE shows. The QPF resembles the hyetograph of its pQPF 

between the 0.9 – 0.95 percentiles, which of all the events is situated at the top 

range of the pQPFs (this is better illustrated in section 4.4.3). Note that this 

demonstrates that for a high intensity QPF most of its pQPFs will be lower in 

intensity values compared to the QPF.  This is the main reason why the stochastic 

model generally underestimates observed rainfall for this QPF, as a higher 

intensity QPE would be situated in a higher pQPF range. However, in this event, 

the BPPM shows pQPFs visually closer to the QPE despite expected 

underestimation of the pQPFs. Even with a low intensity QPE, the BPPM more 

accurately predicts the actual rainfall. The success of this is shown in Figure 4.5 

and Figure 4.6 where the mean pQPF of the BPPM moves closer overall to the 

QPE by 10.2%. In Event 3 (in Figure 4.3Figure 4.4) the QPF overestimates the 

rainfall where the QPE doesn’t exceed rainfall amounts of 2 mm/h and the QPF 

has a peak of around 4 mm/h. The previous QPE does not add much information 

to the Bayesian updating process as they are all zero rainfall values. Due to this, 

the QPF values have a bigger influence in the Bayesian updating process (i.e. 

dataset D would have no nonzero values from the previous QPE besides the QPF 

values). However, where zero values are predicted in the QPF, namely at lead 

times 1-hr, 2-hr and 6-hr, the Bayesian updating process decreases the pQPF 

intensity values.  

Unlike in the other study events, the QPF in Event 4 underestimates the actual 

rainfall by 58.5%. This means that the QPE would fit in a range around the higher 

percentiles of the pQPFs. Despite the underestimation of rainfall, the pQPFs have 

noticeably increased in intensity values. This is indicated in Figure 4.5 and Figure 

4.6 where the mean pQPF of BPPM has moved closer to the QPE by 1.6%. The 

OSM normally over estimates QPE of low-medium rainfall intensities but, despite 

this, the BPPM does not lower intensity values to reduce the overestimation of 

the pQPFs.  Instead, it more accurately predicts the QPE (based on the mean 

pQPF) compared to the OSM. This clearly demonstrates the benefits of the 

BPPM compared to using a fixed stochastic model in a real-time flood forecasting 

system. 
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Figure 4.4. Hyetographs showing the QPE of the previous timestep (per 15-min) 

preceding the QPF in Events 1 - 4. 
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4.4.2 Measuring the accuracy of probabilistic QPFs of the BPPM using mean 

forecast 

 

Figure 4.5. The average difference across the 6-hour forecast of the mean 

intensity values of the pQPFs and QPE of both the OSM and BPPM are shown 

for the four study events. 

BAYESIAN ORIGINAL 
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Figure 4.6. The difference of the mean intensity values of the pQPFs and QPE 

across the 6-hour forecast period of both the OSM and BPPM are shown for the 

four study events. 

 

As explained in section 4.2.5, the accuracy of the pQPFs of the BPPM could also 

be measured by calculating the difference between the mean pQPF, at each 

timestep across the forecast period, with the QPE. The lower the difference, the 

more accurate the pQPFs. 

Across the 6-hour forecast period, the mean pQPF of the BPPM has a smaller 

difference with the QPE compared to the OSM in all four study events (see Figure 

4.5Figure 4.6). The average decrease of the mean pQPF is 8.2% from 1.31 mm/h 

to 1.19 mm/h. Although this isn’t large, it clearly demonstrates that the BPPM 

alters the uncertainty range of the pQPFs so that the QPE is closer to the mean 

pQPF. This is beneficial as the QPE is less likely to fall outside of the uncertainty 

range shown by the pQPFs and therefore the uncertainty estimates are more 

accurate. Also, the small change is chiefly due to the latest QPE data resembling 
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the historical data sets in rainfall intensity values, and so a small alteration is 

expected. 

The differences of the mean pQPF with the QPE are also done at different lead 

times (see Figure 4.6). Clearly, the pQPFs of the BPPM are generally visually 

closer to the QPE in the different lead times. In all the study events, the bigger 

differences between the BPPM and OSM are observed where the QPE has low 

rainfall intensity values. This is because most of the pQPFs would be updated to 

move closer to the QPE at these lead times. However, in Event 1, the BPPM has 

performed worse compared to the OSM at the 3-hr lead time. This is due to the 

QPE peak seen at this lead time even though the BPPM lowers the rainfall 

intensity values of the pQPFs. Moreover, a similar lowering of the rainfall intensity 

values is seen in Event 2 to account for the over prediction of the QPF. This has 

caused a smoothing affect between the 1 – 3 hr lead times (see BPPM for Event 

2 in Figure 4.3) whereas the pQPFs in the OSM had small peaks at the 2-hr lead 

time. This explains the worsening of the performance of the BPPM in this lead 

time for this event. However, the decrease of average difference for Event 2 

(Figure 4.5) again shows that the overall uncertainty range is better represented 

by the BPPM.  
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4.4.3 Accumulated rainfall and RMSE 

 

Figure 4.7. Accumulated rainfall amount across the 6-hour forecast period of the 

pQPFs of the OSM and BPPM, QPE and QPF for each percentile, for the four 

study events. 
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Figure 4.8. The mean RMSE values of the pQPF of the OSM and BPPM, across 

the 6-hour forecast period, against the QPE for each percentile. 

Figure 4.7 shows the accumulated rainfall for all study events of pQPF of the 

OSM and BPPM against the QPE and QPF. The closer the value is to the QPE, 

the more accurate the particular percentile is in predicting the total rainfall 

amounts over the six-hour period. The QPF accumulation is shown as it indicates 

which percentile it closely matches. This would provide information on how the 

uncertainty range is generated around the QPF by the stochastic model. For 

example, in Event 2, the QPF has the highest 6-hour accumulation and it is 

situated nearest to the 0.95 percentile of its pQPF. This indicates that the pQPFs 

of this event are likely to underestimate the QPE.  

In Event 1, whilst the percentiles above 0.6 show improvement, percentiles 

between 0.10 and 0.6 show worse accumulated rainfall values. As the 
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accumulated rainfall for these percentiles were initially lower than the 

accumulated QPE, they do not reflect the improvement of the updating process 

despite the mean pQPF being closer to the QPE. The same reason applies for 

the RMSE scores of the pQPF for the BPPM (see Figure 4.8). A likely cause of a 

high proportion of percentiles showing worse accumulation and RMSE values is 

the peak intensity observed (in the QPE) in the third timestep which is anomalous 

in that peaks in the previous QPE were not seen with similar magnitudes.  

In Event 2, the benefit of the BPPM is clearly demonstrated where the 

accumulated rainfall is reduced for all the percentiles in the BPPM. Whilst this 

has not improved for the lower percentiles, 0.1 to 0.45, the improvement is seen 

in higher percentiles, 0.5 to 0.95. Also, the accumulation differences between the 

pQPFs of the two models are increasing over higher percentiles. This means that 

there’s a smaller change for the 0.1 to 0.45 percentiles whilst there being a bigger 

change – and hence a larger improvement – for the remaining percentiles. The 

RMSE values demonstrate a similar trend (see Figure 4.8); however, there is not 

a noticeable difference in the RMSE values between the two models for the lower 

percentiles. The percentiles 0.5 to 0.95 show an increasingly bigger improvement 

where the 0.95 percentile shows the biggest improvement. The lower percentiles 

in both models commonly under predict the actual rainfall in pQPFs of both the 

OSM and BPPM. It is thus expected that, in this type of rainfall event, the lower 

percentiles are not vastly changed in the BPPM.  

The RMSE values for the BPPM are better in Event 3 in that all of the percentiles, 

with the exception of the 0.95 percentile, show an improvement of the pQPF value 

against the QPE. For accumulated rainfall, percentiles above the 0.55 percentile 

show total rainfall closer to the accumulated rainfall of the QPE. However, note 

in that the middle percentiles have shown the biggest change in the BPPM where 

the RMSE values show that these percentiles have made the biggest 

improvement. This is chiefly due to the position of the QPE in the pQPF range in 

the hyetograph. It is situated approximately in the 0.55 – 0.60 percentile range, 

which means that pQPFs of percentiles near this range of the BPPM would be 

closest to the QPE. Moreover, due to the increased pQPF intensities in the 

BPPM, the higher percentiles deviate away from the QPE bringing out about less 

improvement compared with the middle percentiles. In Event 4, the percentiles 

below 0.9 are closer to the accumulated rainfall of the QPE which indicates that 
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the pQPFs are post processed so that the overestimation of the QPF is reduced. 

RMSE scores support the improvement of the pQPFs of the BPPM where all 

percentiles under 0.9 are closer to the QPE compared with those of the OSM. 
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4.4.4 Correlation Coefficient 

 

Figure 4.9. The mean r values of the pQPF of the OSM and BPPM, across the 6-

hour forecast period, against the QPE for each percentile. 

Figure 4.9 shows the 𝑟 values for all the study events. The 𝑟 values in all four 

events show that the pQPFs of the BPPM have a less negative (or stronger 

positive) relationship compared to those of the OSM. This is indicated by an 

increase of the value of 𝑟 for all of the percentiles. The 𝑟 values of Event 2 show 

that the pQPFs of the OSM have a negative linear relationship with the QPE. This 

means that they are not accurate on a temporal scale in predicting the fluctuating 

patterns of the QPE. After being post processed, the pQPFs have shown to 

reduce the strength to a weak negative relationship. Although this shows little 

correlation, the fluctuating path of the pQPFs is more random than before. It 

means that there is a lower likelihood of the paths diverging to the opposite path 
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of the QPE. The largest increase of 𝑟 in all of the study events is seen in Event 4 

where the mean 𝑟 across the pQPFs in the BPPM increased by 34.3% to 0.52. 

 

4.4.5 Summary of the results for the frontal events 

 

In summary, the pQPFs of all four of the study events have improved so that the 

mean pQPF is closer to the QPE by 10.2%. This is due to the CDFs being 

updated using the latest QPE data, which would closely correspond to the 

magnitude and temporal path of the QPE. Hence, the pQPFs for the BPPM are 

overall better positioned around the QPE values which would provide a more 

realistic uncertainty range of the QPF. This is plausible despite some of the lower 

percentiles changing to further under predict the QPE, as is seen in Event 1.  

Due to this improvement, the RMSE and Accumulation values have also altered 

for the post processed pQPFs. It is seen that the higher percentiles have shown 

the biggest improvement. This also shows that these percentiles would normally 

be closest to the QPE, which would provide an indication of thresholds if decision 

makers were to select a specific range of percentiles as the likely pQPFs that 

predict QPE. This would be considered for future work. The RMSE values show 

an improvement with an average decrease (across all the study events) by 2.2%. 

This is figure is small due to the data added to update the distributions having a 

similar variance to that of the likelihood data, or the historical data used to 

generate the initial distributions. Hence, this would result in minimal changes to 

the prior distribution of the second MCMC process. In fact, this is expected in 

Bayesian analysis (Gelman et al., 2013). 

Also, the 𝑟 values of the pQPFs of the BPPM has increased in all of the study 

events. This is essential for hydrological purposes where modelling output using 

pQPFs would show to closer resemble the output using QPE based on 

simulations over particular time periods. 

4.5 Convective storms 

4.5.1 Hyetographs of probabilistic QPFs of OSM and BPPM 
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Figure 4.10 show the hyetographs of pQPFs of BPPM and OSM, QPE and QPF. 

Figure 4.11 shows the hyetograph of previous QPE preceding the QPE/QPF. This 

is used as the recent QPE used in the BPPM. 

 

Figure 4.10. Hyetographs of the pQPFs of the OSM (left) and BPPM (right) with 

QPE and QPF across the 6-hour forecast period (hourly timesteps) for Events 5 

– 8 (warm seasons). 
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Figure 4.11. Hyetographs showing the QPE of the previous 6 hours preceding 

the QPF in Events 5- 8. 

The QPF in Event 5 overestimates the QPE by 77% and the storm shows 

consistently large rainfall intensities over a prolonged period. This is normally 

observed in the spring season, as this is the period of the year the event had 

been extracted. As the QPF underestimates the QPE, the QPE falls outside of 

the uncertainty range. Based on the previous QPE (see Figure 4.11), the BPPM 

increases the rainfall intensities of the pQPFs. This produces an updated 

uncertainty range that the QPE is within at every temporal point. This also 

observed in the BPPM output of Events 6 and 7 where more of the temporal 

points of the QPE are within the updated uncertainty range of the pQPFs than 

the initial range. Visually, this makes the pQPFs of the BPPM more accurate than 

those of the OSM. Where the QPE shows large rainfall intensities (or peak 

intensities), such as in Event 6 and 8, these present challenges in that the 

updated pQPFs would not be able to predict them (see timesteps 3 – 5 hrs in 

Event 8). Although, the uncertainty range of the pQPFs of the BPPM better 

represent the QPE values (i.e. more accurate than the pQPFs of the OSM) this 

challenge highlights the requirement to study peaks of convective rainfall. 
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Note that events that show QPFs of large rainfall intensities (Events 7 and 8) 

show pQPFs of the OSM that are generally lower in rainfall intensities in 

comparison to the QPF. This demonstrates the problem of the OSM and in the 

case of convective rainfall where the QPF is likely to underestimate the QPE, the 

pQPFs are thus more likely to underestimate the QPE. The post processing 

method has therefore demonstrated to reverse this effect by increasing the 

rainfall intensities of the pQPFs in these events so that they are more likely to 

predict the QPE. 

 

4.5.2 Measuring the accuracy of probabilistic QPFs of the BPPM using mean 

forecast 

 

 

Figure 4.12. The average difference across the 6-hour forecast of the mean 

intensity values of the pQPFs and QPE of both the OSM and BPPM are shown 

for Events 5 – 8 (warm seasons). 
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Figure 4.13. The difference of the mean intensity values of the pQPFs and QPE 

across the 6-hour forecast period of both the OSM and BPPM are shown for 

Events 5 – 8 (warm seasons). 

Figure 4.12 shows the overall difference between the mean pQPF and the QPE 

of the OSM and BPPM and Figure 4.13 shows the differences at each timestep. 

Overall, the mean pQPF of the BPPM is closer to the QPE than that of the OSM. 

The signficance of this depends on how the pQPFs of the OSM have been 

updated in the BPPM. For Events 5 – 8, all of the pQPFs have generally increased 

in rainfall intensities. This means that the pQPFs of the OSM were generally 

underestimating the QPF, and hence underestimating the QPE. If the mean 

pQPF has moved closer to the QPE, the updated pQPFs have reduced the 

underestimation and thus produce an uncertainty range that is more accurate. 

This means the QPE in these events are more likely to fall within the uncertainty 

range indicated by the pQPFs of the BPPM than the OSM. At some timesteps of 

Events 5 – 8, the mean pQPF value of the BPPM is worser than the OSM (e.g. 

6th timestep in Event 5 and 4th timestep in Event 6). This is due to the dynamic 

nature (i.e. highly fluctuating characterstics) of the warm events. For example, 

the 6th timestep of Event 5 and the 4th timestep of Event 6 show zero QPE values 
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with a nonzero QPF value. Furthermore, at these timesteps, these are the only 

points during the storm with the lightest/no precpitation. Hence, as the pQPFs 

overall show an underestimation of both the QPF and QPE, these points are not 

considered when the updated pQPFs generally increase precpitation intensities. 

Hence, the mean pQPF value at these points would be worse but not causing 

significant effect on the overall performance of the updated pQPFs. 

4.5.3 Accumulated rainfall and RMSE 

 

 

Figure 4.14. Rainfall accumulation across the 6-hour forecast period of the 

pQPFs of the OSM and BPPM, QPE and QPF for each percentile, for Events 5 – 

8 (warm seasons). 
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Figure 4.15. The mean RMSE values of the pQPF of the OSM and BPPM, across 

the 6-hour forecast period, against the QPE for each percentile. 

Figure 4.14 shows rainfall accumulation of the pQPFs of the OSM and BPPM, 

the QPF and QPE across the 6-hour forecast period. In all four warm events, the 

rainfall accumulation of the pQPFs of the BPPM is closer to the QPE 

accumulation than those of the OSM. This indicates that all of the pQPFs of the 

BPPM are more accurate. Also, note that the QPE accumulation of all four events 

are large relative to the accumulations of the pQPFs of the OSM. This chiefly due 

to the two issues of the OSM: (1) the QPF of the event largely underestimates 

the QPE and (2) large rainfall QPFs produced pQPFs that generally 

underestimate the QPF. However, the output of the post processing methods 

described in this chapter clearly demonstrate that updating the pQPFs of the 

OSM tackle these two issues.  

The RMSE values of each pQPF of the OSM and BPPM for all four warm events 

are given in Figure 4.15. Nearly all of the pQPFs of the BPPM show to have lower 
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RMSE values in comparison to those of the OSM. Exceptions include the largest 

percentiles (i.e. 90th and 95th percentiles) in Events 5 and 7. This is expected and 

has no significant effect on the overall performance of the post processing 

method.  

4.5.4 Correlation Coefficient 

 

 

Figure 4.16. The mean r values of the pQPF of the OSM and BPPM, across the 

6-hour forecast period, against the QPE for each percentile. 

Figure 4.16 shows the 𝑟 values of the pQPFs of the OSM and BPPM against the 

QPE. Similar to the performance of the post processing method with the cool 

events in case study 1, the pQPFs of the warm events also show mean 𝑟 values 

closer to 1 in the BPPM compared to the OSM.  This shows that the post 

processing reduces the negative relationship of the temporal path of the pQPFs 

against the QPE across the 6-hour forecast period. This highlights the success 
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of the post processing method in improving the temporal structure of the rainfall 

of the pQPFs even in convective rainfall. It is therefore important to consider using 

the latest QPE data that is not part of the historical data sets to update pQPFs as 

they would show more accurate information about the latest rainfall 

characteristics on a temporal scale. 

4.6 Additional study events 

An additional two rainfall events are used to verify the BPPM. These two rainfall 

events are not necessarily representative of the characteristics of the season of 

which they were sourced. The purpose of using them to verify the BPPM is to 

assess its performance in extreme or uncommon rainfall characteristics. The 

event presented in section 4.6.1 shows a rainfall storm from a warm season with 

a very large peak that presents a forecast error not observed in the historical 

datasets. The event presented in section 4.6.2 shows a rainfall storm from a warm 

season with relatively light and less temporally fluctuating rainfall (which the 

opposite is normally observed in warm seasons). 

4.6.1 Rainfall storm with a large peak 

 

 

Figure 4.17. Hyetographs of the pQPFs of the OSM (left) and BPPM (right) with 

QPE and QPF across the 6-hour forecast period (hourly timesteps) for Event 9. 
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Figure 4.18. Hyetographs showing the QPE of the previous 6 hours preceding 

the QPF (left) and the difference of the mean intensity values of the pQPFs and 

QPE across the 6-hour forecast period of both the OSM and BPPM (right) for 

Event 9. 

The purpose of using the Bayesian based post processing method is to update 

the distributions based on a different set of QPE data. This is because QPE data 

may fall outside of the uncertainty range presented by the pQPFs generated from 

a fixed set of historical QPF/QPE data. However, the QPE may largely be 

underestimated by the QPF so that the uncertainty range presented by the 

pQPFs of the OSM may be overwhelmingly small in comparison to it. This would 

occur due to the inaccuracies of the QPF data, which may not be remedied 

without further specific analysis, such as studying the preservation of peak rainfall 

in storm-specific (i.e. convective or frontal) rainfall. As this is outside the scope of 

the methods introduced in this chapter, it is sufficient to show that the post 

processing method is able to produce more accurate pQPFs by using the latest 

QPE as a way of improving pQPFs that do not accurately represent the 

magnitude of QPE values across the 6-hour forecast period.  

In Event 9, the QPF underestimates the QPE by 82% (i.e. the accumulation of 

the QPE is 452% of that of the QPF) (see Figure 4.17). This shows an event that 

has a poor performing rainfall forecast and therefore would not be reliable for 

hydrological purposes. The QPE has temporal values that fall outside the 

magnitude range presented by the pQPFs of the OSM. Particularly, there is a 

large peak of 13 mm/h at the third timestep. As this forecast error had not been 

predominantly seen in the historical data sets, the OSM is not able to produce 

pQPFs with an uncertainty range to represent the extent of this peak intensity 
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value. Hence, this would be regarded as an ‘extreme’ or ‘anomalous’ value, and 

thus it is expected that both the pQPFs of the OSM and the BPPM may not 

accurately represent the QPE with these values. However, the pQPFs of the 

BPPM have increased in rainfall intensities to become closer to the QPE values 

across the 6-hour forecast period. At a temporal scale, the mean pQPF of the 

BPPM is closer to the QPE at all the timesteps (with the exception of the 5th and 

6th timesteps as they have zero rainfall QPF/QPE values) (see right figure of 

Figure 4.18). Overall, the mean pQPF of the BPPM has moved closer to the QPE 

by 8.48%. 
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Figure 4.19. Rainfall accumulation (top), the mean RMSE values (middle) and the 

mean r values (bottom) of the pQPF of the OSM and BPPM, across the 6-hour 

forecast period, against the QPE for each percentile for Event 9. 

Figure 4.19 further demonstrates the benefit of the post processing method to 

improve a poor performing QPF with a QPE showing a very large peak. The 

accumulated rainfall values of all the pQPFs of the BPPM move closer to the 

QPE. Also, the RMSE values of all these pQPFs have decreased and the 

magnitude by which they decrease increases over increasing percentiles. 
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Furthermore, their temporal paths across the 6-hour forecast period have 

changed so that they have a lower negative relationship with the QPE. Hence, 

the pQPFs of the BPPM are more accurate showing that the post processing 

method improves pQPFs even in poor performing QPFs. 

4.6.2 Warm event with light rainfall 

 

 

Figure 4.20. Hyetographs of the pQPFs of the OSM (left) and BPPM (right) with 

QPE and QPF across the 6-hour forecast period (hourly timesteps) for Event 10. 

 

Figure 4.21. Hyetographs showing the QPE of the previous 6 hours preceding 

the QPF (left) and the difference of the mean intensity values of the pQPFs and 

QPE across the 6-hour forecast period of both the OSM and BPPM (right) for 

Event 10. 

The hyetograph of Event 10 (see Figure 4.20) shows a light rainfall event 

extracted from the warm seasons. During most of the storm duration, the rainfall 

intensity doesn’t exceed 1 mm/h and it has a peak intensity of around 1.4 mm/h. 
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The QPF of this event also underestimates the QPE by around 44%, as expected 

from an event from the warm seasons (similar to Events 5 – 8). Despite the 

underestimation of the QPF, the pQPFs of the BPPM have not been updated to 

the same extent as seen in the case studies, particularly at lead times 3 – 6 hours. 

The biggest change is observed between lead times 1 - 3 hours because at these 

timesteps in the right figure of Figure 4.21 the QPF more closely predicts the 

QPE. It indicates that in the forecast errors in the historical data (OSM) the QPE 

is normally underestimated by the QPF. Hence, if the latest QPE data contains 

values close to the QPF values (which are relatively low), this is then weighted 

against the QPE values in the historical data sets so that the rainfall values of the 

pQPFs are lowered slightly. This would have a bigger effect on QPE values that 

are closer to the latest QPE data updating the pQPFs and less on those that 

match the forecast errors in the historical data. This is the reason why less 

change is observed between lead times 3 – 6 hours. Nonetheless, the change in 

pQPF rainfall magnitudes signifies that they are more accurate after being post 

processed. 



175 

 

 

Figure 4.22. Rainfall accumulation (top), the mean RMSE values (middle) and the 

mean 𝑟 values (bottom) of the pQPF of the OSM and BPPM, across the 6-hour 

forecast period, against the QPE for each percentile for Event 10. 

Figure 4.22 shows rainfall accumulation, mean RMSE and mean 𝑟 values of 

pQPFs of the OSM and BPPM. Due to there not being a large difference between 

the rainfall magnitudes of the pQPFs of the BPPM and OSM, the accumulated 

rainfall of the pQPFs have not changed to large extent. However, despite the 

small difference, the accumulated rainfall of the updated pQPFs have reduced to 
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be closer to the accumulated rainfall of the QPE. This is also the same case for 

the RMSE values of each pQPF against the QPE as the RMSE values have 

decreased for the BPPM. 

The mean r values of the all the pQPFs, against the QPE, have increased 

(become more positive) for the BPPM. This shows that despite there not being a 

large change in the rainfall magnitudes of the pQPFs, their temporal paths across 

the 6-hour forecast period are more positively correlated with the QPE. This 

means their temporal structure is more accurate in comparison with that of the 

pQPFs of the OSM. This is an indicator of success. 

4.7 Conclusions 

 

This chapter has introduced a two-step post processing methodology for 

probabilistic QPFs using Metropolis Hastings (MH) Monto Carlo Markov Chain 

(MCMC) to consider recent QPE data. Using a stochastic model, CDFs are 

initially generated from historical comparisons between radar QPF and QPE data. 

The parameters of these CDFs are updated in two applications of MH MCMC 

where the posterior distribution of the first stage is the prior distribution of the 

second stage. The final parameter set after the second MH MCMC is used in a 

posterior predictive distribution which is used to generate updated CDFs. Finally, 

updated probabilistic QPFs are produced by sampling rainfall values by their 

exceedance probability on the CDFs. 

Historical radar based Nowcast QPF and Rain Radar (i.e. QPE) data in the North 

East of England between September 2015 and February 2016 for frontal storms, 

and June 2016 and August 2016 for convective storms are used in the stochastic 

model to produce the initial probabilistic QPFs. The probabilistic QPFs are 

generated for 6-hour lead time with an hourly timestep. Four QPFs between 

September 2016 and February 2017 for case study 1 (frontal storms), four QPFs 

between June 2017 and August 2017 for case study 2 (convective storms) and 

two additional QPFs were chosen as study events (i.e. 10 study events). The 

Bayesian Post Processing Model is applied to the study events and the 

performance of the postprocessed probabilistic QPFs is evaluated against the 

probabilistic QPFs from the Original Stochastic Model. The main conclusions 

drawn from this study are as follows: 
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• The Bayesian updating process alters the probabilistic QPFs so that the 

mean probabilistic QPF is closer to the QPE by an average of 10.2%. This 

indicates that the probabilistic QPFs are better positioned so that the 

observed rainfall is less likely to fall outside of the uncertainty range, which 

makes them more accurate. 

• Across all the study events, after being postprocessed the Pearson’s 𝑟 

values show that the temporal paths of the post processed probabilistic 

QPFs are more positively correlated to the path of the QPE, or have 

reduced the negative dependence of the paths. In this way, the temporal 

structure of the probabilistic QPFs has improved. 

• The RMSE has lowered especially for the higher percentiles of the pQPFs 

across all ten study events. Whilst this shows that these percentiles have 

updated to become more accurate, it also demonstrates that the higher 

percentiles have potential to indicate thresholds of the likely rainfall 

intensity values the QPE would equate to. 

Overall, the approach described in this chapter attempts to fill the gaps of post 

processing radar based probabilistic QPFs. Therefore, this motivates the 

introduction of probabilistic rainfall forecasting in real time for bodies that manage 

flood risk, especially where the latest rainfall data is readily available. Therefore, 

this would provide a useful way of incorporating new rainfall data to make 

rainfall/flood forecasting more accurate and computationally feasible. 

An area to explore is to perform this methodology for many study events. As the 

method produces more accurate pQPFs, specific percentiles could be used to 

define thresholds for rainfall intensities where the QPE would lie. This analysis 

would deepen understanding of the accuracy of specific QPF/QPE. Fnially, 

various parameters of the Bayesian Post Processing Model could be changed in 

order to further analyse the performance of the method. For example, different 

sizes of the recent QPE could be used to post process the probabilistic QPFs.  
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5 Estimating flood extent using spatial analysis of radar Quantitative 

Precipitation Estimates 

5.1 Introduction 

The spatial distribution of rainfall over a sewer catchment has an influence on 

flood dynamics of an urban catchment. It has been shown that spatial structure 

of the rainfall field was the main contributor to a flash food event studied by Lay 

and Saulnier (2007). Also, the spatial distribution of rainfall influenced the flood 

extent when considering the distribution of soil properties (Anquetin et al., 2010; 

Delrieu et al., 2005). However, the response of the sewer network is similarly 

influenced by the spatial variability of the storm. It has been shown by Schellart 

et al. (2012) that the spatial variability of radar data produced significance 

differences in the sewer flow predictions.  This highlights that the impact of spatial 

variability of rainfall on sewer flooding should be considered.  

In the previous chapter, probabilistic QPFs had been introduced in detail. When 

used as input to hydraulic models the model variables (i.e. sewer depth or flow) 

could then be interpreted probabilistically. The advantage of this is that the 

uncertainty range of a model variable (i.e. depth or flow) could be realised for a 

deterministic QPF. However, probabilistic QPFs would need to be generated for 

each radar grid over the sewer catchment to run hydraulic simulations. However, 

this would have implications on the spatial distribution of the rainfall over the 

catchment. Specifically, depending on what percentiles of the probabilistic QPFs 

are chosen at each grid, the spatial distribution of the field may significantly differ 

from the actual spatial distribution (i.e. from the deterministic QPFs at each grid). 

This means that using probabilistic QPFs as gridded rainfall forcing to a hydraulic 

model may not accurately depict the spatial structure of the rainfall field. Whilst 

spatial dependence could be assumed (e.g. use the nth percentile of probabilistic 

QPFs at each grid to produce the rainfall over the sewer catchment), using 

different percentiles at each radar grid may result in different flooding extents. 

This is because the spatial distribution of the probabilistic QPFs over the sewer 

catchment would be different. Hence, a spatial analysis should be accompanied 

with hydraulic sewer flood forecasting that use probabilistic QPFs.  
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Another limitation of using probabilistic QPFs in real-time sewer flood forecasting 

is that many hydraulic simulations would need to be performed for each 

probabilistic QPF simultaneously. This requires significant computational 

resources. Due to this limitation, simple hydraulic and mathematical models are 

used instead of computationally heavy hydraulic models (Kimura et al., 2010). By 

using these models for simulating flood variables (i.e. flow or depth) the 

computational time is reduced.  

This chapter introduces an approach that predicts sewer flooding based on a 

historical analysis of the spatially varying characteristics of radar QPE and 

hydraulically simulated flood variables. There are two components of this method; 

firstly, a spatial analysis of QPE events based on four spatial rainfall variables: 

mean rainfall, variance of the rainfall field and the use of two spatial indexes 

representing the ‘spatial moments of rainfall’. Secondly, the development of two 

generalised linear models that use the spatial rainfall variables to predict total 

flood volume and total floods of four sewer catchments that are of different sizes. 

The benefits of the generalised linear models are that the hydraulically simulated 

flood volume and total floods could be estimated without running computationally 

expensive hydraulic simulations. This approach can be used to select the 

appropriate percentile combinations of probabilistic QPFs in each grid over a 

sewer catchment. This would be conducive for estimations of the flood extents 

directly from spatial information of probabilistic radar QPFs in a real-time sewer 

flood forecasting system. 
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5.2 Method for predicting model variables using spatial analysis 

 

Figure 5.1. The method to predict flood volume/number of floods using spatial 

analysis of rainfall over the sewer catchment. 

Figure 5.1 shows the method for predicting model variables using spatial 

analysis. Firstly, radar QPE grids over a sewer catchment are identified. Using 

rainfall from these grids, a catalogue of historical QPE events are extracted based 

on the mean rainfall of the QPE grids over the sewer catchment. Spatial analysis 

of the events is conducted to obtain mean rainfall, variance and values for two 

spatial indexes. The QPE events are used to produce hydraulic simulations to 

obtain total flood volume and total number of floods. Two GLM models are 

produced using different sets of spatial variables to predict the flood volume and 

total flood number. The GLMs are then verified by predicting total flood volume 

Identify QPE grids over the Drainage Area 

Produce catalogue of historical QPE events 

based on mean rainfall of the QPE grids 

Produce GLM models 1 and 2 predicting 

total flood volume/total number of floods 

using spatial analysis 

Obtain total flood volume/total number of 

floods of verification QPE events 

Run hydrological 

simulations using 

historical QPE events 

to obtain total flood 

volume/total 

number of floods 

Conduct spatial 

analysis to 

obtain variance 

and spatial 

indexes 
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and total number of floods using spatial information of verification QPE events. 

The sections 5.2.1 – 5.2.4 explain these processes in more detail. 

5.2.1 Identify QPE radar grids over the sewer catchment 

The QPE radar grids over the sewer catchment are identified in the sewer model 

that receive rainfall. For sewer catchments that are relatively small, there would 

be fewer QPE grids providing rainfall over the area and the opposite would be 

true for larger sewer catchments. Generally, it is expected that the more grids 

there are over the sewer catchment, a more accurate analysis of the spatial 

variation of the rainfall could be conducted. This is because they would present 

more information of the spatial distribution of rainfall. Hence, the method 

presented in this chapter would be more appropriately conducted on relatively 

larger sewer catchments, particularly when using the spatial indexes (introduced 

later). 

5.2.2 Extracting historical QPE events based on mean rainfall over the QPE 

radar grids 

The number of radar QPE grids 𝑁 over a sewer catchment are identified. Per 

QPE event 𝑒𝑣, six-hour rainfall accumulations over each grid 𝑗 are calculated, 

denoted 𝐴𝑗
𝑒𝑣. A set of 𝐴𝑗

𝑒𝑣 for the 𝑁 QPE grids is produced, denoted 𝐴𝐶𝑒𝑣. The 

mean of 𝐴𝐶𝑒𝑣, denoted 𝐸(𝐴𝐶𝑒𝑣), is then calculated: 

𝐸(𝐴𝐶𝑒𝑣) =
𝐴𝐶𝑒𝑣

𝑁
     (5.1) 

Based on 𝐸(𝐴𝐶𝑒𝑣) for each 𝑒𝑣, categories of mean rainfall are produced by 

discretising the values in 10 mm accumulated rainfall bins. Rainfall events 𝑒𝑣 are 

organised in this manner to produce a catalogue of ‘historical’ QPE events. 

The 6 hour lead time corresponds to the maximum lead time of the radar QPF 

data source used in this study (i.e. Nowcast from UKMO). This is because the 

analysis done in this chapter could be applied to radar QPFs. A lead time of 6 

hours has been applied across all the catchments irrespective of catchment size 

(and concentration times) for consistency purposes. Furthermore, should this 

method be used to estimate sewer flooding in real-time it would be most 
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beneficial to consider the maximum lead time of the QPF (which is 6 hours in 

this case).  

5.2.3 Spatial analysis of individual events 

Spatial analysis of 𝐴𝐶𝑒𝑣 is performed by calculating the variance, standard 

deviation and the use of two spatial indexes from literature. 

Variance and standard deviation are useful metrics for measurement errors and 

represent the spread of the data around the mean (Yu et al., 2016). Large values 

indicate that the rainfall values at different grids are dissimilar and are highly 

varied, whereas smaller values indicate similar rainfall values and signify 

uniformity of rainfall over the catchment.  

As 𝐴𝐶𝑒𝑣 is a discrete dataset, the variance (𝑉𝑎𝑟) and standard deviation (𝑆𝐷) of 

𝐴𝐶𝑒𝑣 are calculated as follows: 

𝑉𝑎𝑟(𝐴𝐶𝑒𝑣 ) =
1

𝑁
∑ (𝐴𝑗

𝑒𝑣 − 𝐸(𝐴𝐶𝑒𝑣 )2)𝑁
𝑗=1    (5.2) 

𝑆𝐷(𝐴𝐶𝑒𝑣 ) = √
1

𝑁
∑ (𝐴𝑗

𝑒𝑣 − 𝐸(𝐴𝐶𝑒𝑣 )2)𝑁
𝑗=1    (5.3) 

Two indexes are also used as measures of spatial variability, which have been 

introduced by Zoccatelli et al., (2010) and used by Douinot et al., (2016) for flash 

flood forecasting. These indexes describe the spatial moments of catchment 

rainfall that relate the spatial positioning of rainfall in relation to the catchment 

structure. These indexes are used to determine the spatial positioning of rainfall 

in relation to the distances of any point in a sewer catchment to its outlet node. 

Whilst the spatial indexes apply to a natural catchment with the flow pathways 

leading to the outfall, the sewer catchment could be characterised as a natural 

catchment with the sewer flow pathways leading to the outlet node. This 

assumption would enable the use of the indexes that could provide useful 

information of sewer catchments in spatially varying rainfall storms. The purpose 

of this analysis is to establish correlations between these indexes and the flood 

variables to identify sewer catchments that could use these indexes to predict 

sewer flooding.  



183 

 

 

Figure 5.2. Interpretations of spatial indexes 𝑰𝟏 and 𝑰𝟐 . 

Figure 5.2 describes the interpretations of the spatial indexes. The first index, 

denoted 𝑰𝟏, describes the position of the rainfall over the sewer catchment. A 

value below 1 means that the rainfall is localised downstream of the sewer 

catchment whereas a value above 1 describes rainfall localised upstream. If this 

index has a value near or equal to 1 means that the rainfall is localised at the 

centre of the sewer catchment. The second index, denoted 𝑰𝟐, describes the 

concentration of the rainfall over the sewer catchment. A value below 1 describes 

concentrated rainfall (which is characterised to be a convective type rainfall 

storm) whereas a value above 1 indicates rainfall with multiple concentrated 

regions. If the value is equal to 1 this indicates globally uniform rainfall over the 

sewer catchment. In equations 5.4 and 5.5, the flow distance from a QPE grid 𝑗 

to the outfall node is denoted 𝐹𝑗
𝑒𝑣, for event 𝑒𝑣, 𝐴𝑡𝑜𝑡𝑎𝑙

𝑒𝑣  is the total rainfall over the 

sewer catchment and 𝐵𝑒𝑣 is the total area of the catchment. In this study, 𝐵𝑒𝑣 is 

equal to the total area each QPE grid contributes to the rainfall over the sewer 

catchment. As the area of each QPE grid is 1 km2, 𝐵𝑒𝑣 is equal to 𝑁. 
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𝑰𝟏 =

1

𝐴𝑡𝑜𝑡𝑎𝑙
𝑒𝑣 ∑ (𝐴𝑗

𝑒𝑣∗𝐹𝑗
𝑒𝑣)𝑁

𝑗=1

1

𝑁
∑ 𝐹𝑗

𝑒𝑣𝑁
𝑗=1

    (5.4) 

Here, 
1

𝐴𝑡𝑜𝑡𝑎𝑙
𝑒𝑣 ∑ (𝐴𝑗

𝑒𝑣 ∗ 𝐹𝑗
𝑒𝑣)𝑁

𝑗=1  represents the average flow distance from the spread 

of rainfall in all the QPE grids to the outfall. 
1

𝑁
∑ 𝐹𝑗

𝑒𝑣𝑁
𝑗=1  represents the average 

flow distance from the area distribution to the outfall.  

Zoccatelli et al. (2011) described  𝑰𝟐 to be the dispersion of the rainfall-weighted 

flow distances about their expectation values to the ratio of the dispersion of the 

flow distances, as below: 

𝑰𝟐 =

1

𝐴𝑡𝑜𝑡𝑎𝑙
𝑒𝑣 ∑ (𝐴𝑗

𝑒𝑣∗𝐹𝑗
𝑒𝑣2

)𝑁
𝑗=1 −(

1

𝐴𝑡𝑜𝑡𝑎𝑙
𝑒𝑣 ∑ (𝐴𝑗

𝑒𝑣∗𝐹𝑗
𝑒𝑣)𝑁

𝑗=1 )

2

1

𝑁
∑ 𝐹𝑗

𝑒𝑣2𝑁
𝑗=1 −(

1

𝑁
∑ 𝐹𝑗

𝑒𝑣𝑁
𝑗=1 )

2    (5.5) 

where 
1

𝐴𝑡𝑜𝑡𝑎𝑙
𝑒𝑣 ∑ (𝐴𝑗

𝑒𝑣 ∗ 𝐹𝑗
𝑒𝑣2

)𝑁
𝑗=1 − (

1

𝐴𝑡𝑜𝑡𝑎𝑙
𝑒𝑣 ∑ (𝐴𝑗

𝑒𝑣 ∗ 𝐹𝑗
𝑒𝑣)𝑁

𝑗=1 )
2

 represents the variance 

(or dispersion) of the flow distances 𝐹𝑗
𝑒𝑣 weighted against the rainfall grid 

accumulations 𝐴𝑗
𝑒𝑣, and 

1

𝑁
∑ 𝐹𝑗

𝑒𝑣2𝑁
𝑗=1 − (

1

𝑁
∑ 𝐹𝑗

𝑒𝑣𝑁
𝑗=1 )

2

represents the variance (or 

dispersion) of the flow distances 𝐹𝑗. 

𝑰𝟐 =

1

𝐴𝑡𝑜𝑡𝑎𝑙
𝑒𝑣 ∑ (𝐴𝑗

𝑒𝑣∗𝐹𝑗
𝑒𝑣2

)𝑁
𝑗=1 −(

1

𝐴𝑡𝑜𝑡𝑎𝑙
𝑒𝑣 ∑ (𝐴𝑗

𝑒𝑣∗𝐹𝑗
𝑒𝑣)𝑁

𝑗=1 )

2

1

𝑁
∑ 𝐹𝑗

𝑒𝑣2𝑁
𝑗=1 −(

1

𝑁
∑ 𝐹𝑗

𝑒𝑣𝑁
𝑗=1 )

2    (5.6) 

5.2.4 Generalised Linear Models 

1D sewer flood simulations are produced using Infoworks ICM across the six-

hour period of the historical events for selected catchments. The flood variables 

used in this study is the sum of the flood volume of flooded nodes in the model 

sewer catchment, denoted 𝑽𝒂, and the number of flooded nodes, denoted 𝑽𝒃. 

These variables are used as the response variable in two implementations of a 

GLM based on a Gaussian distribution for total food volume and Poisson 

distribution for total floods. For a random realisation, denoted 𝑥, the PDF of the 

Gaussian distribution is represented as 
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𝐹(𝑥) =
1

√2𝜋𝜎𝑎
2

𝑒
−(𝑥−𝜇𝑎)2

2𝜎𝑎
2     (5.7) 

and the Probability Mass Function (PMF) of Poisson distribution is: 

1

√2𝜋𝜎𝑎
2

𝑒
−(𝑥−𝜇𝑎)2

2𝜎𝑎
2 𝛽𝑏

𝑥𝑒−𝛽𝑏

𝑥!
    (5.8) 

Where 𝜇𝑎and 𝜎𝑎 are the gaussian mean and standard deviation, respectively, 

and 𝛽𝑏 is the Poisson rate parameter. 

Total number of floods is assumed to have a Poisson distribution and is treated 

as such to resemble count data. Furthermore, the number of floods can only be 

represented as a whole number. 

The predictor variables in the two GLMs vary. There are four predictor variables 

altogether in the GLMs that are: 

• Variance, denoted 𝑽𝑨𝑹 

• Mean Rainfall, denoted 𝑴𝑹 

• Index 1, denoted 𝑰𝟏 

• Index 2, denoted 𝑰𝟐 

The first GLM, denoted 𝐺𝐿𝑀1, has the predictor variables 𝑽𝑨𝑹 and 𝑴𝑹 whereas 

the second GLM, denoted 𝐺𝐿𝑀2, uses all the four predictor variables𝐺𝐿𝑀1𝑰𝟏𝑰𝟐. 

The significance of using 𝐺𝐿𝑀2 is to highlight the benefit of using the spatial 

indexes in calculating predictions of 𝑽𝒂 and 𝑽𝒃 that could be used in addition to 

the variance and mean rainfall of the spatial radar field. Thus, the purpose of 

using the GLMs in this methodology is described as follows: 

1. Predict the model flood volume and number of floods (𝑽𝒂 and 𝑽𝒃) using 

mean rainfall (𝑴𝑹), variance (𝑽𝑨𝑹) and spatial indexes (𝑰𝟏 and 𝑰𝟐). 

2. Compare the performance of the spatial indexes (𝑰𝟏 and 𝑰𝟐) and variance 

(𝑽𝑨𝑹) in predicting the model flood volume/number of floods (𝑽𝒂 and 𝑽𝒃) 
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Poisson and Gaussian based GLMs can have a natural logarithm canonical link 

function. Hence 𝐺𝐿𝑀1𝑎 (Equation (5.8)) and 𝐺𝐿𝑀2𝑎 (Equation (5.9)) are set up 

for total flood volume (𝑉𝑎) using Gaussian based GLM: 

ln(𝐸(𝑽𝒂)) = 𝑏0
𝐺𝐿𝑀1 + 𝑏1

𝐺𝐿𝑀1𝑴𝑹 + 𝑏2
𝐺𝐿𝑀1𝑽𝑨𝑹    (5.9) 

ln(𝐸(𝑽𝒂)) = 𝑏0
𝐺𝐿𝑀2 + 𝑏1

𝐺𝐿𝑀2𝑴𝑹 + 𝑏2
𝐺𝐿𝑀2𝑽𝑨𝑹 + 𝑏3

𝐺𝐿𝑀2𝑰𝟏 + 𝑏4
𝐺𝐿𝑀2𝑰𝟐 (5.10) 

Where 𝑏0
𝐺𝐿𝑀1, 𝑏1

𝐺𝐿𝑀1 and 𝑏2
𝐺𝐿𝑀1 are the coefficients of 𝐺𝐿𝑀1𝑎 and 𝑏0

𝐺𝐿𝑀2, 𝑏1
𝐺𝐿𝑀2, 

𝑏2
𝐺𝐿𝑀2, 𝑏3

𝐺𝐿𝑀2 and 𝑏4
𝐺𝐿𝑀2are the coefficients of 𝐺𝐿𝑀2𝑎. 

Similarly, 𝐺𝐿𝑀1𝑏(Equation (5.10)) and 𝐺𝐿𝑀2𝑏 (Equation (5.11)) are set up for 

total number of floods (𝑉𝑏) using Poisson based GLM: 

ln (𝐸(𝑽𝒃)) = 𝑔0
𝐺𝐿𝑀1 + 𝑔1

𝐺𝐿𝑀1𝑴𝑹 + 𝑔2
𝐺𝐿𝑀1𝑽𝑨𝑹    (5.11) 

ln (𝐸(𝑽𝒃)) = 𝑔0
𝐺𝐿𝑀2 + 𝑔1

𝐺𝐿𝑀2𝑴𝑹 + 𝑔2
𝐺𝐿𝑀2𝑽𝑨𝑹 + 𝑔3

𝐺𝐿𝑀2𝑰𝟏 + 𝑔4
𝐺𝐿𝑀2𝑰𝟐 (5.12) 

Where 𝑔0
𝐺𝐿𝑀1, 𝑔1

𝐺𝐿𝑀1 and 𝑔2
𝐺𝐿𝑀1 are the coefficients of 𝐺𝐿𝑀1𝑏 and 𝑔0

𝐺𝐿𝑀2, 𝑔1
𝐺𝐿𝑀2, 

𝑔2
𝐺𝐿𝑀2, 𝑔3

𝐺𝐿𝑀2 and 𝑔4
𝐺𝐿𝑀2are the coefficients of 𝐺𝐿𝑀2𝑏. 

For a Poisson based GLM, the expectation of 𝑽𝒃 is equal to the Poisson shape 

parameter, which is the expected number of occurrences. This value is 

considered an estimate of 𝑽𝒃. Similarly, the expectation of 𝑽𝒂 in the Gaussian 

GLM is equal to the mean parameter of the distribution. This value is also 

considered as the estimate of 𝑽𝒂. 

5.2.5 Performance indicators 

To demonstrate the benefits of the spatial analysis of the gridded QPEs, scatter 

graphs are produced illustrating the correlations of the flood volumes or number 

of floods against the spatial parameters described in section 5.2.3. Furthermore, 

Pearson’s 𝑟 is used to show the strength of the correlations between the spatial 

parameters and flood variables. Furthermore, the applications of the spatial 

indexes are visually presented in sections 5.4.  
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The performance and comparisons of the two GLMs are summarised using 

RMSE. This performance metric is used across different mean rainfall categories 

and overall across the sewer catchments (i.e. average values for 𝑽𝒂 and 𝑽𝒃). The 

average values for 𝑽𝒂 and 𝑽𝒃 of all verification events, with the total events 

denoted 𝐸𝑉, are calculated as follows: 

∑ 𝑽𝒂𝐸𝑉
𝑒𝑣

𝐸𝑉
     (5.13) 

∑ 𝑽𝒃𝐸𝑉
𝑒𝑣

𝐸𝑉
     (5.14) 
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5.3 Case studies 

 

 

Figure 5.3. Map showing the boundaries of the radar domain of the North-East of 

England along with the four catchments for which the methodology is tested for: 

Ponteland, Chopwell and Blackhall Mill, Chester-le-Street and Darlington. 
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5.3.1 Catalogue of historical events 

The radar QPE and QPF sources are the Rain Radar rain-rate and Nowcast 

products, respectively, both produced and available from the UK Met Office (see 

section 3.3.1). The region of the rainfall data is the North East of England (see 

Figure 5.3) and four sewer catchments from this region are used as case studies 

in this chapter. Two case studies represent small sewer catchments and a further 

two represent large sewer catchments. Distinctions are drawn between the 

results for these two categories of sewer catchments in section 5.6 and 5.7.  

As explained in section 3.3.2, a rainfall event is defined to be a time series data 

up to 6 hours in duration. The spatial scale is based on the QPE spatial resolution 

of 1-km and thus 1-km grids over the sewer catchment model are used to study 

the spatial variation of accumulate rainfall on sewer flooding over the 6-hour 

period.  

In this study, a 15-min temporal resolution has been selected as this matches the 

temporal resolution of the QPF source. This would enable the use of probabilistic 

QPFs using the spatial analysis presented in this chapter. However, a 2-km 

spatial resolution (which is the native resolution of the Nowcast data) is not used 

due to it not providing sufficient amount of information on the spatial variation 

over the sewer catchment compared to a 1-km scale. If probabilistic QPFs were 

to use the outputs of the spatial analysis in this chapter, it necessitates 

downscaling the QPF data to a 1-km spatial resolution. This type of interpolation 

has been explored in section 3.  

The period sourced for the historical QPE events is between January 2012 and 

December 2016. As described in section 5.2.1, QPE events are categorised by 

the mean rainfall over a sewer catchment. Therefore, QPE events are chosen 

from the period by mean rainfall. Using this selection method, between 60 and 67 

QPE events are organised to form a catalogue of historical QPE events. 

Catalogues for each sewer catchment are shown in Appendix AAppendix B. 
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5.3.2 Ponteland 

 

Figure 5.4. Map of the Ponteland sewer catchment. 

 

1 km 
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Figure 5.5. Sewer catchment model of Ponteland in Infoworks ICM showing the 

QPE 1-km grids that it overlaps with. 

Figure 5.4 and Figure 5.5show the Ponteland drainage area and sewer 

catchment, respectively. The Ponteland sewer catchment model has 490 nodes, 

473 links and 140 subcatchments. This is a relatively small catchment area and 

has 11 QPE grids over the region. The QPE accumulations at these grids are 

used to study the spatial distribution of the rainfall. Although, due to the relatively 

small size of the sewer catchment, the spatial distribution of QPE accumulation 

may be more challenging to ascertain. Therefore, the outputs of a small sewer 

catchment are compared to a larger sewer catchment to determine the benefits 

of the study across different sized sewer catchments.  

Based on the QPE accumulations over the 11 QPE grids of this sewer catchment, 

7 mean rainfall categories are identified and based on these 67 events are 

extracted in the historical QPE period. These events are summarised in Table 

B.1 in Appendix AAppendix B showing the 𝑴𝑹, 𝑽𝑨𝑹, 𝑰𝟏, 𝑰𝟐, the 𝑽𝒂 and 𝑽𝒃 of 

each QPE event. 

NZ1573 NZ1673 

NZ1472 NZ1572 NZ1672 

NZ1471 NZ1571 NZ1671 

NZ1370 NZ1470 NZ1570 
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5.3.3 Chopwell and Blackhall Mill 

 

Figure 5.6. Map showing the boundaries of the Chopwell and Blackhall Mill 

drainage area (courtesy of AMEC Foster Wheeler). 
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Figure 5.7. Sewer catchment model of Chopwell and Blackhall Mill in Infoworks 

ICM showing the QPE 1-km grids that it overlaps with. 

Figure 5.6 and Figure 5.7 show the Chopwell and Blackhall Mill drainage area 

and sewer catchment, respectively. The Chopwell and Blackhall Mill sewer 

catchment consists of 1126 nodes, 1094 links and 252 subcatchments. Like 

Ponteland, this is a relatively small sewer catchment and is approximately 218 

hectares. It is located within Tyne and Wear and is approximately 15 km south 

west of Newcastle upon Tyne city centre. The sewer network serves a population 

size of 4,246. The topography of the drainage is such that the land falls steeply 

from north to south (towards the centre of the sewer catchment). The bottom 

region consists of Blackhall Mill and the land of this region falls steeply from south 

to north. 

NZ1158 NZ1258 

NZ1157 NZ1257 

NZ1156 NZ1256 

NZ1155 

NZ1154 NZ1254 

NZ1153 
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The catalogue of historical QPE events consist of 50 events organised into 5 

mean rainfall categories. These events are summarised in Table B.2 in Appendix 

AAppendix B showing the 𝑴𝑹, 𝑽𝑨𝑹, 𝑰𝟏, 𝑰𝟐, the 𝑽𝒂 and 𝑽𝒃 of each QPE event. 

 

5.3.4 Chester-le-Street 

 

Figure 5.8. Map showing the boundaries of the Chester-le-Street drainage area 

(courtesy of AMEC Foster Wheeler). 

1 km 
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Figure 5.9. Sewer catchment model of Chester-le-Street in Infoworks ICM 

showing the QPE 1-km grids that it overlaps with. 

Figure 5.8 and Figure 5.9 show the Chester-le-Street drainage area and sewer 

catchment, respectively. Chester-le-Street is located in County Durham and is 

approximately north 10 km from Durham City Centre. In the region, there are 

approximately 24,000 people based in a mostly urbanised area and the outer 

regions are rural agricultural areas. River Wear is located on the west side of the 

sewer catchment, which receives surface water directly from the east regions. 

The catchment is not wholly level as the catchment flow falls steeply towards the 

valleys of River Wear.  

Most of the sewerage network is combined but there are several regions showing 

new sewerage development that are separate foul and surface water sewers. 

These separate sewers eventually join onto the combined systems.  

There are in total 6278 nodes, 6244 links and 1307 sub catchments in the sewer 

catchment. The region covers in total 26 radar QPE 1-km grids (see Figure 5.9). 
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The QPE accumulations for these grids are used as the forcing to simulate sewer 

flooding for this sewer catchment. 

Based on the selection method for producing the catalogue of historical QPE 

data, 7 categories of mean rainfall across the 26 QPE grids have been identified 

for which 67 QPE events have been extracted. Summaries of these QPE events 

along with the 𝑴𝑹, 𝑽𝑨𝑹, 𝑰𝟏, 𝑰𝟐, the 𝑽𝒂 and 𝑽𝒃  of each event are shown in Table 

B.3 in Appendix AAppendix B. 

 

5.3.5 Darlington (North) 

 

Figure 5.10. Map showing the boundaries of the Darlington (North) drainage area 

(courtesy of AMEC Foster Wheeler). 

1 km 
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Figure 5.11. Sewer catchment model of Darlington (North) in Infoworks ICM 

showing the QPE 1-km grids that it overlaps with. 

Figure 5.10 and Figure 5.11 show the Darlington (North) drainage area and sewer 

catchment, respectively. Darlington (North) is situated in Darlington which serves 

a community of 55,000 people. The catchment is relatively level with a sewerage 

network with roughly the same proportion of combined and separate sewer 

systems. The sewer catchment is located around the River Skerne and the outfall 

leads to the Stressholme STW which is located south of the sewer catchment. 

The sewer catchment model of Darlington (North) represents the region with 9145 

nodes, 9057 links and 3300 subcatchments. Based on this model, there are 38 

QPE 1 km grids that cover the sewer catchment (see Figure 5.11). At these grids, 

6 mean rainfall categories are identified in the historical QPE period and then 

using these categories 60 QPE events is extracted. Table B.4 in Appendix 

AAppendix B shows the catalogue of historical QPE events extracted for 

Darlington (North). 
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5.3.6 Verification events 

For testing the performance of the two GLMs, a different set of QPE events are 

used (i.e. verification QPE events). The spatial parameters described in section 

5.2.3 are calculated for the verification QPE events and these are used in the 

GLMs to predict 𝑽𝒂 and 𝑽𝒃 without running hydrological simulation. To establish 

that the GLMs perform accurately and consistently, QPE events of the same 

mean rainfall categories were required but with different spatial characteristics 

(i.e. different values for 𝑽𝑨𝑹, 𝑰𝟏 and 𝑰2). This is achieved by modifying the 

historical QPE events so that the mean rainfall value is different but kept within 

the respective mean rainfall category (i.e. QPE accumulations of the grids are 

scaled by a random factor) and the QPE accumulations of the grids are switched 

to other grid locations so that new values for 𝑽𝑨𝑹, 𝑰𝟏 and 𝑰𝟐 are produced.  

5.3.7 Predicting model flood variables using spatial rainfall variables 

In a similar way of obtaining 𝑽𝒂 and 𝑽𝒃 for the historical QPE events, 𝑽𝒂 and 𝑽𝒃 

are obtained for the verification QPE events. 𝑽𝒂 and 𝑽𝒃  are then used  to test the 

predictive accuracy of the GLMs.  

 

Figure 5.12. The grids of case studies: (a) Ponteland, (b) Chopwell and Blackhall 

Mill, (c) Chester-Le-Street and (d) Darlington (North) are numbered according to 

their grid references. The colours show rainfall accumulation (in mm). 

In section 5.4 and 5.5, the outputs of each case study are presented based on 

three topics: 

• Extremities of the values of the spatial indexes -  there is no measure 

of the sensitivity of the values below or above 1 in relation to what they 

mean on the catchment (i.e. for 𝑰𝟏, a value of 0.9 could have 40% of the 
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rainfall focused downstream and a value of 0.8 could have 99% of the 

rainfall focused downstream. However, there is no way of determining this 

directly from the values of the spatial indexes). Hence, to understand the 

sensitivities of the spatial indexes, the maximum and minimum values in 

the catalogue of historical rainfall events for each case study are visually 

represented. Figure 5.12 assigns numbers to the grid references of each 

sewer catchment and these are referred to for identifying the grids in 

explaining the proportion of rainfall. 

• Relationship between model flood variables and spatial variables – 

for each spatial rainfall variable, the flood volume and total floods are 

plotted against them in order to visualise the relationships between them. 

This allows the general trend of predicting the flooding extent using the 

spatial rainfall variables to be deduced. Furthermore, these relationships 

are propagated in the GLMs to predict the flooding extent. 

• Generalised Linear Models – the performances of 𝐺𝐿𝑀1 and 𝐺𝐿𝑀2 are 

then presented and analysed to demonstrate how well they can predict the 

flood volume and total floods. Particularly, the performance of 𝐺𝐿𝑀2 is 

reviewed against 𝐺𝐿𝑀1 for each case study to understand how accurate it 

is in different sized sewer catchments. 
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5.4 Case studies: small drainage areas 

5.4.1 Extremities of spatial indexes 

 

Ponteland 

 

Figure 5.13. Maximum (left) and minimum (right) values for spatial indexes 1 (top) 

and 2 (bottom) across the catalogue of historical QPE events for Ponteland. The 

values are stated in brackets. Legend represents rainfall accumulation (in mm). 

Location of the main outlet is shown as a red filled circle. 

 

Maximum index 1 (1.15) Minimum index 1 (0.86) 

Maximum index 2 (1.07) Minimum index 2 (0.82) 

(mm) (mm) 

(mm) (mm) 
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Figure 5.14. The percentage of total rainfall over the study region, Ponteland, is 

stated for each grid (see Figure 5.12) for events showing maximum/minimum 

spatial indexes. 

Figure 5.13 and Figure 5.14 shows the maximum and minimum values for the 

spatial indexes across the entire catalogue of historical events for Ponteland. The 

purpose of this is to show how the rainfall is distributed across the study region 

for the extreme values existent in the historical events used to generate the 

GLMs. However, it would be ideal to extract many more events to derive the 

extreme values for the spatial indexes representing extreme events, which would 

show more information of the distribution of rainfall for a wider a range of values 

for the spatial indexes. Nonetheless, the precipitation maps in Figure 5.14 show 

the spatial distribution of rainfall described by the spatial indexes within a 

measurable range. For example, a value of 1.15 for spatial index 1 shows that 

most of the rainfall is situated upstream of the sewer catchment (grids coloured 

Maximum index 1 (1.15) Minimum index 1 (0.86) 

Maximum index 2 (1.07) Minimum index 2 (0.82) 
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in purple, orange and yellow). Based on this distribution, the average rainfall in 

this region equates to approximately 130 mm whereas the approximate average 

rainfall towards downstream/centre of the sewer catchment equates to 60 mm. 

Furthermore, the region where heaviest rainfall is observed (bottom three grids) 

roughly constitutes 46% of the rainfall in the study region (see top left figure of 

Figure 5.14). The lowest value for spatial index 1 in the catalogue of historical 

events is 0.86. Considering the four grids nearest to the outlet (grids 1,8,9 and 

11), these have an average rainfall of 92 mm and constitute 51% of the rainfall in 

the study region. By considering the most downstream grids (grids 1, 9 and 11), 

these constitute 40% of the rainfall in the region. This indicates the level of 

sensitivity of spatial index 1 in terms of the distribution of the rainfall relative to 

the outlet for Ponteland sewer catchment. The event with the lowest spatial index 

2 (value of 0.82) shows that one of the grids (grid 5) has the largest proportion of 

the rainfall over the study region (14% of total rainfall) followed by another grid 

adjacent to it. The event with the largest value for spatial index 2 also 

characterises convective-type of rainfall albeit being multimodal over the sewer 

catchment. This is vaguely observed in grids 3 and 4 as these grids show the 

largest proportion of rainfall in the study region. Due to the relatively small size of 

the sewer catchment, certain grids over the study area show heavier rainfall that 

may not fully represent the spatial distribution of the storm. In this case, a larger 

sewer catchment would better represent this distribution. But on a small spatial 

scale, the rainfall over the sewer catchment may characterise a multimodal storm 

even if the actual storm is differently distributed. Based on the relative rainfall 

over the sewer catchment, the large value for spatial index 2 demonstrates that 

the storm over the region is multimodal. 
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Chopwell and Blackhall Mill 

 

Figure 5.15. Maximum (left) and minimum (right) values for spatial indexes 1 (top) 

and 2 (bottom) across the catalogue of historical events for Chopwell and 

Blackhall Mill. The values are stated in brackets. Legend represents rainfall 

accumulation (in mm). Location of the main outlet is shown as a red filled circle. 

(mm) (mm) 

(mm) (mm) 

Maximum index 1 (1.12) Minimum index 1 (0.99) 

Maximum index 2 (1.07) Minimum index 2 (0.35) 
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Figure 5.16. The percentage of total rainfall over the study region, Chopwell and 

Blackhall Mill, is stated for each grid (see Figure 5.12) for events showing 

maximum/minimum spatial indexes. 

This sewer catchment is relatively small and the radar grids used to obtain the 

rainfall over the area are spatially distributed so that there are not many grids 

adjacent to each other. In fact, only one grid has four adjacent grids and most of 

the grids have only one adjacent grid. The consequence of this is that studying 

the spatial variation of the rainfall in relation to the sewer catchment is made more 

difficult, particularly when understanding the location and distribution of where 

most of the rainfall is situated over the area. This is the primary challenge of a 

sewer catchment of this size and structure.  

Nonetheless, the maximum and minimum values for the spatial indexes for 

Chopwell and Blackhall Mill present some reasonable information related to the 

Maximum index 1 (1.12) Minimum index 1 (0.99) 

Maximum index 2 (1.07) Minimum index 2 (0.35) 
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spatial characteristics of rainfall over the study area. For example, in Figure 5.15 

the maximum value for spatial index 1 (value of 1.12) suggests that the heavier 

rainfall is observed upstream of the sewer catchment. Specifically, grids 4 and 8 

located upstream of the sewer catchment constitute around 23% of the total 

rainfall over the area (see Figure 5.16). In the catalogue of historical events, the 

lowest value for spatial index 1 is 0.99 which is expected to closely resemble a 

storm where most of the rainfall over the sewer catchment is situated at the centre 

of the area. Although this is not visibly clear in Figure 5.15 the two grids with the 

highest proportion of rainfall are situated roughly midway between upstream and 

downstream of the sewer catchment (i.e. heaviest rainfall is neither situated at 

the furthest or nearest point from the outlet). For spatial index 2, the lowest value 

suggests a convective type of storm where a singular region over the sewer 

catchment has relatively the highest rainfall. Based on Figure 5.15 and Figure 

5.16, the event with the lowest value (value of 0.35), grids 2 and 6 show the 

highest proportion of rainfall (around 27%). These grids show notably higher 

rainfall in comparison to the other grids, which means that there is greater spatial 

variation in this event. Based on this, the concentration of rainfall in these regions 

is more pronounced that result in the value for the spatial index 2 being notably 

low. 
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5.4.2 Relationship between model flood variables and spatial variables 

 

Figure 5.17. Scatter graphs showing the correlation of the 𝑽𝒂 (total flood volume) 

(top) and 𝑽𝒃 (total floods) (bottom) against the variance (left) and mean rainfall 

(right) of Ponteland. 
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Figure 5.18. Scatter graphs showing the correlation of the total flood volume (𝑽𝒂) 

(top) and total number of floods (𝑽𝒃) (bottom) against the variance (left) and mean 

rainfall (right) of Chopwell and Blackhall Mill. 
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Figure 5.19. Hex bin charts showing the density of events per value of index 1 

(left) and index 2 (right) for 𝑽𝒂 (total flood volume) (top) and 𝑽𝒃 (total floods) 

(bottom) of Ponteland. 
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Figure 5.20. Hex bin charts showing the density of events per value of index 1 

(left) and index 2 (right) for 𝑽𝒂 (total flood volume) (top) and 𝑽𝒃 (total floods) 

(bottom) of Chopwell and Blackhall Mill. 

Ponteland 

Figure 5.17 and Figure 5.19 show the relationships between 𝑽𝒂 or 𝑽𝒃 and 

variance, mean rainfall, spatial indexes 1 and 2 for Ponteland. Generally, 𝑽𝒂 and 

𝑽𝒃 increase as the spatial variance and mean of the rainfall over the study region 

increases. For mean rainfall, this is an expected outcome as the more rainfall that 

enters the sewer network, the more likely the system would reach full capacity 

that would causes the sewage to escape through the manholes. Furthermore, the 

quantity of sewage escaping the network would also increase with increasing 

rainfall. The correlation coefficients for 𝑽𝒂 and mean rainfall, and 𝑽𝒃 and mean 

rainfall are 0.73 and 0.55, respectively. The correlation coefficients for the 𝑽𝒂 and 

variance, and 𝑽𝒃 and variance are 0.66 and 0.49, respectively. The relationship 

established for variance shows that the more disproportionate the distribution of 

the rainfall over the study region, the more flooding would occur. This means that 

Index 1 Index 2 

To
ta

l f
lo

o
d

s 
To

ta
l f

lo
o

d
 v

o
lu

m
e 

(m
3 ) 



210 

 

a uniformly distributed rainfall is less likely to cause sewer flooding or would 

produce a smaller quantity of flooding.  

As a relationship has been established between 𝑽𝒂 and variance, and 𝑽𝒃 and 

variance, the spatial indexes present the opportunity to further analysis these 

relationships with spatial parameters related to storm type and positioning over 

the sewer catchment. Figure 5.19 shows that events that have the lowest values 

for 𝑽𝒂 and 𝑽𝒃 have values for spatial index 1 close to 1. This shows that rainfall 

situated at the centre of the sewer catchment (relative to the outlet) causes the 

least flooding. However, rainfall situated either upstream or downstream causes 

more flooding in terms of total flood volume (see top left figure of Figure 5.19). 

However, in terms of number of flooded nodes, more flooding occurs when rainfall 

is situated downstream of Ponteland sewer catchment. Physically, when most of 

the rainfall is situated upstream, the rainfall would enter the network as it travels 

towards downstream. When it does so, it would overload the network in the 

process in addition to the rainfall falling directly over the various locations in the 

sewer catchment. This would increase the flood volumes of already flooded 

nodes at these locations without necessarily causing an unflooded node to 

become flooded.  

The left figures of Figure 5.19 show the relationships of total flood volume/total 

floods and spatial index 2. These figures show that when the rainfall is generally 

uniform (i.e. values of spatial index 2 are centred close to 1) the total flood volume 

and total floods are relatively low. This less pronounced for total flood volume as 

most events with a value for spatial index 2 close to 1 shows relatively medium 

flooding. However, values for this index marginally lower than 1 show the largest 

flooding volumes, although this cannot clearly be concluded for total floods. This 

shows that rainfall over the catchment that has a distribution resembling a 

convective storm (i.e. having a singular region in the radar field over the sewer 

catchment with the highest proportion of total rainfall) would generally be 

expected to show higher quantities of flood volumes. As this index describes 

characteristics of the storm over the study region with detailed distributions 

indicating singular or multimodal storms, smaller study regions would make this 

more difficult to show. This is the reason why conclusions cannot easily be 
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derived for this index, especially in the case of multimodal storms (i.e. values of 

spatial index 2 over 1). This is later confirmed in the other case studies. 

Chopwell and Blackhall Mill 

Figure 5.18 shows scatter graphs of 𝑽𝒂 and 𝑽𝒃 against variance and mean rainfall 

over the study area. There isn’t a strong positive correlation between 𝑽𝒂 and 

mean rainfall, and 𝑽𝒃 and the mean rainfall. This means that even if more rainfall 

falls on the sewer catchment, there is no significant effect on the number of 

manholes flooded or the volume of flooding. There could be several reasons for 

this including that the sewer model used in the case study factored in sustainable 

urban drainage systems in the design of the model. This would be performed by 

engineering consultancies for wastewater companies to support construction of 

new development. Usually, the model is modified to reduce sewer flooding. The 

solutions include incorporating larger storage components or diverting flow so 

that the amount of rainfall entering the sewer network is reduced. These 

modifications may alter the correlations expected in the case that higher rainfall 

over the sewer catchment causes higher flood volumes/more flooded manholes. 

In the case of the sewer catchment in this case study, the flooding extent is 

weakly correlated with the rainfall amounts over the network. However, the 

relationship between 𝑽𝒂 and variance, and 𝑽𝒃 and the variance of the gridded 

rainfall is more positively correlated (𝑟 value of 0.58 and 0.61 for 𝑽𝒂 and 𝑽𝒃 

against variance, respectively). This shows that the flooding extent in this sewer 

catchment is sensitive to the distribution of the rainfall spatially over the study 

area.  This is clearly observed in Figure 5.20 where higher 𝑽𝒂 values are 

observed for events with a large proportion of the rainfall over the area situated 

upstream of the sewer catchment. Furthermore, where two regions (or grids) 

show higher proportions of rainfall over the area (i.e. characterised a storm that 

is multimodal in spatial distribution) and having values for spatial index 2 above 

1, 𝑽𝒂 is higher in comparison to an event with with a more uniformly distributed 

rainfall over the area, or an event with only one region (or grid) with the highest 

proportion of rainfall. However, for 𝑽𝒃, the opposite is the case. This means that 

there are more flooded nodes for events where the rainfall over the region is 

situated mostly downstream of the sewer catchment and for events that have a 

singular region (or grid) with the highest proportion of rainfall. This indicates the 
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characteristic of the sewer network that few flooded nodes may excessively flood 

in large quantities. For example, based on Figure 5.20, there might be a large 

cluster of nodes situated downstream of the sewer catchment that sensitive to 

rainfall falling directly over them. So, when the rainfall is mostly situated 

downstream, these nodes would become flooded. However, when the rainfall is 

mostly situated upstream, various nodes in the pathway towards downstream of 

the sewer catchment may have significantly lower hydraulic capacities causing 

them to become flood easily as rainfall runs over the surface entering prior nodes 

as the sewer flow travels downstream. Due to the flow pathway, these sensitive 

nodes would flood larger quantities of sewage without flooding the nodes further 

downstream. This would possibly explain the large flood volumes without causing 

many nodes in the sewer catchment to be flooded. 
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5.4.3 Generalised Linear Models 

Ponteland 

 

Figure 5.21. The values of flood volume (𝑽𝒂) of all verification QPE events across 

the different mean rainfall ranges over the sewer catchment for 𝐺𝐿𝑀1, 𝐺𝐿𝑀2 and 

the hydraulic model for Ponteland. 
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Figure 5.22. The total number of floods (𝑽𝒃) of all verification QPE events across 

the different mean rainfall ranges over the sewer catchment for 𝐺𝐿𝑀1, 𝐺𝐿𝑀2 and 

the hydraulic model for Ponteland. 
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Figure 5.23. The RMSE values for the total flood volume (𝑽𝒂) (left) and total 

number of floods (𝑽𝒃) (right) across each mean rainfall range are presented for 

𝐺𝐿𝑀1 and 𝐺𝐿𝑀2 against the model output for Ponteland. 

The performances of 𝐺𝐿𝑀1 and 𝐺𝐿𝑀2 for Ponteland are presented in Figure 

5.21, Figure 5.22 and Figure 5.23. Across the study events, the GLMs both over 

and under predict the model flood volume and number of floods (see Table 

5.6.1 and  

Table 5.6.2). Interestingly, the performance of 𝐺𝐿𝑀2 is better than 𝐺𝐿𝑀1 when 

the values for 𝑽𝒂 and 𝑽𝒃of 𝐺𝐿𝑀1 under-predict the model values for these 

variables. The average 𝑽𝒂 for GLM1 under predicts the model value by 35% 

whereas the value for 𝐺𝐿𝑀2 under predicts 𝑽𝒂 by 9%. For 𝑽𝒃, the value for 

𝐺𝐿𝑀1 under predicts the model value by 51% whereas the value for 𝐺𝐿𝑀2 over 

predicts the model value by 48%. Despite the overall performance of 𝐺𝐿𝑀2 

being worse than 𝐺𝐿𝑀1, the specific analysis of the over/under prediction of 

model flood variables presents useful information for hydrologists in that where 

𝐺𝐿𝑀1 under predicts the model output, the 𝐺𝐿𝑀2 is likely to perform better. 

However, for Ponteland sewer catchment, 𝐺𝐿𝑀1 is overall more reliable for 

predicting 𝑽𝒂 and 𝑽𝒃. This is chiefly due to the relatively small area of the sewer 

catchment which reduces the clarity of spatial information of the rainfall storm 

relative to the area (i.e. for the same spatial grid dimension, the spatial ‘resolution’ 

of the rainfall field is reduced for a smaller sewer catchment. This coarseness of 
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the rainfall field data will provide less clear information of the spatial variability 

across the sewer catchment. Hence, the spatial index values will not accurately 

depict the extent of spatial variability according to their definitions). 

However, based on the individual mean rainfall ranges, 𝑽𝒂 and 𝑽𝒃 of verification 

QPE events in the mean ranges 20-30, 30-40 and 50-60 mm for 𝐺𝐿𝑀2 show 

lower RMSE values in comparison to those of 𝐺𝐿𝑀1. A justification for this could 

be that for certain events in the catalogue of historical QPE events for Ponteland 

the values of the spatial indexes correlate with 𝑽𝒂 or 𝑽𝒃  within their respective 

mean rainfall range. However, events within higher mean rainfall ranges may not 

correlate strongly with these variables. Although more historical events within the 

mean rainfall range would better represent the correlations between the spatial 

index values and the 𝑽𝒂 or 𝑽𝒃 within the respective range, it may just be the case 

that the spatial indexes reduce in accuracy of representing spatial information at 

higher intensity/more spatially varied events. This is likely the reason why for 

higher mean rainfall ranges 60-70, 70-80 and 80-90 mm the RMSE values are 

higher for 𝐺𝐿𝑀2 for both 𝑽𝒂 and 𝑽𝒃.  

Furthermore, whilst some study events show more accurate 𝑽𝒂 and 𝑽𝒃 values 

from 𝐺𝐿𝑀2 than 𝐺𝐿𝑀1, other events may show extremely inaccurate results from 

𝐺𝐿𝑀2 (e.g. event 37). Hence, the performance of 𝐺𝐿𝑀2 fluctuates largely across 

all verification QPE events. This is also the case within each mean rainfall range, 

such as in the 40-50 mm range where event 15 has a 𝑽𝒂 from 𝐺𝐿𝑀2 to have 

increased from the 𝐺𝐿𝑀1 value from approximately 1600 m3 to 3500 m3, when 

the model flood volume is approximately 1300 m3. However, in event 16, 𝑽𝒂 from 

𝐺𝐿𝑀2 shows an improvement where the 𝑽𝒂 of 𝐺𝐿𝑀2 increases from the 𝐺𝐿𝑀1 

value from 1700 m3 to 4000 m3 when the model flood volume is approximately 

3250 m3. 
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Chopwell and Blackhall Mill 

 

Figure 5.24. The flood volumes (𝑽𝒂) of each test event across the different mean 

rainfall ranges over the sewer catchment for 𝐺𝐿𝑀1, 𝐺𝐿𝑀2 and the hydraulic 

model for Chopwell & Blackhall Mill. 
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Figure 5.25. The total number of floods (𝑽𝒃) of each test event across the different 

mean rainfall ranges over the sewer catchment for 𝐺𝐿𝑀1, 𝐺𝐿𝑀2 and the hydraulic 

model for Chopwell & Blackhall Mill. 
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Figure 5.26. The RMSE values for the total flood volume (𝑽𝒂) (left) and total 

number of floods (𝑽𝒃) (right) across each mean rainfall range are presented for 

𝐺𝐿𝑀1 and 𝐺𝐿𝑀2 against the model output for Chopwell & Blackhall Mill. 

𝑽𝒂 and 𝑽𝒃 showed relatively weak relationships with the mean rainfall, variance 

and the spatial indexes. When these variables are used in a GLM they will not 

accurately predict 𝑽𝒂 and 𝑽𝒃. This is observed in Figure 5.24, Figure 5.25 and 

Figure 5.26 where 𝑽𝒂 and 𝑽𝒃 are presented for 𝐺𝐿𝑀1, 𝐺𝐿𝑀2 and the hydraulic 

model as simulated. The verification QPE events used in this case study show 

that across the mean rainfall ranges, the sewer network does not flood 

extensively. This is observed from the values for 𝑽𝒂 and 𝑽𝒃 from Figure 5.24 

and Figure 5.25 as they show relatively low values. For events that over and 

under-predict the model 𝑽𝒂, GLM1 is better performing than 𝐺𝐿𝑀2. The average 

value for 𝐺𝐿𝑀1 over predicts the model 𝑽𝒂 by 229% whereas the value for 

𝐺𝐿𝑀2 overpredicts the model 𝑽𝒂 by 275%. Where 𝐺𝐿𝑀1 under-predicts the 

model 𝑽𝒃, the average value of 𝐺𝐿𝑀2 from 𝐺𝐿𝑀1 doesn’t change 

(underprediction of 40%). However, where the values of 𝐺𝐿𝑀1 overpredict the 

model 𝑽𝒃, the GLM1 performs better than 𝐺𝐿𝑀1 where the average value for 

𝐺𝐿𝑀2 worsens from 𝐺𝐿𝑀1’s overprediction of 200% to 300%. Whilst these 

percentages are high, the average values for the flood variable is not large and 

so are not vastly inaccurate (see Table 5.6.2). Nonetheless, this analysis shows 

that 𝐺𝐿𝑀2 is less accurate than 𝐺𝐿𝑀1 for predicting the model 𝑽𝒂 and 𝑽𝒃 for 
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this sewer catchment. These outputs of 𝐺𝐿𝑀2 had been expected based on the 

explanations of how the spatial indexes perform for small sewer catchments.  

Like the Ponteland case study, the performance of 𝐺𝐿𝑀2 performed better for 

study events in the lower mean rainfall ranges. Particularly, 𝑽𝒂 and 𝑽𝒃 of 𝐺𝐿𝑀2 

show to be better for most of the events in the 40-50 mm mean rainfall range. 

This is also observed from the RMSE values in Figure 5.26 where overall the 

events in the first mean rainfall range (40-50 mm) shows better result for 𝐺𝐿𝑀2. 

However, for the events in the remaining mean rainfall ranges, 𝐺𝐿𝑀1 performs 

better as the RMSE values are lower in comparison to 𝐺𝐿𝑀2. Also, the primary 

reason the RMSE values for 𝐺𝐿𝑀2 in the 40-50 mm mean rainfall range are lower 

compared to 𝐺𝐿𝑀1 is that events 1 – 5 have no flooding, hence a value of 0 for 

𝑽𝒂. Only event 6 shows flooding (i.e. 2 floods) with less than 1 m3 of flooding. 

However, both the 𝐺𝐿𝑀1 and 𝐺𝐿𝑀2 values for 𝑽𝒂 and 𝑽𝒃 are much above this 

and the values for 𝐺𝐿𝑀2 reduces the overestimation of the values of 𝐺𝐿𝑀1 thus 

being closer to the model values. Otherwise, 𝐺𝐿𝑀2 is generally less accurate 

than 𝐺𝐿𝑀1. 
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5.5 Case studies: large drainage areas 

5.5.1 Extremities of spatial indexes 

 

Chester-le-Street 

 

Figure 5.27. Maximum (left) and minimum (right) values for spatial indexes 1 (top) 

and 2 (bottom) across the catalogue of historical events for Chester-le-Street. 

The values are stated in brackets. Legend represents rainfall accumulation (in 

mm). Location of the main outlet is shown as a red filled circle. 

Maximum index 1 (1.14) Minimum index 1 (0.65) 

Maximum index 2 (1.10) Minimum index 2 (0.47) 

(mm) (mm) 

(mm) (mm) 
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Figure 5.28. The percentage of total rainfall over the study region, Chester-Le-

Street, is stated for each grid (see Figure 5.12) for events showing 

maximum/minimum spatial indexes. 

Chester-Le-Street is relatively a larger sewer catchment in comparison to 

Ponteland and Chopwell & Blackhall Mill. Hence, the implications of the largest 

and smallest values for the spatial indexes are more visibly noticed. In Figure 

5.27 these values are provided for spatial indexes 1 and 2. It is observed that the 

largest value for spatial index 1 shows that most of the rainfall is situated furthest 

away from the sewer catchment outfall (i.e. upstream) with the level of rainfall 

gradually decreasing towards it. This is better observed in Figure 5.28 where in 

the figure for maximum index 1(1.14) the grids with the highest rainfall are grids 

12 and 16, followed by grids 15 and 10, all of which are situated upstream of the 

sewer catchment and all of which are adjacent to each other.  Conversely, the 

event with the smallest value for spatial index 1 (0.65) has many grids 

Maximum index 2 (1.10) Minimum index 2 (0.47) 

Maximum index 1 (1.14) Minimum index 1 (0.65) 
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downstream of the sewer catchment that have the largest proportion of the rainfall 

over the area. In fact, the six grids that have the largest proportions of the rainfall 

are situated downstream and constitute 37.5% of the total rainfall over the sewer 

catchment. This event (i.e. event with the smallest value for spatial index 1) also 

has the smallest value for spatial index 2 in the catalogue of historical events. 

The six grids with the highest proportions of total rainfall are clustered together in 

a singular region of the sewer catchment. As this region in the sewer catchment 

consists of around 37.5% of the total rainfall, the storm for this event is 

characterised to be of convective type.  
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Darlington (North) 

 

Figure 5.29. Maximum (left) and minimum (right) values for spatial indexes 1 (top) 

and 2 (bottom) across the catalogue of historical events for Darlington (North). 

The values are stated in brackets. Legend represents rainfall accumulation (in 

mm). Location of the main outlet is shown as a red filled circle. 

Maximum index 1 (1.10) Minimum index 1 (0.86) 

Maximum index 2 (1.19) Minimum index 2 (0.79) 

(mm) (mm) 

(mm) (mm) 
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Figure 5.30. The percentage of total rainfall over the study region, Darlington 

(North), is stated for each grid (see Figure 5.12) for events showing 

maximum/minimum spatial indexes. 

The main outlet for the sewer network of Darlington (North) is situated at bottom 

of the sewer catchment. Based on this, the extremities of the values of the spatial 

indexes can be visualised. For example, the value of 1.10 for spatial index 1 is 

the maximum value for an event found in the catalogue of historical QPE event. 

As is seen in Figure 5.29, the grid map shows heavier rainfall generally towards 

upstream of the sewer catchment. Although, there are regions at the northern 

boundaries upstream of the sewer catchment show less rainfall, whereas regions 

on the left boundary show the heaviest rainfall. More rainfall is seen towards the 

central and right regions of the sewer catchment. This is supported in Figure 5.30 

where grids 1,2,3,6,7,12 and 13, all that are located downstream of the sewer 

catchment, show minimum rainfall. The event with the smallest value for spatial 

Maximum index 2 (1.10) Minimum index 2 (0.47) 

Maximum index 1 (1.14) Minimum index 1 (0.65) 
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index 1 has a value of 0.86. The grid map for this is different in that most of the 

rainfall is situated near the outlet (i.e. downstream of the sewer catchment). In 

fact, grids 6, 8, 10, 17, and 18 shows to have the highest proportions of the total 

rainfall and are all located downstream of the sewer catchment (these grids 

constitute around 25% of the total rainfall). However, several grids over the sewer 

catchment that have high proportions of rainfall are situated in the centre of 

catchment (grids 23, 26 and 29 constitute around 14.5% of the total rainfall). The 

event that has the lowest value for spatial index 1 also has the lowest value for 

spatial index 2 (value of 0.79), which suggests that the spatial distribution of the 

rainfall in this event is not only situated mostly upstream, but is focussed in a 

concentrated region over the sewer catchment indicating that the rainfall is from 

a convective type storm. The main difference between this event and another 

event with the largest value for spatial index 2 (value of 1.19) is that spatial 

distribution of the rainfall of the latter indicates a multimodal type of rainfall storm. 

This is suggested from the grid map in Figure 5.29 where there are two distinct 

regions in the sewer catchment that have the highest proportions of the total 

rainfall. The first region consists of grid 25 and this has 7% of the total rainfall 

(see Figure 5.30). The second region consists of grids 12 and 13 and they both 

make up 14.5% of the total rainfall. In comparison to the other 35 grids, the rainfall 

over these three grids is markedly higher and so explains why the large value of 

1.19 for spatial index 2.  
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5.5.2 Relationship between model flood variables and spatial variables 

 

Figure 5.31. Scatter graphs showing the correlations of the total flood volume (𝑽𝒂) 

(top) and total number of floods (𝑽𝒃) (bottom) against the variance (left) and mean 

rainfall (right) of Chester-le-Street. 

 

Figure 5.32. Scatter graphs showing the correlation of the total flood volume (𝑽𝒂) 

(top) and total number of floods (𝑽𝒃) (bottom) against the variance (left) and mean 

rainfall (right) of Darlington (North). 
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Figure 5.33. Hex bin charts showing the density of events per value of index 1 

(left) and index 2 (right) for 𝑽𝒂 (total flood volume) (top) and 𝑽𝒃 (total floods) 

(bottom) of Chester-le-Street. 
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Figure 5.34. Hex bin charts showing the density of events per value of index 1 

(left) and index 2 (right) for 𝑽𝒂 (total flood volume) (top) and 𝑽𝒃 (total floods) 

(bottom) of Darlington (North). 

Chester-le-Street 

𝑽𝒂 and 𝑽𝒃 have moderate/strong positive correlations with variance and mean 

rainfall over the sewer catchment. The scatter graphs in Figure 5.31 show these 

relationships where the 𝑟 values for mean rainfall are 0.47 and 0.51 for 𝑽𝒂 and 

𝑽𝒃, respectively, and for variance are 0.82 and 0.81 for 𝑽𝒂 and 𝑽𝒃, respectively. 

The 𝑟 value for the relationships of 𝑽𝒂 and 𝑽𝒃 with variance is particularly 

strongly positively correlated. This means that the higher the variance of the 

rainfall over the sewer catchment, the higher the total flood volume or more 

nodes in the network would be flooded. There is one event in the catalogue of 

historical QPE events showing mean rainfall that is not very high relative to the 

other events (in the range of 60 – 70 mm) and shows a markedly high value of 

𝑽𝒂 and 𝑽𝒃in comparison to other events in the same mean rainfall category. In 

fact, this anomalous event shows the largest values of 𝑽𝒂 and 𝑽𝒃 (491 floods 

and 12411 m3 of flooding, respectively). However, this event has the largest 
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value for variance. Furthermore, this event has the lowest value for spatial index 

1 and 2 (see Figure 5.31). Based on this, it is concluded that highly convective 

rainfall over nodes situated downstream of this sewer catchment would result in 

the most flooded nodes with large flood volumes. Furthermore, this would not 

able to be predicted using the linear model (or a nonlinear model). However, for 

future work a separate analysis studying ‘peaks’ in flood data that cannot be 

predicted using linear or nonlinear models could be done. Work such as Wang 

et al. (2015) study singularities in rainfall and the concept used could also be 

applied to find anomalous peaks in flood data. 

The hex bins in Figure 5.33 show the relationships between 𝑽𝒂 and 𝑽𝒃 with spatial 

indexes 1 and 2. It is observed that values of spatial index 1 below 1 generally 

show large 𝑽𝒂 and 𝑽𝒃. This means that more flooding would occur when the 

rainfall is situated mostly downstream of the sewer catchment. A similar trend is 

observed for spatial index 2 where larger values of 𝑽𝒂 and 𝑽𝒃 are observed for 

values below 1 for spatial index 2. Hence, it is expected that when rainfall is 

situated mostly in a concentrated region in the sewer catchment, more flooding 

is expected.  

Darlington (North) 

Like Chester-le-Street, Darlington (North) shows moderate to strong correlations 

of 𝑽𝒂 and 𝑽𝒃 with variance and the mean rainfall over the sewer catchment. The 

correlations for variance are 0.69 and 0.50 for 𝑽𝒂 and 𝑽𝒃, respectively, and for 

mean rainfall are 0.54 and 0.40 for 𝑽𝒂 and 𝑽𝒃, respectively. The relationships of 

𝑽𝒂 and 𝑽𝒃 with the spatial indexes are similar to the Chester-le-Street sewer 

catchment. Values below 1 for spatial index 1 generally tend to show higher flood 

volumes or more flooded nodes (see  Figure 5.34). This means that when most 

of the rainfall is situated downstream of the sewer catchment, more flooding 

would typically be observed in such events. However, where the spatial 

distribution of the rainfall indicates a multimodal storm or where more than one 

region in the drainage has the highest proportion of total rainfall (i.e. values above 

1 for spatial index 2) more flooding is observed in contrast to singular regions in 

the sewer catchment that have the highest proportion of total rainfall. This 
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indicates that there are several regions in the sewer network that are sensitive to 

flooding, especially downstream of the sewer catchment.  

5.5.3 Generalised Linear Models 

Chester-le-Street 
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Figure 5.35. The flood volumes (𝑽𝒂) of each test event across the different mean 

rainfall ranges over the sewer catchment for 𝐺𝐿𝑀1, 𝐺𝐿𝑀2 and the hydraulic 

model for Chester-Le-Street. 
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Figure 5.36. The total number of floods (𝑽𝒃) of each test event across the different 

mean rainfall ranges over the sewer catchment for 𝐺𝐿𝑀1, 𝐺𝐿𝑀2 and the hydraulic 

model for Chester-le-Street. 
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Figure 5.37. The RMSE values for the total flood volume (𝑽𝒂) (left) and total 

number of floods (𝑽𝒃) (right) across each mean rainfall range are presented for 

𝐺𝐿𝑀1 and 𝐺𝐿𝑀2 against the model output for Chester-le-Street. 

The performance of 𝐺𝐿𝑀1 and 𝐺𝐿𝑀2 for this sewer catchment is shown in Figure 

5.35, Figure 5.36and Figure 5.37. Across all the verification QPE events, it is 

observed that values for 𝑽𝒂 and 𝑽𝒃 for 𝐺𝐿𝑀1 generally underestimate the model 

values. However, for some events values for 𝐺𝐿𝑀1 overestimate the model 

values. For example, values for 𝑽𝒂 of 𝐺𝐿𝑀1 for all events in the 30-40 mm mean 

rainfall range overestimate the model values. For events that underestimate 

model 𝑽𝒂, the average value for 𝐺𝐿𝑀1 underestimate the model 𝑽𝒂 by 63%. For 

𝑽𝒃, the 𝐺𝐿𝑀1 underestimates the model 𝑽𝒃 by 65%. However, when considering 

spatial indexes 1 and 2 in addition to variance and mean rainfall, the 

underestimation is reduced so that the predicted 𝑽𝒂 and 𝑽𝒃 from the GLM are 

closer to the model values. The average 𝑽𝒂 for 𝐺𝐿𝑀2 reduces the overestimation 

of the values of 𝐺𝐿𝑀1 to 56%. For 𝑽𝒃, the underestimation is reduced to 62%. 

When considering events where the values of 𝐺𝐿𝑀1 overestimate the model 

values, they overestimate these values to a large degree. The average values of 

𝐺𝐿𝑀1 for 𝑽𝒂 and 𝑽𝒃 overestimate the model values by 119% and 175%, 

respectively. However, the values for 𝐺𝐿𝑀2 reduce this overestimation greatly 

where the average values reduce the overestimation of 𝑽𝒂 and 𝑽𝒃 to 0% and 

56%, respectively. The average value of 𝑽𝒂 for 𝐺𝐿𝑀2 equates to the average 
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model 𝑽𝒂 (hence the 0%). Clearly, 𝐺𝐿𝑀2 is a better predictor than 𝐺𝐿𝑀2 for 

deducing values close to the hydraulically simulated 𝑽𝒂 and 𝑽𝒃.  

By considering the spatial index values in addition to the variance and mean 

rainfall, the predictions of 𝑽𝒂 and 𝑽𝒃 improve over just considering variance and 

mean rainfall. This is because specific spatial information indicated by spatial 

indexes 1 and 2 is more accurately depicted in larger sewer catchments where 

several grids over the region are used to extract rainfall data. Chester-le-Street 

is a larger sewer catchment in comparison to Ponteland and Chopwell & Blackhall 

Mill, and so the results show that the spatial indexes are more reliable for a sewer 

catchment of this size.  

Events in individual mean rainfall ranges demonstrate that 𝐺𝐿𝑀2 performs 

consistently well in each of them, for both 𝑽𝒂 and 𝑽𝒃. Also, the performance of 

𝐺𝐿𝑀1 (and hence 𝐺𝐿𝑀2) progressively worsens for events higher up the mean 

rainfall ranges. This is better illustrated in Figure 5.37 where the RMSE values 

are provided for each mean rainfall range. Despite the RMSE values fluctuating 

in performance between the 40-50 and 80-90 mm mean rainfall range, the 

average difference between these two categories show that the RMSE has 

marginally increased. Also, the final mean rainfall range of 90-100 mm shows the 

largest RMSE value. 
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Darlington (North) 

 

Figure 5.38. The flood volumes (𝑽𝒂) of each test event across the different mean 

rainfall ranges over the sewer catchment for 𝐺𝐿𝑀1, 𝐺𝐿𝑀2 and the hydraulic 

model for Darlington (North). 
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Figure 5.39. The total number of floods (𝑽𝒃) of each test event across the different 

mean rainfall ranges over the sewer catchment for 𝐺𝐿𝑀1, 𝐺𝐿𝑀2 and the hydraulic 

model for Darlington (North). 
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Figure 5.40. The RMSE values for the total flood volume (𝑽𝒂) (left) and total 

number of floods (𝑽𝒃) (right) across each mean rainfall range are presented for 

𝐺𝐿𝑀1 and 𝐺𝐿𝑀2 against the model output for Darlington (North). 

The performance of 𝐺𝐿𝑀1 and 𝐺𝐿𝑀2 for Darlington (North)’s sewer catchment 

performs similarly to the Chester-Le-street case study. Based on Figure 5.38 and 

Figure 5.39 for most the events 𝑽𝒂 and 𝑽𝒃 of 𝐺𝐿𝑀1 overestimate the mode 

values. Particularly, events in the 20-30 mm mean rainfall range have 𝐺𝐿𝑀1 

values that overestimate the model values the most. For those events that 

overestimate the model values, 𝑽𝒂 and 𝑽𝒃 of 𝐺𝐿𝑀1 overestimate the model 

values by 115% and 59%, respectively. This particularly shows that just 

considering the variance and mean rainfall as predictors for 𝑽𝒂 and 𝑽𝒃 show that 

the GLM featuring these predictors would provide estimations more than double 

of the model output. However, when considering spatial index values as in 𝐺𝐿𝑀2, 

the average values for 𝑽𝒂 and 𝑽𝒃 reduce the overestimation to 61% and 41%, 

respectively. This highlights a major improvement for events where 𝐺𝐿𝑀1 greatly 

overpredicts the flood extents. For events that have values of 𝐺𝐿𝑀1 

underestimating the model values, the average values given by 𝐺𝐿𝑀1 

underestimate 𝑽𝒂 and 𝑽𝒃 by 53% and 60%, respectively. However, this 

underestimation is reduced by 𝐺𝐿𝑀2 where average values of 𝑽𝒂 and 𝑽𝒃 show 

underestimations of 37% and 48%. Similarly, to the trends of the results seen in 

the Chester-le-Street case study, 𝐺𝐿𝑀2 is clearly a more accurate model to 

predict 𝑽𝒂 and 𝑽𝒃 in comparison to 𝐺𝐿𝑀1. This is because the sewer catchment 
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of Darlington (North) is relatively large albeit being larger than Chester-Le-street. 

However, both sewer catchments are notably larger than Ponteland and 

Chopwell & Blackhall Mill sewer catchments whose performance of 𝐺𝐿𝑀2 is 

worse than 𝐺𝐿𝑀1.  

Values of 𝑽𝒂 observed in all the verification QPE events except for the 70-80 mm 

category are relatively low in comparison to some of 𝑽𝒂 values observed in events 

in the 70-80 mean rainfall range (see Figure 5.38). In fact, the event with the 

highest 𝑽𝒂is event 36 which is has an approximate value of 12000 m3 whereas 

the values of 𝐺𝐿𝑀1 and 𝐺𝐿𝑀2 don’t exceed 6000 m3. However, based on the 

very large improvement of 𝑽𝒂 predicted by 𝐺𝐿𝑀2 over the value of 𝐺𝐿𝑀1 for this 

event, the RMSE value for 𝐺𝐿𝑀2 for this mean rainfall range shows the largest 

improvement in Figure 5.40. Also, based on the relatively small values of 𝑽𝒂 seen 

in the other events as described, the improved RMSE values of 𝐺𝐿𝑀2 in this 

figure are not very large compared the improvement seen in the 70-80 mean 

rainfall range. However, similarly as in the Chester-le-Street case study, the 

average RMSE value for each mean rainfall range has improved (i.e. 𝐺𝐿𝑀2 is 

more accurate than 𝐺𝐿𝑀1 in predicting flood volume across each mean rainfall 

range). A similar reasoning is applied for total floods (see Figure 5.39).  

5.6 Summary of results and conclusions 

The results for the four case studies are summarised in Table 5.6.1 which 

provides average values of the 𝑽𝒂 and 𝑽𝒃 (based on Equations (5.12 and 5.13)) 

for 𝐺𝐿𝑀1, 𝐺𝐿𝑀2 and the model output for the study events. Two sets of results 

are stated: one set is where the 𝑽𝒂 and 𝑽𝒃 of 𝐺𝐿𝑀1 overestimate the model 

values, and another set where the 𝑽𝒂 and 𝑽𝒃of 𝐺𝐿𝑀1 underestimate the model 

values. As 𝐺𝐿𝑀2 contains the two spatial indexes as predictor variables in 

addition to the mean and variance that 𝐺𝐿𝑀1 has as its only two predictor 

variables, the change of overestimation/underestimation could directly be 

attributed to the additional predictor variables in 𝐺𝐿𝑀2. Therefore, this would 

enable comparisons between 𝐺𝐿𝑀1 and 𝐺𝐿𝑀2 to be made to indicate whether 

𝐺𝐿𝑀2 is indeed a better predictor. Furthermore, it would indicate the performance 

of 𝐺𝐿𝑀2 in two different cases where 𝐺𝐿𝑀1 overestimates or underestimates 

model output. Table 5.6.2 indicates the percentages of over/underestimation of 
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the values of 𝐺𝐿𝑀1 and 𝐺𝐿𝑀2 with the model values. The lower the percentages 

the better the result. 

Table 5.6.1. The average values of 𝑽𝒂 and 𝑽𝒃 of 𝐺𝐿𝑀1, 𝐺𝐿𝑀2 and model output 

for each case study are provided. They are organised on values of 𝐺𝐿𝑀1 

over/underestimating the model value to better see the improvement of 𝐺𝐿𝑀2. 

  𝑽𝒂 (m3) 𝑽𝒃(no. of floods) 

  

Overestimate 

(GLM1 > 
Model) 

Underestimate 

(GLM1 < 
Model) 

Overestimate 

(GLM1 > 
Model) 

Underestimate 

(GLM1 < 
Model) 

Ponteland 

𝐺𝐿𝑀1 3425.4 2174.2 31 20 

𝐺𝐿𝑀2 5683.8 3048.1 87 61 

Model 2046.5 3337.1 17 41 

Chopwell 
& 
Blackhall 
Mill 

𝐺𝐿𝑀1 12.7 5.0 3 3 

𝐺𝐿𝑀2 14.5 6.6 4 3 

Model 3.9 5.3 1 5 

Chester-
Le-street 

𝐺𝐿𝑀1 954.7 883.7 44 32 

𝐺𝐿𝑀2 435.9 1074.4 25 35 

Model 435.4 2417.5 16 92 

Darlington 
(North) 

𝐺𝐿𝑀1 805.7 1173.4 27 35 

𝐺𝐿𝑀2 603.2 1590.4 24 45 

Model 375.1 2504.6 17 87 

 

Table 5.6.2. Percentage of over/underestimate of average 𝑽𝒂 and  𝑽𝒃 of 𝐺𝐿𝑀1 

and 𝐺𝐿𝑀2 with model value for each case study. 

  Percentage of over/underestimate with model value (%) 

  𝑽𝒂 𝑽𝒃 

  

Overestimate 

(GLM1 > 
Model) 

Underestimate 

(GLM1 < 
Model) 

Overestimate 

(GLM1 > 
Model) 

Underestimate 

(GLM1 < 
Model) 

Ponteland 
𝐺𝐿𝑀1 67 35 82 51 

𝐺𝐿𝑀2 178 9 412 48* 

Chopwell 
& 
Blackhall 
Mill 

𝐺𝐿𝑀1 226 6 200 40 

𝐺𝐿𝑀2 272 25* 300 40 

Chester-
Le-street 

𝐺𝐿𝑀1 119 63 175 65 

𝐺𝐿𝑀2 0 56 56 62 

Darlington 
(North) 

𝐺𝐿𝑀1 115 53 59 60 

𝐺𝐿𝑀2 61 37 41 48 

* These values show percentage overestimation instead of percentage 

underestimation 
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For Ponteland case study (small sewer catchment): 

• The overall RMSE values for total flood volume and total number of floods 

for 𝐺𝐿𝑀1 are 1270.9m3 and 18, respectively. 

• The overall RMSE values for total flood volume and total number of floods 

for 𝐺𝐿𝑀2 are 1963.2m3 and 45, respectively. 

For Blackhall Mill case study (small sewer catchment): 

• The overall RMSE values for total flood volume and total number of floods 

for 𝐺𝐿𝑀1 are 4.55m3 and 2, respectively. 

• The overall RMSE values for total flood volume and total number of floods 

for 𝐺𝐿𝑀2 are 5.95m3 and 3, respectively. 

Hence, for small sewer catchments, use of spatial indexes together with mean 

rainfall and variance are not useful for predicting flood extents. 

For Chester-le-Street case study (large sewer catchment): 

• The overall RMSE values for total flood volume and total number of floods 

for 𝐺𝐿𝑀1are 1026.6m3 and 44, respectively. 

• The overall RMSE values for total flood volume and total number of floods 

for 𝐺𝐿𝑀2 are 671.8m3 and 33, respectively. 

For Darlington (North) case study (large sewer catchment): 

• The overall RMSE values for total flood volume and total number of floods 

for 𝐺𝐿𝑀1 are 880.9m3 and 31, respectively. 

• The overall RMSE values for total flood volume and total number of floods 

for 𝐺𝐿𝑀2 are 571.2m3 and 24, respectively. 

Hence, for large sewer catchments, use of spatial indexes together with mean 

rainfall and variance are useful for predicting flood extents. 

Whilst 𝐺𝐿𝑀2 performs worse overall compared to 𝐺𝐿𝑀1 for predicting 𝑽𝒂 and 𝑽𝒃 

in cases studies Ponteland and Chopwell and Blackhall Mill, where 𝐺𝐿𝑀1 

underestimate the model outputs 𝐺𝐿𝑀2 reduces this underestimation (apart from 
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predicting 𝑽𝒃 in Chopwell and Blackhall Mill, which doesn’t show a difference in 

values) (see  

Table 5.6.2). In fact, the value for 𝑽𝒂 of 𝐺𝐿𝑀2 in Ponteland is more accurate than 

the value of 𝐺𝐿𝑀1.  Furthermore, 𝐺𝐿𝑀2 results in overestimating the model output 

where 𝐺𝐿𝑀1 underestimates for 𝑽𝒂 Chopwell and Blackhall Mill and 𝑽𝒃 in 

Ponteland (negative values in  

Table 5.6.2). This shows that for the small sewer catchments, 𝐺𝐿𝑀2 has the 

tendency to overestimate 𝑽𝒂 and 𝑽𝒃 when 𝐺𝐿𝑀1 underestimates these values. 

For Chester-le-Street and Darlington (North), 𝐺𝐿𝑀2 performs better for predicting 

the model 𝑽𝒂 and 𝑽𝒃 when 𝐺𝐿𝑀1 overestimate these values in contrast to when 

𝐺𝐿𝑀1 underestimate these values. 

Conclusions 

This chapter has developed an approach to estimate hydraulic model flood 

variables without running online hydraulic simulations using generalised linear 

models and a spatial analysis of radar QPE over sewer catchments. Spatial 

analysis involves extracting mean rainfall, variance and values for two spatial 

indexes from a ‘catalogue’ of historical rainfall events over a sewer catchment. 

Offline hydraulic simulations are performed to obtain flood volume and number of 

flooded nodes. Two generalised linear models are produced from the predictor 

variables mean rainfall, variance and values for two spatial indexes and response 

variables flood volume and number of flooded nodes. The first model, 𝐺𝐿𝑀1, 

includes mean rainfall and variance as predictor variables. The second model, 

𝐺𝐿𝑀2, includes mean rainfall, variance and the two spatial indexes as predictor 

variables.  

The study uses radar QPE/QPF sources from section 3.3.1 and introduces four 

sewer catchments in the region where the radar QPE/QPF are sourced that are 

used as case studies. Six-hour QPE events are extracted between January 2012 

and December 2016 and used to produce a catalogue of historical QPE events. 

These events are edited to produce verification QPE events that are used to test 

the flood forecasting approach.  
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The main conclusion of this chapter is that the spatial indexes are more accurate 

predictors of the flooding extent than just using mean rainfall and variance for 

large sewer catchments. Using these four variables estimation of the flood 

extents could be obtained within a degree of uncertainty.  

This approach could be used as part of probabilistic flood forecasting system to 

directly predict flood extents without running computationally expensive hydraulic 

simulations using probabilistic QPFs. Moreover, the approach to spatial analysis 

is useful for using probabilistic QPFs over a sewer catchment. This would improve 

probabilistic sewer flood modelling and forecasting at a spatial scale, thus 

improving the way probabilistic hydraulic variable forecasts are understood for 

supporting decision making. As the method presented in this chapter focuses on 

spatial distribution of rainfall fall, the temporal distribution of the rainfall is not 

included. Temporal distribution of rainfall is a specific area of research that could 

be explored as future work.  

An area of exploration in the regression lines show in section 5.4 and 5.5 is that 

the upper envelopes could be used in the linear models instead of the regressed 

line. The rationale of this is that the model would consider worse flood scenarios 

and therefore would provide higher estimations. This would increase 

preparedness in the case that this method is used to estimate sewer flooding in 

real-time. 

Furthermore, this study doesn’t consider dry weather flow as this could be 

considered for combined sewers, which is what the sewer type is for the case 

studies used in sections 5.4 and 5.5. 

 

 

 

 

 

 



244 

 

6 Business case 

6.1 Introduction 

It has been realised that there are ample weather forecast data that are not being 

used for urban flood management. Important is the prediction of sewer flooding 

as it is a specific type of flood that could result from urban flooding. Several 

studies have used sewer models to produce predictions of sewer variables from 

rainfall forecasts (Achleitner et al., 2009; Loewe et al., 2014; Schellart et al., 

2012). However, rainfall forecasts can be uncertain which produce inaccurate 

flood predictions. Modelling uncertainties also exist which include verifying 

models against the most recent flood data. Furthermore, running computationally 

heavy hydraulic models for sewer flood forecasting in real-time is impractical. 

These are the main reasons why sewer operation teams in wastewater 

companies do not rely on rainfall forecasts and hydraulic models in online settings 

to inform decision making. 

 

The results of this project provide a more accurate means to use short range 

weather forecasts by the wastewater company’s operations team to give them 

the confidence to introduce the necessary interventions that are specific, 

resourceful and efficient in execution to reduce the risk of damage from a sewer 

flood or to prevent the event from occurring. This chapter presents a business 

case to use probabilistic sewer flood forecasting using probabilistic radar 

Nowcasts to reduce the costs of mitigating sewer floods.  

6.1.1 Objectives 

The aim of the business project is to predict sewer flooding with reasonable 

accuracy and efficiency to better inform decision making in tackling sewer floods. 

Methods in Chapter 4 and Chapter 5 are used to develop the sewer flood 

forecasting process described in this business case. 

The objectives of the project are as follows: 

• Apply probabilistic sewer flood forecasting in real-time settings 

• Reduce expenditure of mitigating sewer flooding 

The project supports Northumbrian Water’s core values, particularly: 
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• Creative – introducing a probabilistic approach provides a holistic and 

innovative way of tackling sewer flooding 

• Results driven – improving rainfall forecasts is a way of producing better 

data from worse data. The additional benefits highlight a results-driven 

approach 

6.1.2 Scope and interdependencies 

Rainfall forecasting to predict sewer flooding is expected to be applied in 

Northumbrian Water’s sewer operations to supplement the decision-making 

process in choosing appropriate interventions. Specifically, the class of 

interventions is considered ‘reactive’ as oppose to ‘proactive’. Reactive 

interventions are used to mitigate imminent or direct consequences of flooding, 

which are normally deployed within a short time span. Proactive interventions are 

conducted to tackle potential sewer flooding in the future. However, these 

interventions produce long term changes to the drainage area that don’t normally 

include short term mitigations affecting the network. Therefore, the proposed 

sewer flood forecasting system is expected to inform the selection of reactive 

interventions before the flood occurs.  

Methods have been produced to improve and explore the uncertainties in radar 

rainfall forecasts. This has been solely applied to sewer flood modelling. 

However, these methods could also be applied to CSO management, leakage 

detection and blockage detection. The following projects within Northumbrian 

Water have potential independencies with the outputs of this thesis: 

• SNIPER project – monitoring CSO spills with more accurate and 

postprocessed Nowcast data. 

6.1.3 Blockage detection – forecasting methods could be used to conduct 

sensitivity analyses of blockages using hydrological models Benefits and 

drawbacks 

The benefits of using the methods of this thesis are: 

• Introduction of sewer flood forecasting system –the key consequence of 

this is that Northumbrian Water would be able to use Nowcast data to 

tackle sewer flooding before it occurs. 
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• Changing the way decisions is made by sewerage operations with the 

introduction of a ‘probabilistic’ approach to flood forecasting. 

• Increased knowledge of rainfall forecasts and sewer catchment behaviour 

–the probabilistic methodology enables Northumbrian Water to 

understand the sensitivity of sewer flooding various hydraulic models by 

identifying the ‘clustering’ of sewer floods based on varying rainfall 

intensities. 

• Cost savings 

The potential drawbacks are as follows: 

• Forecasting sewer floods increases preparedness. However, more 

resources could be used to mitigate predicted floods which is costlier. 

• Forecasting some sewer floods based on the location and scale may not 

bring any more benefit than traditional approaches 

• Forecasting is an integral part of a warning system which is dependent on 

the interventions used to mitigate sewer flooding. Hence, the forecasting 

system should be co-dependent on the efficiency of intervention 

management. 

As radar QPEs are estimates of rainfall and do not show direct measurements of 

rainfall, this business case requires that rain gauge data is sourced and used to 

correct the radar QPE. This is included in the initial capital costs. 

6.2 Planning 

6.2.1 Product description 

Probabilistic sewer flood forecasting – a simple approach 
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Figure 6.1. Hydraulic simulations using Infoworks ICM of a sewer model 

representing Ponteland, Newcastle using (a) QPE (b) QPF (c) 70 % prob. QPF 

(d) 80 % prob. QPF (e) 90% probabilistic QPF (f) 99% prob. QPF 

Flooded manhole 

(a) (b) 

(c) (d) 

(e) (f) 
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A sewer model in a catchment of approximately 8 km2 in area representing 

Ponteland, Newcastle is tested with a Nowcast (QPF source) on 14th November 

2015, 6pm – 12am along with the observed rainfall, Rain Radar rain-rate (QPE 

source) and the probabilistic QPFs (see Figure 6.1). Assuming the QPE is an 

accurate source of observed rainfall, the QPF modelling output had under-

predicted the number of manholes flooded, demonstrating that deterministic QPF 

is not reliable in this event. The 80th percentile of the probabilistic QPFs shows 

flooded manholes that most closely match the observed model with 11 floods. 

However, from the first percentile (70th percentile) that shows flooding, the 

‘growth’ patterns of flooded manholes are generally seen, even though the 80th 

percentile is most accurate. This would highlight the region of manholes that are 

at most risk of being flooded, which a deterministic QPF would not show. 

6.2.2 Risk assessment 

The risks associated to setting up a real-time sewer flood forecasting system are 

described as follows: 

• The project had aimed to explore the uncertainties of the Nowcast data 

and use this to develop flood forecasts. However, there is always a 

possibility that the methods presented in this thesis do not fully exploit the 

uncertainties for different storms. This is chiefly due to the dynamics of 

storm development and the complexity of predicting the development 

patterns cannot always be modelled or quantified statistically or 

hydrologically. In this case, it is imperative that the methods of this 

research project are thoroughly tested with different method parameters 

and with different data sets. 

• Nowcasts postprocessed using methods described in this thesis may 

show worse predictions of the sewer flood. It reinforces the point that the 

methods need to be rigorously tested and should be tailored for specific 

drainage areas (as some storms would interact with various catchments 

differently).  

• A good forecast doesn’t necessarily require actions to be taken, and where 

action is to be taken the consequences of them should be holistically 

reviewed. For example, a warning of a large flood in a cluster of properties 

should be carefully communicated as if the actual event isn’t so 
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destructive, the customer would lose trust or not take future warnings 

seriously. 

• By having a functional sewer flood forecasting system, the methods of 

predicting sewer flooding from non-rainfall causes could potentially be 

evaluated. However, the risk is that the flood predictions may not be 

realistically represented due to non-rainfall causes of the sewer flood. 

6.3 Financial appraisal 

This section presents a financial appraisal showing the cost effectiveness of the 

proposed probabilistic sewer flood forecasting system. This is evaluated using 

projected cash flow based on cost savings and then deriving the Net Present 

Value (NPV) and Internal Rate of Return (IRR). Furthermore, a sensitivity 

analysis is conducted on the projected cash flow to evaluate the sensitivity of 

NPV and IRR based on increasing capital investment.  

Formally, a reliable financial appraisal requires accurate data. However, due to 

limited data availability not all figures in the appraisal are representative of the 

cost effectiveness. As such, the appraisal is not comprehensive and necessitates 

introducing assumptions. These are explained in section 6.3.1. 

 

6.3.1 Assumptions and definitions 

Definitions 

Net Present Value – the summation of the present value of the cash inflow over 

a period of time is termed net present value. It shows the profitability of an 

investment based on assumptions made on future cash flows. The 𝑁𝑃𝑉 formula 

is given below: 

𝑁𝑃𝑉 = ∑
𝐶𝐴𝑆𝐻𝑚𝑜𝑛𝑡ℎ

(1+𝑑𝑖𝑠)𝑚𝑜𝑛𝑡ℎ

𝑝𝑒𝑟𝑖𝑜𝑑𝑠
𝑚𝑜𝑛𝑡ℎ     (6.1) 

Where 𝐶𝐴𝑆𝐻𝑚𝑜𝑛𝑡ℎ is the cash inflow per period, denoted 𝑚𝑜𝑛𝑡ℎ. The discount 

rate is denoted 𝑑𝑖𝑠 and the total number of periods is denoted 𝑝𝑒𝑟𝑖𝑜𝑑𝑠. 

Internal Rate of Return – this is the discount rate 𝑑𝑖𝑠 when the 𝑁𝑃𝑉 is at zero 

value. It indicates what discount rate is suitably above the rate used in the NPV 

when the lowest value (i.e. NPV of zero) of the capital is used for investing. 
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Assumptions 

The financial appraisal is applied to multiple drainage areas used in the sewer 

flood forecasting system. Therefore, the collective cost effectiveness is compared 

for different number of drainage areas. 

The following assumptions have been made for the financial appraisal: 

• The discount rate in the NPV formula is chosen to be 4.3%. This had been 

justified by Northumbrian Water (A Moore 2017, personal communication, 

13 September). Investing in projects could provide water utilities ways of 

demonstrating innovation but these are considered higher risk. Therefore, 

a larger discount rate is used to compensate for potential losses in 

comparison to using a lower discount rate. A rate of 4.3% assumes that 

investing into this project is safely regulated and is not considered risky. 

• The cash flow is defined for an annual period on a monthly basis. 

• The number of drainage areas used in the appraisal are 1,2,4,8 and 16. 

• The investment capital is assumed to be £5,000 per drainage area 

requiring monitoring for sewer flood forecasting in an annual period. This 

justifies labour and resource for operating the warning system. 

Specifically: 

o Assume a labour cost of £5,000 to conduct a historical analysis as 

part of setting up a sewer flood forecasting framework for one 

drainage area. 

• Profit in the cash flow is represented as cost savings in terms expenditure 

of sending out crew members to tackle three types of sewer flooding: 

internal, external and highway/other. They are described as follows: 

o Internal flood: sewer flooding that had occurred within customer’s 

household where sewage typically escapes through toilets. 

o External flood: sewer flooding that had occurred outside properties 

in gardens, driveways streets etc. where sewage escapes through 

the manhole. 

o Highway/other: sewer flooding that had occurred on a busy road or 

highway. 
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• Unit cost of sending out crew members vary monthly and thus an average 

is calculated and assumed for the cost of this expenditure. This is done for 

the three types of sewer flooding. 

• The ratio of sewer flood incidents of the three types of sewer flooding have 

been derived. These are used to calculate the approximate floods per 

month 

• The ratio of the average sewer floods (all types) occurring in each month 

of the year is used as a scaling factor to calculate the cost savings for each 

sewer flood for every month. This is used to derive the cash flows of all 

months in a year. 

• Crew numbers reduced across multiple drainage areas are scaled by a 

factor of 1.9 when doubling the number of drainage areas in the sewer 

flood forecasting system (instead of simply doubling this figure). This 

accounts for any single drainage area not showing improvement in cost 

savings using the forecasting system. 

6.3.2 Net Present Value and Internal Rate of Return 

Summary of the cash flow, NPV and IRR for an example annual period is shown 

in Table 6.3.1 for different number of drainage areas. 
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Table 6.3.1. Summary of monthly cash flow, NPV and IRR of sewer flood 

forecasting system 

MONTH 
CASH FLOW (NET SAVINGS) 

1 DA 2 DA 4 DA 8 DA 16 DA 

0 -£5,000.00 -£10,000.00 -£20,000.00 -£40,000.00 -£80,000.00 

1 £2,789.50 £5,300.05 £10,070.10 £19,133.18 £36,353.04 

2 £658.00 £1,250.20 £2,375.38 £4,513.22 £8,575.12 

3 £866.50 £1,646.35 £3,128.07 £5,943.32 £11,292.31 

4 £190.00 £361.00 £685.90 £1,303.21 £2,476.10 

5 £1,317.50 £2,503.25 £4,756.18 £9,036.73 £17,169.79 

6 £641.00 £1,217.90 £2,314.01 £4,396.62 £8,353.58 

7 £225.50 £428.45 £814.06 £1,546.70 £2,938.74 

8 £1,282.00 £2,435.80 £4,628.02 £8,793.24 £16,707.15 

9 £1,126.00 £2,139.40 £4,064.86 £7,723.23 £14,674.14 

10 £415.50 £789.45 £1,499.96 £2,849.91 £5,414.84 

11 £1,161.50 £2,206.85 £4,193.02 £7,966.73 £15,136.78 

12 £380.00 £722.00 £1,371.80 £2,606.42 £4,952.20 

NPV £3,856.10 £6,826.58 £11,970.51 £20,743.97 £35,413.53 

IRR 20% 18% 16% 15% 13% 

4.3%  
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Figure 6.2. Internal Rate of Return (IRR) of sewer flood forecasting system (x axis 

represents number of drainage areas (DA)). 

 

Figure 6.3. Net Present Value (NPV) of sewer flood forecasting system (x axis 

represents number of drainage areas (DA)). 

Table 6.3.1 shows the capital investment of £5,000 per drainage area at month 

0. This is scaled appropriately for multiple drainage areas used in the sewer flood 

forecasting system. The monthly cash flow values are based on the ratios of flood 

incidents occurring monthly (see Appendix C). This is main reason why the net 

cash flow for each month fluctuate in value (and so don’t necessarily increase 

over monthly periods). For months 1 – 12, the cash flow in terms of net savings 
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are shown and these are used to calculate the NPV and IRR for each scenario 

(i.e. number of drainage areas). 

Figure 6.2 and Figure 6.3 show the IRR and NPV values in Table 6.3.1 

graphically, respectively. Although the IRR reduces over increasing number of 

drainage areas, the IRR values range between 13– 20% which is high. This 

shows that the discount rate needs to be high for capital to be invested when the 

future cash inflow equals cash outflow. In other words, it represents a high value 

investment because the investor should consider an IRR that high to ensure there 

would be no loss in the investment. This is supported with the NPV values for the 

different number of drainage areas used in the sewer flood forecasting system. 

Figure 6.3 shows that over increasing numbers of drainage areas, the NPV also 

increases. This indicates increasing profitability in terms of cost savings. 

6.3.3 Sensitivity analysis 

Increasing capital investment 

Figure 6.4 shows the IRR and NPV values for monthly cash flows in Table 6.3.1 

but with increasing capital from £5,500 to £7,000 per drainage area. Full details 

are provided in Appendix C. 
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Figure 6.4. Sensitivity analysis for IRR and NPV showing increasing capital 

investment from £5,500 to £7,000 per drainage area: (a) £5,500 (b) £6,000 (c) 

£6,500 and (d) £7,000 

Figure 6.4 shows the IRR and NPV values for multiple drainage areas with 

increasing capital investment between £5,500 and £7,000. Clearly, as the capital 

investment increases the IRR values across the different number of drainage 

areas decreases, which is expected. However, the decreasing trends for 

increasing numbers of drainage areas remain similar. For NPV values, there is a 

(a) 

(b) 

(c) 

(d) 
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gradual decrease of values over increasing capital investment. Whilst this is 

expected, the NPV values for 16 drainage areas for an investment capital of 

£7,000 drops to a value of £3,413.53. This indicates loss of increasing cost 

performance should £7,000 be invested and 16 drainage areas were monitored. 

However, monitoring 1 – 4 drainage areas still indicate profitability in terms of 

cost savings even if £7,000 is invested per drainage area. Overall, investing 

between £5,500 and £7,000 is most likely going to show cost savings when 

deploying crew members to mitigate sewer floods using the sewer flood 

forecasting system in a yearly period. 

6.4 Conclusions 

A key outcome of this project is producing accurate probabilistic radar rainfall 

forecasts which could produce probabilistic sewer flood forecasts. This chapter 

had introduced a business case to show cost effectiveness of forecasting sewer 

floods using the probabilistic methodologies presented in this project. One of the 

objectives of the business case is to reduce the costs associated to mitigating 

sewer flooding via crew members in sewer operations. the main conclusions 

associated to the financial appraisal are as follows: 

• Analysis of Internal Rate of Return and Net Present Value has been 

conducted based on assumptions of the financial figures. Results show 

very high IRR values between 13% and 20% showing that investing to the 

business case has high value. Based on a capital investment of £5,000, 

NPV values show profit in terms of cost savings between £3,856 and 

£35,314.  

• Based on a capital investment of £5,000 per drainage area, the more 

drainage areas monitored the more cost savings are expected 

• A sensitivity analysis on the IRR and NPV values based on increasing 

capital investment shows that an investment between £5,500 and £7,000 

shows profitability for all numbers of drainage areas. However, the 

threshold where decrease of performance for monitoring many drainage 

areas is expected to be near £7,000 as monitoring more than 8 drainage 

areas incurs loss. 

Further additions for this business case could include the following scenarios 

related to false alarms and underestimated flood forecasts: 



257 

 

Cost of flooding due to underestimated flood forecast: this describes a 

scenario where a sewer flood occurs above a threshold that had been predicted 

from a probabilistic sewer flood forecast. If this occurs, the cost of mitigating the 

sewer flood would be underestimated and would mean the wastewater company 

would pay more after the flood occurs. 

Cost of flooding due to overestimated flood forecast:  this describes a 

scenario where a forecast over predicts the flood extent and issues a severe 

warning but the actual flood is less severe. The consequences are that more 

money would be spent to mitigate the flood before it occurs. 

To obtain costs for these two scenarios, the forecasting system would need to be 

implemented for a period of time to gather cost data for the number of floods 

underestimated and overestimated for each probabilistic QPF (or range of 

probabilistic QPFs). This historical analysis would also ascertain the threshold of 

probabilistic QPFs that causes sewer flooding, which would be tailored to each 

drainage area. 
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7 Summary, conclusions and future work 

7.1 Summary 

 

Radar rainfall is increasingly used in urban hydrology for a vast range of 

applications. Recent studies have identified that inherent uncertainties of radar 

technology is a major issue in providing accurate estimates of rainfall and outputs 

of hydrological applications. Particularly, radar rainfall forecasts have several 

uncertainties because forecast accuracy is dependent on a range of factors such 

as lead time, rainfall intensity and catchment size. Radar rainfall forecasts are an 

integral component of flood forecasting systems and various models describe the 

uses of the forecasts as part of these systems. However, radar rainfall forecasts 

could also be used to predict sewer flooding. This type of flooding is of major 

concern to the UK water sector as it is disruptive, costly and affects hundreds of 

customers every year. 

The aim of the research project was to investigate the uses of radar QPF and 

QPE to support short term decisions in sewer operational networks in reducing 

the risk of sewer flooding. A literature review was conducted to review the 

techniques, issues and solutions of rainfall estimation, uncertainty estimation and 

hydrological applications of radar rainfall data. This motivated the developments 

of the following components: increasing the accuracy of deterministic radar 

QPFs, postprocessing probabilistic radar QPFs and estimating flood extents 

using spatial analysis of radar QPE.  

Accuracy requirements in hydrological applications are dependent on the 

resolution of deterministic rainfall forecasts. It had been identified that increasing 

the temporal and spatial resolutions of forecasts increases the accuracy of 

hydrological output. Therefore, an interpolation method was proposed to increase 

temporal and spatial resolutions of deterministic radar rainfall forecasts. This 

method was evaluated for rainfall events for all seasons of the year. This method 

could be used to match rainfall forecasts to coincidental observed rainfall. This is 

particularly useful in hydrological and statistical analysis. 

Deterministic forecasts do not provide information of the uncertainty. However, 

probabilistic forecasts do provide information of this. This is the reason why 
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probabilistic methodologies have become popular. Therefore, the next step was 

to explore the usefulness of probabilistic radar QPFs. A method generating 

probabilistic QPFs was applied to radar QPFs and a new technique had been 

developed to postprocess these forecasts to better represent latest rainfall 

characteristics. This approach had been tested for both convective and frontal 

rainfall events. 

Probabilistic radar QPFs present challenges at a spatial scale when used in 

hydraulic modelling due to the choice of percentiles over the catchment. 

Particularly, the issue is related to preserving the spatial structure of the rainfall. 

Furthermore, simulating many forecasts concurrently is computationally 

impractical in real-time settings. Therefore, a separate spatial analysis was 

conducted and a simple model was used to support probabilistic radar flood 

modelling.  

Finally, a business case had been developed to support the UK water sector in 

actively tackling sewer flooding before it occurs using radar rainfall forecasts. This 

is discussed in Chapter 6 and outputs show that the methods presented in this 

thesis are promising for application at Northumbrian Water Limited. Further 

development is recommended to realise the full benefits of the forecasting 

capabilities. 

7.2 Conclusions 

 

The main findings of this research project are summarized below. 

7.2.1 Improving radar deterministic quantitative precipitation forecasts 

 

Chapter 3 develops an approach to temporally and spatially interpolate radar 

QPFs. The techniques used include the use of optical flow estimation and Kriging 

methods. In addition to the conclusions section of Chapter 3, the key findings of 

this analysis are as follows: 

• Temporal interpolation via optical flow estimation can predict peaks for 

interpolated timesteps of the QPF better than simple linear temporal 

interpolation. 
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• Spatial interpolation via Universal Kriging produces more accurate 

estimates of the upscaled QPF with the QPE in comparison to simpler 

interpolation techniques including Inverse Distance Weighting. 

• The temporally and spatially interpolated QPF is more accurate than the 

lower resolution QPF. 

• The temporal and spatial interpolation method developed in Chapter 3 is 

recommended for use by hydrologists for obtaining higher resolution 

datasets. Another advantage is adjusting the resolution outputs due to 

more control over interpolation parameters. This is particularly useful for 

hydrologists for conducting historical analysis on forecast and observed 

datasets. 

 

7.2.2 Increase the accuracy of radar probabilistic quantitative precipitation 

forecasts 

 

Postprocessing techniques show that probabilistic QPFs could be improved. 

Chapter 4 focusses on postprocessing probabilistic QPFs using a Bayesian 

approach involving two applications of MCMC. Forecast errors in historical 

QPF/QPE datasets produce initial probabilistic QPFs. However, recent QPE data 

not part of the historical QPE is used in the postprocessing method to increase 

the accuracy of the probabilistic QPFs. The main conclusions for this study are 

as follows: 

• Based on the performance indicators used in Chapter 4, the 

postprocessed probabilistic QPFs are more accurate than the pre-

processed ones in all study events. Particularly, the percentiles are closer 

to the QPE and the temporal path of the percentiles are more positively 

correlated or are less negatively correlated with the QPE. 

• Due to larger rainfall intensities seen in warm events (events from spring 

and summer), the benefit of the postprocessing method is more visually 

demonstrated compared to the cool events (events from autumn and 

winter). Moreover, the biggest changes are quantitatively seen for warm 

events. Thus, the postprocessing method is adaptable and performs well 

for events in both the warm and cool seasons. 
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• In some events, particularly those from the cool seasons, the 

postprocessing method demonstrates little change (or improvement). This 

mainly due to the statistical assumptions made in the Bayesian method. 

One assumption is that if the recent QPE resembles the statistics of that 

of the historical datasets, little change is observed. Whilst this is expected 

in Bayesian analysis, it may also show that the pre-processed probabilistic 

QPFs are sufficiently accurate and may not need much postprocessing. 

• Overall, the use of two applications of the Bayesian method used in the 

methodology of Chapter 4 demonstrates consistent and more accurate 

results across any event in a year. 

 

7.2.3 Conduct analysis of the spatial variation characteristics of radar 

quantitative precipitation data associated to the sewer network model 

 

A method to analyse spatial variability of radar rainfall has been introduced in 

Chapter 5. The use of a spatial index previously used in literature had been used 

to characterise the spatial variability of the rainfall field over sewer model. The 

method includes two generalised linear models that use variance and mean value 

of the accumulated rainfall over the sewer model. The second generalised linear 

model includes spatial indexes as additional variables to draw distinction in the 

performance in comparison to just using variance and mean rainfall. 

 The outputs of this study are highlighted as follows: 

• Spatial indexes provide useful information on the spatial variability of radar 

rainfall over the sewer model. By using the outlet as a reference point, the 

storm characteristics and location over the sewer model can be realised. 

• Both generalised linear models can predict sewer flood volume and 

number of floods with a degree of uncertainty. However, the generalised 

linear model that includes spatial indexes performs worse for the two case 

studies featuring small area sewer models. But this model performs better 

for the two case studies featuring large area sewer models. Due to the 

higher clarity of spatial information in larger areas, the spatial indexes 

provide more accurate information and thus make good predictors in the 

generalised linear model. 
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• The appropriate generalised linear model (or similar 

simplified/statistical/ANN model) could be applied for specific sized 

drainage areas to make estimations of the flooding extent without running 

computationally expensive detailed models. Hence, by studying the spatial 

variability of the rainfall field over a sewer model, flood predictions could 

be made in real-time, which is conducive for real-time flood forecasting. 

 

7.2.4 Develop business case for methodologies developed in the project 

 

Chapter 6 establishes a business case for the methodologies developed in this 

project appropriate for UK wastewater companies to consider should real-time 

sewer flood forecasting be put in operation. The main points highlighted in this 

chapter include: 

• Early decision making could reduce costs mitigating sewer flooding by 

reducing the number of crew members sent out to deal with the sewer 

network, which would help save costs to the business. 

• Probabilistic sewer flood forecasting and rainfall forecasting could also be 

applied to managing CSO and bathing waters 

• A financial appraisal shows that probabilistic sewer flood forecasting is a 

cost-effective way of mitigating sewer flooding before it occurs. IRR values 

show investment into the project has high value and NPV values show 

high cost savings especially when monitoring many drainage areas. 

• The financial appraisal recommends that capital investment should be 

between £5,000 and £8,000 to gain benefit of the project in an annual 

period. 

7.3 Recommendations for future work 

 

In addition to the methods explored and developed in this research project, future 

work to consider has been identified and recommended. Specific points for future 

work has been briefly explained at the end of Chapters 3,4 and 5. However, 

comprehensive explanations are provided in the following areas: further 

increasing the accuracy of deterministic radar quantitative precipitation forecasts, 
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further development of the Bayesian-based postprocessing method for real-time 

forecasting applications, further development of estimating model flood variables 

using spatial analysis of radar rainfall over a sewer model, development of spatial 

radar probabilistic rainfall forecasts, and modelling the risk of sewer flooding and 

development of intervention framework. 

 

7.3.1 Further improvement of deterministic radar quantitative precipitation 

forecasts 

 

The temporal and spatial interpolation methods show that the accuracy of radar 

QPFs could be increased. Particularly, the optical flow technique used provides 

good estimates of movement vectors that prove to be useful to accurately 

predicting values for interpolated rainfall values temporally. It is recommended 

that the optical flow technique be applied to different radar QPF sources to ensure 

the robustness of the method. Kriging methods are proven to be useful to 

estimating spatial points in several hydrological studies. However, whilst 

univariate Kriging methods (i.e. simple, ordinary, universal Kriging) may produce 

results with small dissimilarities, the spatial interpolation technique in this study 

was limited to Universal Kriging. Thus, a detailed comparison of different 

univariate Kriging methods is recommended. Particularly, a wide range of 

assumptions could be tested. For example, the influence of the number of rainfall 

grids used to estimate interpolated spatial grids could be tried to ascertain the 

optimal number of grids to provide good estimates.  

Further work is recommended for increasing the accuracy of deterministic radar 

QPFs by conducting historical analysis of coincidental forecast and observed 

rainfall after the interpolation process had been applied. Particularly, the 

preservation of spatial rainfall field structure is crucial. This requires analysis of 

the variance of the rainfall field and to identify peaks temporally and spatially. It 

is recommended that using techniques in the field of geostatistcs should 

accompany a regression approach so that the accuracy of spatial QPFs are vastly 

improved whilst preserving the spatial distribution of the rainfall field. 

Furthermore, the regression approach is linear based. A nonlinear approach is a 

potential area to explore for increasing the accuracy of the temporally and 
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spatially interpolated QPF. Polynomial regression or the use of functional 

relationships are potential techniques to explore. Lastly, radar QPE which is used 

as the observed data in this project is not assessed for its accuracy. However, in 

practice, radar QPE has uncertainties as they are estimates of rainfall. Thus, rain 

gauge adjustment is recommended. 

 

7.3.2 Further development of the Bayesian-based postprocessing method for 

real-time forecasting applications 

 

Bayesian methods require statistical assumptions for the estimation of a variable. 

Examples include the choice of distribution for the prior in the Markov Chain 

Monto Carlo method. The choice of distribution would have an influence on the 

variable outputs. Hence, different prior distributions could be tried in future 

studies. Furthermore, the choice of distribution for the QPF/QPE datasets was 

dependant on the empirical datasets. The datasets in this study followed a 

gamma distribution. However, this may change for different QPF/QPE sources. 

Hence, testing the postprocessing method on different QPF/QPE sources is a 

potential area of research. The size of the recent QPE data used to update the 

probabilistic QPFs may be an influencing factor determining the ability of the 

method to adjust the forecasts to accurately depict the recent rainfall 

characteristics. Furthermore, the recent QPE is made up of data sourced from 

the same location as the historical data used to generate the probabilistic QPFs 

(i.e. the forecasts are location specific). A potential area of research is to explore 

recent QPE in neighbouring grids which may influence the postprocessed 

forecasts. This area considers the spatial location of the probabilistic QPFs, which 

is an important area of exploration. 

The postprocessing method presented in this project shows to update the 

probabilistic QPFs to more accurately represent recent rainfall characteristics. 

However, further work is required to study the output of the postprocessing 

method on a temporal scale. This involves running the method iteratively over 

consecutive time periods to analyse the performance for rainfall forecasts at 

different forecast horizons. This would potentially bridge the gap of applying the 

postprocessing method to real-time operational settings. 
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7.3.3 Further development of estimating model flood variables using spatial 

analysis of radar rainfall over a sewer model 

 

The outputs of Chapter 5 show that spatial variability of rainfall over a sewer 

model can be used to make predictions of model flood variables. However, to 

more accurately establish correlations between the spatial parameters and the 

flood variables, it is necessary to analyse many different combinations of spatial 

rainfall distributions. Whilst sourced from actual rainfall events, the number of 

historical rainfall events used are limited in showing these combinations. Hence, 

to confirm or refine correlations between the spatial parameters and flood 

variables many more rainfall events need to be included. Alternatively, spatial 

distributions of the historical events could be altered and modelled separately. 

Secondly, a statistical model had been chosen as the alternative predictor to the 

detailed model used to produce the flood variables (i.e. Infoworks ICM). Whilst 

this requires less computational resources, other simple models could be 

explored as a potential research area. For example, the use of Artificial Neural 

Networks is useful as an alternative to generalised linear model due to capturing 

nonlinearity in the correlations between the spatial parameters and flood 

variables. By considering nonlinearity of the variables there is potential to further 

increase the accuracy of the flood estimates. 

Furthermore, the techniques developed in Chapter 5 focus on spatial variation of 

accumulated rainfall over a six-hour period, which is representative of the 

maximum lead time of the QPF used in the case study of this project. However, 

the temporal variability is not considered during this period. Therefore, there is 

potential to extend the methodology to focus on both spatial and temporal 

variability of rainfall over sewer models. 

 

7.3.4 Development of spatial radar probabilistic rainfall forecasts 

 

The techniques used to produce probabilistic QPFs are location specific. Hence, 

probabilistic QPFs are required to be produced independently for each grid over 
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a sewer model or catchment. However, this would be problematic when selecting 

percentiles over the catchment due to the spatial representation of the storm (i.e. 

the spatial distribution is influenced by the selection of the percentiles over the 

catchment). Therefore, this clearly requires further research especially in 

studying the spatial distribution of rainfall over the region. Percentiles could be 

selected by varying spatial distributions and the combinations of percentiles 

would be referred to as spatial probabilistic rainfall forecasts.  

 

7.3.5 Modelling the risk of sewer flooding and development of intervention 

framework 

 

Though outside the scope of this research project, the probabilistic 

methodologies presented are very useful for sewer risk modelling for decision 

making in sewer network operations. Probability is a component of risk and 

therefore probabilistic rainfall forecasting could be used to quantify risk for sewer 

flood forecasting. Potential work includes developing a framework for risk 

management which quantifies risk via quantifying the consequences associated 

to the flood extent associated to each probabilistic rainfall forecast. Subsequently, 

the risk level could be mapped to a practical, short term intervention that could 

be used by a wastewater company or another mitigating body to tackle sewer 

flooding. This ‘intervention framework’ describes algorithms and guidelines to 

efficiently deal with sewer flooding in specific drainage areas. Thus, frameworks 

could be generated for different drainage areas depending on what interventions 

available. 
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Appendices 

Appendix A Implementation of Original Stochastic Model 

The following shows the implementation of the method by Rene (2014). 
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Appendix B Catalogue of historical QPE events 

Table B.1. Historical QPE events categorised by mean rainfall over Ponteland 

sewer catchment. 𝑴𝑹, 𝑽𝑨𝑹, 𝑰𝟏 and 𝑰𝟐 are shown along with model simulated 

𝑽𝒂 and 𝑽𝒃 values. 

 

CATEGORY EVENT 

REF 

MR 

(mm) 

VAR I1 I2 𝑽𝒂 

(m3) 

𝑽𝒃 

20-30 

8000 27.22 67.99 1.11 1.07 372 10 

9565 26.59 6.84 0.96 0.96 56 1 

11344 24.92 5.57 0.99 0.96 317 8 

12622 23.01 3.23 1.01 0.97 287 5 

13390 23.49 3.03 1.03 1.00 138 3 

14321 21.51 16.80 0.96 0.89 181 1 

16204 24.28 18.77 1.03 1.02 531 9 

19933 23.06 4.36 1.01 0.96 277 4 

35016 27.07 30.89 0.93 0.97 872 18 

40460 26.69 3.81 0.99 0.97 11 1 

30-40 

1795 37.33 7.86 1.02 0.99 1008 12 

3206 39.84 3.21 1.02 1.03 548 9 

5272 33.31 28.29 0.94 1.03 654 12 

7087 34.67 29.19 1.02 0.97 773 12 

7385 31.96 10.20 1.03 0.98 838 14 

7541 31.82 3.20 1.00 0.98 248 7 

8949 31.64 7.56 1.00 0.96 874 16 

9525 35.72 13.72 0.97 0.93 619 13 

10544 35.05 7.16 1.00 0.97 375 9 

14310 39.33 45.64 0.95 0.93 410 10 

40-50 

1783 41.46 13.84 1.03 0.99 724 11 

3214 41.96 6.66 1.02 1.04 728 10 

4875 43.14 4.85 0.99 0.99 1372 18 

5010 45.99 88.31 0.96 0.99 4099 42 

5596 44.18 6.39 1.00 0.98 216 7 

7030 42.17 107.25 0.94 1.04 2395 37 

7409 45.96 3.95 1.02 0.99 790 18 

9500 48.28 17.46 1.03 1.00 1329 12 

10550 46.06 13.57 1.00 0.96 614 10 

14295 45.95 116.48 0.91 0.95 2213 26 

50-60 

5605 52.36 2.52 0.99 0.98 748 12 

5936 51.14 13.48 1.02 1.01 2156 21 

7018 50.14 112.25 0.94 1.03 2140 38 

8086 58.99 123.81 0.93 1.00 5171 82 

8970 58.77 287.66 1.08 0.99 3021 29 

9502 55.80 5.30 1.01 0.99 1698 13 

10479 58.29 90.95 1.05 1.03 1409 12 

14308 52.59 158.10 0.91 0.89 1728 25 

33170 52.57 4.47 1.00 1.01 1840 18 

3233.2 55.31 17.67 0.99 1.03 2064 14 
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60-70 

5940 61.75 24.46 1.03 1.02 2763 21 

6182 63.00 85.53 0.98 1.01 3592 32 

8243 66.20 9.37 1.01 1.03 1912 18 

9516 66.39 9.72 0.99 0.98 1813 21 

10492 69.00 201.87 1.07 1.03 2813 16 

34974 65.71 315.15 0.93 0.98 5708 79 

34995 65.50 699.59 0.86 0.88 6846 75 

41404 65.48 3.21 1.00 1.01 1918 17 

3220.2 65.99 53.07 0.95 0.96 2138 18 

14495.2 62.35 329.90 1.04 0.82 2964 22 

70-80 

5420 78.70 1566.27 1.15 0.93 4051 40 

5440 76.72 1178.32 1.13 0.93 7672 41 

8245 77.89 29.58 1.01 1.04 2654 21 

9513 72.18 5.68 1.00 0.99 2088 21 

10485 79.42 206.43 1.06 1.02 2823 16 

34981 73.99 405.94 0.91 0.97 7532 79 

41375 76.48 36.11 0.99 1.03 2518 24 

41403 71.27 4.76 1.00 1.01 2381 20 

13505.3 76.29 138.09 0.94 0.93 1936 15 

80-90 

34504.3 74.53 30.16 1.01 0.97 2620 21 

5428 81.00 1533.34 1.15 0.93 7335 42 

8248 83.41 40.70 1.00 1.04 3366 21 

41376 86.41 52.86 0.99 1.02 3115 26 

41402 87.98 19.91 1.01 1.01 4070 21 

13508.3 81.40 110.20 0.95 0.95 2858 22 

21045.3 80.60 127.20 1.04 0.99 4220 20 

21058.3 81.11 74.69 1.02 0.98 4705 19 
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Table B.2. Historical QPE events categorised by mean rainfall over Chopwell 

and Blackhall Mill sewer catchment. 𝑴𝑹, 𝑽𝑨𝑹, 𝑰𝟏 and 𝑰𝟐 are shown along with 

model simulated 𝑽𝒂 and 𝑽𝒃 values. 

 

 

CATEGORY EVENT 

REF 

MR 

(mm) 

VAR I1 I2 𝑽𝒂 

(m3) 

𝑽𝒃 

40-50 

1881 40.41 98.17 1.06 1.07 0.001 0 

1903 43.42 32.60 1.08 0.42 0.001 0 

3208 41.55 11.15 1.09 0.42 0.001 0 

4878 42.04 19.07 1.05 0.40 0.001 0 

5590 40.44 10.41 1.08 0.41 0.001 0 

6181 41.38 42.81 1.11 0.44 0.001 1 

6198 41.79 44.59 1.11 0.44 0.001 0 

10530 41.77 11.62 1.10 0.44 0.001 0 

30078 43.35 114.37 1.09 0.39 0.001 0 

31526 44.16 427.23 1.12 0.40 0.001 0 

50-60 

1884 51.82 72.36 1.04 1.05 0.001 0 

5419 52.28 447.65 1.09 0.35 92.6 18 

5435 52.00 440.95 1.09 0.36 245.9 25 

5605 51.44 7.09 1.08 0.42 0.001 0 

8264 52.80 21.01 1.06 0.41 0.001 1 

9500 53.17 65.74 1.05 0.40 0.1 2 

10488 51.26 152.62 1.06 0.39 0.001 0 

10492 50.06 83.18 1.07 0.40 0.001 0 

16175 52.91 12.87 1.07 0.42 0.001 0 

41371 57.05 20.26 1.07 0.42 0.001 0 

60-70 

1892 60.06 87.29 1.04 1.05 0.001 0 

8238 63.31 118.20 1.09 0.41 1.6 3 

8262 69.96 52.19 1.07 0.41 0.8 2 

9505 63.34 92.44 1.05 0.40 0.1 2 

9518 65.38 50.58 1.06 0.40 0.001 1 

16182 61.25 14.36 1.07 0.43 0.001 0 

33162 64.60 6.72 1.08 0.43 0.7 2 

33181 60.86 51.10 1.06 0.42 4.5 3 

41405 66.57 31.29 1.06 0.41 0.7 2 

23751.2 67.39 52.78 1.08 0.42 0.3 2 

70-80 

9510 70.79 73.73 0.99 0.95 0.001 2 

9516 70.52 61.89 1.06 0.41 0.001 1 

33165 75.24 10.51 1.07 0.43 4.6 3 

33171 70.31 33.23 1.07 0.42 4.6 3 

41372 79.84 51.34 1.09 0.43 0.001 0 

7166.2 79.11 113.72 1.08 0.42 7 3 

12755.2 75.12 135.78 1.09 0.45 4.2 2 

12770.2 74.34 116.45 1.09 0.45 4 2 

16531.2 77.20 236.87 1.11 0.44 65.5 14 

30925.2 70.07 226.48 1.11 0.44 9.4 3 
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80-90 

8241 84.28 164.85 1.01 0.97 7.3 3 

8261 80.24 126.53 1.08 0.41 2.3 2 

41403 88.34 40.36 1.06 0.41 7.5 3 

7164.2 83.63 162.04 1.08 0.41 5.2 3 

7184.2 81.64 46.47 1.08 0.42 5.5 3 

13042.2 82.05 123.10 1.07 0.41 3.3 2 

13060.2 89.33 120.52 1.10 0.45 1.5 2 

20670.2 85.58 281.98 1.11 0.46 121.9 10 

23742.2 80.48 103.41 1.08 0.42 0.3 2 

30933.2 83.90 567.08 1.12 0.46 6.1 2 
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Table B.3. Historical QPE events categorised by mean rainfall over Chester-le-

Street sewer catchment. 𝑴𝑹, 𝑽𝑨𝑹, 𝑰𝟏 and 𝑰𝟐 are shown along with model 

simulated 𝑽𝒂 and 𝑽𝒃 values. 

 

 

CATEGORY EVENT 

REF 

MR 

(mm) 

VAR I1 I2 𝑽𝒂 

(m3) 

𝑽𝒃 

30-40 

375 39.66 17.13 0.99 0.97 244 15 

1790 35.30 5.42 0.97 0.99 175 5 

1870 31.11 49.60 1.03 1.01 74 20 

3204 35.57 3.08 1.01 0.99 217 8 

6445 34.52 17.22 0.97 0.95 98 5 

7094 33.96 157.28 1.13 0.96 118 20 

9591 31.09 6.47 1.03 1.01 1 4 

10470 36.66 63.58 1.07 1.04 55 22 

11402 31.22 13.09 1.03 1.01 61 4 

16210 38.57 68.53 1.05 1.00 67 11 

40-50 

366 42.60 21.43 0.99 0.98 64 8 

1908 44.14 147.79 1.04 1.03 450 16 

3210 49.39 10.07 1.00 0.98 326 8 

3940 44.36 18.12 1.03 1.00 469 22 

4880 43.93 17.93 1.04 1.02 320 9 

5585 42.15 6.72 0.99 0.98 148 5 

7402 43.43 9.04 0.99 0.98 182 5 

9605 42.61 5.65 0.99 0.98 177 8 

10561 45.85 75.38 1.09 1.03 279 10 

30084 49.54 19.80 1.02 1.01 911 44 

50-60 

3214 50.05 10.93 1.00 0.97 332 8 

5590 53.48 6.47 0.99 0.98 217 5 

5615 54.33 11.65 1.02 1.00 309 7 

5940 59.41 27.29 1.04 1.04 963 50 

7398 50.61 8.35 0.99 0.97 199 5 

9500 52.36 304.61 1.09 0.99 326 16 

10551 50.58 100.32 1.09 1.04 304 9 

10527 50.70 170.99 1.11 1.01 231 9 

30209 55.16 21.88 0.99 0.98 617 29 

4230 51.46 415.02 1.14 1.04 808 44 

60-70 

1879 65.28 161.69 1.09 1.06 617 25 

5600 66.47 4.87 1.01 1.00 393 8 

8238 63.49 35.90 1.00 0.96 664 37 

8268 65.50 740.39 0.79 0.75 3529 109 

9516 64.92 145.67 1.06 0.98 556 11 

10500 62.01 154.40 1.07 1.07 600 39 

29468 66.36 2252.33 0.65 0.47 12412 491 

2383.3 60.76 114.10 1.02 0.99 664 36 

6771.2 61.25 811.01 1.01 0.85 454 14 

6785.2 63.56 244.54 0.96 0.94 657 11 

 



273 

 

 

 

 

 

 

 

 

 

 

 

 

 

70-80 

1901 75.91 357.20 1.12 1.08 1124 37 

8239 72.60 28.19 0.99 0.96 816 42 

8267 73.27 775.80 0.81 0.78 3864 113 

9508 71.42 488.59 1.09 0.98 526 17 

10480 78.59 206.81 1.05 1.02 581 26 

10494 77.77 347.27 1.08 1.03 874 44 

41375 72.66 255.34 1.12 1.08 222 23 

41399 71.17 220.05 1.10 1.09 1081 41 

22378 74.68 1141.51 1.01 0.92 1747 72 

22391 71.64 1644.69 0.89 0.95 2095 95 

80-90 

1883 86.78 319.44 1.11 1.07 844 29 

1899 86.90 368.39 1.11 1.07 1323 40 

8240 83.55 38.40 0.98 0.95 870 46 

8266 80.78 791.63 0.82 0.80 4113 115 

10482 86.93 236.17 1.05 1.02 830 35 

10492 85.62 341.73 1.08 1.03 924 44 

41377 85.31 397.61 1.13 1.09 964 53 

41395 89.46 403.55 1.12 1.09 1791 54 

22388 81.14 1054.86 0.91 0.92 2360 102 

90-100 

1884 93.33 359.02 1.11 1.07 936 34 

1895 92.42 386.99 1.11 1.07 1323 40 

8241 92.93 63.49 0.96 0.95 1380 55 

8265 90.34 973.78 0.83 0.81 4447 117 

10490 92.17 379.09 1.07 1.03 964 43 

41380 94.23 516.80 1.13 1.10 1451 54 

41392 96.45 455.96 1.12 1.09 1856 54 

22381 90.02 894.21 0.96 0.92 2006 94 
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Table B.4. Historical QPE events categorised by mean rainfall over Darlington 

(North) sewer catchment. 𝑴𝑹, 𝑽𝑨𝑹, 𝑰𝟏 and 𝑰𝟐 are shown along with model 

simulated 𝑽𝒂 and 𝑽𝒃 values. 

 

 

CATEGORY EVENT 

REF 

MR 

(mm) 

VAR I1 I2 𝑽𝒂 

(m3) 

𝑽𝒃 

20-30 

365 27.29 17.97 1.02 0.99 47 11 

1775 21.07 2.81 1.02 0.96 3 6 

1910 27.26 98.30 0.96 1.13 11 7 

4095 28.80 2.36 1.01 1.00 26 9 

8090 21.70 29.47 0.95 1.04 129 13 

11404 22.10 3.69 1.00 0.97 11 7 

18495 20.83 37.76 0.94 1.01 40 9 

27175 22.37 2.02 1.00 1.01 0 5 

30072 21.15 2.71 1.00 0.99 11 7 

33759 20.38 1.13 1.01 1.01 0 4 

30-40 

1885 39.45 209.01 0.91 1.02 896 26 

1923 32.16 105.06 0.94 1.11 83 11 

4112 32.18 2.82 1.00 1.00 70 11 

5390 31.84 394.37 0.90 0.99 3311 157 

9595 39.61 12.90 0.98 1.03 153 13 

16183 36.63 19.75 1.02 1.00 80 10 

20258 30.37 6.42 0.99 1.03 35 9 

28552 32.35 50.39 1.07 0.87 55 10 

34985 32.01 434.27 0.95 1.01 68 3 

35856 31.68 2.16 1.00 1.01 72 10 

40-50 

5590 42.88 8.90 0.99 0.99 185 11 

5940 44.16 14.20 1.02 0.96 695 28 

6190 42.47 32.50 0.99 0.95 343 21 

8240 47.57 74.51 1.05 0.95 139 12 

9573 40.50 3.58 1.00 0.98 99 10 

16232 47.27 89.92 1.02 0.98 183 14 

29447 45.41 8.80 1.00 1.00 211 14 

32618 41.58 83.75 0.99 0.96 777 20 

35000 46.75 435.06 1.00 1.00 445 21 

40970 45.88 22.56 1.01 0.99 154 15 

50-60 

1858 57.16 354.46 1.10 0.84 561 36 

1883 51.99 233.41 0.92 1.00 1486 31 

8263 55.44 42.27 1.03 1.01 437 18 

9512 53.67 9.70 1.02 0.99 261 13 

9529 52.90 12.80 1.02 0.98 393 16 

32604 58.25 38.62 1.00 0.97 683 26 

32616 53.03 74.33 1.01 0.95 995 24 

33777 50.89 9.45 0.99 1.04 234 12 

41369 59.78 31.92 0.98 0.98 131 11 

41394 52.16 226.29 1.05 0.89 1543 70 
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60-70 

1860 69.83 306.97 1.07 0.87 1399 74 

8244 66.94 124.94 1.05 0.97 351 14 

32614 64.55 59.10 1.01 0.96 1324 26 

41370 67.05 32.39 0.99 0.97 750 33 

41849.2 66.89 353.95 1.00 1.10 884 26 

41867.2 63.11 248.27 0.99 1.07 1514 27 

25340.3 67.30 156.67 0.99 1.04 415 15 

25391.3 67.97 1268.80 0.89 1.05 1801 28 

27002.3 68.70 63.93 1.00 0.99 1316 29 

42095.3 64.70 2641.75 0.86 0.97 4041 66 

70-80 

41850.2 70.22 365.46 1.00 1.10 1122 28 

41865.2 70.39 303.27 0.99 1.08 1775 27 

25350.3 74.06 150.81 1.01 1.02 593 17 

25390.3 73.41 1260.01 0.89 1.08 2016 29 

26998.3 74.85 54.14 1.02 0.99 841 28 

42070.3 73.94 1876.64 1.10 0.79 476 19 

47942.3 70.91 1470.56 1.09 0.86 1009 27 

47962.3 74.61 3099.25 0.90 1.05 2962 63 

54283.3 72.12 2349.35 0.92 1.19 12062 365 
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Appendix C Cash flow and sewer floods per month 

 

Table C.1. Monthly sewer floods for sample drainage area used to define 

frequency ratio of sewer floods per month for an annual period. 

 

 

 

Figure 0.1. Cash flow model used to calculate cash inflow for month 1. 

 

Cash flow (Per Month) MONTH 1

Sensitivity by number of drainage areas

1 DA 2 DA 4 DA 8 DA 16 DA

Crew cost single avg

Internal £242.50 Cost saving (Internal flood)

External £225.50 Crew numbers reduced 0 1 1 2 4

Highway/other £190.00 Crew total £72.75 £138.23 £262.63 £498.99 £948.09

Cost saving (External flood)

Crew numbers reduced 9 17 32 62 117

Crew total £2,029.50 £3,856.05 £7,326.50 £13,920.34 £26,448.65

Cost saving (Highway/other flood)

Crew numbers reduced 4 8 14 27 52

Crew total £760.00 £1,444.00 £2,743.60 £5,212.84 £9,904.40

Net Savings £2,862.25 £5,438.28 £10,332.72 £19,632.17 £37,301.13

    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec TOTAL RATIO 

Internal   0 1 0 0 0 0 0 0 2 0 2 0 5 1 

External 9 1 3 0 5 2 1 4 2 1 3 0 31 6.2 

Highway/other 4 1 1 1 1 1 0 2 1 1 0 2 15 3 

TOTAL   13 3 4 1 6 3 1 6 5 2 5 2 
  

AVG   4 1 1 0 2 1 0 2 2 1 2 1 
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Figure 0.2. Cash flow model used to calculate cash inflow for month 2. 

 

Figure 0.3. Cash flow model used to calculate cash inflow for month 3. 

 

Figure 0.4. Cash flow model used to calculate cash inflow for month 4. 

Cash flow (Per Month) MONTH 2

Sensitivity by number of drainage areas

1 DA 2 DA 4 DA 8 DA 16 DA

Crew cost single avg

Internal £242.50 Cost saving (Internal flood)

External £225.50 Crew numbers reduced 1 2 4 7 13

Highway/other £190.00 Crew total £242.50 £460.75 £875.43 £1,663.31 £3,160.28

Cost saving (External flood)

Crew numbers reduced 1 2 4 7 13

Crew total £225.50 £428.45 £814.06 £1,546.70 £2,938.74

Cost saving (Highway/other flood)

Crew numbers reduced 1 2 4 7 13

Crew total £190.00 £361.00 £685.90 £1,303.21 £2,476.10

Net Savings £658.00 £1,250.20 £2,375.38 £4,513.22 £8,575.12

Cash flow (Per Month) MONTH 3

Sensitivity by number of drainage areas

1 DA 2 DA 4 DA 8 DA 16 DA

Crew cost single avg

Internal £242.50 Cost saving (Internal flood)

External £225.50 Crew numbers reduced 0 0 0 0 0

Highway/other £190.00 Crew total £0.00 £0.00 £0.00 £0.00 £0.00

Cost saving (External flood)

Crew numbers reduced 3 6 11 21 39

Crew total £676.50 £1,285.35 £2,442.17 £4,640.11 £8,816.22

Cost saving (Highway/other flood)

Crew numbers reduced 1 2 4 7 13

Crew total £190.00 £361.00 £685.90 £1,303.21 £2,476.10

Net Savings £866.50 £1,646.35 £3,128.07 £5,943.32 £11,292.31

Cash flow (Per Month) MONTH 4

Sensitivity by number of drainage areas

1 DA 2 DA 4 DA 8 DA 16 DA

Crew cost single avg

Internal £242.50 Cost saving (Internal flood)

External £225.50 Crew numbers reduced 0 0 0 0 0

Highway/other £190.00 Crew total £0.00 £0.00 £0.00 £0.00 £0.00

Cost saving (External flood)

Crew numbers reduced 0 0 0 0 0

Crew total £0.00 £0.00 £0.00 £0.00 £0.00

Cost saving (Highway/other flood)

Crew numbers reduced 1 2 4 7 13

Crew total £190.00 £361.00 £685.90 £1,303.21 £2,476.10

Net Savings £190.00 £361.00 £685.90 £1,303.21 £2,476.10
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Figure 0.5. Cash flow model used to calculate cash inflow for month 5. 

 

Figure 0.6. Cash flow model used to calculate cash inflow for month 6. 

 

Figure 0.7. Cash flow model used to calculate cash inflow for month 7. 

Cash flow (Per Month) MONTH 5

Sensitivity by number of drainage areas

1 DA 2 DA 4 DA 8 DA 16 DA

Crew cost single avg

Internal £242.50 Cost saving (Internal flood)

External £225.50 Crew numbers reduced 0 0 0 0 0

Highway/other £190.00 Crew total £0.00 £0.00 £0.00 £0.00 £0.00

Cost saving (External flood)

Crew numbers reduced 0 0 0 0 0

Crew total £0.00 £0.00 £0.00 £0.00 £0.00

Cost saving (Highway/other flood)

Crew numbers reduced 1 2 4 7 13

Crew total £190.00 £361.00 £685.90 £1,303.21 £2,476.10

Net Savings £190.00 £361.00 £685.90 £1,303.21 £2,476.10

Cash flow (Per Month) MONTH 6

Sensitivity by number of drainage areas

1 DA 2 DA 4 DA 8 DA 16 DA

Crew cost single avg

Internal £242.50 Cost saving (Internal flood)

External £225.50 Crew numbers reduced 0 0 0 0 0

Highway/other £190.00 Crew total £0.00 £0.00 £0.00 £0.00 £0.00

Cost saving (External flood)

Crew numbers reduced 2 4 7 14 26

Crew total £451.00 £856.90 £1,628.11 £3,093.41 £5,877.48

Cost saving (Highway/other flood)

Crew numbers reduced 1 2 4 7 13

Crew total £190.00 £361.00 £685.90 £1,303.21 £2,476.10

Net Savings £641.00 £1,217.90 £2,314.01 £4,396.62 £8,353.58

Cash flow (Per Month) MONTH 7

Sensitivity by number of drainage areas

1 DA 2 DA 4 DA 8 DA 16 DA

Crew cost single avg

Internal £242.50 Cost saving (Internal flood)

External £225.50 Crew numbers reduced 0 0 0 0 0

Highway/other £190.00 Crew total £0.00 £0.00 £0.00 £0.00 £0.00

Cost saving (External flood)

Crew numbers reduced 1 2 4 7 13

Crew total £225.50 £428.45 £814.06 £1,546.70 £2,938.74

Cost saving (Highway/other flood)

Crew numbers reduced 0 0 0 0 0

Crew total £0.00 £0.00 £0.00 £0.00 £0.00

Net Savings £225.50 £428.45 £814.06 £1,546.70 £2,938.74
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Figure 0.8. Cash flow model used to calculate cash inflow for month 8. 

 

Figure 0.9. Cash flow model used to calculate cash inflow for month 9. 

 

Figure 0.10. Cash flow model used to calculate cash inflow for month 10. 

Cash flow (Per Month) MONTH 8

Sensitivity by number of drainage areas

1 DA 2 DA 4 DA 8 DA 16 DA

Crew cost single avg

Internal £242.50 Cost saving (Internal flood)

External £225.50 Crew numbers reduced 0 0 0 0 0

Highway/other £190.00 Crew total £0.00 £0.00 £0.00 £0.00 £0.00

Cost saving (External flood)

Crew numbers reduced 4 8 14 27 52

Crew total £902.00 £1,713.80 £3,256.22 £6,186.82 £11,754.95

Cost saving (Highway/other flood)

Crew numbers reduced 2 4 7 14 26

Crew total £380.00 £722.00 £1,371.80 £2,606.42 £4,952.20

Net Savings £1,282.00 £2,435.80 £4,628.02 £8,793.24 £16,707.15

Cash flow (Per Month) MONTH 9

Sensitivity by number of drainage areas

1 DA 2 DA 4 DA 8 DA 16 DA

Crew cost single avg

Internal £242.50 Cost saving (Internal flood)

External £225.50 Crew numbers reduced 2 4 7 14 26

Highway/other £190.00 Crew total £485.00 £921.50 £1,750.85 £3,326.62 £6,320.57

Cost saving (External flood)

Crew numbers reduced 2 4 7 14 26

Crew total £451.00 £856.90 £1,628.11 £3,093.41 £5,877.48

Cost saving (Highway/other flood)

Crew numbers reduced 1 2 4 7 13

Crew total £190.00 £361.00 £685.90 £1,303.21 £2,476.10

Net Savings £1,126.00 £2,139.40 £4,064.86 £7,723.23 £14,674.14

Cash flow (Per Month) MONTH 10

Sensitivity by number of drainage areas

1 DA 2 DA 4 DA 8 DA 16 DA

Crew cost single avg

Internal £242.50 Cost saving (Internal flood)

External £225.50 Crew numbers reduced 0 0 0 0 0

Highway/other £190.00 Crew total £0.00 £0.00 £0.00 £0.00 £0.00

Cost saving (External flood)

Crew numbers reduced 1 2 4 7 13

Crew total £225.50 £428.45 £814.06 £1,546.70 £2,938.74

Cost saving (Highway/other flood)

Crew numbers reduced 1 2 4 7 13

Crew total £190.00 £361.00 £685.90 £1,303.21 £2,476.10

Net Savings £415.50 £789.45 £1,499.96 £2,849.91 £5,414.84
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Figure 0.11. Cash flow model used to calculate cash inflow for month 11. 

 

Figure 0.12. Cash flow model used to calculate cash inflow for month 12. 

 

 

 

 

 

 

 

 

 

Cash flow (Per Month) MONTH 11

Sensitivity by number of drainage areas

1 DA 2 DA 4 DA 8 DA 16 DA

Crew cost single avg

Internal £242.50 Cost saving (Internal flood)

External £225.50 Crew numbers reduced 2 4 7 14 26

Highway/other £190.00 Crew total £485.00 £921.50 £1,750.85 £3,326.62 £6,320.57

Cost saving (External flood)

Crew numbers reduced 3 6 11 21 39

Crew total £676.50 £1,285.35 £2,442.17 £4,640.11 £8,816.22

Cost saving (Highway/other flood)

Crew numbers reduced 0 0 0 0 0

Crew total £0.00 £0.00 £0.00 £0.00 £0.00

Net Savings £1,161.50 £2,206.85 £4,193.02 £7,966.73 £15,136.78

Cash flow (Per Month) MONTH 12

Sensitivity by number of drainage areas

1 DA 2 DA 4 DA 8 DA 16 DA

Crew cost single avg

Internal £242.50 Cost saving (Internal flood)

External £225.50 Crew numbers reduced 0 0 0 0 0

Highway/other £190.00 Crew total £0.00 £0.00 £0.00 £0.00 £0.00

Cost saving (External flood)

Crew numbers reduced 0 0 0 0 0

Crew total £0.00 £0.00 £0.00 £0.00 £0.00

Cost saving (Highway/other flood)

Crew numbers reduced 2 4 7 14 26

Crew total £380.00 £722.00 £1,371.80 £2,606.42 £4,952.20

Net Savings £380.00 £722.00 £1,371.80 £2,606.42 £4,952.20
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Appendix D Sensitivity analysis 

 

Table D.1. NPV and IRR values for capital investment of £6,000 

 

Table D.2. NPV and IRR values for capital investment of £7,000 

 

1 DA 2 DA 4 DA 8 DA 16 DA

0 -£5,500.00 -£11,000.00 -£22,000.00 -£44,000.00 -£88,000.00

1 £2,789.50 £5,300.05 £10,070.10 £19,133.18 £36,353.04

2 £658.00 £1,250.20 £2,375.38 £4,513.22 £8,575.12

3 £866.50 £1,646.35 £3,128.07 £5,943.32 £11,292.31

4 £190.00 £361.00 £685.90 £1,303.21 £2,476.10

5 £1,317.50 £2,503.25 £4,756.18 £9,036.73 £17,169.79

6 £641.00 £1,217.90 £2,314.01 £4,396.62 £8,353.58

7 £225.50 £428.45 £814.06 £1,546.70 £2,938.74

8 £1,282.00 £2,435.80 £4,628.02 £8,793.24 £16,707.15

9 £1,126.00 £2,139.40 £4,064.86 £7,723.23 £14,674.14

10 £415.50 £789.45 £1,499.96 £2,849.91 £5,414.84

11 £1,161.50 £2,206.85 £4,193.02 £7,966.73 £15,136.78

12 £380.00 £722.00 £1,371.80 £2,606.42 £4,952.20

NPV £3,356.10 £5,826.58 £9,970.51 £16,743.97 £27,413.53

IRR 17% 15% 13% 12% 11%

4.3%

CASH FLOW (NET SAVINGS)
MONTH

1 DA 2 DA 4 DA 8 DA 16 DA

0 -£6,000.00 -£12,000.00 -£24,000.00 -£48,000.00 -£96,000.00

1 £2,789.50 £5,300.05 £10,070.10 £19,133.18 £36,353.04

2 £658.00 £1,250.20 £2,375.38 £4,513.22 £8,575.12

3 £866.50 £1,646.35 £3,128.07 £5,943.32 £11,292.31

4 £190.00 £361.00 £685.90 £1,303.21 £2,476.10

5 £1,317.50 £2,503.25 £4,756.18 £9,036.73 £17,169.79

6 £641.00 £1,217.90 £2,314.01 £4,396.62 £8,353.58

7 £225.50 £428.45 £814.06 £1,546.70 £2,938.74

8 £1,282.00 £2,435.80 £4,628.02 £8,793.24 £16,707.15

9 £1,126.00 £2,139.40 £4,064.86 £7,723.23 £14,674.14

10 £415.50 £789.45 £1,499.96 £2,849.91 £5,414.84

11 £1,161.50 £2,206.85 £4,193.02 £7,966.73 £15,136.78

12 £380.00 £722.00 £1,371.80 £2,606.42 £4,952.20

NPV £2,856.10 £4,826.58 £7,970.51 £12,743.97 £19,413.53

IRR 14% 12% 11% 10% 8%

4.3%

CASH FLOW (NET SAVINGS)
MONTH
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Table D.3. NPV and IRR values for capital investment of £8,000 

 

Table D.4. NPV and IRR values for capital investment of £9,000 

 

 

 

 

 

1 DA 2 DA 4 DA 8 DA 16 DA

0 -£6,500.00 -£13,000.00 -£26,000.00 -£52,000.00 -£104,000.00

1 £2,789.50 £5,300.05 £10,070.10 £19,133.18 £36,353.04

2 £658.00 £1,250.20 £2,375.38 £4,513.22 £8,575.12

3 £866.50 £1,646.35 £3,128.07 £5,943.32 £11,292.31

4 £190.00 £361.00 £685.90 £1,303.21 £2,476.10

5 £1,317.50 £2,503.25 £4,756.18 £9,036.73 £17,169.79

6 £641.00 £1,217.90 £2,314.01 £4,396.62 £8,353.58

7 £225.50 £428.45 £814.06 £1,546.70 £2,938.74

8 £1,282.00 £2,435.80 £4,628.02 £8,793.24 £16,707.15

9 £1,126.00 £2,139.40 £4,064.86 £7,723.23 £14,674.14

10 £415.50 £789.45 £1,499.96 £2,849.91 £5,414.84

11 £1,161.50 £2,206.85 £4,193.02 £7,966.73 £15,136.78

12 £380.00 £722.00 £1,371.80 £2,606.42 £4,952.20

NPV £2,356.10 £3,826.58 £5,970.51 £8,743.97 £11,413.53

IRR 12% 10% 9% 8% 7%

4.3%

CASH FLOW (NET SAVINGS)
MONTH

1 DA 2 DA 4 DA 8 DA 16 DA

0 -£7,000.00 -£14,000.00 -£28,000.00 -£56,000.00 -£112,000.00

1 £2,789.50 £5,300.05 £10,070.10 £19,133.18 £36,353.04

2 £658.00 £1,250.20 £2,375.38 £4,513.22 £8,575.12

3 £866.50 £1,646.35 £3,128.07 £5,943.32 £11,292.31

4 £190.00 £361.00 £685.90 £1,303.21 £2,476.10

5 £1,317.50 £2,503.25 £4,756.18 £9,036.73 £17,169.79

6 £641.00 £1,217.90 £2,314.01 £4,396.62 £8,353.58

7 £225.50 £428.45 £814.06 £1,546.70 £2,938.74

8 £1,282.00 £2,435.80 £4,628.02 £8,793.24 £16,707.15

9 £1,126.00 £2,139.40 £4,064.86 £7,723.23 £14,674.14

10 £415.50 £789.45 £1,499.96 £2,849.91 £5,414.84

11 £1,161.50 £2,206.85 £4,193.02 £7,966.73 £15,136.78

12 £380.00 £722.00 £1,371.80 £2,606.42 £4,952.20

NPV £1,856.10 £2,826.58 £3,970.51 £4,743.97 £3,413.53

IRR 10% 8% 7% 6% 5%

4.3%

CASH FLOW (NET SAVINGS)
MONTH
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