
Cauchi, D; Pliakas, T; Knai, C (2017) Food environments in Malta:
Associations with store size and area-level deprivation. Food policy,
71. pp. 39-47. ISSN 0306-9192 DOI: https://doi.org/10.1016/j.foodpol.2017.07.004

Downloaded from: http://researchonline.lshtm.ac.uk/4647476/

DOI: 10.1016/j.foodpol.2017.07.004

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alterna-
tively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSHTM Research Online

https://core.ac.uk/display/156850164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.lshtm.ac.uk/4647476/
http://dx.doi.org/10.1016/j.foodpol.2017.07.004
http://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk


1 

 

Documentation of a fully integrated epidemiological-demographic-macroeconomic 

model of Malaria: The case of Ghana 

Henning Tarp Jensen1,3, Marcus R Keogh-Brown1, Richard D Smith1, 

Michael T Bretscher2, R Matthew Chico2, Chris Drakeley2 

1 Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, 15-17 Tavistock 

Place, London, WC1H 9SH. 

2 Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel 

Street, London, WC1E 7HT. 

3 Department of Food and Resource Economics, Faculty of Science, University of Copenhagen, Rolighedsvej 

25, DK-1958 Frederiksberg C. 

 

Abstract 

We develop a novel and fully integrated epidemiological-demographic-macroeconomic EDM-malaria 

simulation model framework for modelling of P. falciparum malaria transmission in Ghana. Our model 

framework represents a milestone, as the first fully integrated EDM model framework for any type of 

infectious disease. The complex specification and integration of regional epidemiological-demographic 

models within a malaria-focussed macroeconomic Computable General Equilibrium model is fully described 

and documented, and ideas are outlined for future applications to investigate the interplay between 

macroeconomic and health disease burdens, to measure the health and economic impacts of economic 

growth and malaria interventions, and to study the importance (or lack thereof) of the general omission of 

proper epidemiological underpinnings and integration of economic incentive feedback effects in the 

existing literature on macroeconomic assessment of infectious disease. 
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1. Introduction  

The current study presents and documents a fully integrated and dynamically-recursive epidemiological-

demographic-macroeconomic (EDM) simulation model of P. falciparum malaria transmission in Ghana 

during 2015-34. So far, there has been a complete lack of proper empirical tools for combined and 

consistent assessment of macroeconomic and health disease burdens and policy analysis of interventions, 

associated with infectious diseases such as malaria. A variety of approaches have been applied for 

macroeconomic health burden assessment of HIV/AIDS epidemics including neoclassical growth and 

overlapping generations models (Cuddington 1993a, 1993b; Cuddington and Hancock 1994; Bell, Devarajan 

and Gersbach 2003, 2004, 2006; Young 2005; Bell, Bruhns and Gersbach 2006; Johansson 2007; Roe and 

Smith 2008; Ventelou et al. 2008), and multi-sector Computable General Equilibrium (CGE) models 

(Kambou, Devarajan and Over 1992; Arndt and Lewis 2000, 2001; Arndt 2006; Jefferis et al. 2008; Ventelou 

et al. 2008; Thurlow, Gow & George 2009). In contrast, the malaria-focussed macroeconomic health burden 

literature is narrow (Ashraf, Lester and Weil 2009; Pattanayak et al. 2009; Anthoff & Tol 2012; Tol 2013). 

Some HIV/AIDS studies have employed epidemiological satellite models to specify health burden shocks, 

but no malaria or HIV/AIDS studies fully account for economic feedback effects by integrating 

epidemiological models (of HIV/AIDS transmission) within the macroeconomic assessment tools. The lack of 

proper epidemiological underpinnings is also characteristic of the Anti-Microbial Resistance literature 

(Smith et al. 2005) and the Pandemic Flu literature (Keogh-Brown & Smith 2008, Smith, Keogh-Brown et al. 

2009; Keogh-Brown, Smith et al. 2010; Keogh-Brown, Wren-Lewis et al. 2010; Smith & Keogh-Brown 2013). 

By specifying a fully integrated and dynamically-recursive EDM-malaria transmission model for Ghana, 

based on a core malaria-focussed macroeconomic CGE model and with detailed feedback effects between 

economic and epidemiological models via private demand for malaria interventions, we aim to create a 

model-consistent health and macroeconomic model framework which can be used to investigate the 

interplay between health and macroeconomic disease burdens, measure the health and economic impacts 

of malaria interventions, and study the importance (or lack thereof) of the general omission of proper 

epidemiological underpinnings and integration of economic incentive feedback effects in the existing 

literature. Ghana is a typical Sub-Saharan African (SSA) country where malaria is hyperendemic, infections 

are dominated by the virulent Anopheles mosquito vector-borne Plasmodium falciparum parasite, and 

transmission, in most areas except for the savannah region, occurs all year round, putting the entire 

population of 27.2 million (2015) at risk (WHO 2016). In spite of donor-supported scaling-up, the reported 

numbers of suspected out-patient department malaria cases increased from 3.1-3.5 million during 2001-

2008 (NMCP 2009) to 8.1-11.1 million per year during 2010-14 (NMCP 2015). While the jump is likely to 
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reflect improved monitoring, the numbers indicate that the health disease burden remains high and that 

the control of malaria continues to represent a critical challenge to Ghanaian authorities. 

In order to consistently measure future health and macroeconomic disease burdens and impacts of malaria 

interventions, and to study the importance of economic incentive feedback effects, we integrate a 

macroeconomic dynamically-recursive CGE model framework, calibrated on the basis of a recently 

developed 2004 malaria-focussed Social Accounting Matrix (MalSAM) (Jensen, Keogh-Brown et al. 2012), 

with a MacDonald-Ross compartment model of malaria transmission (Anderson and May 1991), which has 

been extended to account for human super-infections (Dietz 1988). We purposefully constructed the 2004 

MalSAM data set, and calibrated our CGE model, to include 19 household categories stratified according to 

(1) rural-urban location, (2) coastal-forest-savannah eco-region location, and (3) low-medium-high malaria 

prevalence district location. By capturing regional variation in transmission intensities, this stratification 

allowed us to construct and match 19 epidemiological and demographic models thereby ensuring that 

regional variations in malaria transmission are captured endogenously within our model. The 19 regional 

demographic models also capture interregional and international migration flows and accompanying 

changes in population exposure. The full EDM-malaria model framework allows us to undertake policy 

analyses with model-consistent macroeconomic and clinical health outcome indicators, and to produce 

consistent macroeconomic and health burden assessments with decompositions across macroeconomic 

cost components and economic incentive mechanisms. The model is set up to assess future policy scenarios 

and disease burdens over the two coming decades (2015-34), defined as the dynamically accumulating 

policy impacts or future burdens avoided by current interventions or elimination of malaria transmission. 

To our knowledge, the current EDM-malaria model is the first fully-integrated empirical EDM model 

framework for any type of infectious disease. In our model framework, economic incentives affect regional 

epidemiological and clinical outcomes, and inter alia macroeconomic and health disease burdens, in two 

ways: (1) demand for prevention and treatment interventions, and (2) migration between Ghana regions 

with varying malaria transmission intensities. In turn, clinical outcomes, in the form of uncomplicated 

malaria episodes and excess malaria mortality, drive macroeconomic feedback effects on regional labour 

markets as well as private and government expenditure patterns for malaria-related composite 

intervention commodities. We specifically distinguish between pecuniary macroeconomic 

impacts/economic disease burdens and non-pecuniary human disease impacts/health disease burdens. The 

focus on pecuniary outcomes is particularly important for undertaking sound and sustainable public 

(malaria) funding allocations in an otherwise capital-constrained developing country context, while non-
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pecuniary (malaria) health indicators are critical for effectively pursuing the overarching policy objective of 

enhancing human welfare. 

The rest of the paper is organized so as to fully document the individual epidemiological, demographic and 

macroeconomic models, and the transmission mechanisms which links them together: The macroeconomic 

dynamically-recursive CGE model framework for Ghana, including parametrization and calibration to our 

2004 malaria-focussed macroeconomic SAM database, is presented and described in section 2; the 

epidemiological model equations and their parametrization are presented and described in section 3; the 

demographic model equations and their parametrization are presented and described in section 4; the 

specification and parametrization of our effective labour supply equations and health intervention 

equations linking the epidemiological, demographic and macroeconomic models are presented in 

respectively sections 5 and 6; while conclusions are offered in section 7. 

It should be noted that our economy-wide dynamically-recursive Computable General Equilibrium (CGE) 

model is based on the static ‘IFPRI standard model’ (Löfgren, Lee Harris and Robinson 2002). In what 

follows, model equations are only presented if they represent (1) fully new equations, or (2) adaptations of 

existing standard model specifications. For all other equations, please consult the documentation of the 

standard model (ibid.) We also adopt the notation from the documentation of the standard model in terms 

of variables, parameters, and sets (ibid.) 
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2. Malaria-focussed SAM database and CGE model calibration  

Malaria-focussed Social Accounting Matrix (SAM) data base 

The calibration of our malaria-focussed Computable General Equilibrium (CGE) model was based on a 2004 

malaria-focussed Social Accounting Matrix (MalSAM) for Ghana (Jensen, Keogh-Brown et al. 2012). The 

2004 Ghana MalSAM data set was constructed with the explicit purpose of providing a data structure which 

captures the diversity of P. falciparum malaria transmission across Ghana and thereby allows for 

constructing an integrated Epidemiological-Demographic-Macroeconomic (EDM) model framework which 

can be applied for appropriate integrated analyses of malaria epidemiology and macroeconomic outcomes. 

The 2004 Ghana MalSAM was constructed on the basis of a previously established 2004 Ghana SAM 

(Jensen, van den Andel & Duncan 2008). The original 2004 Ghana SAM included 175 activities, 139 

commodities, 22 factor types (1 capital factor and 21 labour factors distinguished by rural-urban location, 

coastal-forest-savannah eco-region location, and low-medium-high skill levels), and 21 household types 

(distinguished by rural-urban location, GAMA-coastal-forest-savannah eco-region location, and low-

medium-high education of head of household; Greater Accra Metropolitan Area (GAMA) was classified as a 

separate urban region without rural areas). 

For our current purposes, we needed to distinguish between gender types of labour factors (due e.g. to the 

gender-specific differences in absenteeism due to female caregiving for malaria-sick children). Our 2004 

MalSAM therefore includes 43 different factor types including 1 capital factor and 42 labour factor types 

(distinguished by rural-urban location, coastal-forest-savannah eco-region location, low-medium-high skill 

levels, and male-female gender types). Data for disaggregation of labour value added between gender 

types were obtained from the 2004 Ghana Supply and Use Tables (van den Andel 2007). 

The household classification of the original 2004 Ghana SAM was also inappropriate for our current 

purposes. One of the key transmission mechanisms between our epidemiological and macroeconomic 

models link impacts on households’ labour factor ownership and effective labour force participation (see 

section 5). In order to properly capture regional differences in malaria transmission (see section 3), it was 

deemed necessary (and sufficient) to keep the Greater Accra Metropolitan Area (GAMA) as a separate 

household type, and classify the rest of Ghana into 18 household types according to (1) rural-urban 

location, (2) coastal-forest-savannah eco-region location, and (3) low-medium-high malaria prevalence 

district location (within each region). The two former rural-urban and eco-region location classifications 

were derived from the original SAM data asset, while the malaria prevalence classification was achieved by 

defining two district level threshold values, 33% and 47%, resulting in an equal sharing of Ghana’s 110 
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districts (2005 administrative classification) into low transmission districts (37), medium transmission 

districts (36), and high transmission districts (37). The disaggregation into 19 households, categorized 

according to malaria prevalence rates, was achieved by linking malaria prevalence data from the Malaria 

Atlas Project (Gething et al. 2011) with Ghana household survey data from the 2005/06 GLSS5 data set (GSS 

2008) (see section 3.3 for additional details about the mapping of epidemiological and economic data). 

While the definition of our two threshold values for malaria prevalence ensured a balanced overall 

distribution of low, medium, and high prevalence districts, distributions within eco-regional household 

types were, as expected, less balanced with overrepresentations of low transmission districts in coastal 

region households (18 of 27), medium transmission districts in forest region households (24 of 47), and high 

transmission districts in savannah region households (27 of 36). The new factor and household account 

typologies, which were developed for the 2004 Ghana MalSAM, were retained in the final aggregated 2004 

Ghana MalSAM as outlined in Table A.1 (annex A). 

The 2004 Ghana MalSAM retained the 175 activity and 139 commodity accounts from the original 2004 

Ghana SAM (Jensen, Keogh-Brown et al. 2012). However, for the purposes of CGE modelling and in order to 

reduce the complexity of our EDM-malaria model framework, we decided to aggregate these accounts into 

10 activity and commodity accounts. Separate health activity (‘a10’) and health commodity (‘c10’) accounts 

were retained in order to allow for modelling of health interventions and health system costs, and separate 

agricultural, industry and service sectors were also retained. The activity and commodity accounts, which 

were retained in the final aggregated 2004 Ghana MalSAM, are also outlined in Table A.1 (annex A). 

Computable General Equilibrium (CGE) model specification and calibration 

The economy-wide dynamically-recursive Computable General Equilibrium (CGE) model, presented in this 

paper, is based on the ‘IFPRI standard model’ (Löfgren, Lee Harris and Robinson 2002). This is a well-known 

and widely applied comparative static, single country, open economy, multi-sector CGE model which has 

recently been used in health and trade-related applications by some of the authors (e.g. Smith, Keogh-

Brown et al. 2009; Lock, Smith et al. 2010, Jensen, Keogh-Brown, Smith et al. 2013). The model accounts for 

different types of agents including producers/enterprises, private households, the government sector and 

the foreign sector. 

There are several reasons why our CGE model approach is a superior tool for the purpose of analysing 

economic analysis of an infectious disease such as malaria. In particular, the integrated framework allows 

for (1) measuring the economic values of commodities, services and employment at which the net 

economic costs of malaria illness and malaria interventions are assessed, and it also allows for (2) 
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specification of endogenous interactions and feedback effects between the CGE model and other sub-

models including private intervention demands (see section 6) and private migration decisions (see section 

4) which links economic outcomes to demographic impacts and malaria exposure, and subsequently feeds 

back into the calculation of economic values and net economic costs. In terms of modelling, our wage-

driven private migration specifications were accommodated by our disaggregation of labour factor use in 

production, discussed above, which allowed for modelling of gender- and region-specific wage levels. In 

terms of policy interventions, we adapted our framework to be able to handle both benefit- and cost-sides. 

The benefit-side involves health-related changes in labour supplies due to reduced absenteeism of sick 

adults and (female) caregivers for sick children, while the cost-side involves increased private and 

government expenditures of treatment and prevention interventions and administrative and laboratory 

services. 

In order to capture all of the above-mentioned migration- and intervention-related transmission 

mechanisms, our simulation framework needed to include (as a minimum): (1) multiple production sectors 

to capture the production and supply of health services, and multiple production factors to capture the 

variations in employment patterns and resulting variations in gender- and region-specific wage-levels, (2) 

endogenous goods and factor prices (to capture important GE effects from e.g. health-related demand- and 

supply-shocks to goods and factor markets including the dynamic wage impact of economic development 

over time), (3) separate private and government accounts (to capture changes in private and government 

sector income and expenditure patterns), and (4) a dynamic specification (to capture future benefits and 

costs associated with investment and capital accumulation, and long-term health impacts on the labour 

force). Our dynamically-recursive multi-sector Computable General Equilibrium (CGE) model framework 

shares all of the above features, and therefore allows for capturing all of the required transmission 

mechanisms.  

As noted above, the CGE model for the Ghana economy was calibrated on the basis of the aggregated 2004 

MalSAM dataset with 10 production activities and 10 retail commodities. A further three commodities were 

created specifically to allow for analysing private treatment and prevention intervention demand for 

respectively ITN and ACT commodities and for an additional ACT-related ‘composite malaria treatment’ 

commodity (see equation (6.6’’) for the specification of demand for intervention-related composite health 

services). The former ITN and ACT commodities were assumed to be imported, while a Leontief production 

specification was invoked to specify the supply of the ‘composite ACT treatment’ commodity (the 

‘composite ITN prevention’ commodity was assumed to be identical with the ITN input), implying fixed 

input shares of (1) ACT drugs, and (2) administrative and laboratory services. The latter services were 



8 

 

assumed to be supplied by the domestic health sector. Value breakdowns were based on non-AMFm ACT 

prices and laboratory costs from an Affordable Medicines Facility-malaria (AMFm) evaluation study (Bate et 

al. 2012) and from a KNUST hospital study (Dontwi, Dedu & Aboagye 2013) (see Table 6.1). 

In line with the abovementioned demands for composite intervention commodities, our CGE model is 

based on the fundamental principles of profit maximization among producers and utility maximization 

among households. Production (apart from composite intervention commodities) is specified as a Constant 

Elasticity of Substitution (CES) function of aggregate intermediate input demand (individual commodity 

input demands are determined by a Leontief specification) and aggregate factor input demand (individual 

factor input demands are determined by a CES specification). Standard elasticity values were used for the 

top-level production specification (0.8) and the bottom-level factor input demand specification (0.6). Trade 

between domestic and foreign agents is specified as a function of relative prices (determined by the real 

exchange rate), based on an Armington CES specification on the import side and a Constant Elasticity of 

Transformation (CET) specification on the export side. Standard trade elasticity values were applied on the 

import side (0.8) and on the export side (1.6). 

On the consumer side, our model relies on a standard Linear Expenditure System (LES) for household 

demand. The LES demand system was calibrated to the 10 commodities from our aggregate 2004 MalSAM 

(Table A.1, annex A), and subsequently extended to include private composite intervention commodity 

demand (see the extended LES demand system equations (6.6’)-(6.6’’) in section 6) and derived demands 

for prevention interventions (ITNs) and treatment interventions (ACTs) (see input demand equations (6.8’)-

(6.8’’) in section 6). Calibration of the full 12 commodity LES demand system was ensured by extracting 

‘ITN’ and ‘composite malaria treatment’ expenditure patterns from the aggregate ‘health’ commodity ‘c10’. 

The extension of the LES demand system to include private demand for malaria-related composite 

intervention commodities is a key specification in our integrated EDM model, which allows for endogenous 

feedback effects from the economic model to the epidemiological model.  

As is customary, the LES specification assumes that the Frisch parameter, for our 12 commodities, is based 

on the development level of Ghana (in the CGE model literature, Frisch parameters are typically derived 

from an econometric relationship with GDP per capita, estimated by Lluch, Powell and Williams (1977): 

−36 ∗ ����	
��.��. Based on the 2010 Ghana GDP per capita (1,283US$), we assumed that the Frisch 

parameter is -2.74 for Ghana, and, based on the standard assumption of income elasticities of +1.0, we 

calibrated household-specific autonomous consumption levels for all commodities except for the two 

malaria-related composite intervention commodities where income elasticities were derived from the 

literature (see Table 6.2 and equations (6.18)-(6.19) for details; see section 6.3 for additional discussion). 
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The original ‘standard model’ (Löfgren, Lee Harris and Robinson 2002) relies on fixed factor income shares 

to compute household factor income aggregates. This specification is not satisfactory, however, when 

region-specific population and workforce levels are tracked and household-specific workforce compositions 

are likely to change. The addition of a set of regional demographic models therefore prompted us to extend 

the core ‘standard model’ with a set of explicit factor ownership equations in order to keep track of 

household-specific factor ownership and thereby to ensure that household income generation, within the 

fully integrated EDM-malaria model framework, is model-consistent (see section 5 for technical details on 

equation specifications). 

With the addition of standard factor-updating equations for labour and capital, we finally derived our 

dynamically-recursive malaria-focussed Ghana CGE model. The framework solves recursively for annual 

equilibria, and this is consistent with our high-frequency discrete time epidemiological model specification 

(see discussion in section 3 below). The dynamically-recursive CGE model had to be run forward from 2004 

(the SAM base year) to 2015 (the base year of the 2015-2034 simulations). To ensure that the model 

mirrored the 2015 Ghana economy, we targeted key macroeconomic aggregates (nominal and real GDP) 

over the period 2004-2010. Furthermore, we created reasonable counterfactual growth paths for 

respectively 2011-2015 and 2015-2034 by targeting 2006-2010 historical Ghana growth rates for nominal 

GDP (25.4% p.a.) and real GDP (6.6% p.a.). The counterfactual real growth rates matches the recent real 

GDP growth experience in Ghana (IMF 2016, 2017) and the implied GDP deflator (our numeraire price 

index), which grows at 17.4% p.a., matches recent inflation experience (ibid.)  

For our baseline 2015-2034 projections (not shown), we apply the historical Ghana growth rates, described 

above, and employ a standard neo-classical model closure implying that flexible prices are clearing all 

goods and factor markets and that a flexible real exchange rate is clearing the current account of the 

balance of payments. Alternative structuralist CGE model approaches with a focus on market imperfections 

exist (see e.g. Taylor 1983; Robinson 1991; Agénor, Izquierdo and Jensen 2007), but the neo-classical 

closure with explicit imposition of resource constraints was considered to be appropriate for our long term 

health- and labour-focussed baseline simulations. Our baseline projections also uses on a balanced macro 

closure (fixed government demand-to-absorption ratio) which ensures a relatively unchanged composition 

of absorption (private and government consumption vs. investment) over the projection period. Our Net 

Present Value (NPV) calculations of economic outcomes, which use a real discount rate of 5.0% p.a., is 

based on a nominal discount rate of 22.4% p.a. (consistent with the 17.4% p.a. inflation rate). The 5.0% p.a. 

real discount rate mirrors recent real interest rates on domestic Ghanaian public debt: 4.3-4.7% p.a. in 

2013-14 (IMF 2016).  
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3. Epidemiological model equations and parametrization 

In this section, we specify a full set of bi-weekly discrete time epidemiological models stratified over our 19 

malaria-focussed household types (section 3.1), and we also model clinical health outcomes as closed-form 

piece-wise linear specifications based on ‘seasonal transmission’-corrected lookup tables derived from the 

Swiss Tropical Institute model (section 3.2). All epidemiological specifications are parameterized in section 

3.3, while endogenous variables and exogenous parameters are listed and defined in Annex B. 

3.1. Household-specific epidemiological models for malaria transmission 

The household-specific epidemiological sub-models of our EDM-malaria model framework are calibrated to 

model clinical outcomes of Plasmodium falciparum parasites. P. falciparum is the dominant type of malaria 

parasite in Ghana and Sub-Saharan Africa (SSA). It is transmitted by female Anopheles mosquitoes (main 

vector: Anopheles Gambiae), and it is the most virulent form of malaria infection with the highest rates of 

complications and mortality.  

The epidemiological model framework relies on a standard MacDonald-Ross compartment model 

(Anderson and May 1991), which has been expanded with a Ditz specification for modelling of super-

infections (Dietz 1988), i.e. multiple infections with different types of parasites. While the literature specify 

continuous time models, we specify our epidemiological model framework in discrete time to match the 

discrete time specifications of our other macroeconomic and demographic sub-models (see sections 2 and 

4). 

The epidemiological model employs the so-called “reversible catalytic model” for modelling of malaria 

prevalence and superinfections. The origin of this approach can be traced back to Muench (1959) and 

subsequent malaria-applications include Bekessy, Molineaux, and Storey (1976) and Drakeley et al. (2005). 

In our case, the reversible catalytic model framework allows us to derive the difference equation (3.1), 

essentially the general solution to the Poisson-distributed multiplicity of super-infections (see derivation in 

section 3.4.1), with the multiplicity of malaria infections (��,���) as state variable: 

 (3.1)  ��,����� 	= 	 ���,��� 	−	� !"∗�!,#$%&'(
) " * ∗ exp.−/̅12 +	� !"∗�!,#$%&'(

) " 	 , ∀ℎ ∈ 7, 89: ∈ ;<= 

where the dynamic evolution of ��,��� is governed by the force of infection (>�,���?@A ) corrected for the 

arrival rate of super-infections (>̅�B), and the clearance rate of super-infections (/̅1). State variable 

difference equations are specified for each of our regional household types (ℎ ∈ 7) and each bi-weekly 

time period (89: ∈ ;<=). Based on a simple model of super-infection, where infected individuals are 
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assumed to harbour at least one clone (Dietz 1988), the human malaria prevalence rate (
�,���C ) can be 

expressed, as specified in equation (3.2), as a simple monotonic function of the multiplicity of malaria 

infections (��,���): 

(3.2) 
�,���C 	= 1 − exp(−��,���)	, ∀ℎ ∈ 7, 89: ∈ ;<= 

Due to the above monotonic relationship, our state equation can be re-stated with 
�,���G  as the state 

variable (derivation is included in section 3.4.2): 

(3.1’) 
�,�����C 	= 	1 − .1 −	
�,���C 2HIJ.�) "2expK�	� !"∗�!,#$%&'(
) " * ∗ (exp(−/̅B) − 1)L	, ∀ℎ ∈ 7, 89: ∈ ;<= 

Either of the two state equations (3.1 or 3.1’) can be used (in conjunction with the static equation 3.2) as 

the basis for our dynamic epidemiological model specification. 

The above set of difference equations with discrete time steps governs the dynamic evolution of our 

epidemiological model. The discrete time step specification is particularly useful since the other sub-models 

also employ discrete time steps. The economic and demographic sub-models rely on annual time steps t 

(sections 2 and 4). However, this is not useful for our epidemiological model, since the malarial parasites 

and mosquito vectors have fairly short life cycles of around two weeks. Instead, it was decided to rely on bi-

weekly discrete time intervals in the epidemiological model. The epidemiological model therefore solves for 

26 bi-weekly time periods (89: ∈ ;<=) every time the other sub-models solve for one annual time period 

(8 ∈ ;). 

The asymmetrical length of time periods has implications for the modelling of feedback effects between 

the epidemiological model, on the one hand, and the economic and demographic models, on the other. We 

decided to use the regional human malaria prevalence rates from the final 26th bi-weekly time period of 

each year (
�,M���N�MC ) as the 
�,�C  value for each household strata (ℎ ∈ 7) and corresponding annual time 

period (8 ∈ ;). This value was also used as starting value for the 
�,���C  state variable for the following year. 

Similarly, we decided to use the regional entomological inoculation rates from the final 26th bi-weekly 

period of each year (OPQ�,M���N�M) as the basis for calculating annual regional clinical outcome indicators 

(see section 3.2, below), which are subsequently used as inputs in the annual macroeconomic and 

demographic models for each household strata (ℎ ∈ 7) and corresponding annual time period (8 ∈ ;). 

The epidemiological model is known to converge relatively quickly towards equilibrium. Hence, the “final 

26th bi-week” convention means that the annual demographic and macroeconomic simulations, de facto, 
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are based on equilibrium 
�C and OPQ values. This focus on “annual equilibrium” is consistent with our 

economic methodology, since the dynamically-recursive CGE model also solves recursively for annual 

equilibria. 

The remaining part of the epidemiological model consists of static but time-dependent equations without 

time dynamics. In order to compute mosquito malaria prevalence rate (
�,�R ), we employ a reduced-form 

static equilibrium specification (Smith and McKenzie 2004), presented in equation (3.3), where the 

prevalence of infectious mosquitoes is assumed to remain in equilibrium within a given period (but allowed 

to change between time periods with the human prevalence rate 
�,�C ): 

(3.3) 
�,���R = ST∗U̅∗V!,#$%W
)!,#X �ST∗U∗̅V!,#$%W ∗ exp.−/�,�R ∗ Y̅Z[\]�2	, ∀ℎ ∈ 7, 89: ∈ ;<= 

This equilibrium specification of 
�,���R  depends, in addition to 
�,���C , on the human feeding rate of female 

mosquitoes (	T), the infectiousness of humans to mosquitoes (�)̅, the malaria parasite incubation period 

(Y̅Z[\]�), and the mosquito mortality rate (/�,�R ) which is an endogenous parameter since it is affected by 

endogenous coverage rates of malaria interventions (see equation (6.18) in section 6). Again, static time 

dependent equilibrium equations for mosquito malaria prevalence rates (
�,���R ) are specified for each of 

our regional household types (ℎ ∈ 7). 

Our static part of the model is closed by adding definitions of key indicators including the force of infection 

(>�,���?@A ) and the entomological inoculation rate (OPQ�,���) in questions (3.4)-(3.5): 

(3.4) >�,���?@A = 9T ∗ OPQ�,���	, ∀ℎ ∈ 7, 89: ∈ ;<= 

(3.5) OPQ�,��� = ^�,� ∗ 	T ∗ 
�,���R 	, ∀ℎ ∈ 7, 89: ∈ ;<= 

where the force of infection (>�,���?@A ) is the product of the infectiousness of mosquitoes to humans (9T) and 

the Entomological Inoculation Rate (OPQ�,���), and where OPQ�,��� is the product of the mosquito 

prevalence rate (
�,���R ), the human feeding rate of female mosquitoes (	T) and the number of female 

mosquitoes per person (^�,�) which is an endogenous parameter since it is affected by endogenous 

coverage rates of malaria interventions (see equation (6.19) in section 6). 

A consideration was made to include, within the model, empirical modelling (estimation and 

parametrization) of the infectiousness of mosquitoes to humans (9T). Not every infective mosquito bite 

leads to a blood stage infection, but few systematic analyses of the relation between >�,���?@A  and OPQ�,��� 

exist in the literature. Three candidate models were considered including the classical approach with 
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constant rate of infectiousness b, and two other models (Smith et al. 2006): (1) a model assuming 

saturation of >�,���?@A  at high OPQ�,���, and (2) another model with additional development of pre-

erythrocytic immunity upon repeated exposure, leading to a (potentially non-monotonic) reduction of the 

force of infection in older hosts. While preliminary results indicated that a model, such as that given in 

equation (3.6’), with variable rate of infectiousness (9�,�) but without pre-erythrocytic immunity, was most 

consistent with underlying data, it was decided that the statistical basis was not sufficiently developed to 

include this specification within the current model framework: 

 (3.6’) 9�,��� = 9_`a 	+ 	 .���Tbcd2
���e(f!,#$%

ghiTTTTT$ * 	 , ∀ℎ ∈ 7, 89: ∈ ;<= 

In principle, our epidemiological model measures the true human malaria prevalence (
�,���C ), i.e. the 

proportion of people harbouring detectable or undetectable parasites. Such a variable would not be 

directly comparable to normal measures of observed malaria prevalence, detectable by microscopy or PCR-

based methods. Recent research has made advances into estimation of detectability relations (Bretscher et 

al. 2010). In order to produce a comparable variable of expected human malaria prevalence rate detectable 

by microscopy, we experimented with including, within the model, two additional empirical equations 

(3.7’)-(3.8’) which measure respectively the correction factor for detectability of malaria infection by 

microscopy (j�,�) as a function of the Entomological Inoculation Rate (OPQ�,���), and the observed human 

malaria prevalence rate, also known as slide prevalence (k
�,���C ): 

(3.7’) j�,��� = jT_Sl + .mTbcd�mTbno2
��� ghiTTTTTp

e(f!,#$%*
	 , ∀ℎ ∈ 7, 89: ∈ ;<= 

(3.8’) k
�,���C = j�,� ∗ 
�,���C 	, ∀ℎ ∈ 7, 89: ∈ ;<= 

In the end, we also decided to exclude specifications (3.7’)-(3.8’) due to insufficient statistical basis. 

Finally, for the purposes of analysing the potential for future malaria elimination, we employed a model-

consistent formula for calculating basic reproduction numbers (Q��) (Smith & McKenzie 2004) to derive 

household-specific relationships for control reproduction numbers (Q�,���q ): 

(3.9) Q�� = _ !∗Sr∗�∗U
) !X∗) " 	 , ∀ℎ ∈ 7 

 (3.10) Q�,���q = _!,#$%∗Sr∗�∗U
)!,#$%X ∗) " 	 , ∀ℎ ∈ 7, 89: ∈ ;<= 
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where (  ̂�,	/̅�R) are epidemiological parameter values associated with 0% coverage rates of preventive 

interventions (see section 6.2 for further discussion). 

For presentational purposes, the implementation of our epidemiological simulation model includes the 

human malaria prevalence rate (
�,���C ) as state variable. Hence, our simulated model includes the 

following equations: (3.1’), (3.2), (3.3), (3.4), (3.5), and (3.10). This set of equations includes one state 

variable equation (3.1’) for 
�,���C  and five static time dependent model equations without dynamics for 

the determination of the remaining five endogenous variables: the multiplicity of infections (��,���), 

mosquito malaria prevalence rate (
�,�R ), the force of infection (>�,���?@A ), the entomological inoculation rate 

(OPQ�,���), and the controlled reproduction number (Q�,���q ). 

Distinct epidemiological models were calibrated for each of the 19 regional households in our integrated 

model framework, and a full account of the region-specific calibrated parameter values are presented in 

section 3.3. 

3.2. Clinical outcome specifications 

It is well-known that clinical outcomes from P. falciparum infection are intimately related to the intensity of 

transmission measured by the Entomological Inoculation Rate. E.g. it has been argued that “there is strong 

evidence both from molecular typing and from patterns of seasonality in morbidity that clinical malaria is 

normally caused by newly invading parasites, and the most severe symptoms generally accompanying the 

first peak of parasite density after infection. It follows that in the short term, any reduction in EIR will 

decrease the incidence of clinical episodes in proportion to the effect on the force of infection” (Smith, 

Killeen et al. 2004). However, the literature also generally finds that “Reductions in transmission intensity … 

also reduce immunologic stimulation, and this may have longer term effects, in particular resulting in shifts 

of the peak in the age incidence profiles to older ages…” (ibid.) It was therefore decided to include an 

empirical relation which links age-specific clinical outcomes to EIR-levels, and, thereby, allows for 

measuring household- and region-specific clinical outcomes based on endogenously determined EIR-levels 

(and the age composition of households). 

We chose to model the relation between EIR and age-specific clinical outcomes through a set of piece-wise 

linear specifications based on simulated lookup tables. The Swiss Tropical Institute (STI) model (Smith et al. 

2008) is a well-known and reputable epidemiological model, which allows for capturing non-linearities in 

the relation between EIR-levels and age-specific clinical outcomes. We decided to use this model to 

simulate a set of eight lookup tables for eight distinct EIR-values (see equations (3.9)-(3.10); empirical 

characteristics of the parametrization is discussed in section 3.3.) Our baseline choice of piece-wise linear 
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specifications based on lookup tables (as well as the choice of simulating eight lookup tables) was made, in 

an attempt to capture the underlying non-linearities within a parsimonious specification. For modelling 

purposes and in order to allow for sensitivity analyses, we also include an alternative set of continuous 

polynomial approximations, which are fitted to mirror the piece-wise linear STI lookup table specifications 

(see equations (3.9’)-(3.10’)). The modelling of malaria-related clinical outcomes is focussed on two 

measures: (1) morbidity as proxied by the age-specific number of uncomplicated malaria episodes per 

person per year (τ�,tuH,�), and (2) mortality as measured by age-specific excess mortality rates (μ�,tuH,�).1 

The actual specification of the piece-wise linear functions for the two clinical outcome measures relied, 

specifically, on two sets of age-specific lookup tables, including (1) the number of uncomplicated malaria 

episodes per person per year (wxxyz
S{|,}~ ), and (2) the excess mortality risk per person per year 

(wxxyz
S{|,})
), tabulated at eight different equidistant log10-linearized EIR values with intervals of 0.5 (� ∈

w). The lookup table parameters were used as the basis for our piece-wise linear interpolation specification 

(and, hence, modelling of) household- and region-specific numbers of uncomplicated malaria episodes per 

person per year (Y�,S{|,�) and excess malaria-related mortality rate (/�,S{|,�).  
In order to implement piece-wise linear specifications, endogenously, within our model framework, we 

developed a family of functional forms, presented in equations (3.9)-(3.10), which are suitable for our 

purposes of modelling clinical outcomes over an (EIR) biomarker with bounded support set (w): 

(3.9) Y�,S{|,�.OPQ�,�2 = �T~ ∗ ∑ ∏ K���e(f!,#�∆ �∆�_L
}�__�}���}�� ∗ K��.�A�!,#2∆ − ��.�A�!,#2∆ �� wxxyz
TTTTTTTTTTS{|,}~ +

	���.�A�!,#2∆ + 1� − �.�A�!,#2
∆ �wxxyz
TTTTTTTTTTS{|,}��~ L , ∀ℎ ∈ 7, 	�� ∈ ��O, 8 ∈ ; 

(3.10) /�,S{|,�.OPQ�,�2 = �T) ∗ ∑ ∏ K���e(f!,#�∆ �∆�_L
}�__�}���}�� ∗ K��.�A�!,#2∆ − ��.�A�!,#2∆ �� wxxyz
TTTTTTTTTTS{|,}) +

	���.�A�!,#2∆ + 1� − �.�A�!,#2
∆ �wxxyz
TTTTTTTTTTS{|,}��) L , ∀ℎ ∈ 7, 	�� ∈ ��O, 8 ∈ ; 

where f(.) is a random transformation, w and w represents lower and upper bounds for f(.), and ∆ 

represents the (constant) distance between lookup table f(.)-values. In our case, we simulated lookup 

tables for eight equidistant log10-linearized EIR values with intervals of 0.5, implying that �(OPQ�,�) =
                                                           
1 Additional clinical outcomes available from the STI model simulations include (1) rate of severe malaria cases, and (2) 

rate of neurological sequelae cases. The latter clinical outcomes were not included in the current model specification. 
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�x���(OPQ�,�), ∆=0.5, w = −1 and w = +2.5. EIR biomarker values are typically found to range from 0.1 to 

100. We therefore chose to define our support set to be OPQ ∈ �0.1; 316� implying that application of the 

above-mentioned closed-form piece-wise linear functional specifications allows for endogenous calculation 

of τ�,tuH,�l and μ�,tuH,� clinical outcomes over the entire (required) support set. Critically, the above family of 

functional forms is also suitable for implementation with the “Nonlinear Programming with Discontinuous 

Derivatives” (DNLP) solver in our preferred computer program, GAMS. 

The scaling parameters in the above specifications (�~, �)) also allow for scaling of our clinical outcome 

specifications to match observed base year clinical outcomes. The scalar nature of the scaling factors 

implies that (1) the STI clinical outcome levels will be benchmarked to our Ghana-specific country context, 

but also that (2) the STI clinical outcome patterns across age groups will be retained. Due to (a) country-

specific circumstances such as prevention and treatment intervention levels, (b) limitations due to local 

health system capacity constraints, partial roll-out of RDT and microscopy testing, and limitations in 

detectability of malaria infections, and (c) infrequent and geographically limited surveys of malaria-related 

clinical outcomes, there is great uncertainty about the true numbers of malaria cases and malaria-related 

deaths in Ghana. This is reflected in a relatively erratic set of recent trend estimates of suspected malaria 

cases in Ghana. Nevertheless, benchmarking is considered to be essential (see discussion in section 3.3).  

For technical reasons, and to allow for sensitivity analyses of our piece-wise linear specification, we 

supplemented the piece-wise linear specifications by several alternative sets of polynomial approximations. 

The polynomial approximations have a maximum order of seven, but we aim to apply fifth order 

polynomial approximations when undertaking sensitivity analyses. Specifications are provided in equations 

(3.9’)-(3.10’): 

(3.9’)  Y�,S{|,�.OPQ�,�2 = �T~ ∗ .�̅S{|~,� ∗ OPQ�,� +	…	+ �̅S{|~,� ∗ OPQ�,�� 2, 
	∀ℎ ∈ 7, 	�� ∈ ��O, 8 ∈ ;, k ≤ 7 

(3.10’)  /�,S{|,�.OPQ�,�2 = �T) ∗ .�̅S{|),� ∗ OPQ�,� +	…	+ �̅S{|),� ∗ OPQ�,�� 2, 
	∀ℎ ∈ 7, 	�� ∈ ��O, 8 ∈ ;, k ≤ 7 

Technically, the continuous specifications are useful, since they allow us to use our preferred (and more 

efficient) Mixed Complementarity (MCP) numerical algorithm, to solve our integrated model in GAMS. 

Nonetheless, in order to retain as much information as possible from the original STI lookup tables (and to 

avoid problems associated with potential fitting of negative clinical outcomes), we only aim to employ the 
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polynomial approximations for model development2 and sensitivity analysis purposes (in order to 

investigate whether future applications can usefully restrict attention to continuous polynomial 

specifications). 

3.3. Parametrization 

In line with the macroeconomic calibration methodology (section 2), the epidemiological model was 

calibrated to an equilibrium solution (
�,�����C = 
�,���C = 
̅�,��� 
C ). The calibration of exogenous 

parameters and initialization of variables and endogenous parameters in the epidemiological model for P. 

falciparum transmission relied on exogenous household-specific information about two variables: human 

prevalence rates (
̅�,��� 
C ) and Entomological Inoculation Rates (OPQTTTTT�,��� ); and exogenous information 

about five parameters: the human feeding rate of female mosquitoes (	T), the infectiousness of infective 

mosquito bites (9T), the infectiousness of humans to mosquitoes (�)̅, the mosquito mortality rate (/̅�R), the 

malaria parasite incubation period (Y̅Z[\]�).  

Combined with the epidemiological model specification, reviewed in section 3.1, the above exogenous 

information on initial parameter and variable values was sufficient to calibrate the remaining exogenous 

parameter and initialize the remaining five variables. One calibrated parameter: the arrival rate of super-

infections (>̅1); and five initialized variables: the number of female mosquitoes per person (  ̂�,��� ), the 

multiplicity of malaria infections (� �,��� ,), the mosquito malaria prevalence rate (
̅�,��� 
R ), the force of 

infection (>̅�,��� 
?@A ), and the control reproduction number (QT�,��� 

q ). 

Table 3.1 presents the full set of household- and region-specific calibrated and non-calibrated parameters 

and variables from our 19 epidemiological models. Uniform values were imposed for the five exogenous 

parameters: The human feeding rate (	T) was set at 0.67 day-1 (Filipe et al. 2007), the infectiousness of 

infective mosquito bites (9T) was set at 0.25 (Filipe et al. 2007), the infectiousness of humans to mosquitoes 

(�)̅ was set at 0.05 day-1 (Kileen, Ross & Smith 2006), and the incubation period (Y̅Z[\]�) was set at 10 days 

(Gu et al. 2003), the clonal clearance rate (/̅1) was set at 0.078 (=14/180), based on our bi-weekly time 

interval and an assumed 180 day parasite survival time (Filipe et al. 2007)3, while the mosquito mortality 

                                                           
2 In addition, the MCP-solver automatically checks whether our system of equations (the CGE model) is square, and 

thereby provides an important check in model-development, something which is not available with the non-linear 

optimization solvers. 
3 Our assumption of a 180 day parasite survival time was set, conservatively, relative to the mean (211.6 days) and the 

median (215.5 days) survival times observed by Sama, Dietz & Smith (2006). 
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rate (/̅�R) was set at 1/10 days-1, based on an estimated 10 day average mosquito lifespan derived from a 

small survey of available empirical evidence (Filipe et al. 2007).4 

In contrast to the uniform values imposed on our non-calibrated parameters, detailed household- and 

region-specific values were derived and imposed on our non-calibrated variables: human prevalence rates 

(
̅�C) and Entomological Inoculation Rates (OPQTTTTT�). Since level-differences in 
̅�C and OPQTTTTT� are critical for 

measuring regional differences in malaria disease burdens, the household- and region-disaggregation of 

our data sets and models was defined by our ability to regionally disaggregate 
̅�C and OPQTTTTT�, and to link this 

up with our underlying 2005/06 GLSS5 household survey data set (GSS 2008). 

 Table 3.1. Household-specific epidemiological model parameters and initial variable values 

 

non-calibrated parameters 

 

Initial variable 

values$   

Calibrated 

parameters*   

 Calibrated variable 

values* 

 

a† b† c‡ μM† μS† τINCUB# 

 

EIR$ pH$ 

 

m λS 

 

N pM λFOI RC 

H01 0.67 0.25 0.05 0.10 0.08 10.00   0.39 0.14   36.29 0.117   0.15 0.02 0.10 26.18 

H02 0.67 0.25 0.05 0.10 0.08 10.00 

 

0.84 0.25 

 

43.51 0.108 

 

0.29 0.03 0.21 31.39 

H03 0.67 0.25 0.05 0.10 0.08 10.00 

 

2.00 0.37 

 

73.88 0.071 

 

0.46 0.04 0.50 53.30 

H04 0.67 0.25 0.05 0.10 0.08 10.00 

 

8.58 0.52 

 

235.72 0.026 

 

0.73 0.05 2.15 170.06 

H05 0.67 0.25 0.05 0.10 0.08 10.00 

 

0.95 0.28 

 

45.37 0.106 

 

0.32 0.03 0.24 32.74 

H06 0.67 0.25 0.05 0.10 0.08 10.00 

 

1.67 0.34 

 

65.84 0.078 

 

0.42 0.04 0.42 47.50 

H07 0.67 0.25 0.05 0.10 0.08 10.00 

 

5.10 0.46 

 

153.97 0.038 

 

0.62 0.05 1.28 111.08 

H08 0.67 0.25 0.05 0.10 0.08 10.00 

 

0.84 0.26 

 

42.58 0.111 

 

0.30 0.03 0.21 30.72 

H09 0.67 0.25 0.05 0.10 0.08 10.00 

 

2.39 0.38 

 

84.84 0.063 

 

0.49 0.04 0.60 61.21 

H10 0.67 0.25 0.05 0.10 0.08 10.00 

 

9.91 0.52 

 

270.06 0.023 

 

0.74 0.05 2.48 194.83 

H11 0.67 0.25 0.05 0.10 0.08 10.00 

 

1.15 0.29 

 

51.80 0.095 

 

0.35 0.03 0.29 37.37 

H12 0.67 0.25 0.05 0.10 0.08 10.00 

 

2.50 0.38 

 

88.96 0.060 

 

0.49 0.04 0.63 64.18 

H13 0.67 0.25 0.05 0.10 0.08 10.00 

 

12.86 0.56 

 

328.72 0.020 

 

0.83 0.06 3.21 237.15 

H14 0.67 0.25 0.05 0.10 0.08 10.00 

 

1.40 0.32 

 

58.51 0.086 

 

0.39 0.04 0.35 42.21 

H15 0.67 0.25 0.05 0.10 0.08 10.00 

 

3.08 0.41 

 

103.44 0.053 

 

0.53 0.04 0.77 74.63 

H16 0.67 0.25 0.05 0.10 0.08 10.00 

 

8.97 0.52 

 

243.73 0.026 

 

0.74 0.05 2.24 175.84 

H17 0.67 0.25 0.05 0.10 0.08 10.00 

 

1.36 0.32 

 

56.84 0.089 

 

0.39 0.04 0.34 41.00 

H18 0.67 0.25 0.05 0.10 0.08 10.00 

 

3.66 0.42 

 

120.04 0.046 

 

0.55 0.05 0.91 86.60 

H19 0.67 0.25 0.05 0.10 0.08 10.00 

 

17.83 0.59 

 

435.84 0.016 

 

0.90 0.06 4.46 314.43 

Sources: †Filipe et al. (2007); ‡Kileen, Ross & Smith 2006; #Gu at al. (2003); $Gething at al. (2011); *Own calculations 

 

Detailed maps of 2010 P. falciparum values for 
̅�,��� 
C  and OPQTTTTT�,���  at pixel levels of 5x5km were 

obtained from the Malaria Atlas Project (MAP) (Gething et al. 2011). These maps were manipulated, 

through use of the ArcGIS program and the overlaying of an own-developed map of 2005/06 Ghana 

districts (mirroring the basic sampling units of GLSS5), to allow derivation of average 2010 district-level 

values of 
̅�,��� 
C  and OPQTTTTT�,���  (based on the 2005/06 Ghana district classification). The subsequent 

categorisation of districts according to low, medium and high levels of 
̅�,��� 
C  allowed for the definition 

                                                           
4 A small survey of available empirical evidence suggests that Anopheles Gambiae average lifespans may vary strongly 

between 3.6-20 (see appendix A in Chitnis, Hyman & Cushing; 2008). However, based on other evidence (Filipe et al. 

2007), we chose a conservative 10 day average mosquito lifespan which implies a daily mosquito mortality rate of 0.10 

day-1. 
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and aggregation of our 19 household types. Finally, the ability for us to link both the 2010 MAP data and 

the 2005/06 GLSS5 household survey data to the same underlying sampling unit, allowed us to establish a 

fully consistent epidemiological and economic (SAM) data set with distinct epidemiological and 

income/expenditure patterns for each of our 19 distinct household types (see section 2 for additional 

discussion). The average 
̅�,��� 
C  and OPQTTTTT�,���  values are given in Table 3.1.5 

The lookup tables for measurement of clinical outcomes from P. falciparum infection were simulated and 

derived from the Swiss Tropical Institute (STI) model (Smith et al. 2008). As discussed above (section 3.2), 

clinical outcomes are generally considered to be driven by malaria transmission intensity, proxied by EIR, 

but, due to (not fully understood) immunization issues, the relationship is also considered to vary by age-

group. It was therefore decided to simulate age-specific lookup tables for single year age categories 

between ages 0-68 (morbidity and mortality rates for ages 69+ were assumed to be similar to the 68 year 

olds).  

Clinical outcomes are also generally thought to vary with the inter-annual variation in transmission 

intensity. It was therefore decided to simulate separate age-specific lookup tables for four different levels 

of seasonality in malaria transmission including 5 months, 6 months, 7 months, and 12 months (all year) 

transmission. Each of our 19 household types were subsequently categorized into a given seasonality group 

based on information about the length of agricultural growing seasons by ecological region (Oppong-Anane 

2006). The household-specific seasonality assumptions are outlined in Table 3.2. 

As already explained above, the current model specification employs two sets of ‘lookup table’ parameters, 

including (1) the average numbers of uncomplicated malaria episodes per person per year (wxxyz
TTTTTTTTTTS{|,}~ ), 

and (2) the excess mortality risk per person per year (wxxyz
TTTTTTTTTTS{|,})
), tabulated at eight different equidistant 

log10-linearized EIR values with intervals of 0.5 (see section 3.2).6 Surface figures of the lookup tables for 

morbidity (wxxyz
TTTTTTTTTTS{|,}~ ) and excess mortality (wxxyz
TTTTTTTTTTS{|,})
) associated with P. falciparum infection are 

provided in respectively Figures 3.1 and 3.2 (for 12 month all year transmission).7 

 

                                                           
5 It should be noted that prevalence data from the MAP data refer to 2-10y age groups. In our model calibration, we 

assume that these age-specific prevalence rates extend to the broader population. In this context, it should, however, 

be noted that all clinical outcomes are measured on the basis of household-specific EIR-values. The specification of 

age-specific prevalence rates is therefore likely to have only minor importance for the measurement of economic 

impacts and the overall economic disease burden. 
6 Additional sets of lookup tables could be constructed for other clinical outcomes, available from our STI model 

simulations (see also footnote 1), including (1) rate of severe malaria cases, and (2) rate of neurological sequelae 

cases. This option was, however, not pursued for the current model specification. 
7 The qualitative nature of the clinical outcome surface figures is robust to variation in seasonality patterns.  
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Table 3.2. Household-specific seasonality in malaria transmission 

Household Household label 

Agricultural growing 

seasona 

Assumed transmission 

season 

H01 Low prevalence GAMA 250-260 days 12 months 

H02 Low prevalence Urban Coastal 250-260 days 12 months 

H03 Med prevalence Urban Coastal 250-260 days 12 months 

H04 HIgh prevalence Urban Coastal 250-260 days 12 months 

H05 Low prevalence Urban Forest 250-260 days 12 months 

H06 Med prevalence Urban Forest 250-260 days 12 months 

H07 HIgh prevalence Urban Forest 250-260 days 12 months 

H08 Low prevalence Urban Savannah 150-200 days 7 months 

H09 Med prevalence Urban Savannah 150-200 days 7 months 

H10 HIgh prevalence Urban Savannah 150-200 days 7 months 

H11 Low prevalence Rural Coastal 250-260 days 12 months 

H12 Med prevalence Rural Coastal 250-260 days 12 months 

H13 HIgh prevalence Rural Coastal 250-260 days 12 months 

H14 Low prevalence Rural Forest 250-260 days 12 months 

H15 Med prevalence Rural Forest 250-260 days 12 months 

H16 HIgh prevalence Rural Forest 250-260 days 12 months 

H17 Low prevalence Rural Savannah 150-200 days 7 months 

H18 Med prevalence Rural Savannah 150-200 days 7 months 

H19 HIgh prevalence Rural Savannah 150-200 days 7 months 

Source: aOppong-Anane (2006); NB: Coastal areas assumed to be belong to transition zones. 
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Source: own simulations of Swiss Tropical Institute model

Figure 3.1. Malaria morbidity (uncomplicated episodes per person) 

by 5-year age group and EIR transmission intensity
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Figure 3.2. Malaria mortality rates by

5-year age group and EIR transmission intensity
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The scaling parameters (�T~, �T)) in the piece-wise linear clinical outcome specifications (equations (3.9)-

(3.10)) were calibrated to benchmark the simulated STI clinical outcome levels to 2010 Ghana-specific 

clinical outcomes: (1) 3,694,671 uncomplicated cases, and (2) 1.44% case fatality rate (GHS 2011). The 

calibration resulted in an (uncomplicated episodes) morbidity scaling factor of 0.152 and an (excess) 

mortality scaling factor of 1.54 (Table 3.3). Without benchmarking, the raw simulated STI lookup tables 

would have overestimated Ghana-specific uncomplicated malaria episodes by a factor of 8, and 

underestimated Ghana-specific excess mortality by one-third. 

Table 3.3. 2010 clinical outcome benchmark measures and scaling parameters 

 

Uncomplicated malaria cases Case fatality rate 

2010 benchmark measuresa 3,694,671 1.44% 

 

Uncomplicated malaria episodes (ατ,SCALE) Excess mortality (αμ,SCALE) 

Scaling-parametersb 0.152 1.540 

Source: aGHS (2011); bown calculations.   

 

The parameters (�̅�,S{|~,� , �̅�,S{|),�
) for our household- and age-specific polynomial approximations were, 

subsequently, fitted to our simulated STI lookup tables based on simple standard minimum squared 

deviation distance metrics. 

3.4. Derivation of epidemiological model state variable equations 

3.4.1. Derivation of state variable equation for multiplicity (N) 

The state variable equation (3.1) for the multiplicity of super-infections (��,���) is derived as the general 

solution to the Poisson distributed stochastic process for ��,���, i.e. derived from the reversible catalytic 

model specification of super-infections as given in equation (3.11): 

(3.11) 
¡¢!,#$%

¡� = >�,���?@A − /̅B ∗ ��,���	, ∀ℎ ∈ 7, 89: ∈ ;<= 

⇕ 

(3.1) ��,����� 	= 	 ���,��� 	− 	�!,#$%&'(
) " * ∗ exp.−/̅12 +	�!,#$%&'(

) " 	 , ∀ℎ ∈ 7, 89: ∈ ;<= 

3.4.2. Derivation of state variable equation for true human prevalence (pH) 

The human prevalence rate 
�,���C  is equal, as specified in equation (3.12), to the Poisson probability of 

having at least one (super-)infection (��,���), and this relationship allows us, as specified in in equation 

(3.13), to express ��,��� in terms of 
�,���C : 

(3.12) 
�,���C 	= 1 − exp.−��,���2	 , ∀ℎ ∈ 7, 89: ∈ ;<= 
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⇕ 

(3.13) ��,��� 	= − log|.1 − 
�,���C 2	 , ∀ℎ ∈ 7, 89: ∈ ;<= 

The state variable equation (3.1’) for 
�,���C  can now be derived by substituting expression (3.13) into the 

state variable equation (3.1) for ��,���: 

(3.1) ��,����� 	= 	 ���,��� 	− 	�!,#$%&'(
) " * ∗ exp.−/̅12 +	�!,#$%&'(

) " 	 , ∀ℎ ∈ 7, 89: ∈ ;<= 

⇕ 

 − log|.1 − 
�,�����C 2 	= 	 �− log|.1 − 
�,���C 2	−	�!,#$%&'(
) " * ∗ exp.−/̅12 +	�!,#$%&'(

) " 	 
⇕ 

 (3.1’) 
�,�����C 	= 	1 − .1 −	
�,���C 2HIJ.�) "2expK�	�!,#$%&'(
) " * ∗ (exp(−/̅B) − 1)L	, ∀ℎ ∈ 7, 89: ∈ ;<= 
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4. Demographic model equations and parametrization 

In this section, we specify a full set of annual demographic models stratified over 1-year age groups ([0-

100]), two gender types and our 19 malaria-focussed household types (section 4.1), and we also include a 

consistently stratified set of wage-driven interregional and international migration specifications based on 

Harris-Todaro migration specifications (section 4.2). All demographic specifications are parameterized in 

section 4.3, while endogenous variables and exogenous parameters are listed and defined in Annex C. 

4.1. Household- and region-specific demographic models 

4.1.1. Aggregate population 

The demographic module keeps track of both aggregate and disaggregate Ghanaian population groups 

(�§��,�C , �§��,{|a,S{|,�) as indicated by equation (4.1): 

(4.1)  �§��,�C = ∑ �§��,{|a,S{|,�¡`�S{{{|a,S{| 	 , ∀ℎ ∈ 7, ��¨ ∈ �O�, 	�� ∈ ��O, 8 ∈ ; 

where the disaggregated population groups (�§��,{|a,S{|,�¡`�S{{
) are stratified over 19 household categories 

(7 = �ℎ01; ℎ19�), two gender categories (�O� = ª^	��, ��^	��«), 101 one year age groups (��O =
�0; 100�), and 20 time periods (; = �2015; 2034�). 
4.1.2. Non-infant population 

Disaggregated non-infant population levels for a given population strata (�§��,{|a,S{|,�) is, as specified in 

equation (4.2), defined as the sum of (1) the population level of the previous age group in the previous year 

(�§��,{|a,S{|��,���) corrected for (2) current deaths (��	8ℎk�,{|a,S{|,�) and (3) the change in current net 

emigration levels (�§��,{|a,S{|,�|_`{®,a|�
): 

(4.2)  �§��,{|a,S{|,� = �§��,{|a,S{|��,��� − ��	8ℎk�,{|a,S{|,� − �§��,{|a,S{|,�|_`{®,a|� ,	 

∀ℎ ∈ 7, ��¨ ∈ �O�, 	�� ∈ ��O|S{|��, 8 ∈ ; 

The key link between epidemiological and demographic outcomes, in our model, is the clinical outcome 

impact on death rates (see section 3.2). The disaggregated number of deaths in a given population strata 

are determined by age-specific mortality rates. ‘Baseline all-cause mortality rates’ (/̅�,{|a,S{|,�S}}	U°S�| ) are 

calibrated from all-cause mortality levels in the broader population (see section 4.3 below). This implicitly 

includes ‘baseline malaria mortality levels’. In our model, simulated all-cause mortality rates only deviate 

from ‘baseline all-cause mortality rates’, when simulated malaria excess mortality rates (/�,S{|,�.OPQ�,�2) 
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deviate from ‘baseline malaria excess mortality rates’ (/̅�,S{|,� = /�,S{|,�(OPQTTTTT�)). The number of deaths for 

a given population strata (��	8ℎk�,{|a,S{|,�) is therefore given by equation (4.3): 

(4.3)  ��	8ℎk�,{|a,S{|,� = �/̅�,{|a,S{|,�S}}	US°�| − ./�,S{|,�.OPQ�,�2 − /̅�,S{|,�2� ∗	�§��,{|a,S{|��,���,	 

∀ℎ ∈ 7, ��¨ ∈ �O�, 	�� ∈ ��O|S{|��, 8 ∈ ; 

4.1.3. Infant population 

The infant population is defined, in equation (4.4), as the number of births (<±²8ℎk�,{|a,�) net of infant 

deaths (P¨���	8ℎk�,{|a,�): 
(4.4) �§��,{|a,S{|,� = <±²8ℎk�,{|a,� − P¨���	8ℎk�,{|a,� ,	 

∀ℎ ∈ 7, ��¨ ∈ �O�, 	�� ∈ ��O|S{|��, 8 ∈ ; 

Gender-specific births (<±²8ℎk�,{|a,�) are modelled, in equation (4.5), by applying gender birth ratios 

(k�³²	8±x{|a) and age-specific fertility rates (	k�²S{|) to the female population in fertile age groups (15-

49): 

(4.5) <±²8ℎk�,{|a,� = k�³²	8±x{|a ∗ ∑ 	k�²S{| ∗({|a,S{|)|{|a�´�|_S}|´,S{|∈��µ;¶·� �§��,{|a,S{|,�, 
∀ℎ ∈ 7, ��¨ ∈ �O�, 8 ∈ ; 

while gender-specific infant deaths (P¨���	8ℎk�,{|a,�) for a specific generation are modelled, in equation 

(4.6): 

(4.6) P¨���	8ℎk�,{|a,� = /̅�,{|a,S{|,�|S{|��S}}	U°S�| ∗ <±²8ℎk�,{|a,� , ∀ℎ ∈ 7, ��¨ ∈ �O�, 8 ∈ ; 

4.2. Regional migration specifications 

4.2.1. Overall household net migration 

Household-specific net immigration (�§��,{|a,S{|,�_`{®,a|�
) is defined, in equation (4.7), as the sum of domestic 

net immigration (�§��,{|a,S{|,�¡_`{®,a|�
) and international net immigration (�§��,{|a,S{|,�`_`{®,a|�

): 

(4.7)  �§��,{|a,S{|,�_`{®,a|� = �§��,{|a,S{|,�¡_`{®,a|� + �§��,{|a,S{|,�`_`{®,a|� 	, ∀ℎ ∈ 7, ��¨ ∈ �O�, 	�� ∈ ��O, 8 ∈ ; 

International net immigration (ΔPOPimigr
h,gen,age,t) is, in turn, defined, in equation (4.8), as household-specific 

immigration (ΔPOPimigr
h,gen,age,t) net of household-specific emigration (ΔPOPemigr

h,gen,age,t): 

(4.8)  �§��,{|a,S{|,�`_`{®,a|� = �§��,{|a,S{|,�`_`{® + �§��,{|a,S{|,�|_`{® 	, ∀ℎ ∈ 7, ��¨ ∈ �O�, 	�� ∈ ��O, 8 ∈ ; 
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4.2.2. International Immigration 

International immigration flows (Δ�§�kℎ²�,{|a,S{|,�`_`{®
) are computed from modelling of aggregate rural-

urban immigrant population stock shares (�§�kℎ²}¸UN,�`_`{®,�@qN
) and household-specific immigrant population 

stocks (�§��,�`_`{®,C
). Rural-urban immigrant stock shares are modelled, in equation (4.9), as functions of 

lagged domestic-to-international wage differentials, based on Harris-Todaro migration specifications: 

(4.9)  �¨.�§�kℎ²}¸UN,�`_`{®,�@qN2 = �}¸UN`_`{®,�@qN + ¹}¸UN`_`{®,�@qN ∗ ln �»?¼½¾r,#¿ÀÁ'Âr
»?#¿Àf'Ã * , ∀�x�2 ∈ w§Ä2, 8 ∈ ; 

where the aggregate rural-urban immigrant population stock shares (�§�kℎ²}¸UN,�`_`{®,�@qN
) are stratified over 

two aggregate rural-urban household categories (w§Ä2 = ª²z²	�, z²9	¨«), and where the two location 

rural/urban (“LOC2”) and Rest of the World (“ROW”) wage indices (=Å}¸UN,��@qN , =Å��@») are defined in 

equations (4.22)-(4.23) below. Parameters include scale parameters (�}¸UN`_`{®,�@qN
) and relative wage-

elasticities of immigration (¹}¸UN`_`{®,�@qN
). 

The aggregate rural-urban immigrant population shares (�§�kℎ²}¸UN,�`_`{®,�@qN
) are subsequently multiplied by 

lagged regional household population totals (�§��,���), to compute, in equation (4.10), current aggregate 

immigrant population stocks for our 19 regional household types (�§��,�`_`{®,C
): 

(4.10) �§��,�`_`{®,C = �§�kℎ²}¸UN,�|_SV�}¸U(�,}¸UN)`_`{®,�@qN ∗ �§��,���C 	, ∀ℎ ∈ 7, 8 ∈ ; 

where the ^	
ℎ�x�(ℎ, �x�2)-mapping maps our 19 household types into rural and urban categories. 

The aggregate household-specific immigrant population stocks (�§��,�`_`{®,C
) are further disaggregated, in 

equation (4.11), into age- and gender-specific immigrant population stocks (�§��,{|a,S{|,�`_`{®
) based on fixed 

age- and gender-specific immigrant patterns (��,{|a,S{|`_`{®
): 

(4.11)  �§��,{|a,S{|,�`_`{® = ��,{|a,S{|`_`{® ∗ �§��,�`_`{®,C	, ∀ℎ ∈ 7, ��¨ ∈ �O�, 	�� ∈ ��O, 8 ∈ ; 

where ∑ ��,{|a,S{|`_`{®{|a,S{| = 1	, ∀ℎ ∈ 7. 

Finally, current age- and gender-specific immigration flows are defined, in equation (4.12), as the net 

increase in household-specific immigrant population stocks: 

(4.12)  �§��,{|a,S{|,�`_`{® = �§��,{|a,S{|,�`_`{® − �§��,{|a,S{|��,���`_`{® 	, ∀ℎ ∈ 7, ��¨ ∈ �O�, 	�� ∈ ��O, 8 ∈ ; 
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4.2.3. International Emigration 

Our modelling of international emigration flows (�§��,{|a,S{|,�|_`{®
) is equivalent to our modelling of 

international immigration flows (see section 4.2.2 above). Hence, international emigration flows are again 

computed from modelling of aggregate emigrant population stocks (�§��,�|_`{®,C
), and these stock are 

derived from rural-urban emigrant stock shares (�§�kℎ²}¸UN,�|_`{®,�@qN
) which are again modelled, in equation 

(4.13), as functions of lagged domestic-to-international wage differentials, based on Harris-Todaro 

migration specifications: 

 (4.13)  �¨.�§�kℎ²}¸UN,�|_`{®,�@qN2 = �}¸UN|_`{®,�@qN + ¹}¸UN|_`{®,�@qN ∗ ln �»?¼½¾r,#¿ÀÁ'Âr
»?#¿Àf'Ã * , ∀�x�2 ∈ w§Ä2, 8 ∈ ; 

where the aggregate rural-urban emigrant population stock shares (�§�kℎ²}¸UN,�|_`{®,�@qN
) are stratified over 

two aggregate rural-urban household categories (w§Ä2 = ª²z²	�, z²9	¨«) and where parameters include 

scale parameters (�}¸UN|_`{®,�@qN
) and relative wage elasticities of emigration (¹}¸UN|_`{®,�@qN

). 

The aggregate rural-urban emigrant population shares (�§�kℎ²}¸UN,�|_`{®,�@qN
) are subsequently multiplied by 

lagged regional household population totals (�§��,���), to compute, in equation (4.14), current aggregate 

emigrant population stocks for our 19 regional household types (�§��,�|_`{®,C
): 

 (4.14)  �§��,�|_`{®,C = �§�kℎ²}¸UN,�|_SV�}¸U(�,}¸UN)|_`{®,�@qN ∗ �§��,���C 	, ∀ℎ ∈ 7, 8 ∈ ; 

Where the ^	
ℎ�x�(ℎ, �x�2)-mapping again maps our 19 household types into rural and urban categories. 

The aggregate household-specific emigrant population stocks (�§��,�|_`{®,C
) are further disaggregated, in 

equation (4.15), into age- and gender-specific immigrant population stocks (�§��,{|a,S{|,�|_`{®
) based on fixed 

age- and gender-specific emigrant patterns (��,{|a,S{||_`{®
): 

 (4.15) �§��,{|a,S{|,�|_`{® = ��,{|a,S{||_`{® ∗ �§��,�|_`{®,C	, ∀ℎ ∈ 7, ��¨ ∈ �O�, 	�� ∈ ��O, 8 ∈ ; 

where ∑ ��,{|a,S{||_`{®{|a,S{| = 1	, ∀ℎ ∈ 7. 

Finally, current age- and gender-specific emigration flows (�§��,{|a,S{|,�|_`{®
) are defined, in equation (4.16), 

as the net increase in household-specific emigrant population stocks:  

(4.16)  �§��,{|a,S{|,�|_`{® = �§��,{|a,S{|,�|_`{® − �§��,{|a,S{|��,���|_`{® 	, ∀ℎ ∈ 7, ��¨ ∈ �O�, 	�� ∈ ��O, 8 ∈ ; 
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4.2.4. Net domestic immigration 

The modelling of net domestic migration flows (ΔPOPdmigr,net,disagg
h,gen,age,t) follows a similar path to the 

modelling of international migration flows (sections 4.2.2-4.2.3 above) with a focus on gross domestic 

migrant population stocks (POPdmigr.loc2
loc2,t). However, in order to maintain consistency (i.e. to meet the zero 

net domestic migration constraint), the disaggregation of aggregate domestic migrant flows differ 

somewhat from the international migrant modelling methodology. 

Similar to the immigrant and emigrant specifications in equations (4.9) and (4.13), rural-urban gross 

domestic immigrant stock shares (POPshrdmigr.loc2
loc2,t) are modelled, in equation (4.17), as functions of 

lagged rural-urban wages differentials based on Harris-Todaro migration specifications: 

(4.17)  �¨.�§�kℎ²}¸UN,�¡_`{®,�@qN2 = �}¸UN¡_`{®,�@qN + ¹}¸UN¡_`{®,�@qN ∗ ln �»?́ Æi$nd´,#¿ÀÁ'Âr
»?́ iÆin¼´,#¿ÀÁ'Âr * , ∀�x�2 ∈ w§Ä2, 8 ∈ ; 

where parameters include scale parameters (�}¸UN¡_`{®,�@qN
) and relative wage elasticities of rural-urban 

domestic immigration (¹}¸UN¡_`{®,�@qN
). 

The gross domestic immigrant stock shares (�§�kℎ²}¸UN,�¡_`{®,�@qN
) are subsequently multiplied by lagged 

rural and urban population totals, corrected for current international migration flows and current deaths, 

to compute, in equation (4.18), rural and urban gross domestic immigrant stocks: 

 (4.18) �§�}¸UN,{|a,S{|,�¡_`{®,�@qN = �§�kℎ²}¸UN,�¡_`{®,�@qN ∗ ∑ .�§��,{|a,S{|��,��� +�|_SV�}¸U(�,}¸UN)
�§��,{|a,S{|,�`_`{®,a|� − ��	8ℎk�,{|a,S{|,�2 , ∀�x�2 ∈ w§Ä2, ��¨ ∈ �O�, 	�� ∈ ��O, 8 ∈ ; 

Recognizing that net domestic migration between rural and urban areas has to be zero, we use the gross 

domestic immigrant population stocks (�§�}¸UN,{|a,S{|,�¡_`{®,�@qN
) to compute, in equation (4.19), net domestic 

immigrant stocks for rural and urban areas (�§�}¸UN,�¡_`{®,a|�,�@qN
): 

(4.19) �§�}¸UN,{|a,S{|,�¡_`{®,a|�,�@qN = �§�}¸UN,{|a,S{|,�¡_`{®,�@qN − �§�}¸UNV,{|a,S{|,�|}¸UNV�}¸UN¡_`{®,�@qN 	, ∀�x�2 ∈ w§Ä2, ��¨ ∈
�O�, 	�� ∈ ��O, 8 ∈ ; 

We further disaggregate, in equation (4.20), these rural-urban net domestic immigrant stocks 

(�§�}¸UN,{|a,S{|,�¡_`{®,a|�,�@qN
) into household-specific net domestic immigrant stocks (�§��,{|a,S{|,�¡_`{®,a|�

) based on fixed 

immigrant patterns across rural and urban household types (��,{|a,S{|¡_`{®
): 
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(4.20)  �§��,{|a,S{|,�¡_`{®,a|� = ��,{|a,S{|¡_`{® ∗ ∑ �§�}¸UN,{|a,S{|,�¡_`{®,a|�,�@qN}¸UN|_SV�}¸U(�,}¸UN) , ∀ℎ ∈ 7, ��¨ ∈ �O�, 	�� ∈
��O, 8 ∈ ; 

where ∑ ��,{|a,S{|¡_`{®�|_SV�}¸U(�,}¸UN) = 1	, ∀�x�2 ∈ w§Ä2, ��¨ ∈ �O�, 	�� ∈ ��O. 

Finally, net domestic immigration flows are defined, in equation (4.21), as the net increase in household-

specific domestic immigrant population stocks:  

 (4.21)  �§��,{|a,S{|,�¡_`{®,a|� = �§��,{|a,S{|,�¡_`{®,a|� − �§��,{|a,S{|��,���¡_`{®,a|� , ∀ℎ ∈ 7, ��¨ ∈ �O�, 	�� ∈ ��O, 8 ∈ ; 

4.2.5. Aggregate wage indices for migration determination 

The relative wage indices which are used in the migration specifications (equations (4.9), (4.13) and (4.17)), 

are based on two types of wage indices including (1) a domestic wage index type for rural and urban 

workers, and (2) an international wage index type for foreign workers. The domestic wage index type is 

defined for rural and urban workers, and computed on the basis of household-specific factor endowments 

(ÇÅ7�,�}S�,�) multiplied by average labour factor wages (=Å�}S�,�) from the macroeconomic CGE model: 

(4.22)  =Å}¸UN,��@qN = ∑ =Å�}S�,� ∗ È?C!,�¼n$,#
∑ È?C!À,�¼n$À,#!À,�¼n$À|bnÉ!¼½¾(!,¼½¾r)�,�}S�|_SV�}¸U(�,}¸UN) 	 , ∀ℎ ∈ 7, ��¨ ∈

�O�, 	�� ∈ ��O, 8 ∈ ; 

where factors are stratified over labour factor types (��	9 ∈ Åw�<). 

The international wage index (=Å��@») for workers from the Rest of the World (ROW) is computed, in 

equation (4.23), as a fixed (in real value terms) international wage (=ÅTTTTT�@») multiplied by the exchange 

rate (OÊQ�) from the macroeconomic CGE model: 

(4.23)  =Å��@» = :�TTTT�@» ∗ OÊQ� , 8 ∈ ; 

4.3. Parametrization 

The calibration of the demographic model involved the exogenous imposition of (interpolated) 

quinquennial UN parameter values for fertility rates, while age- and gender-specific mortality rates were 

calibrated to ensure consistency with quinquennial UN population projections for 2000-2100, derived from 

the World Population Prospects, 2010 revision (UN 2013). Specifically, the 2000-2010 baseline data were 

joined with the 2010-2100 medium scenario projections into a combined 2000-2100 Ghana population 

dataset, and this dataset, combined the household and census survey data (GSS 2003, GSS 2008, GSS 

2012b) (see details below), formed the basis for initializing key variables of our demographic model 

including population levels (�§��,{|a,S{|,�) and population deaths (��	8ℎk�,{|a,S{|,�). The latter two data 
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series were initially used to calibrate non-infant all-cause mortality rates (/̅�,{|a,S{|,�|S{|Ë�S}}	U°S�| ). Combined 

with (interpolated) UN parameter assumptions about gender birth ratios (k�³²	8±x{|a) and age-specific 

fertility rates (	k�²S{|), these data were subsequently used to derive and initialize gender-specific births 

(<±²8ℎk�,{|a,�) and (residually) infant deaths (P¨���	8ℎk�,{|a,�). The projections of infant deaths were, 

finally, used to calibrate infant all-cause mortality rates (/̅�,{|a,S{|,�|S{|��S}}	U°S�| ). 

The 2000-2100 population projections for Ghana were only available at quinquennial time intervals, at the 

national level, and only for 5-year age groups. Linear interpolation was used to disaggregate to annual 

population projections for 1-year age groups, and regional population shares, obtained from the 2005/06 

GLSS household survey (GSS 2008), was combined with domestic and international migration patterns, 

based on information from the 2000 and 2010 Ghana Censuses (GSS 2003, GSS 2012b), to derive regional 

household-specific disaggregate population projections (�§��,{|a,S{|,�) and disaggregate population 

deaths (��	8ℎk�,{|a,S{|,�). While our model framework is specifically designed to simulate over the next 20 

year period (2015-34), we present population projections for our 19 household types for the next 35 year 

period (2010-2050) in Figure 4.1, and they demonstrate that the Ghana population will continue to expand, 

rapidly, and that urbanization is likely to remain a prominent feature of Ghana society until 2050 with 

GAMA seeing the greatest population growth. 

The migration module of our demographic model framework (section 4.2) is focused on calculating 

household net migration (section 4.2.1) from respectively (1) international migration (sections 4.2.2 and 

4.2.3) and (2) domestic migration (section 4.2.4). The calibration of international migration patterns relied 

on a combination of (1) UN assumptions about net international migration patterns over 2010-2050, (2) 

region-specific immigration and emigration patterns from the 2000 Ghana Census (GSS 2003), and (3) a 

survey of internal and international migration elasticities. 

For domestic migration, the UN population projections do not provide information about domestic regional 

migration patterns. Hence, the calibration of domestic migration patterns between our 19 distinct regional 

household types had to rely on reasonable assumptions about future domestic migration patterns. Based 

on numbers from the 2000 and 2010 Census Reports (GSS 2003, GSS 2012b), it was clear that the urban 

population share had grown from 32.0% in 1984, to 43.8% in 2000, and to 50.9% in 2010. This amounts to 

growth rates of 0.73%-points p.a. during 1984-2000, and 0.71 %-points p.a. during 2000-2010. Given the 

very high levels of urbanization of the past 25 years, it is however clear that future urbanization rates 

(within our extended time horizon 2010-2050 and beyond) will have to be smaller. Instead of assuming 

unchanged domestic migration patterns, we therefore assumed that rural-urban migration rates will 
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decline linearly from 0.71 %-points p.a. in 2010 to 0.0%-points p.a. in 2100. This assumption implies that 

urbanization levels will stabilize beyond 2100 at around 82.6%. Based on this assumed counterfactual 

domestic migration pattern, we proceeded to compute domestic rural-urban migration patterns for each of 

our 19 distinct geographical areas based on regional domestic migration patterns from the 2000 Ghana 

Census (GSS 2003). 

After initialization of the immigration, emigration, and domestic migration patterns for our 19 regional 

household types (and after subsequent derivation of regional population projections), we calibrated the 

level parameters of our three migration specification types (�}¸UN`_`{®,�@qN
, �}¸UN|_`{®,�@qN

, �}¸UN¡_`{®,�@qN
) based 

on (1) relative rural and urban (and international) wage levels derived from the macroeconomic CGE model 

(section 4.2.5), and (2) relative wage elasticities of migration (¹}¸UN`_`{®,�@qN
, ¹}¸UN|_`{®,�@qN

, ¹}¸UN¡_`{®,�@qN
). 

Parameters for age- and gender-distribution of migrants within households (��,{|a,S{|`_`{®
, ��,{|a,S{||_`{®

, 

��,{|a,S{|¡_`{®
) were calibrated to migration patterns in the initial year (2000).  

The non-calibrated demographic model parameters, i.e. relative wage elasticities (¹}¸UN`_`{®,�@qN
, ¹}¸UN|_`{®,�@qN

, 

¹}¸UN¡_`{®,�@qN
), are presented in Table 4.1, and they include (1) one Ghana-specific relative income elasticity 

of internal rural-urban migration (0.675) (Tsegay 2007), and (2) one relative income elasticity of 

international immigration (-1.41) (Clark, Hatton & Williamson 2007); It was, furthermore, assumed that the 

relative income elasticity of international emigration is the reverse of the specified immigration elasticity 

(+1.41). The elasticity estimates were specifically chosen since (1) the internal rural-urban migration 

elasticity is Ghana-specific (Tsegay 2007), and (2) the empirical specifications of both studies (Tsegay 2007; 

Clark, Hatton & Williamson 2007) were consistent with our Harris-Todaro type semi-elasticity specification 

of relative migrant stocks (Equations (4.9), (4.13), (4.17)).8 

Table 4.1. Demographic model parameters: Relative wage elasticities of migration 

  Relative wage elasticity of migration 

Internal migrationa 

 - internal migration 0.675 

International migrationb   

- emigration -1.41 

- immigration 1.41 

Source: aTsegai (2007); bClark, Hatton & Williamson (2007) 

 

                                                           
8 The former Ghana-specific study (Tsegay 2007) employed an empirical probit model, but provided a marginal 

elasticity estimate (0.675) which, under first-order approximation, fits our semi-elasticity specification, while the latter 

international cross-section study (Clark, Hatton & Williamson 2007) employs an empirical specification which is 

equivalent to our international migration specifications. 
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H01: Greater Accra Metropolitan Area (GAMA) H05: urban forest, low prevalence (Kumasi) 

H02: urban coastal, low prevalence H03: urban coastal, med prevalence H04: urban coastal, high prevalence 

 H06: urban forest, med prevalence H07: urban forest, high prevalence 

 

H08: urban savannah, low prevalence H09: urban savannah, med prevalence H10: urban savannah, high prevalence 

H11: rural coastal, low prevalence H12: rural coastal, med prevalence H13: rural coastal, high prevalence 

H14: rural forest, low prevalence H15: rural forest, med prevalence H16: rural forest, high prevalence 

H17: rural savannah, low prevalence H18: rural savannah, med prevalence H19: rural savannah, high prevalence 

Figure 4.1. 2010-2050 Demographic projections for Ghana (millions); by gender and age group 
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 It should be noted that a historical study of internal migration between Ghanaian regions (Beals, Levy & 

Moses 1967) finds evidence of higher relative income elasticities of migration (absolute values ε [1.4; 2.9]) 

compared to our preferred point estimate (0.675). In contrast, more recent studies of international 

migration (Grogger & Hanson 2011; Ortega & Peri 2012) find indications of lower relative income 

elasticities of international migration (absolute values ε [0.3; 0.8]) compared to our preferred estimate 

(1.41). It should also be noted that all studies, including our two preferred studies, are focusing on relative 

income differentials (as opposed to the wage-differential specification in our model), and that only Tsegay 

(2007) models household-level decisions (all other studies analyse regional or national cross section or 

panel data sets with a focus on regional or national per capita income). 
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5. Effective labour supply equations and parametrization 

In this section, we outline a full set of effective labour supply specifications for our 42 labour factor types 

(section 5.1) and we also outline a full set of labour factor ownership specifications for our 42 labour factor 

types and stratified over our 19 malaria-focussed household types (section 5.2). All labour supply and 

ownership specifications are parameterized in section 4.3, while endogenous variables and exogenous 

parameters are listed and defined in Annex D. 

5.1. Aggregate effective labour supply 

The labour market, which keeps track of individual workers, are stratified according to three dimensions: 

(1) regional household type (ℎ ∈ 7), (2) labour (��	9 ∈ Åw�<), and (3) time period (8 ∈ ;). The aggregate 

effective supply of a given labour factor type (ÇÅÌ�}S�,�|��
) is defined, in equation (5.1), as the sum over all 

households’ effective supplies of that type of labour (ÇÅ7�,�}S�,�|��
): 

(5.1)  ÇÅÌ�}S�,�|�� = ∑ ÇÅ7�,�}S�,�C,|��� 	 , ∀��	9 ∈ Åw�<, 8 ∈ ;, 
where households’ effective labour supplies (ÇÅ7�,�}S�,�|��

) are stratified over 19 household categories (7 =
�ℎ01; ℎ19�), 42 labour factor types (Åw�< = ��01; �42�), and 20 time periods (; = �2015; 2034�).9 The 42 

labour factor categories are spanned by rural/urban and ecological region location (7 types), gender types 

(2 types) and skill levels (3 types) (see Table F.1 in Annex F for details). 

5.2. Household effective labour factor ownership 

Individual households’ effective supply of a given labour type (ÇÅ7�}S�,�|��
) is defined, in equation (5.2), as 

that households’ total labour factor participation (ÇÅ7�,�}S�,�C ) net of malaria-related labour-supply impacts 

of adult morbidity (ÇÅ7�,�}S�,�C,_¸®�,S¡°}�
) and child morbidity (ÇÅ7�,�}S�,�C,_¸®�,U�`}¡

): 

(5.2)  ÇÅ7�,�}S�,�C,|�� = ÇÅ7�,�}S�,�C − ÇÅ7�,�}S�,�C,_¸®�,S¡°}� − ÇÅ7�,�}S�,�C,_¸®�,U�`}¡	, ∀ℎ ∈ 7, ��	9 ∈ Åw�<, 8 ∈ ;. 
Individual households’ labour factor participation for individual labour factor types (ÇÅ7�,�}S�,�) are 

computed, in equation (5.3), on the basis of household-specific working age population levels 

(�§��,{|a,S{|,�|S{|∈��µ;�¶�) corrected for gender-specific participation rates (�Q	8�{|a) and household- 

(and gender-specific) labour factor skill shares (Ìy�Ìℎ²�,�}S�): 

                                                           
9 Note that Table E.1 in Annex E highlights the (partially) household-specific nature of labour factor types, where 

households with the same regional location (7 types), but not necessarily with the same malaria prevalence levels, are 

assumed to own the same types of gender- and skill-specific labour factors (6 types). 
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(5.3)  ÇÅ7�,�}S�,�C = Ìy�Ìℎ²�,�}S� ∗ ∑ �Q	8�{|a ∗ �§��,{|a,S{|,�{|a|_SV{�}S�({|a,�}S�),S{||S{|∈��µ;�¶� , 
∀ℎ ∈ 7, ��	9 ∈ Åw�<, 8 ∈ ;, 

where the ^	
���	9(��¨, ��	9)-mapping maps our 42 labour factor types into male and female gender 

categories. 

The malaria-related labour supply impact of adult morbidity (ÇÅ7�,�}S�,�_¸®�,S¡°}�
) refers to incapacitated sick 

adults who are forced to reduce their number of work days (absenteeism). The labour supply impact of 

adult morbidity is computed, in equation (5.4), on the basis of the total number of household-specific 

uncomplicated malaria episodes for working age individuals (∑ Y�,S{|,�.OPQ�,�2 ∗S{||S{|∈��µ;�¶�
�§��,{|a,S{|,�) corrected for gender-specific participation rates (�Q	8�{|a) and labour factor skill shares 

(Ìy�Ìℎ²�,�}S�), and multiplied by the morbidity rate measured by the average amount of reduced worktime 

(years/episode) per uncomplicated episode (ÍQ	8��,�): 
(5.4) ÇÅ7�,�}S�,�C,_¸®�,S¡°}� = ÍQ	8��,� ∗ Ìy�Ìℎ²�,�}S� ∗ ∑ �Q	8�{|a ∗{|a|_SV{�}S�({|a,�}S�)
.∑ Y�,S{|,�.OPQ�,�2 ∗ �§��,{|a,S{|,�S{||S{|∈��µ;�¶� 2 , ∀ℎ ∈ 7, ��	9 ∈ Åw�<, 8 ∈ ;. 
where the morbidity rate (ÍQ	8��,�) is endogenous due to the endogenous ACT coverage rates (see 

equation (6.20) in section 6). 

Finally, the malaria-related labour supply impact of child morbidity (ÇÅ7�,�}S�,�_¸®�,U�`}¡
) refers to (female) 

caretakers for sick children who are forced to reduce their number of workdays (absenteeism). Similar to 

adult morbidity, the labour supply impact of child morbidity (ÇÅ7�,�}S�,�_¸®�,U�`}¡
) is calculated, in equation (5.5), 

on the basis of the total number of household-specific uncomplicated malaria episodes for children 

(∑ Y�,S{|,�.OPQ�,�2 ∗ �§��,{|a,S{|,�S{|,{|a|S{|∈��µ;�¶� ) corrected for female labour participation rates 

(�Q	8�M�|_S}|´) and (female) labour factor skill shares (Ìy�Ìℎ²�,�}S�|_SV{�}S�(M�|_S}|´,�}S�)), and 

multiplied by the average absenteeism measured by the amount of reduced worktime (years/episode) per 

uncomplicated episode (Î�,� ,) 10: 

(5.5) ÇÅ7�,�}S�,�C,_¸®�,U�`}¡ = Î�,� ∗ Ìy�Ìℎ²�,�}S� ∗ �Q	8�M�|_S}|M ∗ ∑ Y�,S{|,�.OPQ�,�2 ∗S{|,{|a|S{|∈��µ;�¶�
�§��,{|a,S{|,� , ∀ℎ ∈ 7, ��	9 ∈ Åw�<|^	
���	9(′��^	��M, ��	9), 8 ∈ ;. 

                                                           
10 Due to limited evidence of presenteeism (=workdays lost due to low productivity while at work; see Table 6.4 for 

available evidence), this dimension was not included in the current model specification. 
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5.3. Parametrization 

The full system of effective labour factor supply and labour factor ownership equations (5.1)-(5.5) is 

determined by population demographics, �§��,{|a,S{|,� (implicitly accounting for malaria-related 

mortality, see section 4), and the two malaria-related morbidity relationships (eqs. (5.4)-(5.5)) which refer 

to reduced adult labour supplies associated with respectively adult illness (ÇÅ7�,�}S�,�_¸®�,U�`}¡
) and female 

adults caring for sick children (ÇÅ7�,�}S�,�|_SV{�}S�(M�|_S}|M,�}S�)_¸®�,U�`}¡
). Morbidity effects are calculated as the 

affected gender-specific working age population group (�§��,{|a,S{|,�|S{|∈��µ;�¶�) multiplied by four sets of 

parameters: gender-specific participation rates (�Q	8�{|a) multiplied by (gender-specific) labour factor skill 

shares (Ìy�Ìℎ²�,�}S�) multiplied by the %-share reduction in annual labour supply per malaria episode 

(ÍQ	8�) multiplied by the average number of malaria episodes per person per year (Y�,S{|,�). 
The parametrization of the equation for the determination of uncomplicated malaria episodes (Y�,S{|,�) has 

already been discussed above (see section 3) and so has the initialization of population demographics, 

�§��,{|a,S{|,� (see section 4). Labour force data from the 2005/06 GLSS household survey (GSS 2008) was 

employed to calibrate the Ìy�Ìℎ²�,�}S� skill share parameter values (see table F.1, annex F) while other 

external information was used to parameterize the two remaining sets of parameters: (1) Gender-specific 

labour market participation rates (�Q	8�M�|_S}|M = 73.8%; �Q	8�M_S}|M = 75.2%) were obtained from the 

World Development Indicators database (WB 2012) (Table 5.1), while (2) a central point estimate for the 

rate of malaria-related absenteeism (Î�,�) (see equation (6.20) and section 6.3 for details of the 

initialization). 

Table 5.1. Labour force participation rates 

 

2009 

Female participation rate (% of female population ages 15+) 73.8% 

Male participation rate (% of male population ages 15+) 75.2% 

Source: World Development Indicators (WB 2012). 

 

Together with the parametrization of uncomplicated malaria episodes (Y�,S{|,�) and malaria-related 

mortality rates (/�,S{|,�), discussed above (see section 3), the parameters, discussed here, provide the core 

information for calculating the labour market impact of the economy-wide malaria disease burden. It 

should specifically be noted that both skill shares and labour market participation rates, derived for the 

general labour force (to parametrize equation (5.3)), are assumed to apply equally to (1) sub-population 

groups of adults suffering from malaria illness, and (2) sub-population groups of female caregivers caring 

for sick children (equations (5.4)-(5.5)). 
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6. Health intervention equations and parametrization 

In this section, we outline a full set of endogenous malaria intervention coverage rate specifications, based 

on extended household and public demand systems, which allows for measuring public and private 

household costs of composite intervention commodities including intervention and administrative and 

laboratory service input costs (section 6.1), and for measuring prevention intervention impacts on 

epidemiological parameters including mosquito mortality rates and female mosquito populations, and 

treatment intervention impacts on morbidity outcomes (section 6.2). All health intervention-related 

specifications are parameterized in section 6.3, while endogenous variables and exogenous parameters are 

listed and defined in Annex E. 

6.1. Malaria intervention equations 

The health intervention module keeps track of malaria-related composite intervention commodities, and 

their component parts including (1) malaria interventions and (2) administrative and laboratory services, 

according to three index dimensions: (1) regional household type (ℎ ∈ 7), (2) malaria interventions (±¨8 ∈
P�;), and (3) time period (8 ∈ ;). Total malaria intervention coverage rates (Ä§ÐOQ`a�,�,�), defined as 

#ITNs per household member/#ACT doses per malaria case, are modelled, in equation (6.1), as the sum of 

private and public malaria intervention coverage rates (Ä§ÐOQ`a�,�,�V®Ñ
, Ä§ÐOQ`a�,�,�V°�

): 

(6.1) Ä§ÐOQ`a�,�,� = Ä§ÐOQ`a�,�,�V®Ñ + Ä§ÐOQ`a�,�,�V°� 	, ∀±¨8 ∈ P�;, ℎ ∈ 7, 8 ∈ ;, 
where the malaria intervention coverage rates (Ä§ÐOQ`a�,�,�) are stratified over two Insecticide Treated 

Nets (ITN) and Artemisinin-based Combination Therapy (ACT) malaria interventions (P�; = ªP;�, �Ä;«), 
19 household categories (7 = �ℎ01; ℎ19�), and 20 time periods (; = �2015; 2034�). 
The aggregate coverage rates (Ä§ÐOQ`a�,�,�) are multiplied by household-specific uptake rates 

(Ò�;�ÓO`a�,�,�t), defined as #household members sleeping under each ITN/share of ACT doses 

administered correctly, to calculate effective coverage rates (Ä§ÐOQ`a�,�,�|��
) in equation (6.2): 

(6.2)  Ä§ÐOQ`a�,�,�|�� = Ä§ÐOQ`a�,�,� ∗ Ò�;�ÓO`a�,�,�	, ∀±¨8 ∈ P�;, ℎ ∈ 7, 8 ∈ ;, 
and uptake rates (Ò�;�ÓO`a�,�,�) are modelled, in equation (6.3), as functions of household-specific 

average human malaria prevalence rates: 

(6.3) �¨.Ò�;�ÓO`a�,�,�2 = �T`a�°V� + �̅`a�°V� ∗ ln.
�,�C 2 , ∀±¨8 ∈ P�;, ℎ ∈ 7, 8 ∈ ;, 
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where parameters include scale parameters (�T`a�°V�
) and malaria prevalence elasticities of intervention 

uptake (�̅`a�°V�
). 

Private and public coverage rates are determined by private and public malaria-related composite 

intervention commodities (Ç7`a�,�,� , Ç�TTTT`a�,�,�), and by underlying regional population levels (�§��,�C ) in the 

case of prevention interventions (±¨8 ∈ P�;_�) and by numbers of uncomplicated episode cases 

(∑ Y�,S{|,�.OPQ�,�2 ∗ �§��,{|a,S{|,�S{|,{|a ) in the case of treatment interventions (±¨8 ∈ P�;_;): 

(6.4_P) Ä§ÐOQ`a�,�,�V®Ñ = ÈCcd#,!,#
Õ@Õ!,#W 	 , ∀±¨8 ∈ P�;_�, ℎ ∈ 7, 8 ∈ ;, 

(6.4_T) Ä§ÐOQ`a�,�,�V®Ñ = ÈCcd#,!,#
∑ ~!,nÖg,#.�A�!,#2∗Õ@Õ!,Ögd,nÖg,#nÖg,Ögd 	 , ∀±¨8 ∈ P�;_;, ℎ ∈ 7, 8 ∈ ;, 

 

(6.5_P) Ä§ÐOQ`a�,�,�V°� = È×TTTTcd#,!
Õ@Õ!,#W 	 , ∀±¨8 ∈ P�;_�, ℎ ∈ 7, 8 ∈ ;, 

(6.5_T) Ä§ÐOQ`a�,�,�V°� = È×TTTTcd#,!
∑ ~!,nÖg,#.�A�!,#2∗Õ@Õ!,Ögd,nÖg,#nÖg,Ögd 	 , ∀±¨8 ∈ P�;_;, ℎ ∈ 7, 8 ∈ ;, 

where P�;_� and P�;_; are sets containing all elements along the prevention intervention (P�;_� =
ªP;�«) and treatment intervention (P�;_; = ª�Ä;«) dimensions.11 

Public demand for composite intervention commodities (Ç�TTTT`a�,�) is assumed to be exogenous, while 

private demand for composite intervention commodities (Ç7`a�,�,�) is determined as part of an expanded 

household LES demand system in equations (6.6’)-(6.6’’) in the CGE model: 

(6.6’) �ÇU,� ∗ Ç7U,�,� = �ÇU,� ∗ Ø̅U,� + �̅U,� ∗ .O7�,� − ∑ �ÇU�,� ∗ Ø̅U�,�U� − ∑ �Ç`a�,� ∗ Ø̅`a��,�`a�� 2,	 
∀� ∈ Ä, ℎ ∈ 7, 8 ∈ ; 

 (6.6’’) �Ç`a�,� ∗ Ç7`a�,�,� = �Ç`a�,� ∗ Ø̅`a�,� + �̅`a�,� ∗ .O7�,� − ∑ �ÇU�,� ∗ Ø̅U�,�U� − ∑ �Ç`a�,� ∗ Ø̅`a��,�`a�� 2,	 
∀±¨8 ∈ P�;, ℎ ∈ 7, 8 ∈ ; 

                                                           
11 Our current model specification excludes the use of ACTs for medical prevention purposes. Furthermore, while our 

model framework is set up to analyse public-funded In-door Residual Spraying (IRS) prevention interventions, these 

interventions are also excluded from current analyses, since regional coverage data are not immediately available (see 

discussion in section 6.3). 
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where consumption demand (Ç7U,�,� , Ç7`a�,�,�) is stratified over 10 commodities (� ∈ Ä) and two malaria 

interventions (±¨8 ∈ P�;), 19 household categories (7 = �ℎ01; ℎ19�), and 20 time periods (; =
�2015; 2034�), and where parameters include autonomous consumption levels (Ø̅U,� , Ø̅`a�,�) and marginal 

consumption shares (�̅U,� , �̅`a�,�). 

The total intervention-specific demands for malaria interventions (∑ (Ç7`a�,�,� + Ç�TTTT`a�,�)� ) are 

subsequently set equal, in equation (6.7), to the total supply of individual health interventions (ÇÇ`a�,�): 
(6.7) ÇÇ`a�,� = ∑ (Ç7`a�,�,� + Ç�TTTT`a�,�)� 	 , ∀� ∈ Ä, ℎ ∈ 7, 8 ∈ ; 

and the total supply of individual malaria-related composite intervention commodities (ÇÇ`a�,�) are, in 

turn, assumed to be determined by Leontief production specifications with inputs covering (1) malaria 

interventions (ÇÇ`a�,�A¢Ù ), and (2) administrative and laboratory services (ÇÇMU��M,`a�,�ÚÛR ), leading to the 

following first order conditions, provided in equations (6.8’)-(6.8’’), to be included in the CGE model: 

 (6.8’) ÇÇ`a�,�A¢Ù = �`a�A¢Ù ∗ ÇÇ`a�,� 	, ∀±¨8 ∈ P�;, 8 ∈ ; 

(6.8’’) ÇÇMU��M,`a�,�ÚÛR = �`a�ÚÛR ∗ ÇÇ`a�,�	, ∀±¨8 ∈ P�;, 8 ∈ ; 

The supply of administrative and laboratory services is assumed to form part of the overall supply of health 

services (commodity ‘c10’), while the supplies of malaria interventions are assumed to consist, entirely, of 

imports from the Rest of the World. Total demand for administrative and laboratory services 

(∑ ÇÇMU��´,`a�,�ÚÛR`a� ) is therefore included, in equation (6.9), in an extended version of the commodity market 

equilibrium constraint from the CGE model: 

(6.9) ÇÇU,� = ∑ ÇP�;U,S,�S + ∑ Ç7U,�,�� + Ç�TTTTU + ∑ ÇÇMU��´,`a�,�ÚÛR`a� + ÇP�ÐU,� + jÜk8TTTTTTU + Ç;U,� 	, ∀� ∈
Ä, 8 ∈ ; 

while total (import) demand for malaria-interventions is included, in equation (6.10), in a new equilibrium 

constraint (ÇÇ`a�,�A¢Ù = ÇÍ`a�,�A¢Ù ) as well as, in equation (6.11), in an updated version of the balance-of-

payments equilibrium constraint from the CGE model: 

(6.10) ÇÇ`a�,�A¢Ù = ÇÍ`a�,�A¢Ù 	, ∀±¨8 ∈ P�;, 8 ∈ ; 

 (6.11) ∑ 
:^TTTTTTTU ∗ ÇÍU,�U + ∑ 8²¨k�²TTTTTTTTTM�@»M,�,�� + ∑ 
:^TTTTTTT`a�,�A¢Ù ∗ ÇÍ`a�,�A¢Ù`a� 	= ∑ 
:�TTTTTTU ∗ ÇOU,�U +
∑ 8²¨k�²TTTTTTTTT̀a�¡,M�@»M`a�¡ + ÅÌ�ÐTTTTTTT	, ∀8 ∈ ; 
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The costs of private interventions are included in individual household budgets (implicit in the LES demand 

system equations (6.6’)-(6.6’’)), while the costs of public sector interventions are included, in equation 

(6.12), in an updated version of the public sector expenditure equation from the CGE model: 

(6.12) O�� = ∑ �ÇU,� ∗ Ç�TTTTU,�U + ∑ �Ç`a�,� ∗ Ç�TTTT`a�,�,�`a�,� +∑ 8²¨k�²TTTTTTTTT̀ a�¡a{,M×@ÝM`a�¡a{ , ∀8 ∈ ; 

Imports of malaria interventions are also assumed to incur import-related trade and transportation margin 

costs as well as import tariffs and sales taxes, in line with other imports. The added demand for import-

related trade and transportation margin services from malaria interventions (∑ Þ�^TTTTT`a�,�A¢Ù ∗ ÇÍ`a�,�A¢Ù`a�  was 

included, in equation (6.13), in an updated version of the trade and transport margin demand equation 

from the CGE model: 

(6.13) Ç;U�,� 	= ∑ .Þ�^TTTTTU�,U ∗ ÇÍU,� + Þ��TTTTU�,U ∗ ÇOU,� + Þ�ÜTTTTU�,U ∗ Ç�U,�2U + ∑ Þ�^TTTTTU�,`a�A¢Ù ∗ ÇÍ`a�,�A¢Ù`a� , ∀8 ∈ ; 

while additional malaria intervention-related import tariffs (∑ 8^TTTT`a�A¢Ù ∗ 
:^TTTTTTT`a�,�A¢Ù ∗ ÇÍ`a�,�A¢Ù ∗ OÊQ�U ) and 

sales taxes (∑ 8j `a�A¢Ù ∗ �Ç`a�,�A¢Ù ∗ ÇÇ`a�,�A¢ÙU ) were included, in equation (6.14), in an updated version of the 

public sector income equation from the CGE model: 

(6.14) ß�� = ∑ ;P�Ì`a�¡a{,� ∗ ßP`a�¡a{,�`a�¡a{ + ∑ 8� � ∗ ∑ =Å�,� ∗ ÇÅ7�,�,���  

+ ∑ 8à	TTTTTS ∗ �Ð�S,� ∗ ÇÐ�S,�S  

+ ∑ 8	TTTS ∗ ��S,� ∗ Ç�S,�S  

+ ∑ 8^TTTTU ∗ 
:^TTTTTTTU ∗ ÇÍU,� ∗ OÊQ�U  

+ ∑ 8� U ∗ 
:�TTTTTTU ∗ ÇOU,� ∗ OÊQ�U  

+ ∑ 8j U ∗ �ÇU,� ∗ ÇÇU,�U  

+ ∑ ßPÅM×@ÝM,�,�� + 8²¨k�²TTTTTTTTTM×@ÝM,M�@»M 

+ ∑ 8^TTTT`a�A¢Ù ∗ 
:^TTTTTTT`a�,�A¢Ù ∗ ÇÍ`a�,�A¢Ù ∗ OÊQ�`a�  

+ ∑ 8j `a�A¢Ù ∗ �Ç`a�,�A¢Ù ∗ ÇÇ`a�,�A¢ÙU , ∀8 ∈ ; 

The import and market prices of malaria-interventions (�Í`a�,�A¢Ù , �Ç`a�,�A¢Ù ) are specified, in equations (6.15)-

(6.16) as functions of exogenous world market import prices (
:^TTTTTTT`a�) and trade and transport service 

rates (Þ�^TTTTTU�,`a�A¢Ù ), as well as import tariff rates (8^TTTT`a�A¢Ù) and sales tax rates (8j `a�A¢Ù): 
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(6.15)  �Í`a�,�A¢Ù = .1 + 8^TTTT`a�A¢Ù2 ∗ 
:^TTTTTTT`a�,�A¢Ù ∗ OÊQ� + ∑ �ÇU�,� ∗ Þ�^TTTTTU�,`a�A¢ÙU� , ∀±¨8 ∈ P�;, 8 ∈ ; 

(6.16) �Ç`a�,�A¢Ù = ÕRcd#,#(áâ
���mTTTcd#(áâ , ∀±¨8 ∈ P�;, 8 ∈ ; 

The aggregate price of malaria-related composite intervention commodities (�Ç`a�,�) is, finally, defined, in 

equation (6.17), from the Leontief production specification, as a weighted average of the market prices of 

malaria interventions (�Ç`a�,�A¢Ù ) and administrative and laboratory services (�ÇMU��M,� ’): 

(6.17) �Ç`a�,� = ÕÈcd#,#(áâ ∗ÈÈcd#,#(áâ�ÕÈ´¾À ´,#∗ÈÈ´¾À ´,cd#,#ãäX
ÈÈcd#,# , ∀±¨8 ∈ P�;, 8 ∈ ; 

6.2. Epidemiological impact equations 

The modelling of the epidemiological impact of preventive malaria interventions is focussed on the impact 

on epidemiological model parameters (see section 3). In particular, we initially specify and calibrate the 

epidemiological model to measure the impact of two types of preventive interventions: (1) Indoor Residual 

Spraying (IRS) and (2) Insecticide Treated Nets (ITN).12 These interventions are assumed to affect the 

following two epidemiological model parameters: (1) The mosquito mortality rate (/R), and (2) the 

mosquito population/number of female mosquitoes per person (^). 

We follow the established approach in the literature and assume that coverage rates affect epidemiological 

model parameters linearly (Smith, Chitnis, Brie & Tanner 2011). However, since we are working with 

multiple prevention interventions, potentially affecting the same model parameters, we introduce a new 

specification which (1) retains the linearity when only one intervention is applied, but (2) allows for 

multiplicative effects when multiple interventions are applied simultaneously (see equations (6.17)-(6.18)). 

Based on measures of %-point reductions in parameter values associated with 100% coverage rates of 

preventive interventions (Δ/̅`a�,�R,_Sl, Δ  ̂ `a�,�_Sl ; see section 6.3, below, for calibration discussion) and effective 

coverage rates (Ä§ÐOQ`a�,�,�|��
; see equation 6.2), the following generalized multiple-intervention 

specifications of intervention impacts are specified: 

(6.18) /�,�R = /̅�R ∗ ∏ �.1 − Ä§ÐOQ`a�,�,�|�� 2 + .1 − Δ/̅`a�,�R,_Sl2 ∗ Ä§ÐOQ`a�,�,�|�� � , ∀ℎ ∈ 7, 8 ∈ ;`a�  

(6.19)  ^�,� =  ̂� ∗ ∏ �.1 − Ä§ÐOQ`a�,�,�|�� 2 + .1 − Δ  ̂ `a�,�_Sl 2 ∗ Ä§ÐOQ`a�,�,�|�� �`a� , ∀ℎ ∈ 7, 8 ∈ ; 

                                                           
12 While our model framework is set up to analyse public-funded In-door Residual Spraying (IRS) prevention 

interventions, these interventions are excluded from current analyses, since regional coverage data are not 

immediately available (see section 6.3). 
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While our epidemiological model framework is set up to analyse public-funded In-door Residual Spraying 

(IRS) prevention interventions through multiple-intervention specifications of intervention impacts on 

epidemiological model parameters (see equations (6.18)-(6.19) above and calibration discussion below), we 

exclude IRS interventions from our model applications since regional IRS coverage data are not immediately 

available. This implies that our multiple-intervention specifications in equations (6.18)-(6.19) are reduced to 

standard single-intervention specifications (Smith, Chitnis, Brie & Tanner 2011): 

(6.18’) /�,�R = /̅�R ∗ ��1 − Ä§ÐOQMAÙ¢´,�,�|�� � + �1 − Δ/̅MAÙ¢´,�R,_Sl� ∗ Ä§ÐOQMAÙ¢´,�,�|�� *	, ∀ℎ ∈ 7, 8 ∈ ; 

(6.19’)  ^�,� =  ̂� ∗ ��1 − Ä§ÐOQMAÙ¢´,�,�|�� � + .1 − Δ  ̂ MAÙ¢´,�_Sl 2 ∗ Ä§ÐOQMAÙ¢´,�,�|�� *	, ∀ℎ ∈ 7, 8 ∈ ; 

Finally, the modelling of treatment-focussed malaria interventions is focussed on one intervention type: 

Artemisinin-based Combination Therapy (ACT). We choose to focus on modelling of ACT treatment impact 

on the absenteeism morbidity rate, which measures the reduced worktime associated with uncomplicated 

malaria episodes.13 Based on a measure of worktime lost following proper ACT treatment and the 

assumption that average population-wide morbidity rates will decline linearly with effective ACT coverage 

rates, we specify the following relation for computation of population-wide household-specific average 

morbidity rates (Î�,�) as a function of ACT effective coverage rates (Ä§ÐOQMÚqÙM,�,�|��
) and fixed morbidity 

rates associated with and without effective ACT treatment (Î̅ÚqÙ , Î̅¢¸ÚqÙ): 

(6.20) Î�,� = Ä§ÐOQMÚqÙM,�,�|�� ∗ Î̅ÚqÙ + .1 − Ä§ÐOQMÚqÙM,�,�|�� 2 ∗ Î̅¢¸ÚqÙ , ∀ℎ ∈ 7, 8 ∈ ; 

6.3. Parametrization 

The parametrization of the malaria-related intervention equations from section 6.1 (equations (6.1)-(6.17)) 

relied on the coverage and uptake data and intervention cost data presented in Table 6.1 and the income 

and malaria prevalence elasticities of intervention demand and uptake presented in Table 6.2, while the 

parametrization of the epidemiological impact equations from section 6.2 (equations (6.18)-(6.19)) relied 

on basic data on mosquito population mean catch (MC) reductions and mosquito sporozoite rate (SR) 

reductions. Details are provided below. 

While our epidemiological model framework is, in principle, set up to analyse public-funded In-door 

Residual Spraying (IRS) prevention interventions through multiple-intervention specifications of 

intervention impacts on epidemiological model parameters (see equations (6.18)-(6.19)), we exclude, as 

                                                           
13 Due to limited evidence of presenteeism (=workdays lost due to low productivity while at work; see Table 6.4 for 

available evidence), this dimension was not included in the current model specification. 
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discuss above, IRS interventions from our model applications since regional IRS coverage data are not 

immediately available. The following discussion of model equation parametrization therefore focus on one 

prevention intervention (ITN ) and one treatment intervention (ACT), except for the parameterization of 

the epidemiological impact equations (equations (6.18)-(6.19)) where parametrization for both ITN and IRS 

prevention interventions are discussed for completeness. 

The household-specific estimates of coverage and uptake rates and intervention costs (Table 6.1) were 

computed from a range of data sources. For Insecticide-Treated Nets (ITNs), household-specific coverage 

and uptake rates were derived from the 2014 Ghana Demographic and Health Survey (GHS 2015), while 

household-specific splits between private and public coverage rates were based on ‘public sector’ and 

‘public campaign’ coverage estimates from the fourth round 2012 MICS4 Multiple Indicator Cluster Survey 

(GSS 2012a). A single average cost estimate for ITNs, computed as the weighted average of 'Public', 'Private' 

and 'Other' median costs from the 2012 MICS4 Survey (ibid.), was attributed to each of our 19 household 

types since no household-specific information was available. 

For Artemisinin-based Combination Therapy (ACT), region-specific ACT coverage rates, obtained from the 

2007 Ghana Health Services annual report (GHS 2007), were distributed across the 2005 Ghana district 

classification (110 districts) and used to compute weighted average ACT coverage rates for each of our 19 

household types based on population shares from the 2005/06 GLSS survey (GSS 2008). No household-level 

data were available concerning public/free supplies of ACT treatment. Instead, regional NHIS active 

membership rates, available from the 2012 National Health Insurance Agency annual report (NHIA 2012) 

were used to calculate public/free ACT coverage rates. Due to the nature of ACT treatment, uptake rates 

were assumed to be 100% (i.e. publicly free supplies/private purchases of medication are always assumed 

to be administered/applied appropriately by malaria patients). 

Finally, an estimate of the (non-AMFm) medical cost of standard AS/AQ-type medical treatment14 was 

obtained from a study of interventions under the Affordable Medicines Facility-malaria (AMFm) initiative 

(Bate et al. 2012), while an estimate of total drug, administrative and laboratory costs was obtained from a 

case study of the KNUST hospital (Dontwi, Dedu & Aboagye 2013). These estimates were applied, 

                                                           
14 Two standard treatments are widely available for Ghana including (1) Artemether-lumefantrine fixed-dose 

combination (AL 20/120mg tablets; pack size 6x4), and (2) Artesunate-amodiaquine fixed-dose combination and co-

blister (AS/AQ 100/270mg tablets; pack size 3x2) (Bate et al. 2012). While AL-type drugs has been reported to be most 

popular among Ghanaians in both rural and urban areas (Davis et al. 2013), AS/AQ remains the standard treatment 

recommended by Ministry of Health (MoH 2009). In either case, reported medical costs are virtually the same. 

Average 2011 AL-treatment costs (US$4.4/GHC6.5) are reported to be slightly higher than average 2011 AS/AQ-

treatment costs (US$4.3/GHC6.7) (Bate et al. 2012), implying that our medical cost estimates are likely to be 

conservative. 
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uniformly, across our 19 household types, since no regional or household-specific cost estimates were 

available. 

Table 6.1. Malaria-related composite intervention commodities variable initialization and 

parameter values 

    

Coverage rates 

(percent)   

Uptake rates 

(percent)   

Unit costs 

(2011 GHC per unit/dose) 

Intervention Household private public/free 

   

Medical/Physical Administration 

ITN H01 16.3% 17.0%   49%   5.7 - 

ITN H02 14.2% 22.9% 

 

75% 

 

5.7 - 

ITN H03 14.2% 22.9% 

 

75% 

 

5.7 - 

ITN H04 14.2% 22.9% 

 

75% 

 

5.7 - 

ITN H05 18.5% 24.1% 

 

70% 

 

5.7 - 

ITN H06 18.5% 24.1% 

 

70% 

 

5.7 - 

ITN H07 18.5% 24.1% 

 

70% 

 

5.7 - 

ITN H08 10.9% 20.1% 

 

78% 

 

5.7 - 

ITN H09 10.9% 20.1% 

 

78% 

 

5.7 - 

ITN H10 10.9% 20.1% 

 

78% 

 

5.7 - 

ITN H11 13.2% 30.0% 

 

128% 

 

5.7 - 

ITN H12 13.2% 30.0% 

 

128% 

 

5.7 - 

ITN H13 13.2% 30.0% 

 

128% 

 

5.7 - 

ITN H14 18.1% 31.4% 

 

120% 

 

5.7 - 

ITN H15 18.1% 31.4% 

 

120% 

 

5.7 - 

ITN H16 18.1% 31.4% 

 

120% 

 

5.7 - 

ITN H17 9.7% 26.2% 

 

134% 

 

5.7 - 

ITN H18 9.7% 26.2% 

 

134% 

 

5.7 - 

ITN H19 9.7% 26.2% 

 

134% 

 

5.7 - 

ACT H01 50.1% 19.6% 

 

100% 

 

6.7 16.3 

ACT H02 37.8% 16.9% 

 

100% 

 

6.7 16.3 

ACT H03 25.3% 13.6% 

 

100% 

 

6.7 16.3 

ACT H04 15.8% 9.0% 

 

100% 

 

6.7 16.3 

ACT H05 46.6% 23.1% 

 

100% 

 

6.7 16.3 

ACT H06 40.4% 22.7% 

 

100% 

 

6.7 16.3 

ACT H07 19.2% 12.2% 

 

100% 

 

6.7 16.3 

ACT H08 36.6% 22.2% 

 

100% 

 

6.7 16.3 

ACT H09 26.1% 21.5% 

 

100% 

 

6.7 16.3 

ACT H10 42.9% 23.3% 

 

100% 

 

6.7 16.3 

ACT H11 40.2% 18.3% 

 

100% 

 

6.7 16.3 

ACT H12 39.8% 19.5% 

 

100% 

 

6.7 16.3 

ACT H13 15.8% 9.0% 

 

100% 

 

6.7 16.3 

ACT H14 43.2% 22.9% 

 

100% 

 

6.7 16.3 

ACT H15 43.8% 21.2% 

 

100% 

 

6.7 16.3 

ACT H16 18.4% 11.4% 

 

100% 

 

6.7 16.3 

ACT H17 36.6% 22.2% 

 

100% 

 

6.7 16.3 

ACT H18 27.8% 21.8% 

 

100% 

 

6.7 16.3 

ACT H19 40.0% 25.7% 

 

100% 

 

6.7 16.3 

Sources: own calculations based on (1) ACT coverage rates from GHS 2007 Annual Report (GHS 2007), (2) Public/free ACT 

coverage rates based on National Health Insurance Authority 2012 annual report (NHIA 2012), (3) non-AMFm ACT prices and 

laboratory costs from AMFm evaluation study (Bate et al. 2012) and from a KNUST hospital study (Dontwi, Dedu & Aboagye 

2013), (4) ITN coverage and uptake rates from the 2014 Ghana Demographic and Health Survey (GHS 2015), and (5) unit costs 

and Public/free ITN coverage rates from the 2011 MICS4 Multiple Indicator Cluster Survey (GSS 2012a). 

 

Based on the ITN and ACT intervention coverage and uptake rates, and the unit cost estimates for 

individual interventions and associated administrative and laboratory services (Table 6.1) combined with 

income and malaria prevalence elasticities of intervention demand and intervention uptake derived from a 

literature survey (Dzator & Asafu-Ajaye 2004; Gingrich, Hanson et al. 2011; Picone, Kibler & Apouey 2013) 
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(Table 6.2), and combined with assumptions that (1) all interventions are imported (with trade margins and 

indirect tax structures similar to the manufactured goods sector, commodity ‘c02’; see Annex A) and that 

(2) administrative and laboratory services are supplied domestically by the health services sector 

(commodity ‘c10’), it was possible to parametrize and initialize the malaria-related composite intervention 

commodities equations, including equations for (1) malaria interventions and (2) administrative and 

laboratory services, from section 6.1 (equations (6.1)-(6.16)), including the (re-)specification of our Linear 

Expenditure System (LES) of private demand to include demand for composite health services related to 

prevention (ITN) and treatment (ACT) interventions (see section 2 for additional discussion of the 

calibration methodology for our extended LES demand system as part of the calibration of our broader CGE 

model framework). 

Table 6.2. Income and prevalence elasticities of intervention demand and uptake 

  Income elasticitya,b Malaria prevalence elasticityc 

Intervention demand     

- ACT 0.21 - 

- ITN 0.459 - 

Intervention uptake     

- ACT - - 

- ITN - 0.0043 

Sources: a Income elasticity of ACT demand is proxied by minimum inverse price-income ratio elasticity for 

public (0.21) and private (0.22) providers (Dzator & Asafu-Ajaye 2004); b Income elasticity of ITN demand is 

proxied by maximum elasticity for socioeconomic groups SES 2-3 (0.459), SES4 (0.140), SES5 (0.067) 

(Gingrich, Hanson et al. 2011); c Malaria prevalence elasticity of ITN uptake is proxied by the minimum male 

adult (0.0044) and female adult (0.0043) elasticities (Picone, Kibler & Apouey 2013). 

 

The parametrization of the epidemiological impact equations (6.18)-(6.19) relied on basic data on mosquito 

population mean catch (MC) reductions and mosquito sporozoite rate (SR) reductions associated with 

(100%) coverage of respectively ITN and IRS (Curtis, Maxwell, Finch & Njunwa 1998). The basic data are 

presented in Table 6.3 along with the derived household-specific ‘maximum impact/100% coverage’ 

parameters on epidemiological model parameters including maximum reduction in (female) mosquito 

population per person (Δ  ̂ `a�,�_Sl ) and maximum increase in mosquito mortality rate (Δ/̅`a�,�R,_Sl
). For the 

former ‘mosquito population, maximum impact’ parameter, we could simply apply the observed MC 

reduction (equivalent to the population reduction impact) from 100% intervention coverage. We applied 

this reduction, uniformly, across our 19 household types, since no regional or household-specific estimates 

were available.  

In contrast, for the latter ‘mosquito mortality rate, maximum impact’ parameter (for which we had no 

direct observations), we used our household-specific epidemiological models (see section 3) to simulate 

measures of the ‘mosquito mortality rate, maximum impact’ parameter as the (1) model-consistent 

increases in mosquito mortality rates (ΔμM
int,h) following from (2) household- and intervention-specific 
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reductions in mosquito malaria prevalence rates (pM
h,t) associated with the SR-reduction following from 

100% intervention coverage. Due to differences in our regional household-specific epidemiological model 

specifications, the ‘mosquito mortality rate, maximum impact’ parameters (ΔμM,max
int,h) vary (quite strongly) 

across our household types (Table 6.3). While parameterization data are presented for both IRS and ITN 

prevention interventions in Table 6.3, we exclude, as discussed above, IRS interventions from our model 

applications since regional IRS coverage data are not immediately available. Actual model applications are 

therefore based on standard single-intervention specifications (Smith, Chitnis, Brie & Tanner 2011) as 

presented in equations (6.18’)-(6.19’). 

Finally, the household-specific morbidity rates (Î�,�), defined in equation (6.20), were initialized based on 

household-specific effective ACT coverage rates (see section 5.3) and parametrization of fixed morbidity 

rates associated with and without effective ACT treatment (Î̅ÚqÙ , Î̅¢¸ÚqÙ): (1) a central point estimate for 

malaria-related absenteeism without ACT treatment (%-share reduction in annual labour supply per malaria 

episode; Î̅¢¸ÚqÙ=4/260≈1.54%) was based on the assumption of 4 workdays lost per malaria episode due 

to incapacitation, where the latter choice was informed by a literature survey of available (African) 

statistical evidence (Table 6.4); (2) a point estimate for malaria-related absenteeism with ACT treatment 

(Î̅ÚqÙ=2/260≈0.77%) was based on the assumption of 2 workdays lost per malaria episode since ACT 

treatment reduces the febrile period to approx. 1 day (Mayxay et al. 2012) and another day of 

incapacitation was added for diagnosis and seeking treatment. 
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Table 6.3. Epidemiological impacts of malaria interventions 

      Coverage = 100% 

   

ITN IRS 

Baseline data1     

ΔMean Catch (mosquito population) -59.1% -71.7% 

ΔSporozoite Rate (mosquito malaria prevalence) -74.7% -74.0% 

Household-specific epidemiological parameter impacts2  

1. Mosquito population reduction (Δmint,h) 

  

 

H01 Δmmax
int,h -71.7% -59.1% 

 

H02 Δmmax
int,h -71.7% -59.1% 

 

H03 Δmmax
int,h -71.7% -59.1% 

 

H04 Δmmax
int,h -71.7% -59.1% 

 

H05 Δmmax
int,h -71.7% -59.1% 

 

H06 Δmmax
int,h -71.7% -59.1% 

 

H07 Δmmax
int,h -71.7% -59.1% 

 

H08 Δmmax
int,h -71.7% -59.1% 

 

H09 Δmmax
int,h -71.7% -59.1% 

 

H10 Δmmax
int,h -71.7% -59.1% 

 

H11 Δmmax
int,h -71.7% -59.1% 

 

H12 Δmmax
int,h -71.7% -59.1% 

 

H13 Δmmax
int,h -71.7% -59.1% 

 

H14 Δmmax
int,h -71.7% -59.1% 

 

H15 Δmmax
int,h -71.7% -59.1% 

 

H16 Δmmax
int,h -71.7% -59.1% 

 

H17 Δmmax
int,h -71.7% -59.1% 

 

H18 Δmmax
int,h -71.7% -59.1% 

 

H19 Δmmax
int,h -71.7% -59.1% 

2. Mosquito mortality rate increase (ΔμM
int,h) 

  

 

H01 ΔμM,max
int,h 8.7% 8.8% 

 

H02 ΔμM,max
int,h 17.7% 17.9% 

 

H03 ΔμM,max
int,h 31.5% 31.9% 

 

H04 ΔμM,max
int,h 73.4% 74.5% 

 

H05 ΔμM,max
int,h 19.6% 19.8% 

 

H06 ΔμM,max
int,h 28.0% 28.3% 

 

H07 ΔμM,max
int,h 54.3% 55.1% 

 

H08 ΔμM,max
int,h 18.0% 18.2% 

 

H09 ΔμM,max
int,h 34.8% 35.2% 

 

H10 ΔμM,max
int,h 78.5% 79.8% 

 

H11 ΔμM,max
int,h 21.9% 22.1% 

 

H12 ΔμM,max
int,h 35.4% 35.8% 

 

H13 ΔμM,max
int,h 91.8% 93.4% 

 

H14 ΔμM,max
int,h 25.0% 25.3% 

 

H15 ΔμM,max
int,h 40.2% 40.7% 

 

H16 ΔμM,max
int,h 75.4% 76.6% 

 

H17 ΔμM,max
int,h 24.8% 25.1% 

 

H18 ΔμM,max
int,h 44.0% 44.6% 

 

H19 ΔμM,max
int,h 107.5% 109.5% 

Sources: 1Curtis, Maxwell, Finch & Njunwa (1998); 2own calculations 
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Table 6.4. Morbidity effects associated with uncomplicated malaria episodes in Sub-Saharan African countries 

Country/region Year days ill 

workdays lost due to incapacitation 

(absenteeism) 

workdays lost due to low productivity 

(presenteeism) Reference 

Tanzania 1941a 1.5-4 days/episode     Brinkmann & Brinkmann (1991) 

East Africa 1944a 4-9 days/episode 

  

Brinkmann & Brinkmann (1991) 

Malawi 1950a 3.4 days/episode 

  

Brinkmann & Brinkmann (1991) 

Nigeria 1954-56 2.6 days/episode 

  

Bruce-Chwatt (1963) 

Ghana 1955 4.5 days/episodeb 

  

Bruce-Chwatt (1963) 

Liberia 1958a 4.2 days/episode 

  

Brinkmann & Brinkmann (1991) 

Ethiopia 1961a 3-4 days/episode 

  

Brinkmann & Brinkmann (1991) 

Nigeria 1963a 2.6 days/episode 

  

Brinkmann & Brinkmann (1991) 

Uganda 1964-66 

 

1.16 days per year 

 

Hall & Wilks (1967) 

Ghana 1965a 2-6 days/episodeb 

  

Brinkmann & Brinkmann (1991) 

Rwanda 1965a 5.2 days/episodeb 

  

Brinkmann & Brinkmann (1991) 

Ghana 1981a 7 days/episode 

  

Brinkmann & Brinkmann (1991) 

Togo 1984a 5.3 days/episodeb 

  

Brinkmann & Brinkmann (1991) 

Ivory Coast 1987a 3.4 days/episodeb 

  

Brinkmann & Brinkmann (1991) 

Burkina Faso 1987 

 

3.5 days/episode 

 

Gazin et al. (1988) 

Malawi 1992 

 

2.41 days/episodeiii 1.21 days/episodeiii Ettling, McFarland, Schultz & Chitsulo (1994) 

Burkina Faso 1992 

 

3.5 days/episode 

 

Sauerborn et al. (1995) 

Burkina Faso 1992 

 

4 days/episode 

 

Guiguemdé et al. (1997) 

Kenya 1993 3-7 days/episode 2-4 days/episode 2 days/episodeg Leighton & Foster (1993) 

Nigeria 1993 2-7 days/episode 1-3 days/episode 3 days/episodeh Leighton & Foster (1993) 

Ghana 1993 

 

2895 days lost among 1614 casesc 

 

Asenso-Okyere & Dzator (1997) 

Sudan 1993 

 

6.2 days/episode 2.6 days/episode Nur (1993) 

Nigeria 1998 

 

4-9 days/episode 

 

Onwujekwe, Chima & Okonkwo (2000) 

Ethiopiai 2000 19 days/episode 14 days/episode 

 

Cropper et al. (2000) 

Ethiopiaii 2000 22 days/episode 18 days/episode 

 

Cropper et al. (2000) 

Mozambique 2001/02 

 

3.4 days/episoded 

 

Castillo-Riquelme, McIntyre & Barnes (2008) 

South Africa 2001/02 

 

2.4/3.2 days/episodee 

 

Castillo-Riquelme, McIntyre & Barnes (2008) 

Ethiopia 2003 

 

6.82 days/episode (for 66.3% of cases) 

 

Deressa, Hailemariam & Ali (2007) 

Ghana 2003 10.79 days/episode 9.03 days/episodef 

 

Asante, Asenso-Okyere & Kusi (2005) 

Ghana 2007-2010 3.5 days/episode 

  

Hanlon (2011) 

Kenya 2010 

 

3.9-7.8 days/episode 

 

Chuma, Okungu & Molyneux (2010) 

Notes: i 'Malaria test' sub-sample; ii full sample; iii estimates derived from information in Ettling et al. (1994), but not consistent with reported overall estimate (2.66 days/ episode); a study year of 

original study, referenced in Brinkmann & Brinkmann (1991) survey; b child morbidity; c majority of child cases, and number of cases not corrected for labor force participation; d days taken off 

school or work; e days taken off school or work for SA1/SA2 regions; f aggregate unweighted measure of absenteeism and presenteeism; g presenteeism estimates varied between agriculture (-50% 

to -75%), industry (-25% to -50%), and services (0% to -25%) ; h presenteeism estimates varied between agriculture (-50%), industry (-25%), and services (-25%); 
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7. Conclusion 

 In this paper, we developed a novel and fully integrated epidemiological-demographic-macroeconomic 

EDM-malaria simulation model framework for modelling of P. falciparum malaria transmission in Ghana. 

The macroeconomic malaria-focussed CGE model (see section 2) was calibrated on the basis of a 2004 

malaria-focussed Ghana SAM, where regional households were stratified according to (1) rural-urban 

location, (2) coastal-forest-savannah eco-region location, and (3) low-medium-high malaria prevalence 

district location. Based on the regional household stratification, we constructed 19 consistently stratified 

sets of epidemiological models (see section 3), and demographic models (see section 4). Our regional 

epidemiological models are MacDonald-Ross compartment models of malaria transmission which have 

been extended to account for human super-infections, and they are meant to replicate the reputable Swiss 

Tropical Institute model. They were calibrated on the basis of data from the Malaria Atlas Project and 

clinical health outcomes are modelled through endogenous application of closed-form piece-wise linear 

specifications based on seasonal transmission-corrected lookup tables derived from the STI model. Our 

regional demographic models are specified as annual models with 1-year age groups and extended to 

include wage-driven interregional and international migration specifications based on Harris-Todaro 

migration specifications. In order to integrate the region-specific epidemiological and demographic models, 

the former were transformed from continuous time to bi-weekly discrete time models, where the final 26th 

time period solution is used as the annual equilibrium solution. Repeated inspection suggests that our 

epidemiological models achieve rapid convergence. In order to fully integrate the epidemiological and 

demographic models with our macroeconomic CGE model, we finally specified how effective labour 

supplies and labour factor ownerships are affected by malaria-related clinical health outcomes (section 5), 

and how malaria intervention coverage rates, derived from extended household and public demand 

systems, affect epidemiological model parameters and morbidity health outcomes through generalized 

multiple-intervention specifications, and determine public and private household costs of malaria-related 

composite interventions including costs of interventions and administrative and laboratory services (section 

6). 

Our model framework represents a milestone, as the first fully integrated EDM model framework for any 

type of infectious disease. The complex specification and integration of regional epidemiological-

demographic models within a national macroeconomic model was undertaken with the twin purposes of 

(1) providing a methodologically novel approach to macroeconomic modelling of malaria transmission in a 

high transmission intensity setting which captures both perennial and (savannah region) seasonal 
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transmission, and (2) to provide a tool for policy analysis and consistent assessment of the twin 

macroeconomic and clinical health disease burdens. Going forward, we aim to use the EDM-malaria 

framework, described in this paper, to undertake studies of future malaria transmission in Ghana over the 

coming 20 years (2015-34). The macroeconomic growth assumptions underlying our future baseline 

projections are outlined in Section 2, and, together with our EDM-malaria model framework, they form the 

basis for on-going work, where we aim to investigate the magnitudes and interplay of future 

macroeconomic and health disease burdens, to measure the health and economic impacts of future 

economic growth and scaling-up of malaria interventions, and to study the importance (or lack thereof) of 

the general omission of proper epidemiological underpinnings and integration of economic incentive 

feedback effects in the existing literature on macroeconomic assessment of infectious disease. 
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Annex A. 2004 Ghana MalSAM accounts 

Table A.1. 2004 Ghana MalSAM accounts (excl. factors & households) 

Account 

Identifier 

Account 

description 

1. Activities   

A01 Agriculture 

A02 Industry 

A03 Utilities 

A04 Housing and infrastructure 

A05 Transport, fuel, motor vehicles and repairs 

A06 Trade 

A07 Services 

A08 Public administration and defense 

A09 Education 

A10 Health 

2. Commodities   

C01 Agriculture 

C02 Industry 

C03 Utilities 

C04 Housing and infrastructure 

C05 Transport, fuel, motor vehicles and repairs 

C06 Trade 

C07 Services 

C08 Public administration and defense 

C09 Education 

C10 Health 

3. Other accounts   

TRD Trade and transportation margins 

E Enterprise 

G Government 

T01 Activity tax 

T02 Sales tax 

T03 Import tariff 

T04 Export duty 

T05 Direct enterprise tax 

T06 Direct household tax 

CAP Savings-investment account 

DSTK Change in stocks 

R Rest of the world 

Source: own definitions based on Jensen, Keogh-Brown et al. (2012) 
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Table A.1 (cont.) 2004 Ghana MalSAM accounts (factors & households) 

Account 

identifier 

Household 

/Factor type 

rural-urban 

location 

eco-region 

location 

Gender 

type 

Malaria Prev./ 

Labour skill Account description 

4. Factors           

F01 

Labour 

GAMA   

Male 

Low Skill GAMA Male low skill labour 

F02 Med Skill GAMA Male med skill labour 

F03 High Skill GAMA Male high skill labour 

F04 

Female 

Low Skill GAMA Female low skill labour 

F05 Med Skill GAMA Female med skill labour 

F06 High Skill GAMA Female high skill labour 

F07 

Urban 

Coastal 

Male 

Low Skill Urban Coastal Male low skill labour 

F08 Med Skill Urban Coastal Male med skill labour 

F09 High Skill Urban Coastal Male high skill labour 

F10 

Female 

Low Skill Urban Coastal Female low skill labour 

F11 Med Skill Urban Coastal Female med skill labour 

F12 High Skill Urban Coastal Female high skill labour 

F13 

Forest 

Male 

Low Skill Urban Forest Male low skill labour 

F14 Med Skill Urban Forest Male med skill labour 

F15 High Skill Urban Forest Male high skill labour 

F16 

Female 

Low Skill Urban Forest Female low skill labour 

F17 Med Skill Urban Forest Female med skill labour 

F18 High Skill Urban Forest Female high skill labour 

F19 

Savannah 

Male 

Low Skill Urban Savannah Male low skill labour 

F20 Med Skill Urban Savannah Male med skill labour 

F21 High Skill Urban Savannah Male high skill labour 

F22 

Female 

Low Skill Urban Savannah Female low skill labour 

F23 Med Skill Urban Savannah Female med skill labour 

F24 High Skill Urban Savannah Female high skill labour 

F25 

Rural 

Coastal 

Male 

Low Skill Rural Coastal Male low skill labour 

F26 Med Skill Rural Coastal Male med skill labour 

F27 High Skill Rural Coastal Male high skill labour 

F28 

Female 

Low Skill Rural Coastal Female low skill labour 

F29 Med Skill Rural Coastal Female med skill labour 

F30 High Skill Rural Coastal Female high skill labour 

F31 

Forest 

Male 

Low Skill Rural Forest Male low skill labour 

F32 Med Skill Rural Forest Male med skill labour 

F33 High Skill Rural Forest Male high skill labour 

F34 

Female 

Low Skill Rural Forest Female low skill labour 

F35 Med Skill Rural Forest Female med skill labour 

F36 High Skill Rural Forest Female high skill labour 

F37 

Savannah 

Male 

Low Skill Rural Savannah Male low skill labour 

F38 Med Skill Rural Savannah Male med skill labour 

F39 High Skill Rural Savannah Male high skill labour 

F40 

Female 

Low Skill Rural Savannah Female low skill labour 

F41 Med Skill Rural Savannah Female med skill labour 

F42 High Skill Rural Savannah Female high skill labour 

F43 Capital         Capital 

5. Households             

H01 

Household 

GAMA -   Low Mal. Prev. Low prevalence GAMA 

H02 

Urban 

Coastal 

  Low Mal. Prev. Low prevalence Urban Coastal 

H03 Med Mal. Prev. Med prevalence Urban Coastal 

H04 High Mal. Prev. HIgh prevalence Urban Coastal 

H05 

Forest 

  Low Mal. Prev. Low prevalence Urban Forest 

H06 Med Mal. Prev. Med prevalence Urban Forest 

H07 High Mal. Prev. HIgh prevalence Urban Forest 

H08 

Savannah 

  Low Mal. Prev. Low prevalence Urban Savannah 

H09 Med Mal. Prev. Med prevalence Urban Savannah 

H10   High Mal. Prev. HIgh prevalence Urban Savannah 

H11 

Rural 

Coastal 

  Low Mal. Prev. Low prevalence Rural Coastal 

H12 Med Mal. Prev. Med prevalence Rural Coastal 

H13 High Mal. Prev. HIgh prevalence Rural Coastal 

H14 

Forest 

  Low Mal. Prev. Low prevalence Rural Forest 

H15 Med Mal. Prev. Med prevalence Rural Forest 

H16 High Mal. Prev. HIgh prevalence Rural Forest 

H17 

Savannah 

  Low Mal. Prev. Low prevalence Rural Savannah 

H18 Med Mal. Prev. Med prevalence Rural Savannah 

H19   High Mal. Prev. HIgh prevalence Rural Savannah 

Source: own definitions based on Jensen, Keogh-Brown et al. (2012) 
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Annex B. Epidemiological model variable and parameter definitions 

Variable definitions 


�,���C 	  true human malaria prevalence rate 


�,���R   mosquito malaria prevalence rate 

��,���  multiplicity of malaria infections in humans 

>�,���?@A    force of infection 

OPQ�,��� entomological inoculation rate 

/�,�R   mortality rate for mosquitoes 

^�,�   number of female mosquitoes per person 

Y�,S{|,�  number of uncomplicated malaria episodes per person per year 

/�,S{|,�  malaria mortality rate per person per year 

k
�,���C   expected human malaria prevalence rate detectable by microscopy; slide prevalence 

j�,�  correction factor for detectability of malaria infection by microscopy  

 

Parameter definitions 

>̅�B    arrival rate of superinfections 

/̅1  clearance rate of superinfections  

	  human feeding rate of female mosquitoes 

9   infectiousness of infective mosquito bites to humans 

�  infectiousness of humans to mosquitoes 

Y̅Z[\]�  incubation period for mosquitoes 

�T~  Scaling parameter for morbidity (malaria episodes) clinical outcome specifications 
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�T)  Scaling parameter for excess mortality clinical outcome specifications 

�̅S{|~,�
 parameters for morbidity (malaria episodes) clinical outcome polynomial approx. 

specifications 

�̅S{|),�
 parameters for excess mortality clinical outcome polynomial approx. specifications 

9T_`a proportion of successful inoculations as the EIR approaches infinity (EIR→∞) 

�Þ²TTTT� EIR at which half the reduction in the FOI (and mosquito infectiousness b) is achieved  

jT_`a minimum detection rate for malaria prevalence by microscopy (EIR→0) 

jT_Sl maximum detection rate for malaria prevalence by microscopy (EIR→∞) 

�Þ²TTTTm EIR at which half the possible increase in detectability (jT_Sl − jT_`a) is achieved  
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Annex C. Demographic variable and parameter definitions 

Variable definitions 

�§��,�C    Population (by all household types)  

�§��,{|a,S{|,�  Population (by all household, gender and age groups)  

��	8ℎk�,{|a,S{|,� Deaths (by all household, gender and age groups, except infants) 

<±²8ℎk�,{|a,�  Gender-specific infant births (by all household and gender types) 

P¨���	8ℎk�,{|a,� Gender-specific infant deaths (by all household and gender types) 

�§��,{|a,S{|,�_`{®,a|�
 Net total immigrant population stocks (by all household, gender, and age groups) 

�§��,{|a,S{|,�`_`{®,a|� = Net international immigrant population stocks (by all household, gender, and age 

groups) 

�§��,{|a,S{|,�¡_`{®,a|�
 Net domestic immigrant population stocks (by all household, gender, and age 

groups) 

�§�kℎ²}¸UN,�`_`{®,�@qN
  Int’l immigrant share of regional population (by rural/urban household types) 

�§�kℎ²}¸UN,�|_`{®,�@qN
  Int’l emigrant share of regional population (by rural/urban household types) 

�§�kℎ²}¸UN,�¡_`{®,�@qN
 Domestic immigrant share of regional population (by rural/urban household types) 

�§��,�`_`{®,C
  Gross int’l immigrant population stocks (by all household types) 

�§��,{|a,S{|,�`_`{®
  Gross int’l immigrant population stocks (by all household, gender, and age groups) 

�§��,�|_`{®,C
  Gross int’l emigrant population stocks (by all household types) 

�§��,{|a,S{|,�|_`{®
 Gross int’l emigrant population stocks (by all household, gender, and age groups) 

�§�}¸UN,{|a,S{|,�¡_`{®,�@qN
  Gross domestic immigrant population stocks (by rural/urban household types and 

all gender and age groups) 
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�§�}¸UN,{|a,S{|,�¡_`{®,a|�,�@qN
 Net domestic immigrant population stocks (by rural/urban household types and all 

gender and age groups) 

�§��,{|a,S{|,�¡_`{®,a|�
 Net domestic immigrant population stocks (by all household, gender, and age 

groups) 

ÇÅ7�,�}S�,�  Labour factor ownership (by all household and labour factor types) 

=Å�}S�,�  Average labour factor wages (by all labour factor types) 

=Å}¸UN,��@qN   Average regional wage levels (by rural/urban household types) 

=Å��@»  Int’l wage level for workers from the Rest of the World (domestic currency) 

/�,S{|,�   Malaria excess mortality rates (by household and age groups) 

 

 

Parameter definitions 

:�TTTT�@»   Int’l wage level for workers from the Rest of the World (foreign currency) 

/̅�,{|a,S{|,�S}}	US°�|   Baseline all-cause mortality rates (by household, gender and age groups) 

/̅�,S{|,�   Baseline malaria excess mortality rates (by household and age groups) 
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Annex D. Effective labour supply variable and parameter definitions 

Variable definitions 

ÇÅÌ�}S�,�|��
  Effective labour supply (by labour factor type) 

ÇÅ7�,�}S�,�C,|��
   Effective labour supply (by household and labour factor type) 

ÇÅ7�,�}S�,�C   Labour force participation (by household and labour factor type) 

ÇÅ7�,�}S�,�C,_¸®�,S¡°}�
 Morbidity-related labour supply impact due to adult illness (by household and 

labour factor type) 

ÇÅ7�,M�|_S}|M,�C,_¸®�,U�`}¡ 	 Morbidity-related labour supply impact due to child illness (by household and 

‘female’ labour factor type) 

Y�,S{|,�  Age-specific uncomplicated malaria episodes per person per year (by household 

type) 

ÍQ	8��,�   Malaria morbidity rate = work-years lost per uncomplicated episode 

 

Parameter definitions 

�Q	8�{|a  Labour market participation rates (by gender type) 

Ìy�Ìℎ²�,�}S�   Labour factor skill shares (by household and labour factor types) 
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Annex E. Health intervention equation variable and parameter definitions 
 

Variable definitions 

Ä§ÐOQ`a�,�,�  malaria intervention coverage rates (by intervention and household types) 

Ä§ÐOQ`a�,�,�V®Ñ
  private malaria intervention coverage rates (by intervention and household types) 

Ä§ÐOQ`a�,�,�V°� 	  public malaria intervention coverage rates (by intervention and household types) 

Ä§ÐOQ`a�,�,�|��
 effective malaria intervention coverage rates (by intervention and household 

types) 

O��    government expenditures 

O7�,�  household consumption spending (by household types) 

OÊQ�    exchange rate in local currency per unit of foreign currency 


�,�C    true human malaria prevalence rate (by household types) 

�§��,�C     Population (by household types) 

�§��,{|a,S{|,�  Population (by all household, gender and age groups) 

�Í`a�,�A¢Ù     price of intervention imports in domestic currency (by intervention types) 

�ÇU,�/�Ç`a�,�  composite commodity price (by commodity/intervention types) 

�Ç`a�,�A¢Ù     composite commodity price for interventions (by intervention types) 

�Ð�S,�    value-added price or factor income per unit of output (by activity types) 

Ç�U,�    quantity sold domestically of domestic output (by commodity types) 

ÇOU,�    quantity of commodity exports (by commodity types) 

ÇÅ7�,�,�  household factor ownership (by household and factor types) 

Ç7U,�,�/Ç7`a�,�,�  quantity of household consumption (by commodity/intervention and household 

types) 
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ÇP�;U,S,�   quantity of intermediate input (by commodity and activity types) 

ÇP�ÐU,�   quantity of investment demand (by commodity types) 

ÇÍ`a�,�A¢Ù    quantity of intervention imports (by intervention types) 

ÇÍU,�    quantity of commodity imports (by commodity types) 

ÇÇU,�/ÇÇ`a�,�  quantity of goods/composite malaria-related composite intervention commodities 

supplied to domestic market (by commodity/intervention types) 

ÇÇMU��M,`a�,�ÚÛR   quantity of malaria-related administrative and laboratory services supplied to 

domestic market (by intervention types) 

ÇÇ`a�,�A¢Ù   quantity of malaria interventions supplied to domestic market (by intervention 

types) 

Ç;U,�    quantity of commodity demanded as trade input (by commodity types) 

ÇÐ�S,�    quantity of value-added (by activity types) 

;P�Ì`a�¡a{,�   direct tax rate (by domestic non-government institutions) 

Ò�;�ÓO`a�,�,�	  intervention uptake rates (by intervention and household types) 

=Å�,�    average factor price (by factor types) 

ß��    government revenue 

ßP`a�¡a{,�  income of domestic non-government institutions (by domestic non-government 

institutions) 

ßPÅM×@ÝM,�,�   factor income to government (by factor types) 

/�,�R     mortality rate for mosquitoes (by household types) 

Y�,S{|,� number of uncomplicated malaria episodes per person per year (by household and 

age groups) 

^�,�    number of female mosquitoes per person (by household types) 
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ÍQ	8��,�  average morbidity rates, measured by the fraction of a work-year lost per 

uncomplicated malaria episode (by household types) 

Parameter definitions 

�T`a�°V�
   scale parameters of intervention uptake (by intervention types) 

�̅U,�/�̅`a�,�  marginal share of consumption spending (by commodity/intervention and 

household types) 

�̅`a�ÚÛR  Leontief quantity of intermediate input of administrative and laboratory per unit of 

malaria-related composite intervention commodity output (by intervention types) 

�̅`a�A¢Ù  Leontief quantity of intermediate input of malaria intervention per unit of malaria-

related composite intervention commodity output (by intervention types)  

�̅`a�°V�
   malaria prevalence elasticities of intervention uptake (by intervention types) 

Ø̅U,�/Ø̅`a�,�   autonomous consumption (by commodity/intervention and household types) 

/̅�R    baseline mortality rate for mosquitoes (by household types) 

Δ/̅`a�,�R,_Sl
  change in mortality rate for mosquitoes associated with 100% coverage rates of 

preventive interventions (by intervention and household types) 

ÅÌ�ÐTTTTTTT  foreign savings in foreign currency 

Þ�ÜTTTTU�,U  quantity of trade input commodity per unit of commodity produced and sold 

domestically (by trade input commodity and traded commodity types) 

Þ��TTTTU�,U  quantity of trade input commodity per unit of exported commodity (by trade input 

commodity and traded commodity types) 

Þ�^TTTTTU�,U  quantity of trade input commodity per unit of imported commodity (by trade input 

commodity and traded commodity types) 

Þ�^TTTTTU�,`a�A¢Ù   quantity of trade input commodity per unit of imported malaria intervention (by 

trade input commodity and traded intervention types) 

 ̂�    baseline number of female mosquitoes per person (by household types) 
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Δ  ̂ `a�,�_Sl   change in number of female mosquitoes per person associated with 100% coverage 

rates of preventive interventions (by intervention and household types) 

ÍQ	8�TTTTTTTTTÚqÙ  morbidity rates with ACT treatment, measured by the fraction of a work-year lost 

per uncomplicated malaria episode 

ÍQ	8�TTTTTTTTT¢¸ÚqÙ morbidity rates without ACT treatment, measured by the fraction of a work-year 

lost per uncomplicated malaria episode 


:^TTTTTTTU    price of commodity imports in foreign currency (by commodity types) 


:^TTTTTTT`a�,�A¢Ù    price of intervention imports in foreign currency (by intervention types) 


:�TTTTTTU    price of commodity exports in foreign currency (by commodity types) 

jÜk8TTTTTTU    quantity of stock change (by commodity types) 

Ç�TTTTU   quantity of government consumption (by commodity types) 

Ç�TTTT`a�,�A¢Ù    quantity of government consumption (by intervention and household types) 

8²¨k�²TTTTTTTTT̀ a�¡a{,M×@ÝM  transfer from Government to domestic non-government institutions (by domestic 

non-government institutions) 

8²¨k�²TTTTTTTTT̀ a�¡,M�@»M  transfer from Rest of the World to domestic institutions (by institution types) 

8²¨k�²TTTTTTTTTM×@ÝM,M�@»M  transfer from Rest of the World to Government 

8²¨k�²TTTTTTTTTM�@»M,�,�   transfer from factor f to institution Rest of the World (by factor types) 

8� U    export tax rate (by commodity types) 

8� �    direct factor tax rate (by factor types) 

8^TTTTU    import tariff rate for commodities (by commodity types) 

8^TTTT`a�A¢Ù    import tariff rate for malaria interventions (by intervention types) 

8j U    sales tax rate for commodities (by commodity types) 

8j `a�A¢Ù    sales tax rate for malaria interventions (by intervention types) 
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8à	TTTTTS    value-added tax rate (by activity types) 
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Annex F. Household-specific labour force skill shares (by gender) 

 

Table F.1. Household-specific labour force skill shares (by gender) 

Household 

type 

rural/urban 

region 

Ecological 

region 

Malaria 

prev.-level Gender 

Factor 

type 

Labour factor 

skill level 

Gender-specific 

skill share 

H01 GAMA   Low 

Male 

F01 Low Skill 18.3% 

F02 Med Skill 41.3% 

F03 High Skill 40.3% 

Female 

F04 Low Skill 32.6% 

F05 Med Skill 41.0% 

F06 High Skill 26.4% 

H02 Urban Coastal Low 

Male 

F07 Low Skill 28.7% 

F08 Med Skill 46.1% 

F09 High Skill 25.2% 

Female 

F10 Low Skill 46.5% 

F11 Med Skill 33.7% 

F12 High Skill 19.9% 

H03 Urban Coastal Medium 

Male 

F07 Low Skill 25.0% 

F08 Med Skill 40.4% 

F09 High Skill 34.7% 

Female 

F10 Low Skill 42.2% 

F11 Med Skill 40.7% 

F12 High Skill 17.1% 

H04 Urban Coastal High 

Male 

F07 Low Skill 33.4% 

F08 Med Skill 51.6% 

F09 High Skill 15.0% 

Female 

F10 Low Skill 62.7% 

F11 Med Skill 24.7% 

F12 High Skill 12.6% 

H05 Urban Forest Low 

Male 

F13 Low Skill 25.6% 

F14 Med Skill 47.0% 

F15 High Skill 27.4% 

Female 

F16 Low Skill 43.9% 

F17 Med Skill 39.5% 

F18 High Skill 16.7% 

H06 Urban Forest Medium 

Male 

F13 Low Skill 32.0% 

F14 Med Skill 45.0% 

F15 High Skill 23.1% 

Female 

F16 Low Skill 51.4% 

F17 Med Skill 37.1% 

F18 High Skill 11.5% 

H07 Urban Forest High 

Male 

F13 Low Skill 40.2% 

F14 Med Skill 48.4% 

F15 High Skill 11.4% 

Female 

F16 Low Skill 51.0% 

F17 Med Skill 43.2% 

F18 High Skill 5.7% 

Source: 2005/06 GLSS5 household survey (GSS 2008). 
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Table F.1 (cont.) Household-specific labour force skill shares (by gender) 

Household 

type 

rural/urban 

region 

Ecological 

region 

Malaria 

prev.-level Gender 

Factor 

type 

Labour factor 

skill level 

Gender-specific 

skill share 

H08 Urban Savannah Low 

Male 

F19 Low Skill 32.2% 

F20 Med Skill 50.3% 

F21 High Skill 17.5% 

Female 

F22 Low Skill 54.8% 

F23 Med Skill 31.0% 

F24 High Skill 14.2% 

H09 Urban Savannah Medium 

Male 

F19 Low Skill 36.7% 

F20 Med Skill 35.4% 

F21 High Skill 28.0% 

Female 

F22 Low Skill 56.4% 

F23 Med Skill 33.3% 

F24 High Skill 10.3% 

H10 Urban Savannah High 

Male 

F19 Low Skill 61.4% 

F20 Med Skill 16.5% 

F21 High Skill 22.1% 

Female 

F22 Low Skill 77.7% 

F23 Med Skill 12.1% 

F24 High Skill 10.2% 

H11 Rural Coastal Low 

Male 

F25 Low Skill 52.0% 

F26 Med Skill 39.5% 

F27 High Skill 8.5% 

Female 

F28 Low Skill 78.2% 

F29 Med Skill 18.8% 

F30 High Skill 3.0% 

H12 Rural Coastal Medium 

Male 

F25 Low Skill 51.0% 

F26 Med Skill 36.3% 

F27 High Skill 12.7% 

Female 

F28 Low Skill 78.5% 

F29 Med Skill 19.1% 

F30 High Skill 2.3% 

H13 Rural Coastal High 

Male 

F25 Low Skill 57.4% 

F26 Med Skill 29.7% 

F27 High Skill 12.9% 

Female 

F28 Low Skill 78.5% 

F29 Med Skill 15.9% 

F30 High Skill 5.6% 

Source: 2005/06 GLSS5 household survey (GSS 2008). 
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Table F.1 (cont.) Household-specific labour force skill shares (by gender) 

Household 

type 

rural/urban 

region 

Ecological 

region 

Malaria 

prev. level Gender 

Factor 

type 

Labour factor 

skill level 

Gender-specific 

skill share 

H14 Rural Forest Low 

Male 

F31 Low Skill 45.9% 

F32 Med Skill 45.4% 

F33 High Skill 8.7% 

Female 

F34 Low Skill 71.5% 

F35 Med Skill 26.0% 

F36 High Skill 2.5% 

H15 Rural Forest Medium 

Male 

F31 Low Skill 51.4% 

F32 Med Skill 39.9% 

F33 High Skill 8.7% 

Female 

F34 Low Skill 71.4% 

F35 Med Skill 25.6% 

F36 High Skill 3.1% 

H16 Rural Forest High 

Male 

F31 Low Skill 47.4% 

F32 Med Skill 42.5% 

F33 High Skill 10.1% 

Female 

F34 Low Skill 72.7% 

F35 Med Skill 24.3% 

F36 High Skill 3.0% 

H17 Rural Savannah Low 

Male 

F37 Low Skill 46.0% 

F38 Med Skill 41.9% 

F39 High Skill 12.1% 

Female 

F40 Low Skill 65.7% 

F41 Med Skill 28.1% 

F42 High Skill 6.2% 

H18 Rural Savannah Medium 

Male 

F37 Low Skill 69.5% 

F38 Med Skill 24.1% 

F39 High Skill 6.4% 

Female 

F40 Low Skill 83.3% 

F41 Med Skill 15.1% 

F42 High Skill 1.6% 

H19 Rural Savannah High 

Male 

F37 Low Skill 86.1% 

F38 Med Skill 9.0% 

F39 High Skill 4.9% 

Female 

F40 Low Skill 93.7% 

F41 Med Skill 4.4% 

F42 High Skill 1.9% 

Source: 2005/06 GLSS5 household survey (GSS 2008). 

 

 

  



65 

 

 

References 

Agénor P-R, Izquierdo A, Jensen HT (Eds). 2007. Adjustment Policies, Poverty, and Unemployment: The 

IMMPA Framework. Blackwell Publishers. 

Anthoff D, Tol RSJ. 2012. The Climate Framework for Uncertainty, Negotiation and Distribution (FUND), 

Technical Description, Version 3.6. Download from FUND model homepage. URL: http://www.fund-

model.org/versions. Accessed 12 May 2013 

Arndt C. 2006. HIV/AIDS, Human Capital, and Economic Growth Prospects for Mozambique. Journal of 

Policy Modeling 28(5):477-89. 

Arndt C, Lewis J. 2000. The Macro Implications of HIV/AIDS in South Africa: A Preliminary Assessment. 

South African Journal of Economics 68(5):380-392. 

Arndt C, Lewis J. 2001. The HIV/AIDS Pandemic in South Africa: Sectoral Impacts and Unemployment. 

Journal of International Development 13(4):427-49. 

Asante FA, Asenso-Okyere K, Kusi A. 2005. The Economic Impact of the Burden of Malaria in Ghana. ISSER 

Technical Publication No. 66. University of Ghana. Legon. 

Ashraf QH, Lester A, Weil DN. 2009. When Does Improving Health Raise GDP? NBER Macroeconomics 

Annual 1998. Vol. 23, Chapter 3. 

Asenso-Okyere & Dzator. 1997. Household Cost of Seeking Malaria Care. A Retrospective Study of Two 

Districts in Ghana. Social Science & Medicine 45(5):659-67. 

Bate R, Hess K, Tren R, Mooney L, Cudjoe F, Ayodele T, Attaran A. 2012. Subsidizing artemisinin-based 

combination therapies: a preliminary investigation of the Affordable Medicines Facility – malaria. Research 

and Reports in Tropical Medicine 2012(3):63-68. 

Beals RE, Levy MB, Moses LN. 1967. Rationality and Migration in Ghana. Review of Economics & Statistics 

49(4): 480-86. 

Bekessy A, Molineaux L, Storey J. 1976. Estimation of incidence and recovery rates of Plasmodium 

falciparum parasitaemia from longitudinal data. Bulletin of the World Health Organization 54(6):685-93. 



66 

 

Bell C, Bruhns R, Gersbach H. 2006. Economic Growth, Education, and AIDS in Kenya: A Long-run Analysis. 

World Bank Policy Research Working Paper No. 4025. World Bank, Washington DC.  

Bell C, Devarajan S, Gersbach H. 2003. The Long-run Economic Costs of AIDS: Theory and an Application to 

South Africa. World Bank Policy Research Working Paper No. 3152. World Bank, Washington DC. 

Bell C, Devarajan S, Gersbach H. 2004. Thinking about the Long-run Economic Costs of HIV/AIDS. In M. 

Haacker (ed.) The Macroeconomics of HIV/AIDS. International Monetary Fund, Washington DC. 

Bell C, Devarajan S, Gersbach H. 2006. The Long-Run Economic Costs of AIDS: A Model with an Application 

to South Africa. World Bank Economic Review 20(1):55-89. 

Bretscher MT, Valsangiacomo F, Owusu-Agyei S, Penny MA, Felger I, Smith T. 2010. Detectability of 

Plasmodium falciparum clones. Malaria Journal 9:234. 

Brinkmann U, Brinkmann A. 1991. Malaria and Health in Africa: The present situation and epidemiological 

trends. Tropical Medicine & Parasitology 42(3):204-13. 

Bruce-Chwatt LJ. 1963. A Longitudinal Survey of Malaria Infection in a Group of West African Adults. WHO 

report No. WHO/Mal/369. World Health Organization. Geneva.  

Castillo-Riquelme M, McIntyre D, Barnes K. 2008. Household burden of malaria in South Africa and 

Mozambique: is there a catastrophic impact? Tropical Medicine & Int'l Health 13(1):108-22. 

Chitnis N, Hyman JM, Cushing JM. 2008. Determining Important Parameters in the Spread of Malaria 

Through the Sensitivity Analysis of a Mathematical Model. Bulletin of Mathematical Biology 70(5):1272-96. 

Chuma J, Okungu V, Molyneux C. 2010. The economic costs of malaria in four Kenyan districts: do 

household costs differ by disease endemicity? Malaria 9(149):149. 

Clark X, Hatton TJ, Williamson JG. 2007. Explaining U.S. Immigration, 1971–1998. Review of Economics & 

Statistics 89(2):359-73. 

Cropper ML, Haile M, Lampietti JA, Poulos C, Whittington D. 2000. The Value of Preventing Malaria in 

Tembien, Ethiopia. World Bank Policy Reseach Working Paper No. 2273. World Bank. Washington: DC. 

Cuddington JT. 1993a. Modeling the Macroeconomic Effects of AIDS, with an Application to Tanzania. 

World Bank Economic Review 7(2):173-89. 



67 

 

Cuddington JT. 1993b. Further Results on the Macroeconomic Effects of AIDS: The Dualistic, Labor-Surplus 

Economy. World Bank Economic Review 7(3):403-17. 

Cuddington JT, Hancock JD. 1994. Assessing the impact of AIDS on the growth path of the Malawian 

economy. Journal of Development Economics 43(2): 363-68. 

Curtis CF, Maxwell CA, Finch RJ, Njunwa KJ. 1998. A comparison of use of a pyrethroid either for house 

spraying or for bednet treatment against malaria vectors. Tropical Medicine & International Health 

3(8):619-31. 

Davis B, Ladner J, Sams K, Tekinturhan E, de Korte D, Saba J. 2013. Artemisinin-based combination therapy 

availability and use in the private sector of five AMFm phase 1 countries. Malaria Journal 12:135. 

Deressa W, Hailemariam D, Ali A. 2007. Economic costs of epidemic malaria to households in rural Ethiopia. 

Tropical Medicine & International Health 12(10):1148-56. 

Dietz K. 1988. Mathematical models for transmission and control of malaria. In: Malaria Principles and 

Practice of Malariology, Wernsdorfer WH, McGregor I (Eds). Edinburgh: Churchill Livingstone: 1091–1133. 

Dontwi IK, Dedu VK, Aboagye NK. 2013. Ascertaining the financial cost of malaria and mitigating against it 

using actuarial models for financial cost. International Journal of Financial Research 4(3):94-106. 

Drakeley CJ, Corran PH, Coleman PG, Tongren JE, McDonald SLR, Carneiro I, Malima R, Lusingu J, Manjurano 

A, Nkya WMM, Lemnge MM, Cox J, Reyburn H, Riley EM. 2005. Estimating medium- and long-term trends 

in malaria transmission by using serological markers of malaria exposure. Proceedings of the National 

Accademy of Sciences of the United States of America 102(14):5108-13. 

Dzator J, Asafu-Adjaye J. 2004. A study of malaria care provider choice in Ghana. Health Policy 69(3):389-

401. 

Ettling M, McFarland DA, Schultz LJ, Chitsulo L. 1994. Economic Impact of Malaria in Malawian Households. 

Tropical Medicine & Parasitology 45(1):74-79. 

Filipe JAN, Riley EM, Drakeley CJ, Sutherland CJ, Ghani AC. 2007. Determination of the Processes Driving the 

Acquisition of Immunity to Malaria Using a Mathematical Transmission Model. PLoS Computational Biology 

3(12):2569-79. 



68 

 

Gazin P, Freier C, Turk P, Gineste B, Carnevale P. 1988. Le Paludisme Chez les Employes d’une 

EnterpriseIndustrielle Africaine (Bobo Dioulasso, Burkina Faso). Annales de la Societe Belge de Medecine 

Tropicale 68(4):285-92. 

Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IRF, Johnston GL, Tatem AJ, Hay SI. 2011. A new world 

malaria map: Plasmodium falciparum endemicity in 2010. Malaria Journal 10:378. 

GHS (Ghana Health Service). 2007. GHS 2007 Annual Report. Ghana Health Service. Accra. 

GHS (Ghana Health Service). 2011. GHS 2010 Annual Report Final. Ghana Health Service, Accra. 

GHS (Ghana Health Service). 2015. Ghana Demographic and Health Survey. Ghana Statistical Service and 

Ghana Health Service, Accra. 

Gingrich CD, Hanson KG, Marchant TJ, Mulligan J-A, Mponda H. 2011. Household demand for insecticide-

treated bednets in Tanzania and policy options for increasing uptake. Health Policy & Planning 26(2):133-

41.  

Grogger J, Hanson GH. 2011. Income maximization and the selection and sorting of international migrants. 

Journal of Development Economics 95(1):42-57. 

GSS (Ghana Statistical Services). 2003. 2000 Population and Housing Census. Administrative Report. Ghana 

Statistical Services. Accra. 

GSS (Ghana Statistical Services). 2008. Electronic data. 2005/06 Ghana Living Standards Survey, round 5 

(GLSS5). Ghana Statistical Services. Accra. 

GSS (Ghana Statistical Services). 2012a. Multiple Indicator Cluster Survey, round 4 (MICS4). Ghana 

Statistical Services. Accra. 

GSS (Ghana Statistical Services). 2012b. 2010 Population and Housing Census. Summary Report of Final 

Results. Ghana Statistical Services. Accra. 

Gu W, Mbogo CM, Githure JI, Regens JL, Killeen GF, Swalm CM, Yan G, Beier JC. 2003. Low recovery rates 

stabilize malaria endemicity in areas of low transmission in coastal Kenya. Acta Tropica 86(1):71-81. 

Guiguemdé TR, Coulibaly N, Coulibaly SO, Ouedraogo JB, Gbary AR. 1997. Esquisse d’une méthode 

d’estimation du coût économique chiffré des accès palustres: application à une zone rurale au Burkina Faso 

(Afrique de l’Ouest). Tropical Medicine & International Health 2(7):646-53. 



69 

 

Hanlon P. 2011. Health Economic Model for Employee Wellbeing Programme Ghana. Study Report. Swiss 

Center for International Health. Swiss TPH. Associated Institute of University of Basel. Basel. 

IMF (International Monetary Fund). 2016. Second review under the extended credit facility arrangement 

and request for waiver for nonobservance of performance criterion – press release; staff report; and 

statement by the executive director for Ghana. IMF country report No 16/16. International Monetary Fund. 

Washington: DC. 

IMF (International Monetary Fund). 2017. Article IV consultation, fourth review under the extended credit 

facility arrangement and request for waiver for nonobservance of performance criteria, and request for 

extension and rephasing of the arrangement – press release; staff report; staff supplement; and statement 

by the executive director for Ghana. IMF country report No 16/16. International Monetary Fund. 

Washington: DC. 

Jefferis, K., A. Kinghorn, H. Siphambe, and J. Thurlow. 2008. Macroeconomic and household-level impacts 

of HIV/AIDS in Botswana. AIDS 22(s1):s113-s119. 

Jensen HT, Keogh-Brown MR, Ofosu-Baadu B, Duncan ME, van den Andel W, Smith RD. 2012. “Malaria-

related economic linkages: A Malaria-focused SAM for Ghana.” Paper presented at the African Statistics 

Day Celebrations, 19-23 November 2012. Ghana Statistical Services, Accra. 

Jensen HT, Keogh-Brown MR, Smith RD, Chalabi Z, Dangour AD, Davies M, Edwards P, Garnett T, Givoni M, 

Griffiths U, Hamilton I, Roberts I, Wilkinson P, Woodcock J, Haines A. 2013. The importance of health co-

benefits in macroeconomic assessments of UK Greenhouse Gas emission reduction strategies. Climatic 

Change 121(2):223-37. 

Jensen HT, van den Andel W, Duncan ME. 2008. A Social Accounting Matrix (SAM) for Ghana for the year 

2004. Ghana Statistical Service. Working Paper. 

Johansson LM. 2007. Fiscal implications of AIDS in South Africa. European Economic Review 51(7):1614-40. 

Kambou G, Devarajan S, Over M. 1992. The Economic Impact of AIDS in an African Country; Simulations 

with a CGE Model of Cameroon. Journal of African Economies 1:109-30. 

Keogh-Brown MR, Smith RD. 2008. The economic impact of SARS: How does the reality match the 

predictions? Health Policy 88(1):110-20. 



70 

 

Keogh-Brown MR, Wren-Lewis S, Edmunds JW, Beutels P, Smith RD. 2010. The Possible Macroeconomic 

Impact on the UK of an Influenza Pandemic. Health Economics 19(11):1345-60. 

Keogh-Brown MR, Smith RD, Edmunds JW, Beutels P. 2010. The macroeconomic impact of pandemic 

influenza: estimates from models of the United Kingdom, France, Belgium and The Netherlands. European 

Journal of Health Economics 11(6):543-54. 

Kileen GF, Ross A, Smith T. 2006. Infectiousness of Malaria-endemic Human Populations to Vectors. 

American Journal of Tropical Medicine & Hygiene 75(2):38-45. 

Leighton C, Foster R. 1993. Economic Impacts of Malaria in Kenya and Nigeria. HFS Major Applied Research 

Paper No. 6. Health Financing and Sustainability Project. Abt Associates Inc. Bethesda: MD. 

Lluch C, Powell AA, Williams RA. 1977. Patterns in Household Demand and Saving. World Bank Research 

Publication. Oxford University Press. 

Lock K, Smith RD, Dangour A, Keogh-Brown M, Pigatto G, Hawkes C, Fisjberg R, Chalabi Z. 2010. Health, 

agricultural and economic effects of adopting healthy diet recommendations. Lancet 376:1699-17 

Löfgren H, Harris RL, Robinson S. 2002. A standard Computable General Equilibrium (CGE) model in GAMS. 

Microcomputers and Policy Research 5. IFPRI, Washington DC. http://www.ifpri.org/publication/standard-

computable-general-equilibrium-cge-model-gams-0. (Accessed 23. October 2012) 

Mayxay M, Khanthavong M, Chanthongthip O, Imwong M, Pongvongsa T, Hongvanthong B, Phompida S, 

Vanisaveth V, White NJ, Newton PN. 2012. Efficacy of artemether-lumefantrine, the nationally-

recommended artemisinin combination for the treatment of uncomplicated falciparum malaria, in southern 

Laos. Malaria Journal 11: 184. 

MoH (Ministry of Health). 2009. Guidelines for Case Management of Malaria in Ghana. Ghana Health 

Service. Ministry of Health. Accra. 

Muench H. 1959. Catalytic models in epidemiology. Cambridge, Mass: Harvard University Press. 

NHIA (National Health Insurance Authority). 2012. 2012 annual report. National Health Insurance Authority. 

Accra 

NMCP (National Malaria Control Programme). 2009. National Malaria Control Programme Annual Report 

2008. National Malaria Control Programme, Ghana Health Service, Accra. 



71 

 

NMCP (National Malaria Control Programme). 2015. National Malaria Control Programme 2014 Annual 

Report. National Malaria Control Programme, Ghana Health Service, Accra. 

Nur ETM. 1993. The Impact of Malaria on Labour Use and Efficiency in the Sudan. Social Science & Medicine 

37(9):1115-19. 

Onwujekwe O, Chima R, Okonkwo P. 2000. Economic burden of malaria illness on households versus that of 

all other illness episodes: a study in five malaria holo-endemic Nigerian communities. Health Policy 

54(2):143-59. 

Oppong-Anane K. 2006. Country Pasture/Forage Resource Profiles, Ghana. Food and Agriculture 

Organization. Rome. 

Ortega F, Peri G. 2012. The Effect of Income and Immigration Policies on International Migration. NBER 

Working Paper No. 18322. National Bureau of Economic Research, Cambridge:MA 

Pattanayak SK, Ross MT, Depro BM, Bauch SC, Timmins C, Wendland KJ, Alger K. 2009. Climate Change and 

Conservation in Brazil: CGE Evaluation of Health and Wealth Impacts. BE Journal of Economic Analysis & 

Policy 9(2):Article 6. 

Picone G, Kibler R, Apouey B. 2013. Malaria prevalence, indoor residual spraying, and insecticidetreated net 

usage in Sub-Saharan Africa. PSE Working Paper No. 2013-40. Paris School of Economics. Paris. 

Robinson S. 1991. Multisectoral Models. Chapter 18 in: Chenery H, Srinivasan TN (eds) Handbook of 

Development Economics 2:885-947. 

Roe T, Smith RBW. 2008. Disease dynamics and economic growth. Journal of Policy Modeling 30(1):145-68. 

Sama W, Dietz K, Smith T. 2006. Distribution of survival times of deliberate Plasmodium falciparum 

infections in tertiary syphilis patients. Transactions of the Royal Society of Tropical Medicine & Hygiene 

100(9):811-16. 

Sauerborn R, Ibrango I, Nougtara A, Borchert M, Hien M, Benzler J, Koob E, Diesfeld HJ. 1995. The economic 

costs of illness for rural households in Burkina Faso. Tropical Medicine & Parasitology 46(1):54-60. 

Smith DL, McKenzie FE. 2004. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malaria 

Journal 3:13. 



72 

 

Smith RD, Keogh-Brown MR. 2013. Macroeconomic impact of a mild influenza pandemic and associated 

policies in Thailand, South Africa and Uganda: a computable general equilibrium analysis. Influenza & Other 

Respiratory Viruses 7(6):1400-8. 

Smith RD, Keogh-Brown MR, Barnett T, Tait J. 2009. The economy-wide impact of pandemic influenza on 

the UK: a computable general equilibrium modelling experiment. British Medical Journal 339:b4571. 

Smith RD, Yago M, Millar M, Coast J. 2005. Assessing the macroeconomic impact of a healthcare problem: 

the application of computable general equilibrium analysis to antimicrobial resistance. Journal of Health 

Economics 24(6):1055-75. 

Smith TA, Chitnis N, Briët OJT, Tanner M. 2011. Uses of mosquito-stage transmission-blocking vaccines 

against Plasmodium falciparum. Trends in Parasitology 27(5):190-96 

Smith T, Killeen G, Lengeler C, Tanner M. 2004. Relationships Between the Outcome of Plasmodium 

Falciparum Infection and the Intensity of Transmission in Africa. American Journal of Tropical Medicine & 

Hygiene 71(s2):80-86. 

Smith T, Maire N, Dietz K, Killeen GF, Vounatsou P, Molineaux L, Tanner M. 2006. Relationship Between the 

Entomological Inoculation Rate and the Force of Infection for Plasmodium Falciparum Malaria. American 

Journal of Tropical Medicine & Hygiene 75(s2):11-18. 

Smith T, Maire N, Ross A, Penny M, Chitnis N, Schapira A, Studer A, Genton B, Lengeler C, Tediosi F, de 

Savigny D, Tanner M. 2008. Towards a comprehensive simulation model of malaria epidemiology and 

control. Parasitology 135(s13):1507-16. 

Taylor L. 1983. Structuralist macroeconomics: Applicable models for the third world. Basic Books. 

Thurlow J, Gow J, George G. 2009. HIV/AIDS, growth and poverty in KwaZulu-Natal and South Africa: an 

integrated survey, demographic and economy-wide analysis. Journal of the International AIDS Society 

12(18). doi:10.1186/1758-2652-12-18. 

Tol RSJ. 2013. The economic impact of climate change in the 20th and 21st centuries. Climatic Change 

117(4):795-808. 

Tsegai D. 2007. Migration as a Household Decision: What are the Roles of Income Differences? Insights 

from the Volta Basin of Ghana. European Journal of Development Research 19(2):305-26. 



73 

 

UN (United Nations). 2013. Electronic data. World Population Prospects, the 2010 Revision. United Nations. 

URL: http://esa.un.org/unpd/wpp/index.htm. (accessed 15. January 2013) 

van den Andel W. 2007. electronic data. Supply and Use Table for Ghana, 2004. Ministry of Transport and 

Ghana Statistical Service, Accra, Ghana. 

Ventelou B, Moatti J-P, Videau Y, Kazatchkine M. 2008. ’Time is costly’: modelling the macroeconomic 

impact of scaling-up antiretroviral treatment in sub-Saharan Africa. AIDS 22(1):107-13. 

WB (World Bank). 2012. Electronic data. World Development Indicators database. World Bank. (Accessed 

28. March 2012). 

WHO (World Health Organization). 2016. WHO Country Office for Ghana Annual Report 2015. World Health 

Organization Country Office for Ghana, Accra. 

Young A. 2005. The Gift of the Dying: The tragedy of AIDS and the Welfare of Future African Generations. 

Quarterly Journal of Economics 120(2):423-66. 

 

 


