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Abstract

The number of electric vehicles on the road in the UK is expected to rise quickly in the coming years, and this is likely to
have an impact on the operation of the power grid. This paper first quantifies the consequences of allowing a completely
electric fleet to charge freely, then considers whether there is a practical way in which the impacts can be mitigated.
We predict that, with an entirely electric fleet, the UK power generation capacity would need to increase by 1/3. We
show that it is possible to completely mitigate this with controlled charging, although substantial infrastructure would
be required. However, we propose a simple scheme which could largely avoid the negative effect and does not require the
creation of new infrastructure. We show that this reduces the projected increase in peak electricity demand by 80-99%.

Keywords: Electric vehicles; charging; power grid protection

1. Introduction

This paper considers whether there is a practical way
in which we can prevent the increase in peak power de-
mand resulting from a large fleet of electric vehicles (EVs).

Electric vehicles (EVs) have the potential to drastically
reduce the national carbon footprint; as well as having zero
tail-pipe emissions, the electricity required to power them
can be produced through renewable sources. Van Vliet
et al. (2011) confirm that regardless of the source of the
electricity, EVs produce fewer CO2 emissions than both
conventional and hybrid vehicles. It is the general consen-
sus that EVs could also increase the amount of renewable
energy that is brought online without negatively impact-
ing the grid [Richardson (2013)]. This is particularly true
with relation to solar [Birnie (2009)] and wind [Short and
Denholm (2006)].

The 2008 Climate Change Act commits the UK to a re-
duction target of 80% by 2050, and this has led the govern-
ment to introduce grants to encourage people to purchase
EVs. Coupled with the decreasing price of lithium ion bat-
teries this has lead to a rapid increase in the adoption of
EVs in the UK, as shown in Figure 1. More recently, a
ban on the production of diesel and petrol vehicles after
2040 was announced [Asthana and Taylor (2017)] so the
move to all-electric now seems extremely likely.
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Figure 1: The number of vehicles eligible for the plug in electric grant
on the road in the UK

Appliance Power Consumption (W)
Washing Machine 700

Kettle 1800
Refrigerator 35

LCD TV 115
EV Slow Charger 3500

Table 1: Power consumption of various household appliances
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However, a large-scale adoption of EVs will present
significant challenges to the power grid. Electric vehicle
chargers draw a large amount of power relative to stan-
dard household appliances (see Table 1). Unlike other
high-power appliances vehicle chargers will be on for sev-
eral hours, meaning that there is a much larger chance
that many in the same area will be on at the same time.
This stands to increase the current peak power demanded
from the grid. As well as the peak power, the amount of
electricity required in a day by households will be larger;
National Grid (2017b) predicted a maximum increase of
11% in household electricity demand due to charging by
2050, while Andrews (2016) estimated that the UK elec-
tricity needs would grow by 36% if all vehicles were electric.
Both of these studies were simplistic, and their disparity
highlights the sensitivity of predictions to the underlying
assumptions in such models. The latter assumes that elec-
trification will not change the number of vehicles on the
road, while the former uses sales and scrappage projections
to arrive at an updated number.

In the UK, power generation is limited to 78GW [De-
partment for Business, Energy & Industrial Strategy (2016)],
meaning if all power generators operate at full capacity
this power is produced. In practice this is not possible as
9GW of this is from wind and solar power which are vari-
able, and tend to be negatively correlated with each other
[Widen (2011)].

If the peak demand regularly exceeds the available sup-
ply, more generation will need to be built. For exampled,
the Hinkley Point C nuclear power plant currently under
construction will add a capacity of 3.2GW at a cost of up
to £21 billion [UK Government (2016)].

The high cost of building additional generation places a
large value on shifting demand to off peak times. While the
amount of electricity required is not changed, by spread-
ing it throughout the day the demand can be met though
increased operation of existing power stations.

Smart charging refers to charging EVs in a controlled
way so as to reduce the impact on the system. This is
possible because vehicle charging represents an elastic de-
mand; people don’t mind whether their vehicle is on charge
or not provided it has charged by the time they next need
it. By contrast, normal household demand can be consid-
ered inelastic - appliances such as lights and microwaves
require power at the instant they are turned on. While
some trials are on-going, smart charging is not yet widely
implemented in any country.

Here we focus on the case of the UK; although the
methods could be used to repeat the research for a different
area, the conclusions may not be the same. Only domestic
vehicle use is considered, electrification of other transport
(e.g. taxis and buses) would further increase electricity
requirements. This paper focuses specifically on the na-
tional energy balancing problem, ignoring limits imposed
at the local level by distribution system infrastructure.

Table 2: The types of vehicle chargers currently available to con-
sumers, according to the terminology defined by Zap-Map (2017).

Charger Type Power (kW) Charging Time
Slow 3.5 6-8hrs
Fast 7 3-4hrs

Rapid 50 80% in 30-60mins

Only currently available technology is included, mean-
ing autonomous vehicles are not considered and neither
are vehicle-to-grid schemes - where a vehicle can both give
and receive power to and from the grid.

To consider a practical way of smart charging, this
paper first (in Section 2) considers the charging infras-
tructure already available and outlines schemes previously
proposed. Before assessing the success of smart charging
the impact of a large electric fleet needs to be quantified;
in Section 3 the methodology for doing this is presented,
along with both an optimal and an approximate charging
scheme. The proposed techniques are tested using data
from the UK in Section 4, and the implications of the re-
sults are considered in Section 5.

2. Background

This section first considers the way in which people
currently charge their vehicles, as a practical smart charg-
ing regime should not propose great deviation for standard
practice and comfort of EV owners. Then an overview of
the previously proposed schemes is given, and the reasons
they are not practically implementable are explained.

2.1. Charging Infrastructure

Currently EV owners can choose to charge their ve-
hicles from one of three types of charging points, sum-
marised in Table 2. Given that their cars are parked
there overnight, many customers have domestic chargers
installed at their homes. These are predominantly slow
chargers, but consumers can pay more to have a fast charger
instead.

Once plugged in, EV batteries are charged under the
constant current, constant voltage (CC-CV) scheme; charg-
ers operate under a constant current until the battery is
about 80% charged, when it switches to a constant volt-
age (decreasing current) until the battery is full. In power
terms this means the charger runs at full power until 80%
and then decreases exponentially to zero.

This charging profile is recommended by manufacturers
in order to maximize battery lifespan, as empirical stud-
ies have observed lower levels of degradation compared to
other methods [Zhang. (2006)]. A smart charging strategy
would likely alter this profile, and the effect on the lifetime
of car batteries would need be considered. However, this
is beyond the scope of this paper.
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The majority of drivers still see lack of public charging
facilities as a reason not to purchase an EV [Office for Na-
tional Statistics (2016)]. This has led scientists to focus on
ways to make charging more convenient, rather than min-
imising the charging impact; research into a cost-effective
rapid charging network in the UK is already underway
[Serradilla et al. (2017)], despite this level of charging be-
ing the most potentially damaging to the grid.

2.2. Previously Proposed Strategies

An extensive array of smart charging strategies have al-
ready been proposed, and these can be broken down into
three categories: time-of-use (TOU), centralised and de-
centralised schemes.

In TOU strategies a variable electricity price is intro-
duced in order to incentivise charging at off-peak times.
Charging is still under a CC-CV profile, and consumers
have complete control over when they decide to charge.
Lyon et al. (2012) conclude that TOU is the most cost
effective way to shift charging, due largely to the low re-
quired infrastructure cost.

Cao et al. (2012) show that if every consumer acts to
minimize the cost of charging their vehicle then valley-
filling can be effectively achieved by appropriately setting
the price. However, consumers are unlikely to work out
their individually optimal charging strategy. In Lang-
broeka et al. (2017) a survey is conducted which attempts
to gauge how consumers might change their charging habits
in response to different pricing structure. However Hob-
man et al. (2016) note that historically the responses of
consumers to cost-reflective pricing have not met expecta-
tion, and attribute this to psychological influences. There-
fore, designing a tariff system which successfully shifts EV
charging demand may be more complicated than it ap-
pears.

Another concern with TOU is that setting determinis-
tic pricing bands may encourage all EVs to do the same
thing, removing the natural diversity which the grid relies
on. A possible extension to TOU which resolves this is
to move to real-time pricing, where the price of electric-
ity depends on the number of vehicles currently charging.
However, Lyon et al. (2012) estimates that installing the
infrastructure required to do this would be more expensive
than increasing the available generation capacity to allow
uncontrolled charging.

Unlike TOU, centralised and decentralised schemes di-
rectly control vehicle charging. This means that the suc-
cess of the scheme is not dependant on consumer behaviour,
provided they participate in the scheme.

In the centralised case, there is a single controller with
access to all vehicle’s individual requirements, who dic-
tates how they will charge. An existing example of such
a scheme is storage heaters in homes with Economy 7 (a
differential tariff provided by UK suppliers which offers

cheap off-peak electricity). In this case a radio teleswitch
is used to switch on/off the heater when the cheap period
begins/ends. This means that the consumer has no ability
to turn the heater on, only to set the desired temperature
setting. In this example the control variables are binary -
the heaters are on or off, but for centralised smart charg-
ing the speed as well as the timing of charging can be
determined. The charging profile is no longer CC-CV, but
decided entirely by the controller. Consumers can only
choose when they plug in their vehicle, and a deadline by
which they need it charged. In this case optimality can
be guaranteed, and the problem can often be solved using
existing, well-known formulations (e.g. Sortomme et al.
(2011)).

One drawback is that these schemes do not scale very
well, with a large number of vehicles it becomes difficult
first to gather all of the information then to calculate the
optimal profiles. The complexity can be limited by instead
grouping vehicles (e.g. by location) and locally optimising
their charging. In this case the agent in charge of the
group of vehicles is referred to as an aggregator. Another
problem is that these schemes rely on reliable communica-
tion infrastructure between each vehicle and the controller,
which from a policy perspective makes them more difficult
to implement.

Decentralised schemes are applied by the individual ve-
hicles rather than a controller, which limits the size of the
individual problems being carried out. Again the shape
of charging profiles is variable, and the user can only de-
cide the amount of time their vehicle is plugged in. Data
security issues are avoided, as consumers preference infor-
mation does not need to be transmitted.

In general a price signal is broadcast to vehicles, which
then propose a charging schedule on the basis of which the
price is updated. This process is repeated until the pro-
files converge to an optimum, an example formulation is
found in Gan et al. (2013). The main problem is that this
process requires an even more extensive communication
network, and controllers to be installed into every vehicle
or charging station.

3. Methodology

There are several steps involved in predicting the im-
pact of a large fleet of EVs in the UK. First the level of
vehicle use must be predicted, which requires analysis of
data on how people currently travel. Implicitly this as-
sumes that electrification will not affect the way people
use vehicles. Once the journeys carried out has been pre-
dicted, the energy which the vehicles will use completing
them must be estimated. For this a model is required
which describes the way EVs use electricity. Finally we
need to consider when people are likely to charge in order
to calculate the demand profile. This requires formulat-
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ing a set of assumptions about the way people will charge
their vehicles.

Once all of this has been done, consideration into how
the charging profile can be altered without inconveniencing
consumers can begin.

3.1. Travel Data

The National Travel Survey is a piece of research con-
ducted annually by the Department for Transport which
aims to understand how people in the UK travel [Lepan-
juuri et al. (2016)]. Households are selected at random
and asked to document all of their journeys for the week,
recording (among other things) their day, time, distance,
length, purpose and mode of transport. Regional and de-
mographic data for the participating households is also
collected. Diaries from 91, 755 households owning at least
one vehicle are available, comprising a total of 1, 862, 168
trips. Using the vehicleID variable it is possible to extract
week long journey profiles of the vehicles in the data set.

Here we created a journey set representative of the UK
fleet by filtering the data set for relevant journeys (carried
out by car and on the chosen day of the week). The num-
ber of people represented by the remaining data is then
calculated and their percentage of the UK population is
determined. This number dictates the required scale fac-
tor - or the number of predicted journeys each journey in
the data set represents. It was decided to scale by pop-
ulation rather than number of vehicles because it is the
journeys completed, rather than the number of vehicles
carrying them out, which determines energy consumption.

3.2. Electricity Use Prediction

Some studies have been done, investigating the use and
electricity consumption of EV users (e.g. Davis (2016))
however, the small scale of these studies makes it unwise
to extrapolate the behaviour to a fleet the size of the UK.
Instead, a vehicle model was formulated to convert the
length, number of passengers and rural-urban classifica-
tion of a journey into an energy consumption.

The model uses a standard drive cycle representative of
European driving behaviour (proposed by Andrè (2004))
and calculates the force required to move the vehicle at
every time-step. Coast-down coefficients are used to esti-
mate the resistive force [White and Korst (1972)], which
is the force the vehicle is required to overcome. The total
force required is then the sum of the resistive force and the
force needed to accelerate the vehicle. This is calculated
at each time-step and converted into a power demand, full
details of the model are given in Crozier et al. (2017).

3.3. Charging Demand Prediction

In order to convert the energy demands of vehicles in
the test data into a grid electricity demand assumptions
about charging need to be made. The first decision to be
made was the power at which vehicles would charge. Slow

Figure 2: The percentage of the UK fleet parked at home, work and
the shops throughout the day (on a weekday).

charging would have the smallest impact on the grid, but
would require vehicles to be available for large periods of
time. If most charging is done at public charging points,
faster charging will be required.

To determine the most reasonable assumptions the lo-
cation of the vehicles throughout the day, which can be
inferred from the recorded purpose of journeys, was exam-
ined. Figure 2 shows the percentage of the fleet parked at
each of the most common three locations throughout the
day. The x-axis is offset so that the day begins at 8am, this
is because we assume that all vehicles need to be charged
by the next morning, and so at the start of the day all ve-
hicles are assumed fully charged and must be again before
the end of the day. This day set up is assumed for the rest
of this paper.

The most common location for vehicles is at their home
- with at least half the fleet being there at any one time.
This suggests that the most convenient scenario would be
for every one to charge at home, using domestic slow charg-
ers. This agrees with existing research; Morrissey et al.
(2016) state that EV users prefer to charge at home in the
evening, and Farhar et al. (2016) claim that in order to
be successful, charging systems must be unobtrusive and
require little of consumers. Also, an initial study of EV
users reported that over 71% of vehicles charged exactly
once each day [Quiros-Tortos et al. (2015)].

At home slow charging is therefore assumed for the rest
of this study. This is not without complications; National
Grid (2017a) estimates that 43% of vehicles do not have
access to off street parking, so installing private chargers
may be challenging.

Given this location constraint, the times when a vehicle
will charge can be predicted. To quantify the impact of
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uncontrolled charging it is assumed that if a vehicle has
used less than its battery in the day:

• It will plug in when it arrives home after its final
journey of the day

• It will charge until either full or it is first needed the
next day,

and if not:

• It will charge whenever it is at home

• If this is still not sufficient to be fully charged at the
end of the simulation it will ‘rapid charge’ whenever
parked for more than 30mins.

This latter step is important because if not all of the ve-
hicles in the simulation receive sufficient charge, then the
simulation will underestimate power required.

3.4. Optimal Smart Charging

It is important to quantify the potential of smart charg-
ing, to find out what the best we can do is under the chosen
assumptions. For this reason an optimization problem was
set up which takes into account the availability of the ve-
hicles in the test set.

As previously stated, our goal is to avoid increases in
national peak power demand. When optimising charging
profiles, the amount of energy being demanded from the
grid is constant, so the peak power is minimised when the
overall demand profile is as flat as possible. This leads to
the popular valley-filling schemes (e.g. Chen et al. (2014)),
which aim to charge vehicles in the troughs of the base
demand profile.

An optimization program was formulated, which calcu-
lates the optimal charge profiles for each individual vehicle
in the data set such that the aggregated demand profile
is as flat as possible. It was assumed that each vehicle
would be available to charge any time from the end of its
last journey until the start of its first the next morning.
Charge profiles were discretised into hour windows, mean-
ing that a vehicle could only change its charging power
once an hour. This had to be done in order to keep down
the computational complexity of the problem. The result-
ing problem is formulated as a Quadratic Programming
problem (e.g. Gill and Wong (2015)), and can therefore
be solved using standard solver packages.

3.5. Approximate Smart Charging

There are many reasons why the optimal profiles de-
scribed in the previous section could not be implemented in
practise. Along side the typical problems with centralised
control schemes, the controller requires future knowledge
of all vehicles plans - even before they arrive at the charg-
ing point. Perfect knowledge of the electricity base load
is also required, although this is already forecasted exten-
sively with good accuracy [Taylor et al. (2006)].

Here we propose a simple algorithm which could be
applied individually by vehicles in order to achieve ap-
proximate valley-filling at the national level, and is readily
applicable. As the constraints of the majority of vehicles
will be similar (arriving home in the evening, needed by the
next morning) many of the optimal charging profiles are
likely to be roughly the same. Given this, it follows that
a reasonable approximation can be made to the optimal
solution by defining a standard shape of charging profile
which vehicles can implement. The proposed algorithm is
described below:

1. Predict the National base load

2. Invert prediction by subtracting each time step from
the maximum value

3. Isolate the period during which the vehicle is avail-
able to charge and calculate the energy (area under
curve) of the resulting signal

4. Scale the signal to the required energy

In the first stage the shape of the National demand
profile for the next day without EV charging is estimated.
Variation in the signal is largely dependant on time of year,
and whether or not it is a weekend - neither of which need
predicting. Therefore, a small number of fixed profiles
could be stored from which the controller can select the
most relevant.

Next the inverse of this signal is calculated, this repre-
sents the shape which aggregated vehicle charging should
fill in order to achieve a completely flat demand profile.
The vehicle is unlikely to be able to charge for the entire
range so the signal is cut down to the times the vehicle
is available. Finally the profile is scaled so that the right
amount of energy will be received, meaning the EV will
finish charging just as it is next needed. These stages are
demonstrated in Figure 3.

It is impossible for this algorithm to achieve optimality
as all EVs would need to be plugged in for 24hours a day,
meaning they couldn’t actually consume energy. However,
by taking a simple additional step we can ensure that this
cannot be worse than the uncontrolled case. A limit on
the individual power that a vehicle can charge at is set at
the rate of slow charging (3kW). This means that if a user
plugs in their vehicle saying they need it again in an hour it
will not fully charge, but charge at 3kW for the duration of
time it is plugged in. This is the same as the uncontrolled
charging situation so in the (extremely unlikely) case that
all users plugged in their vehicles will short deadlines the
algorithm would have no effect.

4. Results and Discussion

This section first discusses the results of the simulation
of uncontrolled and optimally controlled charging for a sin-
gle simulation. Then the approximate scheme is tested and
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Figure 3: Demonstration of example curves obtained from each stage
in the process described in Section 3.4

sample individual vehicle profiles are examined to high-
light the differences. Finally the variation of the simula-
tion with time of year is explored.

Initially the simulation was run for a Wednesday in
January. The day was chosen so that the simulation would
represent the average weekday and the month because it is
the one which typically experiences the largest peak power
demand, and is therefore likely to represent the worst-case.
All of the journeys carried out on a Wednesday in January
were extracted from the travel survey, and their energy re-
quirement predicted using the method outlined in Section
3.2. These were then scaled to represent a population the
size of the UK and the uncontrolled and optimal charging
profiles were calculated according to Sections 3.3 and 3.4
respectively.

Figure 4 shows the predicted National demand profile
with uncontrolled and optimal charging of an 100% elec-
tric fleet, compared with the current profile. This suggests
that uncontrolled charging could require an extra 20GW
of power generation capacity to be installed, which repre-
sents an increase of about 1/3. This is largely due to the
coincidence of the evening domestic electricity peak and
the vehicles plugging in, which makes sense as they are
both caused by people arriving home in the evening. The
assumptions that people charge every day and only once
they have finished using their car for the day may exag-
gerate this peak, but there is currently nothing to suggest
these assumptions are unreasonable.

In contrast, the optimal case shows no increase in the
peak demand. While the same amount of additional elec-

Figure 4: Predicted effect of a 100% electric fleet on the UK energy
profile in both the uncontrolled and optimally controlled cases.

tricity will need to be generated, distributing in out in time
means that no additional generators will be required - the
existing ones will just have to operate more throughout
the day.

Next the approximate algorithm proposed in Section
3.4 was compared to the optimal solution, the results are
shown in Figure 5. While there is clearly some difference
between the profiles the approximate does not result in
an increase in the peak load, which is the most impor-
tant point. The differences between the profiles are easy
to understand; in the optimization problem when vehicles
plugged in earlier in the day the controller knew that there
were very few vehicles available at that time so they were
charged quickly, however in the approximate when a vehi-
cle arrives home early it has no way of knowing the number
of other vehicles available to charge.

Further insight can be gained by looking at examples
of the individual profiles which are shown in Figure 6.
In the uncontrolled case vehicles charge at full power un-
til they reach 80% capacity when the power level begins
exponentially decreasing, while in both the optimal and
approximate case charging is slower and predominantly
overnight. Perhaps the most obvious difference between
the optimal and approximate profiles is the resolution (as
the optimal profiles are limited to hourly changes), but
the more important difference is demonstrated in the bot-
tom two examples. Here the vehicle arrives home before
the evening peak in electricity. While the approximation
holds off on charging until the evening trough, the optimal
profile charges quickly for the first hour as it knows it is
one of the only vehicles available to charge at that time.

Thus far all of the simulation results have been for a
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Figure 5: The difference in performance between the optimal and
the approximately optimal charging schemes.

Figure 6: Examples of the individual profiles predicted under all
three charging schemes.

Figure 7: The seasonal variation in the charging demand of a 100%
electric fleet, under uncontrolled optimal and approximate charging
schemes.

January, but it is important to also consider how the re-
sults of these methods change throughout the year. The
base demand profile changes significantly throughout the
year, increasing in the colder months due to heating re-
quirements. This will change the shape of the charging
profiles as the overnight trough in the demand profile con-
tains a smaller amount of energy. The results of the un-
controlled, optimal and approximate charging regimes for
different times of year are displayed in Figure 7.

This shows that when the base demand for electric-
ity is relatively high, and the overnight trough deep, the
approximation performs well. However, in the summer
months the error between the approximate and optimal
solutions increases noticeably. This is because in the win-
ter months optimal charging occurs almost entirely within
the valley, while in summer months the valley doesn’t con-
tain enough energy for this. In the optimal cases vehicles
arriving early are charged quickly whereas in the approx-
imation they are not. It is possible that incorporating a
weighting into the algorithm which priorities charging at
unpopular times could improve performance. However, it
then becomes harder to prove that the algorithm will al-
ways be an improvement and the importance of getting
such a weighting right is high.

The energy required by the fleet in each simulation is
expressed in Table 3, where both the actual energy and
the percentage increase that it represents are shown. This
shows the largest predicted energy requirement in the win-
ter, largely due to heater use. However, as the electricity
demand is already highest at this time of year the biggest
percentage rise occurs in the summer, where almost a quar-
ter more energy will be required. These predictions sit
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Table 3: The percentage increase in electricity demand due to vehicle
charging throughout the year

Month
Fleet Energy

Requirements (GWh)
Difference from

Existing Demand
January 202.32 +20.76%

April 192.53 +24.05%
July 171.00 +24.41%

October 183.12 +21.97%

somewhere between those made by National Grid (2017b)
and Andrews (2016).

The predicted peak demand under all three schemes
for each simulation is displayed in Table 4. This shows
that the approximate algorithm achieves a very low error
in the winter months, but around an almost 20% error in
the summer months.

The case could be made that it is the performance in
the winter months which is more important, as this is when
the UK is operating close to its capacity limit; in all simu-
lations the peak of the approximate algorithm is below the
current National generation limit. Whereas, in the uncon-
trolled case all months show an peak increase of at least
20GW.

5. Conclusion and Policy Implications

As the number of EVs on the road increase, the risk
of allowing the uncontrolled charging of vehicles grows. If
the UK fleet goes all electric then around an extra 20 GW
of power generation capacity would be required. Addition-
ally, the increased load will require network refurbishments
and the volatility of the vehicle charging could create sup-
ply/demand balancing problems.

Here we have shown that by controlling charging the
increase in power demand can be avoided, and have pro-
posed an approximately optimal charging scheme which
achieves between a 80 to 99% reduction in the projected
increase of the peak. In the winter months, when the UK
is closest its capacity limits, the performance is strongest.

There are several policy implications suggested from
the findings in this paper. Firstly, on the implications
of not controlling charging. If the UK fleet becomes en-
tirely electric, driving behaviour doesn’t change and peo-
ple charge as they do now, the simulation suggests an extra
20GW of generation capacity will be required. This would
require substantial investment and would likely result in a
rise in the price of electricity.

Secondly, optimal control of charging profiles can com-
pletely mitigate this impact, by completing the charging
in the existing trough in electricity demand. However this
would be very difficult to achieve in practice, as it would
require precise prediction of all vehicle’s future charging re-
quirements, and the problem is computationally difficult.

Thirdly, there is an approximately optimal method which
appears to mostly mitigate the increase in peak demand in

the higher use months, and is implementable using existing
infrastructure. Customers need only enter the time they
need their vehicle by, and the controller would implement
a scaled version of one of a handful of profiles.

Finally, this method can be achieved without impact-
ing consumers use at all; charging occurs when the vehicle
is parked at home and is finished by the time the vehicle is
next needed. It could be argued that, since the consumer
suffers no inconvenience, participation in such a scheme
could be enforced by policy. In such a scenario, users would
set a charging deadline when plugging in their vehicle and
have no further control over their vehicle charging. A de-
fault deadline (e.g. 6am) could be used in the case one is
not given. Consumers already have little control over their
vehicle’s charging profile, chargers follow a CC-CV profile
which slows charging once 80% SOC is achieved.

Users setting unnecessarily early deadlines would re-
duce the effectiveness of the system, but there would be a
reduction in the peak demand approximately proportional
to the number of smart charging vehicles. For example, if
50% of vehicles adopted this strategy then the increase in
peak demand will be only half what it would have been.
If instead the system is opt-in then vehicles must be re-
warded according to the amount of flexibility they provide,
i.e. there must be an incentive to put as late a deadline as
possible. In this case, the pricing and advertising of the
strategy would be paramount to its success.
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Andrè, M., 2004. The artemis european driving cycles for measuring
car pollutant emissions. Sci Total Environ 334-335, 73–84.

Andrews, R., 2016. How much more electricity do we need to go to
100% electric vehicles?, http://eaunmearns.com.

Asthana, A., Taylor, M., 2017. Britain to ban sale of all diesel and
petrol cars and vans from 2040. The Guardian.

Birnie, D. P., 2009. Solar-to-vehicle (S2V) systems for powering com-
muters of the future. Journal of Power Sources 186 (2), 539–542.

Cao, Y., Tang, S., Li, C., Zhang, P., Tan, Y., Zhang, Z., Li, J., 2012.
An optimized EV charging model considering TOU price and SOC
curve. IEEE Transactions on Smart Grid 3 (1), 388–393.

Chen, N., Tan, C. W., Quek, T. Q. S., 2014. Electric vehicle charg-
ing in smart grid: Optimality and valley-filling algorithms. IEEE
Journal of Selected Topics in Signal Processing 8 (6).

Crozier, C., Apostolopoulou, D., McCulloch, M., 2017. Numerical
analysis of national travel data to assess the impact of uk fleet
electrification. In: Proceedings of PSCC 2018, arXiv:1711.01440.

Davis, R., 2016. My electric avenue summary report.
http://myelectricavenue.info/.

Department for Business, Energy & Industrial Strategy, 2016. Digest
of uk energy statistics (dukes): electricity. Tech. rep., National
Statistics.

Farhar, B., Maksimovic, D., Tomac, W., Coburn, T., 2016. A field
study of human factors and vehicle performance associated with
phev adaptation. Energy Policy 93, 265 – 277.

Gan, L., Topcu, U., Low, S. H., 2013. Optimal decentralized protocol
for electric vehicle charging. IEEE Transactions on Power Systems
28 (2), 940–951.

8



Table 4: The peak load under all three charging schemes throughout the year.

Month
Current Peak

Demand (GW)
Uncontrolled Charging

Peak Increase
Optimal Charging

Peak Increase
Approximate Charging

Peak Increase
Approximation

Error
January 50.516 +53.04% +0.01% +0.67% 1.25%

April 39.170 +65.70% +2.68% +14.57% 18.9%
July 33.518 +75.84% +2.96% +17.15% 19.5%

October 43.544 +61.30% +0.01% +0.49% 0.78%

Gill, P. E., Wong, E., 2015. Methods for convex and general quadratic
programming. Mathematical Programming Computation 7 (1),
71–112.

Hobman, E. V., Frederiks, E. R., Stenner, K., Meikle, S., 2016. Up-
take and usage of cost-reflective electricity pricing: Insights from
psychology and behavioural economics. Renewable and Sustain-
able Energy Reviews.

Langbroeka, J. H., Franklina, J. P., Susiloa, Y. O., 2017. When do
you charge your electric vehicle? A stated adaptation approach.
Energy Policy 108, 565–573.

Lepanjuuri, K., Cornick, P., Byron, C., Templeton, I., Hurn, J., 2016.
National travel survey: 2015 report. Tech. rep., Department for
Transport.

Lyon, T. P., Michelin, M., Jongejan, A., Leahy, T., 2012. Is ”smart
charging” policy for electric vehicles worthwhile? Energy Policy
41, 259–268.

Morrissey, P., Weldon, P., O’Mahony, M., 2016. Future standard
and fast charging infrastructure planning: An analysis of electric
vehicle charging behaviour. Energy Policy 89, 257 – 270.

National Grid, 2017a. Forecourt thoughts: Mass fast charging of
electric vehicles. Our energy insights.

National Grid, 2017b. Future energy scenarios.
Office for National Statistics, 2016. Public attitudes towards electric

vehicles. Tech. rep., Department for Transport.
Quiros-Tortos, J., Ochoa, L., Lees, B., 2015. A statistical analysis of

ev charging behavior in the uk. In: IEEE PES Innovative Smart
Grid Technologies Latin America (ISGT LATAM). pp. 445–449.

Richardson, D. B., 2013. Electric vehicles and the electric grid: A
review of modeling approaches, Impacts, and renewable energy
integration.

Serradilla, J., Wardle, J., Blythe, P., Gibbon, J., 2017. An evidence-
based approach for investment in rapid-charging infrastructure.
Energy Policy 106, 514 – 524.

Short, W., Denholm, P., 2006. A Preliminary Assessment of Plug-
In Hybrid Electric Vehicles on Wind Energy Markets. Tech. rep.,
NREL.
URL http://www.nrel.gov/docs/fy06osti/39729.pdf

Sortomme, E., Hindi, M. M., MacPherson, S. D. J., Venkata, S. S.,
2011. Coordinated charging of plug-in hybrid electric vehicles to
minimize distribution system losses. IEEE Transactions on Smart
Grid 2 (1), 186–193.

Taylor, J. W., de Menezes, L. M., McSharry, P. E., 2006. A compar-
ison of univariate methods for forecasting electricity demand up
to a day ahead. International Journal of Forecasting 22 (1), 1 –
16.

UK Government, 2016. Hinkley point c: contractual documents.
Tech. rep., Department for Business, Energy & Industrial Strat-
egy.

Van Vliet, O., Brouwer, A. S., Kuramochi, T., Van Den Broek, M.,
Faaij, A., 2011. Energy use, cost and CO2 emissions of electric
cars. Journal of Power Sources 196 (4), 2298–2310.

White, R. A., Korst, H. H., 1972. The determination of vehicle drag
contributions from coast-down tests. In: SAE Technical Paper.
SAE International.

Widen, J., 2011. Correlations between large-scale solar and wind
power in a future scenario for sweden. IEEE Transactions of Sus-
tainable Energy 2 (2).

Zap-Map, 2017. Charging point statistics 2017.
Zhang., S. S., 2006. The effect of the charging protocol on the cycle

life of a Li-ion battery. Journal of Power Sources 161 (2), 1385–

1391.

9


