
 1 

Genetic Syndromes of Severe Insulin Resistance 

 

A Melvin, S O’Rahilly and DB Savage. 

 

Metabolic Research Laboratory, Wellcome Trust MRC Institute of Metabolic Science, 

University of Cambridge, Cambridge, UK. 

 

 

Short title: 

Severe insulin resistance syndromes 

 

 

Correspondence to: 

Dr. David B. Savage, University of Cambridge Metabolic Research Laboratories, Wellcome 

Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 

0QQ, UK. 

Tel: +44 1223 367923/ Email: dbs23@medschl.cam.ac.uk 

 

 

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/156827865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

Abstract  

Insulin resistance underpins the link between obesity and most of its associated metabolic 

disorders including type 2 diabetes, fatty liver disease, dyslipidaemia and cardiovascular 

disease. Despite its importance and extensive scientific endeavour, its precise molecular 

pathogenesis remains unclear. Monogenic syndromes of extreme insulin resistance, whilst 

rare in themselves, can provide unique insights into the pathogenesis of human insulin 

resistance. Severe insulin resistance syndromes are broadly classified into three categories: 

lipodystrophies, primary insulin signalling defects or complex syndromes including severe 

insulin resistance. Genetically confirmed classification has facilitated the identification of 

robust diagnostic biochemical features accelerating accurate clinical diagnosis. Interestingly 

the biochemical features of lipodystrophies are far more closely aligned to what is seen in 

prevalent forms of insulin resistance than those of primary insulin signalling defects, 

suggesting that lipodystrophy could be a relevant model for common disease. This assertion 

is supported by genome-wide association data indicating that SNPs associated with fasting 

hyperinsulinemia and metabolic dyslipidaemia, are strongly associated with a subtle 

reduction in hip fat, suggesting that subtle forms of lipodystrophy are likely to be a 

significant contributor to prevalent insulin resistance. 
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Introduction 

Severe insulin resistance syndromes(SIRS) are a complex group of disorders with impaired  

cellular responsiveness to insulin manifesting as reduced biological activity to a given 

concentration of the hormone(1). The normal pancreatic response to insulin resistance(IR) is 

to increase beta cell insulin secretion(2). Insulin is measurable in plasma and a fasting or 

glucose stimulated level is often sufficient to make the diagnosis of IR(3). However, insulin is 

infrequently measured in clinical practice, and often only considered after an individual has 

presented with one of the hallmarks of chronic hyperinsulinemia. The first of these  are 

cutaneous manifestations of IR including acanthosis nigricans, a velvety hyperpigmented 

thickening of the skin and  acrochordan’s (skin tags) which are fibrous dermal benign tumours 

often localised to skin creases(4, 5). The purported pathogenesis relates to the cross reactivity 

of insulin with the IGF-1 receptor(6). Polycystic ovaries, menstrual irregularities and 

hyperandrogenism are prevalent in syndromes of severe IR and often constitute the primary 

clinical manifestation in women. Hyperinsulinemia has been implicated in the pathogenesis 

of PCOS (polycystic ovary syndrome); a notion supported by improvements in PCOS features 

in states of reversible hyperinsulinemia such as type B IR due to insulin receptor 

autoantibodies(7, 8). Another trait commonly observed in states of severe IR is altered 

glucose homeostasis. Impaired glucose tolerance and diabetes mellitus develop when the 

beta cell compensatory response to IR is insufficient to regulate glucose metabolism(9). This 

may reduce the diagnostic utility of insulin measurements.  

 

SIRS  are grouped into three categories 1. Disorders characterised by a primary impairment 

of  adipocyte energy storage with adverse secondary impact on glucose handling by muscle 

and liver (Lipodystrophies) 2. Primary insulin signalling defects; and 3. Complex syndromes 

associated with IR. In this review we will briefly discuss recent progress in genetically 

classifying these syndromes, how they can be distinguished phenotypically and how they 

inform mechanistic understanding of more prevalent IR.  

 

 

Severe Insulin Resistance Syndromes 

 

• The Lipodystrophies 
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White adipose tissue is critical for the efficient storage of excess energy as triglyceride (TG) in 

lipid droplets. Lipodystrophies are a heterogeneous group of rare disorders  characterised by 

a loss of adipose tissue and a depletion of lipid storage capacity(10, 11). The failure of this 

system places a demand on non-adipose sites, typically liver and muscle, to buffer excess 

circulating TG. The principle of adipose tissue expandability refers to the hypothesis that 

humans have a ‘limited capacity’ to increase the size and number of adipocytes(12, 13). In 

states of sustained positive energy balance, adipose tissue stores TG up to this threshold but 

once exceeded ectopic TG deposition occurs, and in turn results in impaired insulin action in 

target tissues like the liver and skeletal muscle(14).  

 

Lipodystrophies are classified according to the extent of adipose loss (generalised or partial) 

and the primary cause of the disorder (genetic or acquired). Congenital generalised 

lipodystrophies(CGL) represent the severe end of the spectrum with a near complete loss of 

subcutaneous adipose tissue  presenting from birth(15).  AGPAT2 and  BSCL2 were the earliest 

loci identified in Berardenelli-Seip syndromes with significant overlap between the  

phenotypes(16).  Owing to the degree of adipose failure seen in CGL secondary complications 

manifest in childhood where in addition to developing the hallmarks of IR those effected have 

dyslipidaemia and non-alcoholic fatty liver disease(NAFLD) with the potential for developing 

steatohepatitis, cirrhosis and hepatic failure. In contrast to CGL, familial partial 

lipodystrophies (FPLD) are heritable disorders with varying degrees of subcutaneous fat  loss, 

usually manifesting around puberty in girls and somewhat later in men. The best 

characterised subtypes include: 1) FPLD1 or Köbberling syndrome presenting with adipose 

tissue loss in the extremities but preserved or excess abdominal adiposity(17); 2) FPLD2, a 

monogenic disorder caused by LMNA mutations which in contrast to Köbberling  syndrome 

classically presents with reduced subcutaneous adipose tissues in the limbs, abdomen and 

torso with adipose tissue accumulation in the face, neck and labia majora in females(18); 3) 

FPLD3 due to mutations in PPARG has a pattern of fat loss similar to FPLD1 although severe 

labile hypertriglyceridemia and hypertension are more frequent in affected individuals(19, 

20). Metabolic complications vary depending on the extent of the lipodystrophic phenotype 

but NAFLD, IR, dyslipidaemia and secondary diabetes are common in all three. Recently a 

number of other genetic loci have been identified for both generalised and partial 
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lipodystrophy (table 1). In two very rare subtypes due to mutations in CIDEC and PLIN1, the 

mutant proteins are almost exclusively expressed in adipocytes where they are directly 

involved in TG storage within lipid droplets, providing proof-in-principle that primary defects 

in adipose lipid storage are sufficient to cause the metabolic syndrome(11). 

 

Acquired lipodystrophies have also been reported; not infrequently associated with other 

autoimmune disorders. Barraquer-Simons is well described as cephalocaudal fat loss, a 

deficiency in complement (C3), part of the innate immune response and 

mesangioproliferative glomerulonephritis(21). A metabolic phenotype is rarely seen in this 

condition, likely due to the sparing of gluteofemoral subcutaneous tissue (GSAT) depots 

which sequester excess TG. This finding is in contrast to the severity of metabolic disease 

observed in lipodystrophies where GSAT is depleted. Acquired generalised 

lipodystrophies(AGL) are very rare and may be idiopathic, associated with radiotherapy 

and/or drug exposure, or very rarely a cluster of conditions including haemolysis, hepatitis 

and low C4 complement levels(22). The precise pathophysiology of AGL has not been 

delineated though it is assumed to be autoimmune and the metabolic sequelae can be very 

severe(22, 23).  

 

 

• Insulin Receptor Signalling Defects 

 

Mutations in the INSR gene or a gene encoding a protein mediating its downstream signalling 

can cause severe IR. The most severe syndromes are associated with biallelic INSR mutations, 

namely Donohoe and Rabson-Mendenhall syndromes(24, 25). Both present after birth with 

failure to thrive, reduced muscle and adipose mass, and developmental delay. The ensuing 

hyperinsulinemia in the face of defective INSR function lead to the clinical manifestations of 

IR. Less deleterious, often heterozygous, mutations affecting the INSR may present with a 

milder, though still severe, phenotype manifesting post-pubertally; this presentation is often 

referred to as Type A IR(26). Type B IR differs physiologically from INSR mutations presenting 

acutely with features of severe IR due to the development of anti-insulin receptor antibodies. 

This condition is most often described in females of African ethnicity (27). Beyond the insulin 

receptor there is a complex cascade of intracellular proteins and kinases that if disrupted may 
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also manifest with an insulin resistant phenotype (table 1); collectively these disorders can 

be classified under the term ‘insulin receptoropathy’. 

 

The study of patients with lipodystrophies and insulin receptoropathies has led to the 

identification of distinct clinically useful differences between the phenotypes enabling 

stratification prior to genetic testing – these include: 

 

1. Dyslipidaemia and NAFLD are common complications of lipodystrophic syndromes 

and will almost certainly be present in patients who are insulin resistant at the time, 

whereas conditions of impaired proximal insulin receptor signalling are free of such 

metabolic derangement. The proposed mechanism relates to  an increase in de novo 

lipogenesis (DNL) and the TG rich very low density lipoprotein cholesterol (VLDLc) 

release from the liver in response to hyperinsulinemia. In lipodytrophic conditions the 

partially functioning insulin signalling pathway fails to fully suppress glucose 

production but does appear to induce DNL(28). DNL is probably only part of the 

pathogenesis of NAFLD in this setting with increased non-esterified fatty acid delivery 

to the liver another likely contributor(29). In contrast, insulin receptoropathies do not 

manifest increased DNL (Figure 1)(28) . 

 

2. Adiponectin is an adipokine produced exclusively by adipocytes. Although its function 

is not entirely clear circulating concentrations correlate with insulin sensitivity in most 

settings. When measured in lipodystrophic patients circulating adiponectin is low, 

whereas individuals with insulin receptoropathies have surprisingly normal or even 

elevated adiponectin concentrations(30). The implication being that adiponectin 

production by adipocytes is suppressed by the hyperinsulinemia of lipodystrophy and 

that a functioning insulin receptor is important to this activity. The observation that 

post insulin receptor signalling defects in AKT2 are associated with lower adiponectin 

levels  similar to those in lipodystrophy suggests that a post-receptor process is 

involved(28). Adipose specific INSR knockout mice also manifest elevated adiponectin 

levels(31).  

 

• Complex syndromes of insulin resistance 
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A number of complex syndromes have been described in which severe IR is a characteristic 

feature. The mechanism of IR in these disorders has often not been well characterised but 

there some intriguing mechanistic ‘threads’ eg. ciliary body function(32) and DNA repair 

mechanisms(33, 34). Although lipodystrophy and IR have been reported in a number of 

syndromes, adipose tissue loss is not a universal feature.  

  

 

Recent highlights 

 

• Common genetic variation is associated with adipose expandability  

 

Genome-wide association studies have identified common variants implicated in many 

diseases. Beyond monogenic disorders of severe IR the most common presentation of IR is in 

individuals with increasing BMI and this is a major factor in the pathogenesis of type 2 

diabetes mellitus(T2DM), yet the vast majority of genetic loci implicated in the pathogenesis 

of T2DM influence insulin secretion(35, 36). 

 

Untangling the genetic loci associated with IR at a population level was greatly enhanced by 

using fasting insulin as the primary phenotype and then adjusting for BMI. Strikingly, several 

genomic regions associated with IR based on fasting insulin and adjusted for BMI correlated 

with lower HDL and increased TG levels(37, 38). Further, Scott et al noted that these alleles 

were associated with a  lower BMI, total body fat, hip circumference and gynoid and leg fat 

based on DEXA fat mass quantification(39). More recently Lotta et al reported that SNPs in 

53 distinct genomic regions were  associated with increased fasting insulin(adjusted for BMI), 

higher TG and lower HDLc levels. A SNP score generated using the lead SNP in each of the 53 

genomic regions was used to evaluate the strength of association between these loci and IR. 

Enrichment for the SNP score was associated significantly with lower insulin sensitivity as 

measured by hyperinsulinemic euglycemic clamps and frequently sampled oral glucose 

tolerance test, considered gold standard measurements of insulin sensitivity. The 53-SNP 

genetic score was also significantly associated with lower levels of leg and gynoid fat, and 

consequently with increased type 2 diabetes mellitus and coronary heart disease risk. 
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Amongst a cohort of individuals who gained weight, those enriched for the SNP score were 

less likely to deposit fat in the gluteofemoral region(40). These observations suggest that 

enrichment for SNPs in IR loci is linked to reduced peripheral or hip adipose expandability, 

not dissimilar to the observations made in partial lipodystrophies. Individuals with FPLD1, a 

more prevalent partial lipodystrophy subtype are significantly enriched for the SNP score, 

suggesting a polygenic inheritance(40). The pattern of association observed in these studies 

strongly suggests that subtle differences in adipose tissue expandability contribute to IR in 

the general population, providing compelling human genetic support for the lipid overflow or 

expandability hypothesis. 

 

• Multiple Symmetric Lipomatosis  

 

Phenotype-genotype correlation in rare disease continues to offer a rewarding approach in 

the study of human biology. Multiple Symmetric Lipomatosis (MSL) is a condition of abnormal 

adipose tissue distribution first described in the 1800’s(41). Although the phenotype is 

heterogeneous it frequently presents with symmetrical fat accumulation in the upper back, 

neck and face. Metabolic complications (including insulin resistance, type 2 diabetes, 

dyslipidemia and NAFLD), peripheral and autonomic neuropathies are variably present (42). 

Early suggestions that defective mitochondrial function may be implicated in the 

pathogenesis of the condition emerged following observations of the association of MSL with 

myoclonus epilepsy and red ragged fibres (MERRF) a condition known to be caused by a 

mitochondrial DNA mutation(43).  Recently, whole exome sequencing identified Mitofusin 2 

(MFN2) as a candidate gene in three individuals with severe upper body symmetric 

lipomatosis, lower limb lipodystrophy and charcot marie tooth (CMT) axonal neuropathy(44). 

Another study describing three more affected patients affirmed these findings and the 

presence of a very specific missense mutation in at least one affected allele, namely the MFN2 

p.R707W mutation(45). All cases described to date have either been homozygous for this 

variant or carried it alongside a second null allele. Mutations in other regions of the gene are 

strongly linked to CMT2a without lipodystrophy(45). Mitofusin 2 is a GTPase localised to the 

mitochondrial membrane and plays a critical role in the process of mitochondrial fusion 

through the formation of homotypic and heterotypic dimers with a similar GTPase Mitofusin 

1(46). Individuals with MFN2 mutations have low leptin levels despite relatively normal 
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adipocyte morphology(44, 47). The expanded adipose depots are due to unilocular adipocyte 

hyperplasia and negative for brown adipose tissue markers such as UCP1. Electron 

microscopy revealed abnormal mitochondria in adipose samples from affected patients and 

mRNA analysis highlighted a mitochondrial stress response in keeping with elevated 

circulating lactate levels(47). Interestingly the lowest levels of leptin expression were 

observed among patients with the most severe adipose phenotype(47). Leptin is widely 

acknowledged as a signal of adipose energy stores which increases and decreases with 

changes in fat mass, though exactly how each adipocyte regulates leptin synthesis and 

secretion remains unclear. Total leptin deficiency is rare but has a striking phenotype of 

extreme hyperphagia and hypothalamic dysfunction and it has been observed in patients (and 

mice) with mutations of the leptin gene and in generalised lipodystrophies where a paucity 

of functional adipose tissue accounts for the lack of leptin. In MFN2 associated MSL,  we have 

a condition associated with mitochondrial dysfunction in hyperplastic adipose tissue 

associated with very low leptin levels suggesting that mitochondrial function is an important 

determinant of leptin gene expression.  

 

• Insights into insulin receptor signalling  

 

A consistent feature of the INSR mutation phenotype is normal or elevated adiponectin and 

an absence of dyslipidaemia and NAFLD. PI3 kinases are intracellular enzymes regulating 

membrane phosphoinositide phosphorylation immediately downstream of the INSR and 

insulin receptor substrate (IRS) proteins, and have long been considered as prime candidates 

for monogenic IR. They are composed of distinct regulatory and catalytic subunits encoded 

for by different genes forming heterodimers and mediating intracellular signalling. There have 

been a number of PI3Kinase subclasses identified sharing homology in the catalytic subunit 

but differing in their regulatory elements. Class 1A regulatory subunits are encoded by 3 

different genes PI3KR1, PI3KR2 and PI3KR3(48). SHORT syndrome is a rare condition 

characterised by the presence of short stature, hyper flexibility, ocular depression, a 

developmental defect of the iris and an abnormality in teething, it is accompanied by partial 

lipodystrophy and IR. It was recently shown to arise from loss-of-function mutations in the 

PIK3R1 gene encoding the p85alpha regulatory subunit(49-51).  The detailed study of 

individuals with SHORT syndrome arising due to heterozygous nonsense or missense 
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mutations in PIK3R1  confirmed severe IR in affected cases without dyslipidaemia or fatty 

liver, and in all but one with significantly elevated adiponectin levels(52). These observations 

suggest that proximal insulin signalling defects are associated with preserved adiponectin 

expression rather than defects exclusive to the insulin receptor.  

 

• Tissue-specific IR  

 

It is noteworthy that not all defects in insulin signalling have an equal impact on liver and 

muscle. Dash et al described a family with a primary defect in a RAB-GAP protein that 

regulates the trafficking of GLUT4 to the cell surface, this resulted in severe post-prandial IR 

in the face of normal fasting glucose and insulin levels (largely determined by hepatic 

responses to insulin; which do not involve GLUT4)(53). Moltke et al have shown that a 

mutation in a muscle-specific isoform of the same gene is highly prevalent in Greenland Inuit 

populations where it results in selective post-prandial hyperinsulinemia and 

hyperglycemia(54). 

 

• Conclusions 

 

We have reviewed rare disorders of adipose tissue and primary insulin signalling defects 

causing severe IR emphasizing instances where the identification and study of affected 

individuals has yielded significant insights into the consequences of adipose dysfunction, as 

well as the relevance of this paradigm to prevalent forms of IR, and/or the complexities of 

insulin signalling. As is the case with MFN2 mutations, monogenic disorders continue to pose 

challenging scientific questions and efforts continue to untangle the molecular biology of such 

conditions. 
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Table 1: Syndromes of Severe Insulin Resistance 

Gene Gene product and function Phenotype Ref 

Generalised Lipodystrophies 

Congenital 

AGPAT2 
1-acylglycerol-3phosphate O-acyltransferase 2; ER protein 

regulating triglyceride biosynthesis Generalised Lipoatrophy from birth, severe IR, dyslipidaemia, 

NAFLD, low leptin and adiponectin. 

(15, 16, 55, 

56) 
BSCL2 Seipin; ER protein involved in lipid droplet biogenesis 

CAV1 Caveolin-1; involved in formation of membrane caveolae  As above plus short stature  (57) 

PTRF 
Polymerase 1 and transcript release factor; localises to caveolae 

regulating formation and stability 

Generalised lipoatrophy and muscular dystrophy with milder 

metabolic phenotype. 
(58) 

Acquired 

Idiopathic/Radiotherapy/Drug-

related/ autoimmune 
NA Generalised lipoatrophy, IR (22) 

Partial Lipodystrophies 

Familial 

FPLD1 NA; likely polygenic in many cases 
Peripheral lipoatrophy, prominent abdominal adiposity, IR. Low 

adiponectin 
(59) 

LMNA  Lamin A/C; Nuclear envelope protein 
Limb, gluteofemoral and truncal subcutaneous fat loss, IR. 

Sparing adipose tissue at the neck and face, low adiponectin. 
(59, 60) 

PPARG 

Peroxisome proliferator activated receptor gamma; Nuclear 

transcription factor regulating adipocyte differentiation and 

function 

Peripheral lipoatrophy prominent, variable abdominal adiposity, 

hypertension, hypertriglyceridemia, low adiponectin 
(19, 20) 

PLIN1 
Perilipin 1; Lipid droplet coat protein involved in the regulation 

of lipolysis 
Limb and gluteofemoral fat loss, IR. (61) 

CIDEC 
Cell death inducing DFFA like effector C; required for unilocular 

lipid droplet formation in adipocytes 
Peripheral lipoatrophy with some multilocular adipocytes  (62) 

AKT2 
Akt serine/threonine kinase 2; key proximal insulin signalling 

intermediate 
IR, Dyslipidaemia and fatty liver, low adiponectin, lipodystrophy (63) 

PCYT1A 
Phosphate cytidylyltransferase 1, choline, alpha; involved in 

phosphatidylcholine synthesis 
Lipoatrophy, IR, low adiponectin, short stature. (64) 

Acquired 

Autoimmune NA 
Cephalocaudal lipoatrophy, minimal metabolic phenotype, Low 

C3, MPGN +/- other autoimmune disease 
(21, 22) 

HIV/ARV associated NA 

Progressive thinning of subcutaneous adipose tissue in the face, 

arms and legs. Increased truncal and abdominal adiposity may 

also be present 

 

Insulin Receptoropathies 

Complete/Proximal 

INSR  Insulin receptor; Tyrosine Kinase receptor for insulin  
Severe IR without dyslipidaemia or NAFLD, normal or high 

adiponectin, SHBG, IGF1 
(65) 

Anti-insulin receptor Antibodies NA IR, normal or high Adiponectin +/-Autoimmune disease. (27, 66) 

Partial/Distal  

AKT2  See above See above  

TBC1D4 
TBC domain family member 4; Rab-GTPase activating protein, 

regulates insulin dependent trafficking of GLUT4 
Post prandial IR (53) 

Complex Syndromes 
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POLD1  DNA Polymerase delta 1 
Mandibulo hypoplasia, deafness, progeria, lipodystrophy (MDLP 

syndrome) 
(33, 67) 

PIK3R1  
Phosphoinositide-3-kinase 85alpha regulatory subunit; key 

insulin signalling intermediate 

Short stature, hyper extensibility, ocular depression, rieger 

anomaly, teething delay (SHORT syndrome) 
(49, 50) 

WRN Werner syndrome RecQ like helicase; DNA helicase  Lipodystrophy, premature aging (Werner syndrome) (34, 68) 

ALMS1 
Alms1, centrosome and basal body associated protein involved 

in microtubule/ciliary function 

Rod-cone dystrophy, hepatic and renal dysfunction, deafness, IR 

(Alstrom’s syndrome) 
(32, 69) 

BLM Bloom syndrome RecQ like helicase; DNA helicase  
Lipodystrophy, Short stature, telangiectasia, IR (Bloom’s 

syndrome) 
(70) 

ZMPSTE24 (AND LMNA) 
Zinc metallopeptidase STE24; regulates posttranslational 

cleavage of prelamin  
Mandibuloacral dysplasia, Lipodystrophy, IR (71) 
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Figure 1: Monogenic disorders of insulin receptor signalling as a model for the uncoupling 

of insulin’s metabolic actions. 

Insulin binds to its transmembrane receptor activating a downstream signalling cascade 

regulating the hormone’s metabolic functions to increase glucose transport into the cell and 

consequently glycogen and lipid synthesis while suppressing hepatic glucose production. 

Defects (red shading) affecting the insulin receptor (INSR; Type A insulin resistance, Donohue 

and Rabson-Mendenhall syndromes), PI3Kinase p85alpha catalytic subunit (SHORT 

syndrome) and AKT2 lead to an uncoupling of insulin’s glucose lowering effects from SREPB1c 

regulated de novo lipogenesis. IRS, insulin receptor substrate; PIP2/3, phosphatidylinositol-

(4,5)-bisphosphate 2/3; mTOR1, mammalian target of rapamycin complex 1; SREBP1c, sterol 

regulatory element binding protein 1; FOXO1, forkhead box protein O1 and GSK3, glycogen 

synthase kinase 3. 
 


