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Abstract Tonic pain after injury characterises a behavioural state that prioritises recovery.

Although generally suppressing cognition and attention, tonic pain needs to allow effective relief

learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports

learning of relief and concurrently suppresses the level of ongoing pain. We used computational

modelling of behavioural, physiological and neuroimaging data in two experiments in which

subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both

studies, we show that active relief-seeking involves a reinforcement learning process manifest by

error signals observed in the dorsal putamen. Critically, this system uses an uncertainty

(‘associability’) signal detected in pregenual anterior cingulate cortex that both controls the relief

learning rate, and endogenously and parametrically modulates the level of tonic pain. The results

define a self-organising learning circuit that reduces ongoing pain when learning about potential

relief.

DOI: https://doi.org/10.7554/eLife.31949.001

Introduction
Tonic pain is a common physiological consequence of injury and results in a behavioural state that

favours quiescence and inactivity, prioritising energy conservation and optimising recuperation and

tissue healing. This effect extends to cognition, and decreased attention is seen in a range of cogni-

tive tasks during tonic pain (Crombez et al., 1997; Lorenz and Bromm, 1997). However, in some

circumstances, this could be counter-productive, for instance if attentional resources were required

for learning some means of relief or escape from the underlying cause of the pain. A natural solution

would be to suppress tonic pain when relief learning is possible. Whether and how this is achieved is

not known, but it is important as it might reveal central mechanisms of endogenous analgesia.

Two observations provide potential clues as to how a relief learning system might modulate pain.

First, in some situations, perceived controllability has been found to reduce pain (Salomons et al.,

2004; Salomons et al., 2007; Wiech et al., 2014; Becker et al., 2015), suggesting that the capacity

to seek relief can engage endogenous modulation. Second, instructed attention has commonly been

observed to reduce pain (Bantick et al., 2002). Therefore, it may be that attentional processes that

are internally triggered when relief is learnable might provide a key signal that controls reduction of

pain.
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In general, learning involves distinct processes of prediction (‘state learning’) and control (‘action

learning’) (Mackintosh, 1983), although relief learning during tonic pain has not been thoroughly

investigated. But a quantitative model of relief learning - one that describes the computational pro-

cesses that are implemented in learning centres in the brain - would allow interrogation of how an

attentional process might operate to modulate tonic pain. In the case of phasic pain, learning can be

described by reinforcement learning (RL) models - a well-studied computational framework for learn-

ing from experience. RL models describe how to predict the occurrence of inherently salient events,

and learn actions to exert control over them (maximising rewards, minimising penalties)

(Seymour et al., 2004). RL models aim to provide a mechanistic (beyond a merely descriptive)

account of the information processing operations that the brain actually implements (Dayan and

Abbott, 2001), and have a solid foundation in classical theories of animal learning (Mackin-

tosh, 1983). In such models, an agent learns state or action value functions through outcomes pro-

vided by interacting with the world. These functions can be learned by computing the error between

predicted and actual outcomes, and using the error to improve future predictions and actions

(Sutton and Barto, 1998). Experimentally, the validity of these models can be tested by comparing

how well different model-generated predictors fit the actual behavioural and/or neural data

(O’Doherty et al., 2007).

During learning, attention is thought to boost learning of predictive associations and suppress

other irrelevant information. Computationally, this can be achieved by estimating the uncertainty as

predictive associations are learned, and using this as a metric to control learning rates. Accordingly,

high uncertainty corresponds to high attention and leads to more rapid learning (Dayan et al.,

eLife digest Chronic pain lasting longer than three months is a common problem that affects

about 1 in 5 people at some point in their lives. The lack of effective treatments has led to

widespread use of a group of drugs called opioids – the best-known example is morphine. Opioids

work by activating the brain’s natural painkilling system and are useful to relieve short-term pain, for

example in trauma or surgery, or in end-of-life care. Unfortunately, long-term use of opioids can

cause many undesirable effects, including drug dependency. Misuse of opioids combined with the

widespread availability of prescription drugs have contributed to the current crisis of opioid

addiction and overdose.

A better understanding of how the brain’s natural painkilling system works could help scientists

develop painkillers that offer relief without the harmful side effects of opioids. While unpleasant,

pain is important for survival. After an injury, for example, pain saps motivation and forces people to

rest and preserve their energy as they are healing. In a way, this sort of pain is healthy because it

promotes recovery. There may be times when the brain might want to turn off pain, such as when an

individual is seeking new ways to relieve or manage pain. For example, by finding a way to cool a

burn.

Now, Zhang et al. show that the brain reduces pain while individuals are trying to find relief. In

the experiments, a metal probe was attached to the arm of healthy volunteers and heated until it

became painful but not hot enough to burn the skin. Then, the volunteers were asked to play a

game in which they had to find out which button on a small keypad cooled down the probe.

Sometimes it was easy to turn off the heat, sometimes it was difficult. During the game, volunteers

reported how much pain they felt and Zhang et al. used brain imaging to see what happened in

their brains.

When the subjects were actively trying to work out which button they should press, pain was

reduced. But when the subjects knew which button to press, it was not. Next, Zhang et al. found

that a part of the brain called the pregenual cingulate cortex was responsible for making decisions

about when to turn off pain and may so trigger the brain’s natural pain killing system. A next step

will be to see how this part of the brain decides to turn off pain and if it also controls opioid-like or

other chemicals. This could improve the use of opioids, or even help to discover alternative

treatments for chronic pain.

DOI: https://doi.org/10.7554/eLife.31949.002
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2000; Yu and Dayan, 2005). One well-recognised way of formalising uncertainty in RL is by comput-

ing a quantity called the associability, which calculates the running average of the magnitude of

recent prediction errors (i.e. frequent large prediction errors implies high uncertainty/associability).

The concept of associability is grounded in classical theories of Pavlovian conditioning (the ‘Pearce-

Hall’ learning rule, Le Pelley, 2004; Pearce and Hall, 1980; Holland and Schiffino, 2016), and pro-

vides a good account of behaviour and neural responses during Pavlovian learning (Li et al., 2011;

Boll et al., 2013; Zhang et al., 2016). In this way, associability reflects a computational construct

that captures aspects of the psychological construct of attention.

If it is the case, therefore, that attention can be understood as an uncertainty signal that drives

learning during relief-seeking, it can then be tested with it modulates tonic pain in parallel. Standard

models of RL do not include any mechanism by which the subjective experience of outcomes is

under control, although in principle endogenous modulation of tonic pain could arise from any com-

ponent of the learning system, including an associability signal. Using an associability signal in this

way would make intuitive sense, because it would reduce ongoing pain when requirement for learn-

ing was high.

The studies presented here set two goals: to delineate the basic neural architecture of relief

learning from tonic pain (i.e. pain escape learning) based on a state and action learning RL frame-

work; and to understand the relationship between relief learning and endogenous pain modulation

that is, to test the hypothesis that an attentional learning signal reduces pain. We studied behaviou-

ral, physiological and neural responses during two relief learning tasks in humans, involving (i) static

and (ii) dynamic cue-relief contingencies. These tasks were designed to place a high precedence on

error-based learning and uncertainty, as a robust test for learning mechanisms and dynamic modula-

tion of tonic pain. Using a computationally motivated analysis approach, we aimed to identify

whether behavioural and brain responses were well described as state and/or action RL learning sys-

tems and examined whether and how they exerted control over the perceived intensity of ongoing

pain.

Results

Experiment 1
Experiment 1 was an escape learning task (n = 19) with fixed, probabilistic cue-relief contingencies

(Figure 1a). Each subject performed three instrumental sessions and three Pavlovian sessions, to

allow us to compare active and passive relief learning (Figure 1b). During each session (lasting

approximatey 5 min), subjects were held in continuous pain by a thermal stimulator attached to their

left arm, and temporary relief (i.e. escape) was given by rapidly cooling the thermode for 4 s, after

which it returned to the baseline tonic pain level (Figure 1c). In instrumental sessions, subjects

actively learned to select actions, a left or right button press, after viewing one of two visual cues

(fractal images on a computer screen). For one of the cues, the probability of relief was 80% for one

action and 20% for the other action, and for the other cue, the action relief probabilities were 60%

and 40%. In the Pavlovian sessions, stimulus and outcome sequences were yoked to instrumental

sessions for individual subjects, and subjects were required simply to press a button to match a ran-

dom direction appearing on screen 0.5 s after visual cue onset (to control for motor responses). Sub-

jective ratings of pain and relief were collected in random trials after outcome delivery, with on

average eight pain and eight relief ratings per paradigm that is total 16 for each subject. All behav-

ioural data including raw SCRs, choices, and ratings can be found in the manuscript data

attachment.

Behavioural results
Choice
In instrumental learning, participants can learn which actions maximise the chance of relief. We

assessed the ability of RL models to explain subjects’ choice data, in comparison to a simple win-

stay-lose-shift (WSLS) decision-making rule. We compared two basic RL models that have been

widely studied in neurobiological investigations of reward and avoidance - a temporal difference

(TD) action learning model with a fixed learning rate, and a version of the TD model with an adaptive

learning rate based on action associabilities (hybrid TD model). As mentioned above, the
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Figure 1. Experimental paradigms. (a) Example trial in Experiment 1, which was an instrumental relief learning task (Ins) with fixed relief probabilities,

yoked with identical Pavlovian task (Pav) within subject. In instrumental trials, subjects saw one of two images (’cues’) and then chose a left or right

button press, with each action associated with a particular probability of relief. In the yoked Pavlovian session, subjects were simply asked to press

button to match the action shown on screen (appearing 0.5 s after CS onset). (b) Instrumental/Pavlovian session yoking and cue-outcome contingency

in Experiment 1, arrows represent identical stimulus-outcome sequence. Note in contingency table, left and right button presses were randomised for

both actions and cues. (c) Relief and no relief outcomes, individually calibrated, constant temperatures at around 44˚C were used to elicit tonic pain; a

brief drop in temperature of 13˚C was used as a relief outcome (4 s in Experiment 1, 3 s in Experiment 2), but temperature did not change for the

duration in no relief outcomes. (d) Example trial in Experiment 2, where subjects performed an instrumental paradigm (only) involving unstable relief

probabilities. The cue-action representation was different to Experiment 1, and three cues were presented alongside each other with subjects required

to choose one of the three using a button press. The position of each cue varied from trial-to-trial, and the same three cues were presented

throughout. Tonic pain rating being taken before the outcome was experienced, not after as in Experiment 1. (e) Example traces of dynamic relief

Figure 1 continued on next page
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associability reflects the uncertainty in the action value, where higher associability indicates high

uncertainty during learning, and is calculated based the recent average of the prediction error mag-

nitude for each action. In a random-effects model comparison procedure (Daunizeau et al., 2014),

we found that choices were best fit by the basic TD model (model frequency = 0.964, exceedance

probability = 1, Figure 2a). Thus, there is no evidence that associability operates directly at the level

of actions.

Skin conductance responses (SCR)
To investigate physiological indices of learning, we examined trial-by-trial skin conductance

responses (SCRs) during the 3 s cue time, before outcome presentation. SCRs obtained in instrumen-

tal sessions were higher compared to yoked Pavlovian sessions (Figure 2b, n = 15, see

Materials and methods for session exclusion criteria, paired t-test T(14)=2.55, p=0.023), with the

average SCR positively correlated between paradigms across individuals (Pearson correlation

�=0.623, p=0.013, n = 15). Raw traces and cue-evoked responses of SCRs can be found in Figure

supplements.

In Pavlovian aversive (fear) learning, SCRs have been shown to reflect the associability of Pavlov-

ian predictions (Li et al., 2011; Boll et al., 2013; Zhang et al., 2016). Here, associability is calcu-

lated as the mean prediction error magnitude for the state (i.e. regardless of actions) (Le Pelley,

2004). In instrumental learning, Pavlovian learning of state-outcome contingencies still proceeds

alongside action-outcome learning, distinct from instrumental choices, so Pavlovian state-outcome

learning can be modelled in both instrumental and Pavlovian sessions. Consistent with previous stud-

ies of phasic pain, model-fitting revealed that a learning model with a state-based associability

(’hybrid’ model) best fit the SCR data in both Pavlovian and instrumental sessions (Figure 2c and

Figure 2d, instrumental sessions: model frequency = 0.436, exceedance probability = 0.648, Pavlov-

ian sessions: model frequency = 0.545, exceedance probability = 0.676), when tested against a com-

peting simple Pavlovian Rescorla-Wagner model (akin to a TD model with only one state and a fixed

learning rate). However, using the more stringent Protected Exceedance Probability analyses, the

advantage of associability over other models were less conclusive (Figure 2—figure supplement 3).

Together with the choice results, these analyses suggest that subjects use an associability-based RL

mechanism for learning state values during both Pavlovian and instrumental pain escape, and a non-

associability-based RL mechanism for learning action values in instrumental sessions. This divergence

in learning strategies indicates that parallel learning systems coexist, which differ in their way of

incorporating information about uncertainty in learning, as well as the nature of their behavioural

responses.

Ratings
Subjective ratings of pain and relief were taken intermittently after outcomes during the task, to

explore how pain modulation might depend on relief learning. Ratings were taken on a sample of tri-

als, so as to minimise disruption of task performance. Based on the fact that both controllability and

attention are implicated in endogenous control, we hypothesised that pain would be reduced when

the state-outcome associability was high, reflecting an attentional signal associated with enhanced

learning. However, other types of modulation are possible. For instance, pain might be non-specifi-

cally reduced in instrumental, versus Pavlovian learning, reflecting a general effect of instrumental

controllability. Alternatively, pain might be reduced by the expectation of relief that arises during

learning, as it is known that conditioning alone can support placebo analgesia responses

(Colloca et al., 2008) (although the extent to which this occurs might depend on the acquisition of

contingency awareness during learning) (Montgomery and Kirsch, 1997; Locher et al., 2017). In

this case, pain would be positively correlated with the relief prediction error, since it reports the dif-

ference between expectation and outcome.

Figure 1 continued

probabilities for the three displayed cues throughout all trials in eight sessions in Experiment 2, which required a constant trade-off of exploration and

exploitation throughout the task. Dynamic relief probabilities also provide varying uncertainty throughout learning.

DOI: https://doi.org/10.7554/eLife.31949.003
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Figure 2. Experiment 1: behavioural results. (a) Choice-fitted model comparison, TD model fit instrumental sessions choices best (TD: action-learning

model with fixed learning rate, Hybrid: action-learning model with associability as changing learning rate, WSLS: win-stay-lose-shift model). Model

frequency represents how likely a model generate the data given a random participant, while exceedance probability estimates how one model is more

likely compared to others (Stephan et al., 2009). (b) Instrumental vs Pavlovian sessions SCRs (n = 15, sessions with over 20% trials <0.02 amplitude

excluded). (c) Associability from hybrid model fitted trial-by-trial SCRs best in instrumental sessions (Assoc: associability, Hyb: hybrid model, RW:

Rescorla-Wagner model). (d) Associability also fitted SCRs from Pavlovian sessions best. (e) Both pain and relief ratings did not differ significantly

between instrumental and Pavlovian sessions (Participants’ ratings were averaged for each of the four categories shown, mean = 8 ratings per person

per category).

DOI: https://doi.org/10.7554/eLife.31949.004

The following source data and figure supplements are available for figure 2:

Source data 1. Experiment 1’s behavioural data including SCRs, choices, ratings can be found in zip file attached.

DOI: https://doi.org/10.7554/eLife.31949.008

Figure 2 continued on next page
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To test these competing hypotheses, we first compared the mean ratings of both pain (following

a ‘no relief’ outcome) and relief (following a relief outcome) between Pavlovian and instrumental ses-

sions, and found no significant difference (Mean�SEM, n = 19, mean = 8 ratings per person per cat-

egory, instrumental pain: 6.97�0.13, Pavlovian pain: 6.91�0.20, instrumental relief: 6.46�0.24,

Pavlovian relief: 6.33�0.27, between paradigm paired t-test both ratings p>0.5, Figure 2e). Hence,

there is no support for a general effect of instrumental controllability on subjective pain and/or relief

experience. We noted that mean pain and relief ratings were correlated with each other across indi-

viduals (ratings averaged across paradigms, Spearman’s correlation �=0.73, p<0.001), indicating

that higher perceived tonic heat pain was associated with higher cooling-related relief.

Next, we correlated pain ratings with the state-based associability and TD prediction error. In

accordance with our hypothesis, in instrumental sessions associability was found to be negatively

correlated with pain ratings (mean Spearman’s ��=�0.177, one-sample t-test of Fisher’s z-trans-

formed correlation coefficients T(18)=-2.125, p=0.048). In Pavlovian sessions, however, we did not

find a correlation (��=�0.114, T(18)=0.758, p=0.458). There was no significant interaction between

associability and paradigm (repeated measure ANOVA F(1,18)=1.247, p=0.279). This suggests that

although associability is associated with pain modulation, this effect is not necessarily specific to

instrumental sessions.

We found that the prediction errors were negatively correlated with pain ratings in Pavlovian ses-

sions (��=�0.356, T(18)=-3.198, p=0.005), but not instrumental sessions (��=�0.154, T(18)=0.720,

p=0.481). That is, when relief was omitted (i.e. as was always the case on the pain rating trial), a

larger frustrated (i.e. negative) relief prediction error was associated with an increase in pain - in con-

trast to the prediction of a placebo expectation hypothesis. Finally, we also looked at relief ratings,

but failed to find any significant correlation with either associability or prediction error in either

instrumental or Pavlovian sessions.

Neuroimaging results
The behavioural findings support the hypothesis that an associability signal that arises during state-

based learning is associated with reduction of pain. Next, therefore, we then sought to identify (i)

neural evidence for an error-based relief learning process and (ii) the neural correlates of the associ-

ability signal associated with tonic pain modulation. We implemented the TD action-learning model

and associability-based hybrid TD state-learning model as determined from the behavioural data,

using group-mean parameters (learning rate in TD model, and free parameter k and h in hybrid TD

model) to re-estimate trial-by-trial prediction errors/associability values for each subject as paramet-

ric modulators of fMRI BOLD time-series in general linear models.

Prediction errors
The prediction error represents the core ‘teaching’ signal of the reinforcement learning model, and

we specified a priori regions of interest based on the areas known to correlate with the prediction

error in previous reinforcement learning studies of pain and reward (ventral and dorsal striatum, ven-

tromedial prefrontal cortex (VMPFC), dorsolateral prefrontal cortex (DLPFC), and amygdala

(Seymour et al., 2005; Garrison et al., 2013; FitzGerald et al., 2012)).

First, we looked for brain responses correlated with the action prediction error from the TD

model in instrumental sessions. This identified responses in bilateral putamen, bilateral amygdala,

left DLPFC, and VMPFC (Figure 3a, Table 1).

Figure 2 continued

Figure supplement 1. Experiment 1: raw skin conductance traces, where vertical lines are beginning of each trial when cue display starts (n = 15,

excluded participants not shown, showing first non-excluded session from all participant).

DOI: https://doi.org/10.7554/eLife.31949.005

Figure supplement 2. Experiment 1: filtered skin conductance traces (band-pass at 0.0159–2 Hz, 1 st order Butterworth), averaged across all trials

within participant (n = 15, excluded participants not shown, shaded region represent SEM across all participants).

DOI: https://doi.org/10.7554/eLife.31949.006

Figure supplement 3. Experiment 1: Model protected exceedance probability.

DOI: https://doi.org/10.7554/eLife.31949.007
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Figure 3. Experiment 1: neuroimaging results, shown at p<0.001 uncorrected: (a) TD model prediction errors (PE) as parametric modulators at outcome

onset time (duration = 3 s). (b) Model PE posterior probability maps (PPMs) from group-level Bayesian model selection (BMS) within PE cluster mask,

warm colour: TD model PE, cool colour: hybrid model PE (shown at exceedance probability P>0.7). (c) Axiomatic analysis of hybrid model PEs in

instrumental sessions, ROIs were 8 mm spheres from BMS peaks favouring TD model PEs, in left putamen and VMPFC. (d) Associability uncertainty

generated by hybrid model, as parametric modulators at choice time (duration = 0), in instrumental sessions. (e) Comparing pgACC activations across

instrumental/Pavlovian paradigms, ROI was 8 mm sphere at [�3, 40, 5], peak from overlaying the pgACC clusters from Experiments 1 and 2.

DOI: https://doi.org/10.7554/eLife.31949.009
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Since action-outcome learning and state-outcome learning co-occur during instrumental sessions,

we next modelled the state prediction error from the hybrid model in a separate regression model.

In instrumental sessions, this revealed responses in similar regions to the TD action prediction error:

in the striatum, right amygdala and left DLPFC (figure not shown, Table 1), consistent with the fact

that state and action prediction errors are highly correlated.

To test which regions were better explained by each, we conducted a Bayesian model selection

(BMS) within the prediction error ROIs (a conjunction mask of correlated clusters to both prediction

error signals). This showed that the action-learning TD model had higher posterior and exceedance

probabilities in the dorsal putamen, and VMPFC (Figure 3b warm colour clusters). The state-learning

(hybrid) model better explained activities in the amygdala, ventral striatum, and DLPFC (Figure 3b

cool colour clusters). Applying the same hybrid model prediction error signal in Pavlovian sessions

only identified much weaker responses that did not survive multiple correction, in regions including

the left amygdala (figure not shown) (Table 1).

To further illustrate the nature of the outcome response, we calculated a median split of the pre-

ceding cue values (based on the TD model), and looked at the outcome response for relief and no-

relief outcomes. A prediction error response should be (i) higher for relief trials and (ii) higher when

the preceding cue value was low (i.e. when relief was delivered when it was not expected)

(Roy et al., 2014). As illustrated in Figure 3c, this ‘axiomatic’ analysis reveals some features of the

prediction error, but lacks the resolution to illustrate it definitively.

Table 1. Multiple correction for Experiment 1 (cluster-forming threshold of p<0.001 uncorrected, regions from Harvard-Oxford atlas.

*FWE cluster-level corrected (showing p<0.05 only).

p* k T Z MNI coordinates (mm) Region mask

x y z

TD model PE, instrumental sessions

0.007 4 4.27 3.5 �21 -5 �14 Amygdala L

0.011 3 4.98 3.9 28 -1 �14 Amygdala R

0 28 5.31 4.07 �21 3 -7 Putamen L

4.7 3.75 �28 -5 1

0.003 14 5.73 4.27 20 7 -7 Putamen R

0.034 2 3.75 3.18 28 -1 8

0.007 4 4.63 3.71 �17 3 -3 Pallidum L

0.003 9 5.2 4.01 17 7 -3 Pallidum R

Hybrid model PE, instrumental sessions

0.005 5 4.3 3.52 �21 -5 �14 Amygdala L

0.014 2 4.53 3.65 28 -1 �14 Amygdala R

0.004 12 5.02 3.92 �21 3 -7 Putamen L

0.012 6 4.55 3.66 �28 3 8

0.046 1 3.82 3.23 �28 11 -3

0.001 23 5.03 3.92 20 7 -7 Putamen R

4.92 3.87 20 7 1

4.39 3.57 24 -1 5

0.006 5 4.04 3.36 �17 3 -3 Pallidum L

0.005 6 4.82 3.81 17 7 1 Pallidum R

Hybrid model PE, Pavlovian sessions

None

Hybrid model associability, instrumental sessions

0.027 5 4.34 3.55 -2 37 5 Cingulate Anterior

DOI: https://doi.org/10.7554/eLife.31949.010
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Associability
Since the behavioural data showed that the state-based associability correlated negatively with tonic

pain ratings, we examined BOLD responses correlated with trial-by-trial associability from the hybrid

model, by using the associability as a parametric regressor at the choice time (see

Materials and methods for details of GLMs). We specified a priori ROIs according to regions previ-

ously implicated in attention and controllability-related endogenous analgesia, notably pregenual

anterior cingulate cortex (pgACC), posterior insula and ventrolateral prefrontal cortex (VLPFC)

(Salomons et al., 2007; Wiech et al., 2006); and associability (amygdala) (Li et al., 2011;

Zhang et al., 2016; Boll et al., 2013).

We found correlated responses only in pgACC, in instrumental sessions (Figure 3d, Table 1, MNI

coordinates of peak: [�2, 37, 5]). No significant responses were observed in Pavlovian sessions.

Figure 3e illustrates individual subjects’ beta values extracted from an 8 mm diameter spherical ROI

mask built around peak coordinates [�3, 40, 5]. Instrumental sessions had higher response magni-

tude in pgACC compared to Pavlovian sessions across subjects (Instrumental sessions: one-sample

t-test against 0 T(18)=3.746, p=0.0015, Pavlovian sessions: one-sample t-test against 0 T(18)=-1.230,

p=0.235, paired t-test for instrumental versus Pavlovian T(18)=3.317, p=0.0038).

Summary of experiment 1
In summary, the data indicate that (i) relief action learning is well described by a RL (TD) learning

process, with action prediction error signals observed in the dorsal putamen, (ii) that state-outcome

learning proceeds in parallel to action-outcome learning, and can be described by an associability-

dependent hybrid TD learning mechanism, and (iii) that this state associability modulates the level of

ongoing tonic pain during instrumental learning, with associated responses in pgACC.

This provides good evidence of a relief learning system that modulates pain according to learned

uncertainty, and raises two important questions. First, can the associability signal be distinguished

from other uncertainty signals that may arise in learning? Importantly, the use of fixed probabilities

in the task means that associability tends to decline during sessions, raising the possibility that more

complex models of uncertainty and attention might better explain the data, for instance those that

involve changing beliefs that arise in changing (non-stationary) environments. Second, does the

modulation of pain ratings occur throughout the trial? In the task, pain ratings are taken at the out-

come of the action, and only when relief is frustrated, raising the possibility that it reflects an out-

come-driven response, as opposed to learning-driven process modifying the ongoing pain. With

these issues in mind, we designed a novel task to test if the model could be generalised to a differ-

ent paradigm with greater demands on flexible learning.

Experiment 2
In Experiment 2, 23 new subjects participated in a modified version of the instrumental escape learn-

ing task in Experiment 1, with a number of important differences. First, subjects performed only

instrumental sessions (8 sessions with 24 trials in each) given the absence of a global effect of instru-

mental versus Pavlovian pain in the first experiment. Second, subjects were required to choose one

out of three simultaneously presented visual cues to obtain relief, in which the position of each cue

varied randomly from trial to trial. This was done to experimentally and theoretically better distin-

guish state-based and action-specific associability (Figure 1d). Third, the action-outcome contingen-

cies were non-stationary, such that the relief probability from selecting each cue varied slowly

throughout the experiment duration, controlled by a random walk algorithm which varied between

20 and 80% (Figure 1e). This ensured that associability varied constantly through the task, encourag-

ing continued relief exploration, and allowed us to better resolve more complex models of uncer-

tainty (see below). It also reduced the potential confounding correlation of associability and general

habituation of SCRs. Fourth, we increased the frequency of tonic pain ratings (10 per session, 80 per

subject in total) to enhance power for identifying modulatory effects on pain. Fifth, the rating was

taken after the action but before outcome, to provide an improved assessment of ongoing tonic

pain modulation without interference by the outcome. Finally, we also collected SCRs bilaterally, to

enhance the data quality given the importance of the SCR in inferences about associability.
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Behavioural results
Choice
In addition to the simple TD and hybrid action-learning TD models compared in Experiment 1, the

modification in paradigm allowed us to test more sophisticated model-based learning models,

including a hidden Markov model (HMM) (Prévost et al., 2013), and a hierarchical Bayesian model

(Mathys et al., 2011). Both models incorporate a belief of environmental stability into learning,

that is whether a cue previously predicting relief reliably has stopped being reliable during the

course of the experiment. This is achieved by tracking the probability of state transition in the HMM,

or environmental volatility in the hierarchical Bayesian model. Despite the greater demands of the

non-stationary task compared to Experiment 1, the basic TD action learning model still best pre-

dicted choices following model comparison (model frequency = 0.624, exceedance probabil-

ity = 0.989), followed by the HMM (model frequency = 0.192, exceedance probability = 0.006) and

the hybrid action-learning model (model frequency = 0.174, exceedance probability = 0.004)

(Figure 4a, see Methods for full details).

SCR
SCRs were recorded from the side with thermal stimulation (left hand) and the side without stimula-

tion (right hand). The left side had lower mean SCRs (Figure 4b,L/R paired t-test T(19)=-2.67,

p=0.015, n = 20, exclusion criteria followed from Experiment 1), however, trial-by-trial SCRs were

highly correlated between both sides within individual subjects (mean Pearson correlation ��=0.733,

18 out of 20 participants with p<0.001). This suggests that although the overall SCR amplitude might

be suppressed by the tonic heat stimulus, this did not affect event-related responses.

Using the same model-fitting procedure as in Experiment 1 (with the addition that the model

now predicted SCR on both hands for each trial), we found that the associability from the state-out-

come hybrid model again provided the best fit of trial-by-trial SCRs (Figure 4c, model fre-

quency = 0.667, exceedance probability = 0.954). Indeed, the associability-SCR fit has a much

higher model exceedance probability compared with that in Experiment 1, presumably from includ-

ing the less attenuated SCRs from the non-stimulated right side.

Ratings
Experiment 1 suggested that the associability was correlated with modulation of tonic pain ratings.

However, given the dynamic nature of Experiment 2, we investigated whether uncertainty measures

related to other aspects of learning might offer a better account. To do this, we fitted multiple

regression models to trial-by-trial ratings for each participant as follows:

Rating¼ b1 �Reliefþb2 � logðTrialÞþb3 �Predictor (1)

where the ‘Relief’ term is the number of trials since the previous relief outcome, logðTrialÞ is the log

of trial number within session (1-24), ‘Predictor’ is the model generated uncertainty value. The

‘Relief’ and logðTrialÞ terms were included to account for potential temporal and sessional effects of

the tonic pain stimulus.

We built a regression model with different uncertainty signals as predictors for comparison: the

state-based associability from hybrid model (as in Experiment 1), the entropy of state-action poste-

rior probabilities (approximate of uncertainty over values) in an HMM, the absolute value of predic-

tion error from previous trial in TD model (as a model of surprise), and a null model that did not

include ‘Predictor’ term (Figure 4d). In this analysis, the state-learning hybrid associability again best

fit the pain ratings (model frequency = 0.698, exceedance probability = 0.980; n = 22, 1550 ratings,

one participant was excluded for having >90% identical ratings). Regression coefficients with hybrid

model associability as uncertainty predictor were significant across subjects (Figure 4e, one-sample

t-test for three sets of coefficients: ‘Relief’ term: T(21)=-4.004, p<0.001 (i.e. habituation, reduced

pain over time after relief), log(trial) term: T(21)=1.017, p=0.321, associability term: T(21)=-2.643,

p=0.015).
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Figure 4. Experiment 2: behavioural results. (a) Model comparison showed that TD model fitted choices best (Bayesian: hierarchical Bayesian model,

HMM: hidden Markov model, Hybrid: action-learning model with associability as changing learning rate). (b) SCRs measured on the side with thermal

stimulation (‘Stim side’, left hand) were lower than those on without stimulation (‘Non-stim side’, right hand), but both were highly correlated. (c)

Associability from state-learning hybrid model fit SCRs best, similarly to Experiment 1. (d) Trial-by-trial associability from hybrid model fitted pain ratings

best compared with other uncertain measures (entropy: HMM entropy, surprise: TD model prediction error magnitude from previous trial, null model:

regression with no predictors). (e) Regression coefficients with associability as uncertainty predictor were significantly negative across subjects.

DOI: https://doi.org/10.7554/eLife.31949.012

The following source data and figure supplements are available for figure 4:

Source data 1. Experiment 2: behavioural data including SCRs, choices, ratings can be found in zip file attached.

DOI: https://doi.org/10.7554/eLife.31949.016

Figure supplement 1. Experiment 2: raw skin conductance traces, where vertical lines are beginning of each trial when cue display starts (n = 20,

excluded participants not shown, showing first non-excluded session from all participants).

DOI: https://doi.org/10.7554/eLife.31949.013

Figure 4 continued on next page

Zhang et al. eLife 2018;7:e31949. DOI: https://doi.org/10.7554/eLife.31949 12 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.31949.012
https://doi.org/10.7554/eLife.31949.016
https://doi.org/10.7554/eLife.31949.013
https://doi.org/10.7554/eLife.31949


Neuroimaging results
Prediction errors
We found that the TD model action prediction errors was robustly correlated with BOLD responses

in similar regions identified in Experiment 1, including left dorsal putamen, bilateral amygdala, and

left DLPFC (Figure 5a, Table 2). Of these, BMS showed the TD model had higher posterior and

exceedance probabilities in the dorsal putamen, as well as amygdala and DLPFC (Figure 5b warm

colour clusters). The state-learning hybrid model explained prediction error responses in several

areas, but outside our original a priori regions of interest (see Figure 5b cool colour clusters).

As previously, we further illustrated the pattern of outcome responses as a function of preceding

cue value and relief/no-relief in an ‘axiomatic’ analysis. We split the trial values into three bins, allow-

ing a better inspection of responses permitted by our larger number of trials. This revealed a clear

prediction error-like pattern in the dorsal putamen, but somewhat less clear cut in the amygdala and

DLPFC (Figure 5c). Therefore, across all analysis methods and the two experiments, the left dorsal

putamen robustly exhibited a response profile consistent with an escape-based relief prediction

error.

Associability
Following the same analysis as in Experiment 1, we found again that pgACC BOLD responses corre-

lated with trial-by-trial associability from the state-learning hybrid model (Figure 5d–e, Table 2). The

peak from this analysis was almost identical to that in Experiment 1 (Overlayed clusters can be found

in Figure supplements). In addition, we used trial-by-trial pain ratings as a parametric modulator, but

did not find significant pgACC responses, which suggested that it was unlikely to be solely driven by

pain perception itself. Taken together, this indicates that the pgACC associability response is robust

across experimental designs.

Summary of experiment 2
In summary, Experiment 2 reproduced the main results of Experiment 1 within a non-stationary relief

environment. Firstly, dorsal putamen correlated with an action-relief prediction error from the RL

model. And secondly, pgACC correlated with a state-based associability signal, that in turn was

associated with reduced tonic pain. In particular, this modulation of pain was present after the cue

was presented (and not just at the outcome as in Experiment 1) and was better explained by the

associability signal when compared against alternative uncertainty measures.

Discussion
Across both experiments, the results provide convergent support for two key findings. First, we

show that relief seeking from the state of tonic pain is supported by a reinforcement learning pro-

cess, in which optimal escape actions are acquired using prediction error signals, which are observed

as BOLD signals in the dorsal putamen. Second, we show that during learning, the level of ongoing

pain is reduced by the learned associability associated with state-based relief predictions. This signal

thus reduces pain when there is a greater capacity to learn new information and is associated with

BOLD responses in the pregenual anterior cingulate cortex. Together, these results identify a learn-

ing circuit that governs tonic pain escape learning whilst also suppressing pain according to the pre-

cise information available during learning. In doing so, it solves the problem of balancing tonic pain

with the requirement to actively learn about behaviour that could lead to relief.

The findings highlight the dual function of a state-based relief associability signal during tonic

pain escape. Associability has its theoretical underpinnings in classical theories of associative learn-

ing and attention (i.e. the Pearce-Hall theory, Pearce and Hall, 1980), and its mathematical

Figure 4 continued

Figure supplement 2. Experiment 2: filtered skin conductance traces (band-pass at 0.0159–2 Hz, 1 st order Butterworth), averaged across all trials

within participant (n = 20, excluded participants not shown, shaded region represent SEM across all participants).

DOI: https://doi.org/10.7554/eLife.31949.014

Figure supplement 3. Experiment 2: model protected exceedance probability.

DOI: https://doi.org/10.7554/eLife.31949.015
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Figure 5. Experiment 2: neuroimaging results, shown at p<0.001 uncorrected: (a) TD model prediction errors (PE), at outcome onset time (duration = 3

s). (b) Model PE posterior probability maps (PPMs) from group-level Bayesian model selection, warm colour: TD model PE, cool colour: hybrid model

PE (both shown at exceedance probability p>0.80). (c) Axiom analysis, separating trials according to outcomes and predicted relief values (bins 1–3

from low to high), BOLD activity pattern from striatum (putamen) satisfied those of relief PE. (d) Associability uncertainty generated by hybrid model

correlating with pgACC activities, at choice time (duration = 0). (e) pgACC activation beta values across all subjects, ROI was 8 mm sphere at [�3, 40,

5], peak from overlaying the pgACC clusters from Experiments 1 and 2.

DOI: https://doi.org/10.7554/eLife.31949.018

Figure 5 continued on next page
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implementation here is as an approximate uncertainty quantity derived from computing the running

average of the magnitude of the prediction error (Sutton, 1992; Le Pelley, 2004). This uncertainty

signal effectively captures how predictable the environment is: when uncertainty is high (because of

lots of recent large prediction errors), it increases the speed of acquisition through increasing the

learning rate, and so accelerates convergence to stable predicted values. It is therefore an effective

attention-like signal for mediating endogenous analgesia, because it selectively facilitates active

relief seeking by suppressing pain only when it is necessary. This conception of the role of uncer-

tainty in pain may explain why uncertainty has been shown to enhance phasic pain (Yoshida et al.,

2013) - where pain acts as the signal to drive learning, and suppresses tonic pain, where pain acts to

reduce general cognition. In both instances, the role of uncertainty and attention is to facilitate

learning.

A caveat to this is that associability cannot distinguish unreliable cues - inherently poor predictors

of outcomes, and so does not discriminate between reducible and irreducible uncertainty, bearing in

mind there is little adaptive logic in suppressing pain for unreliable predictors. Over extended time-

frames, it is possible that the learning system recognises this and reduces endogenous control. How-

ever, in rodent studies of associative learning, associability is maintained even after several days of

training (Holland et al., 2002), and it is possible that salient cues in aversive situations maintain the

ability to command attention and learning longer than that would be predicted by ‘optimal’ Bayes-

ian models.

Figure 5 continued

The following figure supplements are available for figure 5:

Figure supplement 1. Overlaying associability associated pgACC responses from both experiments (displayed at p<0.001 unc., crosshair at [�3, 40, 5]).

DOI: https://doi.org/10.7554/eLife.31949.019

Figure supplement 2. Overlaying prediction error associated responses from both experiments (displayed at p<0.001 unc., showing overlapping dorsal

putamen and amygdala clusters).

DOI: https://doi.org/10.7554/eLife.31949.020

Table 2. Multiple correction for Experiment 2 (cluster-forming threshold of p<0.001 uncorrected, regions from Harvard-Oxford atlas.

*FWE cluster-level corrected (showing p<0.05 only).

p* k T Z MNI coordinates (mm) Region mask

x y z

TD model PE

0.002 15 4.31 3.63 �25 -5 �22 Amygdala L

0.003 11 4.36 3.66 24 -8 �14 Amygdala R

0.018 1 3.97 3.41 28 -1 �26

0.002 22 5.9 4.52 �32 -8 5 Putamen L

0.021 4 4.55 3.78 32 �16 1 Putamen R

Hybrid model PE

0.001 16 4.36 3.66 �21 �12 �14 Amygdala L

4.23 3.58 �21 -1 �18

0.002 13 4.95 4.01 24 -8 �18 Amygdala R

4.34 3.65 28 -1 �26

0.003 17 5.49 4.31 �32 -8 5 Putamen L

Hybrid model associability

0.001 29 4.5 3.75 -6 40 12 Cingulate Anterior

4.44 3.71 -2 33 23

4.08 3.49 -2 44 5

3.93 3.38 2 40 1

DOI: https://doi.org/10.7554/eLife.31949.021
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The localisation of the associability signal to the pgACC is consistent with a priori predictions.

The region is known to be involved in threat unpredictability (Rubio et al., 2015; Nitschke et al.,

2006), computations of uncertainty during difficult approach-avoidance decision-making

(Amemori and Graybiel, 2012), and in the perseverance of behaviour during foraging

(McGuire and Kable, 2015; Kolling et al., 2012). It is distinct from a more anterior region in the

ventromedial prefrontal cortex associated with action value (FitzGerald et al., 2012). More impor-

tantly, it has been specifically implicated in various forms of endogenous analgesia, including coping

with uncontrollable pain (Salomons et al., 2007), distraction (Valet et al., 2004), and placebo anal-

gesia (Bingel et al., 2006; Eippert et al., 2009). However, an open question remains about the role

of conscious awareness in driving pgACC-related endogenous control - a factor that is often impor-

tant in these other paradigms. Whether or not the role of associability is modulated by the metacog-

nitive awareness of uncertainty or controllability would be an important question for future studies.

The pgACC has been suggested to be central to a ‘medial pain system’ and the descending con-

trol of pain, with its known anatomical and functional connectivity to key regions including the amyg-

dala (Derbyshire et al., 1997; Vogt et al., 2005; Salomons et al., 2015) and PAG (Stein et al.,

2012; Buchanan et al., 1994; Vogt, 2005; Domesick, 1969). Evidence of high level of �-opioid

receptors within pgACC (Vogt et al., 2005), where increased occupation has been found in both

acute and chronic pain (Zubieta et al., 2005; Jones et al., 2004), further illustrates pgACC’s poten-

tial role for cortical control of pain.

The results provide a formal computational framework that brings together theories of pain atten-

tion, controllability and endogenous analgesia. Previous demonstrations of reduced pain (albeit typi-

cally for phasic, not tonic pain) have been inconsistent (Becker et al., 2015; Salomons et al., 2004;

Salomons et al., 2007; Wiech et al., 2014; Wiech et al., 2006; Mohr et al., 2012). Our results offer

insight into why - by suggesting that endogenous analgesia is not a non-specific manifestation of

control, but rather a specific process linked to the learnable information.

From the perspective of animal learning theory, the experiments here show how motivation dur-

ing the persistent pain state can be understood as an escape learning problem, in which the state of

relief is determined by the offset of a tonic aversive state (Mackintosh, 1983; Solomon and Corbit,

1974). This is theoretically distinct from the better-studied form of relief that results from omission

of otherwise expected pain or punishment (Konorski, 1967), and which motivates avoidance behav-

iour (Mowrer, 1960). In our task, acquisition of dissociable behavioural responses (SCRs and

choices) reveals the underlying theoretical architecture of the escape learning process, which

involves both parallel state-outcome and action-outcome learning components. The action-outcome

learning error signal localises to a region of the dorsolateral striatum (dorsal putamen). Striatal error

signals are seen across a broad range of action learning tasks, although the region here appears

more dorsolateral than previously noted in avoidance learning (Kim et al., 2006; Seymour et al.,

2012; Delgado et al., 2009). It is not possible to definitively identify whether avoidance and escape

use distinct errors, but it is well recognised that there are multiple error signals in dorsal and ventral

striatum, for instance reflecting ‘model-based’ (cognitive), ‘model-free’ (including stimulus-response

habits) and Pavlovian control (Tricomi et al., 2009; Schonberg et al., 2010; Yin et al., 2004). The

reinforcement learning model we describe is a ‘model-free’ mechanism, since it learns action values

but does not build an internal model of state-outcome identities and transition probabilities

(Daw et al., 2005). However, it is likely that a model-based system co-exists and might be identifi-

able with appropriate task designs (Daw et al., 2011).

Developing a computational account of relief learning and endogenous control may also help us

understand how the brain contributes to the pathogenesis and maintenance of chronic pain

(Navratilova and Porreca, 2014). Adaptive learning processes are thought to be important in

chronic pain: learning and controllability have been proposed to play a role in the pathogenesis and

maintenance of chronic pain (Vlaeyen, 2015; Flor et al., 2002; Apkarian et al., 2004;

Salomons et al., 2015), and brain regions such as the medial prefrontal cortex and striatum have

been consistently implicated in clinical studies, for example in pain offset responses (Baliki et al.,

2010) and resting functional connectivity in chronic back pain (Baliki et al., 2008; Baliki et al., 2012;

Fritz et al., 2016; Yu et al., 2014). In addition to suggesting a possible computational mechanism

that might underlie pain susceptibility in these patients, the results highlight the pgACC as a poten-

tial target for therapeutic intervention.
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Materials and methods

Subjects
Two separate groups of healthy subjects participated in the two neuroimaging experiments (Experi-

ment 1: n = 19, six female, age 26.1�5.1 years; Experiment 2: n = 23, five female, age 23.9�3.1

years). All subjects gave informed consent prior to participation, had normal or corrected to normal

vision, and were free of pain conditions or pain medications. The two experiments were performed

in different institutes, and approved by their relevant ethics and Safety committees: for the National

Institute of Information and Communications Technology, Japan (Experiment 1), and the Advanced

Telecommunications Research Institute, Japan (Experiment 2).

Experimental design
Experiment 1
Subjects participated in an interleaved instrumental conditioning and yoked Pavlovian relief condi-

tioning sessions in which they actively or passively escaped from tonic pain, respectively. Tonic pain

was maintained by constant thermal stimulation to the left inner forearm (see ‘Stimulation’ for

details), and relief was induced by temporarily cooling the heat stimulus, which abolishes pain and

causes a strong sense of relief.

In the instrumental conditioning sessions, subjects learned to select actions based on different

cues. The cues were abstract fractal images on a computer screen. Actions were left or right button-

presses on a response pad, and successful outcomes were the brief cooling (relief) period from the

tonic painful heat. There were two types of visual cue: an ‘easy’ cue with high probability of relief

when paired with a particular response (80% relief chance with one of the button press responses

and 20% chance with the other response), and a ‘hard’ visual cue with a lower probability of relief

with a particular response (60%/40% relief chance for the two response actions). These different out-

come probabilities were used to induce experimental variability in the uncertainty of relief predic-

tion. On each trial, the visual cue (conditioned stimulus, CS) appeared on screen for 3 s, during

which subjects were asked to make the left or right button press response. An arrow corresponding

to the chosen direction was superimposed on the cue after the decision was made until the 3 s dis-

play period ended. The disappearance of the cue and response arrow was followed immediately by

the outcome of a temporary decrease in temperature of the painful heat stimulus (temporary reduc-

tion of temperature by 13˚C from the tonic level for 4 s), or no change in temperature such that the

constant pain continued straight on into the next trial. The next trial started after a jittered inter-trial

interval (ITI) of 4–6 s (mean = 5 s) after outcome presentation concluded (Figure 1a). There were 20

trials per session, with equal number of ‘easy’ and ‘hard’ cues (n = 10 each). Each session lasted

about 5 min.

The yoked Pavlovian conditioning task was identical to the instrumental task, except subjects did

not have control over the outcomes through their responses. Instead, the sequence of cues and out-

comes from the previous instrumental session were used (or the first instrumental session from the

previous subject, for subjects who started with a Pavlovian session), although subjects were not

aware of the yoking process. A different set of fractal images was used for the yoked Pavlovian ses-

sions, so learning from an instrumental session could not be transferred to its corresponding Pavlov-

ian session. To control for motor responses in both sessions, subjects were asked to press the

response button according to the randomised indicator arrow, which appeared on screen 0.5 s after

CS presentation. This is common in neuroimaging studies of Pavlovian and instrumental learning,

and it was clearly explained to subjects that these actions bore no relationship to outcomes.

Each subject repeated instrumental and yoked Pavlovian sessions three times (six sessions in

total). They were clearly instructed whether it was a Pavlovian or instrumental session. To remove

any order confounds, the session order was alternated within and between subjects (i.e. order ABA-

BAB, or BABABA), with half the subjects started with the instrumental and the other half with the

Pavlovian task. A short break was taken every two sessions to allow the experimenter to change the

location of the heat stimuli probe, to minimise effects of habituation/sensitization across the whole

experiment.

Subjective ratings of perceived trial outcomes (pain relief or ongoing pain) were collected near

the beginning, middle, and end of each session, in identical order for instrumental and its yoked
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Pavlovian counterpart. A 0–10 rating scale appeared 3.5 s after outcome presentation (0.5 s overlap

with relief duration if any), where the scale ranged from 0 (no pain at all) to 10 (unbearable pain) for

no relief outcome (red scale in Figure 1a), and 0 (no relief at all) to 10 (very pleasant relief) for relief

outcome (green scale). Although it is the case that ratings are inherently subjective, their modulation

reflects an objective process that may explain a component of this apparent subjectivity. This does

raise the issue of whether the subjective relief ratings influence the outcome values when learned in

the RL model, but this (presumably subtle) effect is something that is beyond the experimental

power of this experiments to resolve.

Experiment 2
Experiment 2 was a purely instrumental relief conditioning task, similar to that of Experiment 1. How-

ever in this task, three visual cues were presented on screen simultaneously for 3 s, during which the

subject was asked to choose one (Figure 1d) with a three-button response pad. Each one of these

cues had varying relief probability, generated by a random walk process (probabilities changing at

step size of 0.1, bound between 0.2 and 0.8, with random start). Relief outcomes were identical to

that in Experiment 1, except the duration was reduced to 3 s, which was enough to produce a similar

relief sensation with lower trial time. Subjects repeated the same task for eight sessions (24 trials

each), with the same visual cues throughout. However, several subjects did not complete all sessions

because of excess time in SCR experimental set-up which reduced the time available for the task;

hence, the overall average was 7.08�1.44 sessions per subject.

Subjective pain ratings were collected after the 3 s choice period and before outcome presenta-

tion, in 10 random trials out of 24 in each session, with the same 0–10 rating scale in Experiment 1

(red scale only). We have summarised the details of ratings from both experiments in Table 3.

Stimulation
Painful tonic thermal stimuli were delivered to the subject’s skin surface above the wrist on the left

inner forearm, through a contact heat-evoked potential stimulator (CHEPS, Medoc Pathway, Israel).

The CHEPS thermode is capable of rapid cooling at 40˚C/s, which made rapid temporary pain relief

possible in an event-related design.

The temperature of painful tonic stimuli was set according to the subject’s own pain threshold cal-

ibrated beforehand. In Experiment 1, before the task, two series of 6 pre-set temperatures were pre-

sented in random order (set 1: mean � std 43.7�1.7˚C; set 2: 44.6�0.6˚C), with each temperature

delivered for 8 s, after which the subject determined whether the stimulation period was painful or

not (ISI = 8 s). The higher of the two lowest painful temperatures from the two tests was used as the

tonic stimulation temperature.

In Experiment 2, 10 temperatures were presented in each series, both were randomly generated

with 44.4�0.7˚C. After the 8 s stimulation, subjects were asked to rate their pain on a 0–10 VAS

scale, which were fitted with a sigmoid function. The temperature was chosen from the temperature

range of: 44, 44.2, 44.5, 44.8, 45˚C, whichever closest and below the model fitted value of VAS = 8.

The final temperature used did not differ hugely for the two experiments despite the change in

thresholding method (Experiment 1: 44.3�0.2˚C, Experiment 2: 44.5�0.4˚C). The relief temperature

was set constant at 13˚C below threshold temperature for all subjects.

Table 3. Details of subjective ratings for Experiments 1 and 2.

Experiment Rating type Rating timing Avg # of ratings per subject

Experiment 1 Instrumental pain After 3 s cue + choice window AND outcome (rating type depend on outcome) 8.2

Instrumental relief 7.7

Pavlovian pain 8.1

Pavlovian relief 7.7

Experiment 2 Instrumental pain After 3 s cue + choice window, BEFORE outcome 70.9

DOI: https://doi.org/10.7554/eLife.31949.022
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Physiological measures
Skin conductance responses (SCRs) were measured using MRI-compatible BrainAmp ExG MR System

(Brain Products, Munich, Germany) with Ag/AgCl sintered MR electrodes, filled with skin conduc-

tance electrode paste.

In Experiment 1, SCR data were recorded on volar surfaces of distal phalanges of the second and

fourth fingers on the left (tonic pain side with thermode attached). In Experiment 2, data were

recorded from both hands, in the same location on the left (with thermode), and on the hypothenar

eminences of the palm on the right (button press hand without thermode), with electrodes approxi-

mately 2 cm apart. The signals were collected using BrainVision software at 500 Hz with no filter.

Off-line processing and analysis were implemented in MATLAB7 (The MathWorks Inc., Natick,

MA), with the PsPM toolbox (http://pspm.sourceforge.net/). Data were down-sampled to 10 Hz,

band-pass filtered at 0.0159–2 Hz (1 st order Butterworth). Given the variable nature of SCR onset

and duration in a learning experiment, the non-linear model in PsPM was used. Boxcar regressors

were constructed at cue onset (duration = 3 s, cue presentation). These regressors were convolved

with the canonical skin conductance response function, to estimate event-related response ampli-

tude, latency, and dispersion (only SCR amplitude were used in modelling).

Sessions with more than 20% trials (4 out of 20 trials for Experiment 1, 5 out of 24 for Experiment

2) with cue-evoked SCR amplitude below the threshold of 0.02 were labelled as not having enough

viable event related SCRs. In Experiment 1, 15 subjects and 50 sessions remained. In Experiment 2,

19 subjects and 79 sessions remained for the left (thermal stimulation side), 20 subjects and 96 ses-

sions remained for the right (no stimulation side). For model fitting, right side SCR reject criteria

were used, since both channel’s data were included as two data sources. Trial SCRs were log-trans-

formed within subject before model fitting. Transformed SCRs on both sides were highly correlated

(Figure 4b).

Other behavioural measures
Trial-by-trial choice data (button press indicating choices) and reaction times (length of time taken

from CS onset to button press) of subjects were recorded as part of behavioural measurements.

Computational learning models
To capture relief learning we fitted behavioural responses using different learning models from pre-

vious studies (Table 4). Free energy (F) are variational Bayesian approximation of model’s marginal

likelihood, table showing the sum of F for all participants to provide model absolute fit evaluation.

Actual model comparison was conducted based on random-effect analysis. For instrumental learn-

ing, the reinforcement of subjects’ responses (i.e. choices) based on relief experience can be mod-

elled using reinforcement learning model (Sutton and Barto, 1998). For Pavlovian learning,

physiological responses can be used for model fitting (Li et al., 2011; Boll et al., 2013;

Zhang et al., 2016).

Win-Stay-Lose-Shift (WLSL) model
WSLS assumes a subject has fixed pseudo Q values for each state-action pair, where a relief out-

come always produces a positive value for the chosen state-action pair (i.e. win-stay), while the

remaining state-action combinations had negative values (i.e. lose-shift). A no relief outcome flipped

the sign of all values. Two free parameters p1 and p2 (0 � p1;2 � 1) scaling the pseudo Q values for

the two cues presented were used in model fitting, which were assumed fixed throughout the exper-

iment but varied for individuals.

TD model
The predicted state-action value Q given particular state s and action a between successive trials is

updated using an error-driven delta rule with learning rate a (0 � a � 1) (Gläscher et al., 2010;

Morris et al., 2006; Sutton and Barto, 1998):

Qtþ1ðs;aÞ ¼Qtðs;aÞþa � ðrt �Qtðs;aÞÞ (2)
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where rt is the outcome of the trial (relief = 1, no relief = 0). The probability of choosing action a

from a set of all available actions As 2 fa;b;c:::g in trial t is modelled by a softmax distribution,

pðajsÞ ¼
expðt �Qtðs;aÞÞ

P

b2As
expðt �Qtðs;bÞÞ

(3)

where t is the inverse temperature parameter governing the competition between actions (t>0).

Rescorla-Wagner (RW) model
For Pavlovian learning, where choice decisions are not available, the standard temporal difference

(TD) model updates the state value VðsÞ based on prediction errors following the Rescorla-Wagner

learning rule:

Vtþ1ðsÞ ¼ VtðsÞþa � ðrt �VtðsÞÞ (4)

Hybrid model
The hybrid model incorporated an associability term as a changing learning rate for a standard TD

model in value learning (Le Pelley, 2004; Li et al., 2011). The associability term is also referred to as

Pearce-Hall associability, an equivalent measure of attention or uncertainty, which is modulated by

the magnitude of recent prediction error. The varying learning rate can be used in Pavlovian state-

learning:

Vtþ1ðsÞ ¼ VtðsÞþk �atðsÞ � ðrt �VtðsÞÞ (5)

atþ1ðsÞ ¼ h � jrt �VtðsÞjþ ð1�hÞ �atðsÞ (6)

where h, k are free parameters limited within the range of [0,1].

The model can also be extended to instrumental action-learning:

Qtþ1ðs;aÞ ¼Qtðs;aÞþk �atðs;aÞ � ðrt �Qtðs;aÞÞ (7)

Table 4. All learning models fitted (bold: winning model; AL - action-learning; SL - state-learning, F -

variational Bayesian approximation to the model’s marginal likelihood, used for model comparison)

Experiment 1 (Instrumental sessions)

Choice F (n=19, sum [sem]) SCR F (n = 15, sum [sem])

TD -1330.920 [3.604] RW - value �1079.153 [8.024]

Hybrid (AL) -1345.667 [3.664] Hybrid (SL) - value �1077.911 [8.059]

WSLS -1486.723 [3.973] Hybrid (SL) - associability �1077.699 [8.003]

Experiment 1 (Pavlovian sessions)

Choice (not available) SCR F (n = 15, sum [sem])

N/A RW - value �1101.079 [7.132]

Hybrid (SL) - value �1096.250 [7.195]

Hybrid (SL) - associability �1095.135 [7.106]

Experiment 2 (Instrumental sessions, Pavlovian not available)

Choice F (n=23, sum [sem]) SCR F (n = 20, sum [sem])

TD -3572.476 [8.736] RW - value �7867.834 [60.668]

Hybrid (AL) -3626.478 [8.946] Hybrid (SL) - value �7857.341 [60.643]

HMM -3571.020 [9.067] Hybrid (SL) - associability �7841.864 [60.838]

Bayesian Hierarchical -3784.372 [8.616]
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atþ1ðs;aÞ ¼ h � jrt �Qtðs;aÞjþ ð1�hÞ �atðs;aÞ (8)

Hidden Markov Model (HMM)
For Experiment 2, where relief probability is unstable, model-based learning models were fitted to

behavioural data. Hidden Markov Model with dynamic expectation of change (Prévost et al., 2013;

Schlagenhauf et al., 2014) was adapted to incorporate a hidden state variable St that represents

the subject’s estimation of an action-outcome pair (e.g. in Experiment 2, St ¼ ðcue; relief Þ, three cues

� relief/no relief = 6 combinations). The state transition probabilities are calculated as:

PðStjSt�1Þ ¼
1�b b

b 1�b

� �

(9)

where b is a free parameter (0� b� 1). For each cue, the symmetry of the transition matrix encodes

the reciprocal relationship between relief/no relief belief. Given the hidden state variable, the proba-

bility of actually observing this outcome is updated as:

PðOtjStÞ ¼ 0:5�
1þ c 1� c

1� d 1þ d

� �

(10)

where the rows of the matrix represent relief/no relief outcomes, the columns represent the relief/no

relief belief in St: c and d are free parameters (0� c� 1, 0� d� 1) to incorporate potential discrimina-

tion between the two outcome types. The prior probability of St is calculated from the state transi-

tion probabilities and the posterior probability of St�1 (Equation 11). The posterior probability of St
is calculated from the prior PðStÞ (from Equation 11) and the observed outcome Ot (Equation 12):

PðStÞ ¼
X

St�1

PðSt jSt�1ÞPðSt�1Þ (11)

PðStÞ ¼
PðOtjStÞPðStÞ

P

St
PðOt jStÞPðStÞ

(12)

where Equation 11 is updated before observed outcome Ot, Equation 12 is updated after Ot.

St can be used to approximate state values by calculating the relative relief belief through a sig-

moid function, with a free parameter m, and the preferred action to be inferred using the softmax

function.

Pðr¼ 1jcueÞ ¼
1

1þ expð�xÞ
(13)

where x¼ Stðr¼ 1Þ�Stðr¼ 0Þþm.

To represent uncertainty under i possible posterior relief probabilities, entropy H is calculated for

chosen cue as:

HðStÞ ¼�
X

i

PðStÞlogPðStÞ (14)

Hierarchical Bayesian model
The Hierarchical Bayesian model introduced by (Mathys et al., 2011) incorporates different forms of

uncertainty during learning on each level: irreducible uncertainty (resulting from probabilistic rela-

tionship between prediction and outcome), estimation uncertainty (from imperfect knowledge of

stimulus-outcome relationship), and volatility uncertainty (from potential environmental instability).

This model has been shown to fit human acute stress responses (de Berker et al., 2016). The model

was adopted to our study with the basic structure unchanged, and the second level estimated prob-

abilities were used to approximate state values of different cues, and the preferred action calculated

using the softmax function.
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Modelling pain ratings
Our prior hypothesis suggests uncertainty is a likely modulator of tonic pain perception, hence

model generated uncertainty signals (associability in Experiments 1 and 2, with entropy and surprise

added in Experiment 2) were used as the main pain rating predictors. A generalised linear model

includes the uncertainty predictor, and additional terms to control for potential temporal habitua-

tion/sensitization and between-session variation:

Rating¼ b1 �Reliefþb2 � logðTrialÞþb3 �Predictor (15)

where the ‘Relief’ term is the number of trials since the previous relief outcome, logðTrialÞ is the log

of trial number within session (1-24), ‘Predictor’ is the model generated uncertainty value using

group-averaged model parameters fitted with choice/SCR data. All trials were used for predictor cal-

culation, but only rated trials were included in this regression.

Model fitting and comparison
Model fitting
Model fitting was performed with the Variational Bayesian Analysis (VBA) toolbox (https://mbb-

team.github.io/VBA-toolbox/). The toolbox seeks to optimise free energy within the Bayesian frame-

work, analogous of maximum likelihood. Behavioural data (choices, SCRs) were fitted separately for

each individual resulting in different sets of parameters, and model fitting performance was mea-

sured by aggregating individual subject fitting statistics. The mean of all subject parameters were

used to generate regressors for fMRI analysis following conventions (Table 5 and Table 6).

The VBA toolbox takes in an evolution function that describes the learning model (e.g. value

updating rule), and an observation function that describes response mapping (e.g. softmax action

selection). For choice fitting, data were split into multiple sessions to allow between-session changes

in observation function parameters, but evolution function parameters and initial states were fixed

throughout all sessions.

For SCR fitting, multi-session split was the same as choice fitting. The first two trials from each

session were excluded from fitting to avoid extreme values from startle effects, which also served to

reduce the confound from general habituation of SCRs. Trials with insufficient event-related

responses were also excluded (see ‘Physiological measures’ above). The observation function for

Table 5. Experiment 1 learning model fitting results.

Model (Options) Data fitted (sessions) Parameters Mean Std Initial states

TD (*) choice (instrumental) learning rate, a 0.401 0.087 Q0=0

WSLS (*) choice (instrumental) pseudo Q (cue 1), p1 0.382 0.073 No hidden states

pseudo Q (cue 2), p2 0.458 0.075

Hybrid Action learning (*) choice (instrumental) free parameter k 0.527 0.104 Q0=0

free parameter h 0.413 0.125 a0=1

RW - V (†) SCR (instrumental) learning rate, a 0.492 0.013 V0=0

RW - V (†) SCR (Pavlovian) learning rate, a 0.492 0.014 V0=0

Hybrid - Assoc (†) SCR (instrumental) free parameter k 0.497 0.004 V0=0

free parameter h 0.495 0.004 a0=1

Hybrid - Assoc (†) SCR (Pavlovian) free parameter k 0.498 0.003 V0=0

free parameter h 0.496 0.008 a0=1

Hybrid - V (†) SCR (instrumental) free parameter k 0.492 0.012 V0=0

free parameter h 0.499 0.003 a0=1

Hybrid - V (†) SCR (Pavlovian) free parameter k 0.494 0.005 V0=0

free parameter h 0.5 0.003 a0=1

*Fitting options: muTheta, muPhi = 0, sigmaTheta, sigmaPhi = 1.
†muTheta, muPhi=0, sigmaTheta=0.05, sigmaPhi=1.
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SCR fitting were simply gðxÞ ¼ Predictorþ b, with b as a free parameter. The predictor (model uncer-

tainty) was not scaled to avoid overfitting. For Experiment 2, both left and right SCRs were fitted

simultaneously as two data sources, with b1 and b2 as two free parameters to fit each side with the

same predictor.

Parameter prior setting for models followed previous studies. TD, RW and hybrid models all have

initial values as 0, and initial associability as 1. HMM and Bayesian models all have initial hidden

states of relief belief as 0. All evolution parameters had variance set to 1, with the exception of SCR

fitting at 0.05 to reduce flexibility.

We calculated the protected exceedance probabilities based on (Rigoux et al., 2014), shown in

figure supplements in the same way as in the original exceedance probabilities in the results section.

See http://mbb-team.github.io/VBA-toolbox/wiki/BMS-for-group-studies/#rfx-bms for details of its

calculation. In Experiment 1, for SCR fitted model comparison, the best fitting model became less

clear. However, in Experiment 2, where the number of trials was increased as fitting was not con-

ducted separately for Instrumental/Pavlovian sessions, best fitting models from comparison

remained unchanged from the original comparison using exceedance probabilities. Results from

Experiment 2 provided validation for Experiment 1 in the way similar to the neuroimaging analysis.

Model comparison
Model comparison was implemented with random-effect Bayesian model selection in the VBA tool-

box. The best fitted model for each individual is allowed to vary, and model frequency in population

(i.e. in how many subjects the model was the best-fit model) was estimated from model fitting evi-

dence (free energy from learning models in choice and SCR fitting, or log likelihood from regression

models in rating fitting), and model exceedance probability (i.e. how likely the model is more fre-

quent than other models compared).

fMRI acquisition
For Experiment 1, neuroimaging data was acquired with a 3T Siemens Magnetom Trio Tim scanner,

with the Siemens standard 12 channel phased array head coil. For Experiment 2, a 3T Siemens

Prisma scanner was used, with the Siemens standard 64 channel phased array head coil.

Table 6. Experiment 2 learning model fitting results.

Model (Options) Data fitted Parameters Mean Std Initial states

TD (*) choice learning rate, a 0.577 0.28 Q0=0

Hybrid Action learning (*) choice free parameter k 0.774 0.381 Q0=0

free parameter h 0.14 0.139 a0=1

HMM (*) choice state transition probability b 0.275 0.213 Q0=0.5

relief outcome bias c 0.535 0.212

no relief outcome bias d 0.027 0.072

Bayesian (‡) choice level 2 (outcome) k 0.331 0.239 Q0=0

level 2 (outcome) ! �0.423 1.396

level 3 (belief) � 0.45 0.03

RW - V (†) SCR (bilateral) learning rate, a 0.46 0.054 V0=0

Hybrid - Assoc (†) SCR (bilateral) free parameter k 0.49 0.01 V0=0

free parameter h 0.488 0.027 a0=1

Hybrid - V (†) SCR (bilateral) free parameter k 0.48 0.034 V0=0

free parameter h 0.496 0.013 a0=1

* Fitting options: muTheta, muPhi = 0, sigmaTheta, sigmaPhi = 1.
†muTheta, muPhi = 0, sigmaTheta = 0.05, sigmaPhi = 1.
‡muTheta=[0,-2,0], muPhi=0, sigmaTheta, sigmaPhi=1
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Scanning parameters were identical for both experiments: functional images were collected with

a single echo EPI sequence (repetition time TR = 2500 ms, echo time TE = 30 ms, flip angle = 80,

field of view = 240 mm), 37 contiguous oblique-axial slices (voxel size 3.75 � 3.75�3.75 mm) parallel

to the AC-PC line were acquired. Whole-brain high resolution T1-weighted structural images (dimen-

sion 208 � 256�256, voxel size 1 � 1�1 mm) using standard MPRAGE sequence were also

obtained.

fMRI preprocessing
Functional images were slice time corrected using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/soft-

ware/spm12/) with individual session’s slice timing output by the scanner. Resulting images were

then preprocessed using the fmriprep software (build date 09/03/2017, freesurfer option turned off,

https://github.com/poldracklab/fmriprep), a pipeline that performs motion correction, field unwarp-

ing, normalisation, field bias correction, and brain extraction using a various set of neuroimaging

tools available. The normalised images were smoothed using a Gaussian kernel of 8 mm using

SPM12. The confound files output by fmriprep include the following signals: mean global, mean

white matter tissue class, three FSL-DVARS (stdDVARS, non-stdDVARS and voxel-wise stdDVARS),

framewise displacement, six FSL-tCompCor, six FSL-aCompCor, and six motion parameters (matrix

size: 24 � number of volumes).

fMRI GLM model
All event-related fMRI data were analysed with generalised linear models (GLM) constructed using

SPM12, estimated for each participant in the first level. Model generated signals used as parametric

modulators were generated with one set of group-mean model parameters, obtained with behaviou-

ral data fitting as described. We used the mean of the fitted parameters from all participants in the

imaging analysis as this provides the most stable estimate of the population mean (taking into

account the fact that individual fits reflect both individual differences and noise). For completeness,

however, we also ran the analyses with individually fitted values, which led to similar results (i.e. no

change in significance level of each result). All regressors were convolved with a canonical hemody-

namic response function (HRF). We also include regressors of no interest to account for habituation

and motion effects. Specifically, the number of trials since last receiving a relief outcome (‘Relief’

term in rating regression model), and the log of trial number within session (log(Trial) term) were

included to regress out potential change in tonic pain perception simply due to prolonged stimula-

tion. The resulting GLM estimates were entered into a second-level one-sample t-test for the regres-

sors of interest to produce the random-effect statistics and images presented in Results section.

TD softmax (Figure 3a and Figure 5a)
Regressors of interest:

. CS onset (duration = 3 s, cue presentation): Q values of chosen cue,

. Outcome onset (duration = 3 s): prediction error,

Regressors of no interest:

1. CS onset (duration = 3 s, cue presentation): number of trials since last relief,
2. CS onset (duration = CS onset to outcome offset, entire trial exclude ITI): within session log

trial number,
3. choice press (duration = 0),
4. rating press (duration = rating duration),
5. CS offset (duration = 0),
6. 24 column confounds matrix output by fmriprep.

Hybrid model associability (Figure 3d and Figure 5d)
Regressors of interest:

. choice press time (duration = 0, cue button press): associability (generated for individual ses-
sion with new V0=A0 to match SCR fitting procedure),
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Regressors of no interest: same as GLM above, adding relief onset (duration = 0), and removing

choice press regressor. We note for completeness that it is theoretically possible to model the learn-

ing process as a continuously valued function that exactly matches the time-course of the tempera-

ture changes. In the context of the current study, this effect of this would be largely orthogonal to

the experimental manipulations. However, representation of the baseline temperature as a continu-

ous function is clearly important in real-life contexts in which the baseline level determines homeo-

static motivation and phasic reward functions (Morville et al., 2018), and hence future studies could

directly manipulate this.

For multiple comparison, we used anatomical binary masks generated using the Harvard-Oxford

Atlas (Desikan et al., 2006) for small volume correction. Atlases are freely available with the FSL

software (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). We thresholded the probability maps at 50%,

focusing on ROIs defined a priori (learning related: amygdala, accumbens, putamen, caudate, pal-

lidum, VMPFC, DLPFC. Controllability-induced analgesia related: cingulate gyrus - anterior division,

insular cortex, VLPFC). We used the frontal medial cortex for VMPFC, the frontal orbital cortex for

VLPFC, and the middle frontal gyrus for DLPFC respectively. We reported results with p<0.05 (FWE

cluster-level corrected). Masks were applied separately, not combined (Table 1 and Table 2).

fMRI model comparison
To determine whether state-based and action-based learning involve the same brain regions during

instrumental learning, we used Bayesian model selection (BMS) with the instrumental sessions imag-

ing data. We ran Bayesian first level analysis using two separate GLMs containing the prediction

error signals from TD and hybrid models (at outcome onset time, durations = 3 s) using unsmoothed

functional imaging data, with the same regressors of no interest as other GLMs described. To reduce

computation time, this was restricted to voxels correlated to prediction error from previous paramet-

ric modulation analysis results from our present study, within a mask of conjunction clusters from TD

and hybrid prediction error analysis (cluster formation at p<0.01, k<5). Resulting log-model evidence

maps produced from each model for individual participant were first smoothed with a 6 mm Gauss-

ian kernel, then entered into a random-effect group analysis (Stephan et al., 2009). Voxel-wise com-

parison between models produced posterior and exceedance probability maps to show whether a

particular brain region is better accounted for by one model or the other. Posterior probability maps

were overlaid on subject-averaged anatomical scans using MRIcroGL (https://www.nitrc.org/proj-

ects/mricrogl/).

Axiom analysis for prediction errors
To determine whether ROI activations to prediction errors were responding outcomes or prediction

errors, we carried out ROI axiomatic analysis (Roy et al., 2014). Trials were separated into relief or

no relief outcomes, then into equal-size bins of ascending sorted expected relief values, calculated

from TD model as we were primarily interested in instrumental/active relief learning. This produced

four regressors (2 outcomes � 2 value bins) in Experiment 1, and six regressors (2 outcomes � 3

value bins) in Experiment 2, to be estimated at outcome time (duration = 3 s) when prediction error

was generated. GLMs include button presses for choice or rating, and movement related regressors

of no interest mentioned above. ROI masks of 8 mm spheres were generated from peak coordinates

from TD model prediction error exceedance probability map calculated by BMS above (ventral and

dorsal striatum, amygdala, VMPFC and DLPFC).

Mean activity were extracted from these ROI masks averaged across sessions within individual

subject. Although the axiomatic analysis is useful for delineating outcome and prediction responses

in previous reward or aversive PE studies, the continued presence of tonic pain in our study differs

from the ‘no stimulation’ conditions in these studies, thus we are primarily interested in the overall

BOLD activity pattern and did not include full statistics of this analysis.
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