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THREE-FIELD BLOCK-PRECONDITIONERS FOR MODELS OF
COUPLED MAGMA/MANTLE DYNAMICS∗

SANDER RHEBERGEN† , GARTH N. WELLS‡ , ANDREW J. WATHEN§ , AND

RICHARD F. KATZ¶

Abstract. For a prescribed porosity, the coupled magma/mantle flow equations can be formu-
lated as a two-field system of equations with velocity and pressure as unknowns. Previous work has
shown that while optimal preconditioners for the two-field formulation can be obtained, the construc-
tion of preconditioners that are uniform with respect to model parameters is difficult. This limits the
applicability of two-field preconditioners in certain regimes of practical interest. We address this issue
by reformulating the governing equations as a three-field problem, which removes a term that was
problematic in the two-field formulation in favour of an additional equation for a pressure-like field.
For the three-field problem, we develop and analyse new preconditioners and we show numerically
that they are optimal in terms of problem size and less sensitive to model parameters, compared to
the two-field preconditioner. This extends the applicability of optimal preconditioners for coupled
mantle/magma dynamics into parameter regimes of physical interest.
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1. Introduction. In this paper we consider numerical methods to efficiently
solve the linear system arising from the discretization of the equations for coupled
magma/mantle dynamics. These partial differential equations, derived by McKenzie
[1], model the two-phase flow of partially molten regions of the Earth’s mantle. High
ambient temperatures enable slowly creeping flow of crystalline mantle rock, and also
permit melting of certain mantle minerals. Melting produces magma that resides
within an interconnected network of pores amid the mantle grains. The governing
equations describe the creeping flow of the high-viscosity, solid mantle matrix and
the porous flow of the low-viscosity magma. Although both the magma and mantle
are individually incompressible, the two-phase mixture permits compaction: non-zero
convergence of the solid flux is balanced by non-zero divergence of the magma flux
(or vice versa). Compaction therefore expels (or imbibes) magma locally, changing
the volume fraction of magma, termed the porosity. Compaction flow is associated
with a bulk viscosity and compaction stresses; it gives rise to many of the interesting
features of the coupled dynamics. In a typical strategy for computing these dynamics,
solutions for the solid velocity field and the magma pressure field are obtained for a
fixed porosity field; the velocity and pressure are then used to update the porosity.
The magma velocity field can be obtained diagnostically from the pressure and solid
velocity fields.
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Discretization of the elliptic equations for solid velocity and pressure results in
a linear system of algebraic equations that can be expressed in a 2 × 2 block-matrix
format. Preconditioners are crucial to efficiently solve the resulting system by itera-
tive methods; Rhebergen et al. [2] developed a diagonal block preconditioner for this
system and proved optimality with respect to problem size. From numerical experi-
ments, however, it was found that performance of the preconditioner deteriorates at
high values of the bulk-to-shear-viscosity ratio. This parameter regime, which cor-
responds to low values of porosity, is common in coupled magma/mantle dynamics
simulations: for example, at the boundary between unmolten and partially molten
mantle, where porosity varies continuously from zero through values 1%. Such situa-
tions make the preconditioner in [2] of limited practical use. At low values of porosity,
the compaction stresses can become dominant over the shear stresses. In this case,
the contribution of a ‘grad-div’ term in the momentum balance equation becomes
significant; such terms are known to be problematic for standard multigrid methods.
The two-field preconditioner in [2] relied on multigrid methods for the matrix blocks.
The manifestation of the problem was increasing Krylov solver iteration counts as the
bulk-to-shear-viscosity ratio increased.

In this paper, to circumvent the troublesome ‘grad-div’ term, we introduce a
‘compaction pressure’ field, as was done by Katz et al. [3] and Keller et al. [4], and we
reformulate the problem as a three-field system. This approach is also used in nearly
incompressible elasticity. Discretizing the model leads to a linear system of equations
that may be expressed in a 3×3 block matrix format for which we develop and analyse
new block preconditioners in this work. By introducing a compaction pressure field,
the size of the system is increased compared to the 2 × 2 block matrix. The relative
increase in degrees of freedom is limited, however, as the degrees of freedom for
the compaction pressure (like the degrees of freedom of the fluid pressure) are fewer
than the degrees of freedom of the solid velocity. Moreover, we will demonstrate
through numerical examples that effective preconditioners for the three-field problem
compensate for the addition of an extra scalar field to the problem.

The remainder of this paper is structured as follows. In Section 2 we present
the two- and three-field governing equations. We describe a weak formulation in
Section 3, develop and analyse a lower block triangular preconditioner in Section 4
and then discuss a diagonal block preconditioner in Section 5. In Section 6 we verify
our analysis by two and three dimensional numerical simulations. Conclusions are
drawn in Section 7.

2. Governing equations. On a domain Ω ⊂ R
d, where 1 ≤ d ≤ 3, for a given

porosity field φ ∈ [0, 1] the non-dimensional two-phase flow equations that describe
coupled magma/mantle dynamics are given by

−∇ · (ηDu) +∇p = ∇
((

ζ − 1

3
η
)
∇ · u

)

+ φe3,(2.1a)

∇ · u = ∇ ·
(
k (∇p− e3)

)
,(2.1b)

where η > 0 is the shear viscosity, u is the matrix velocity, Du = (∇u + (∇u)T )/2
is the total strain rate, p is the dynamic pressure, ζ > 0 is the bulk viscosity, k ≥ 0
is the permeability, and e3 is the unit vector in the direction aligned with gravity
(i.e., e3 = (0, 1) when d = 2 and e3 = (0, 0, 1) when d = 3). Throughout this
paper we take the porosity φ to be a function of x ∈ Ω. Constitutive relations are
required for the permeability k, shear viscosity η and bulk viscosity ζ. For now we
just mention that k, η and ζ are usually functions of the porosity φ. For more details
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on the derivation of the two-phase flow equations (2.1) we refer to McKenzie [1]. The
non-dimensionalization of these equations is presented in Appendix A.

In Rhebergen et al. [2] we studied (2.1) for the restricted case of constant shear
viscosity, constant bulk viscosity and a spatially variable permeability that is inde-
pendent of porosity. These simplifications lead to the following system of equations:

−∇ ·Du+∇p̃ = ∇ (α∇ · u) + φe3/η,(2.2a)

∇ · u = ∇ ·
(

k̃
(
∇p̃− e3/η

))

,(2.2b)

where α = ζ/η − 1/3, p̃ = p/η, and k̃ = ηk. In [2] we developed and analysed
a diagonal block preconditioner for a mixed finite element discretization of (2.2).
Combined with a Krylov method, the preconditioner developed in [2] resulted in an
optimal solver in terms of the problem size, but was not uniform with respect to the
model parameters. In particular, as α increased the iteration count for the solver to
reach a set tolerance increased. This was attributed to the performance of standard
multigrid (geometric and algebraic) when the relative contribution of the ∇(∇ · u)
term becomes significant [2].

In this paper we develop new preconditioners for a reformulated system of equa-
tions in which the ∇(∇ · u) term does not appear explicitly. To achieve this we
return to (2.1) and introduce the auxiliary variable pc = −ζ∇ · u, which allows us to
write (2.1) as

−∇ ·
(

η
(
Du− 1

3
∇ · uI

))

+∇p+∇pc = φe3,(2.3a)

−∇ · u+∇ · k∇p = ∇ · ke3,(2.3b)

−∇ · u− ζ−1pc = 0.(2.3c)

The auxiliary variable pc is also known as the compaction pressure (see [3, 4], for
example). Decomposing the boundary of the domain by ΓD ∪ ΓN = ∂Ω where ΓD ∩
ΓN = ∅, and denoting the outward unit normal vector on ∂Ω by n, we consider the
following boundary conditions:

u = g on ΓD,

ηDu · n−
(
1

3
η∇ · u+ p+ pc

)
n = gN on ΓN ,

−k (∇p− e3) · n = 0 on ∂Ω,

(2.4)

where g : ΓD → R
d and gN : ΓN → R

d are given boundary data. In the case
∂Ω = ΓD, g is constructed to satisfy the compatibility condition

(2.5) 0 =

∫

∂Ω

g · n ds.

Note that the compatibility condition implies
∫

Ω
ζ−1pc dx = 0 when ΓD = ∂Ω.

3. Discrete formulation. Assume ΓD = ∂Ω and, without loss of generality,
homogeneous boundary conditions on u. Define the function space L2

0 := L2
0(Ω) =

{q ∈ L2(Ω) :
∫

Ω
q dx = 0} and let Xh ⊂ H1

0 and Mh ⊂ (H1∩L2
0) be finite dimensional

spaces. A mixed finite element weak formulation for (2.3) is then given by: find
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(uh, ph, pch) ∈ Xh ×Mh ×Mh such that

a(uh,v) + b(ph,v) + b(pch,v) =

∫

Ω

φe3 · v dx ∀v ∈ Xh,(3.1a)

b(q,uh)− c(ph, q) = −
∫

Ω

ke3 · ∇q dx ∀q ∈Mh,(3.1b)

b(ω,uh)− d(pch, ω) = 0 ∀ω ∈Mh,(3.1c)

where

a(u,v) =

∫

Ω

ηDu : Dv dx−
∫

Ω

1

3
η(∇ · u)(∇ · v) dx,(3.2a)

b(p,v) = −
∫

Ω

p∇ · v dx,(3.2b)

c(p, q) =

∫

Ω

k∇p · ∇q dx,(3.2c)

d(p, ω) =

∫

Ω

ζ−1pω dx.(3.2d)

We assume the choice of spaces Xh and Mh satisfy the inf-sup stability condition, but
postpone the choice of the finite element spaces until Section 6.

Let u ∈ R
nu be the vector of discrete velocity with respect to the basis forXh, and

let p ∈ Nnp = {q ∈ R
np |q 6= 1} be the vector of the discrete pressure and pc ∈ Nnp

the vector of discrete compaction pressure, with respect to the basis for Mh. The
discrete system (3.1) can then be written in block matrix form as

(3.3)






Kη GT GT

G −Ck 0
G 0 −Qζ










u
p
pc



 =





f
g
0



 ,

where Kη, G, Ck and Qζ are the matrices obtained from the discretization of the bi-
linear forms a(·, ·), b(·, ·), c(·, ·) and d(·, ·), respectively. This is the system for which
we wish to develop and deploy effective preconditioners.

4. Three-field block-preconditioners. We now formulate and analyse block
preconditioners for the system in (3.3). To achieve this, we assume that 0 < η, ζ <∞,
and 0 ≤ k <∞ are constants, in which case (3.3) can be re-written as

(4.1)






ηK GT GT

G −kC 0
G 0 −ζ−1Q






︸ ︷︷ ︸

A





u
p
pc



 =





f
g
0



 .

This format of the equations will guide us towards the correct scaling of the different
blocks in the preconditioners for the case of non-constant η, ζ and k.

To simplify the notation in the following, we introduce the shorthand

(4.2) S̄ = GK−1GT .

We assume that the spaces Xh and Mh are chosen such that

(4.3) kerGT = {1} ,
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where {1} represents the arbitrary constant in the pressure. In this case S̄ is invertible
(since K is positive definite) on the space complementary to {1}. Finite element
spaces that are stable for Stokes equations satisfy (4.3). Indeed, so-called inf-sup
stable approximation spaces for Stokes have this property uniformly in h. We note
that k and ζ are strictly positive and bounded, hence the blocks kC and ζ−1Q are
nonzero. However, if k becomes small as ζ becomes large the second and third rows
of A will approach linear dependence. This degeneracy is a modelling shortcoming of
the considered equations.

For the proofs in this section, the following lemma will be used:
Lemma 4.1. Let M and N be symmetric and positive definite matrices. If M−N

is positive definite, then N−1 −M−1 is positive definite.
Proof. See Horn and Johnson [5, Corollary 7.7.4].

4.1. Theoretical lower block triangular preconditioners. We first consider
lower block triangular preconditioners of the form

(4.4) P =





ηK 0 0
G R 0
G T S





to precondition (4.1). Our objective is to find expressions for K, R, S and T such
that the spectrum of the generalised eigenvalue problem

(4.5)






ηK GT GT

G −kC 0
G 0 −ζ−1Q










u
p
pc



 = Φ





ηK 0 0
G R 0
G T S









u
p
pc





is bounded independent of the mesh cell size h. In this case, the iteration count for a
Krylov method applied to the preconditioned system

(4.6)





ηK 0 0
G R 0
G T S





−1





ηK GT GT

G −kC 0
G 0 −ζ−1Q










u
p
pc



 =





ηK 0 0
G R 0
G T S





−1 



f
g
0





is expected to be optimal in terms of problem size.
The following theorem gives the conditions under which the problem in (4.5)

admits only two distinct eigenvalues.
Theorem 4.2. Let the matrices K, G, C and Q and positive constants η, ζ and

k be those given in (4.1). In (4.4), if K = K and

(4.7) R = − 1

ση
GK−1GT +

1

ση2
GK−1GT

(
1

η
GK−1GT +

1

ζ
Q

)−1

GK−1GT − k

σ
C,

(4.8) S = −
(
1

η
GK−1GT + ζ−1Q

)

,

and

(4.9) T = −1

η
GK−1GT ,
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where σ is a parameter such that σ < 0 or σ ∈ (0, 1), then R is invertible and the
generalised eigenvalue problem (4.5) has only two distinct eigenvalues, Φ1 = 1 and
Φ2 = σ. Furthermore, the eigenvectors corresponding to the eigenvalue Φ1 = 1 have

the form
[
uT 0 0

]T
.

Proof. First we prove that R is invertible. For this, note that

(4.10) qT (η−2S̄)−1(η−1S̄ + ζ−1Q)S̄−1q > qT (η−2S̄)−1η−1S̄S̄−1q = qT (η−1S̄)−1q,

since Q is positive definite. By Lemma 4.1 we therefore find that

(4.11) qT η−1S̄q > qT η−1S̄(η−1S̄ + ζ−1Q))−1η−1S̄q.

Since kC is positive semi-definite it is easily seen from (4.7) that if σ > 0, then R is
negative definite and if σ < 0, then R is positive definite. Hence, R is invertible.

We now continue by proving that (4.5) has only two distinct eigenvalues. Assum-
ing Φ = 1, (4.5) becomes

ηKu+GT p+GT pc = ηKu(4.12a)

Gu − kCp = Gu+Rp(4.12b)

Gu − ζ−1Qpc = Gu+ T p+ Spc.(4.12c)

From (4.12a) we find GT (p + pc) = 0, hence p = −pc, provided both pressures have
the same constant average. From (4.12b) we find that (R + kC)p = 0. We need to
show that R+ kC = 0 is non-singular, in which case p = 0. From the definition of R
in (4.7)

(4.13) R+ kC = − 1

ση
G +

(

1− 1

σ

)

kC,

where

(4.14) G = GK−1GT −GK−1GT

(

GK−1GT +
η

ζ
Q

)−1

GK−1GT .

We now show that G is positive definite. Using the shorthand from (4.2) and defining
Q̄ = ηζ−1Q, we need to show that

(4.15) qT
(

S̄ − S̄T
(
S̄ + Q̄

)−1
S̄
)

q > 0 ∀q ∈ R
np ,

or equivalently

(4.16) q̃T S̄−1q̃ − q̃T
(
S̄ + Q̄

)−1
q̃ > 0 ∀q̃ ∈ R

np ,

where q̃ = S̄q. By Lemma 4.1, since S̄ + Q̄ − S̄ = Q̄ is positive definite (because
ηζ−1 > 0 and Q is positive definite), the inequality in (4.16) holds, hence G is positive
definite. If σ < 0, R + kC is positive definite (since C is positive semi-definite), and
if σ ∈ (0, 1) then R + kC is negative definite. It then follows that p = pc = 0, and

that Φ = 1 is an eigenvalue of (4.5) with eigenvector
[
uT 0 0

]T
.

Next we assume Φ 6= 1. Expanding the generalised eigenvalue problem (4.5),

ηKu+GT p+GT pc = ΦηKu(4.17a)

Gu − kCp = ΦGu+ΦRp(4.17b)

Gu − ζ−1Qpc = ΦGu+ΦT p+ΦSpc.(4.17c)
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From (4.17a),

(4.18) Gu =
1

η(Φ− 1)
GK−1GT (p+ pc).

Substituting this expression into (4.17c) and using the definitions of S (4.8) and
T (4.9) we find

(4.19) (Φ− 1)

(

1

η
GK−1GT p+

(
1

η
GK−1GT + ζ−1Q

)

pc

)

= 0.

Since Φ 6= 1, it follows that

(4.20) pc = −
1

η

(
1

η
GK−1GT + ζ−1Q

)−1

GK−1GT p.

Using (4.18) and (4.20) in (4.17b), we find that

(4.21) Rp =

(

− 1

Φη
S̄ +

1

Φη2
S̄

(
1

η
S̄ +

1

ζ
Q

)−1

S̄ − k

Φ
C

)

p.

From the definition of R in (4.7) we have Φ = σ.
While the choices for K R, S and T in Theorem 4.2 lead to the generalised

eigenvalue problem in (4.5) having only two distinct eigenvalues, it does not constitute
a computationally useful preconditioner. Computing the inverse of GK−1GT is not
feasible for non-trivial problems. For this reason, we consider in the next section a
related, practical preconditioner for (4.1) for large scale computations.

4.2. Practical lower block triangular preconditioners. Guided by the pre-
conditioner developed in the previous section, we proceed to formulate and analyse
related preconditioners that are practical for large-scale simulations. Our objective is
to bound the eigenvalues of the preconditioned system independently of the cell size
and, if possible, independently of the model parameters.

4.2.1. Construction. To construct a computationally feasible preconditioner,
we need to find a suitable approximation for the inverse of GK−1GT . For this we
make use of the following lemma.

Lemma 4.3. The matrix GK−1GT is spectrally equivalent to Q:

(4.22) cg ≤
〈GK−1GT q, q〉
〈Qq, q〉 ≤ cg

where cg and cg are positive constants independent of h.
Proof. See Elman et al. [6, Theorem 5.22].
Lemma 4.3 suggests that we may replace each occurrence of GK−1GT in the

‘theoretical’ preconditioner by a weighted pressure mass matrix ciQ in the expressions
for R, S and T in Theorem 4.2, resulting in

(4.23) R = − 1

ση

(

c1 −
c2c4

c3 + ηζ−1

)

Q− k

σ
C,

(4.24) S = −
(
c5
η

+ ζ−1

)

Q,
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and

(4.25) T = −c6
η
Q,

respectively. Noting that ηζ−1 is positive, for an admissible σ (see Theorem 4.2) we
choose to replace R in (4.23) by a spectrally equivalent operator

(4.26) R = −η−1Q− kC,

Similarly, we choose to replace S in (4.24) by the spectrally equivalent

(4.27) S = −
(

(2η)−1 + ζ−1
)

Q

(the above factor of two is based on computational experience). We choose to set
T = T = 0, which simplifies the preconditioner. We will show, in Section 4.2.2,
that this simplifies the analysis, without giving up bounds on the spectrum of the
preconditioned operator.

We now define a preconditioner for (4.1) of the form

(4.28) Pt =





ηK 0 0
G R 0
G 0 S



 ,

in which the matrices K, R, and S satisfy

(4.29) ck ≤
〈Kq, q〉
〈Kq, q〉 ≤ ck, cr ≤

〈Rq, q〉
〈Rq, q〉 ≤ cr, cs ≤

〈Sq, q〉
〈Sq, q〉 ≤ cs

for R in (4.26) and S in (4.27), and where ci and ci in the above are positive constants
that are independent of h, k, η and ζ. In Section 6 we will consider a preconditioner
of the form in (4.28) in which K = K, R = R and S = S, with the action of the
inverse computed exactly via LU decomposition. We will denote this preconditioner
by PLU

t . We introduce (4.29) into the definition of the preconditioner to permit a
wider range of possible preconditioners that can be computationally more efficient.
For example, to build an efficient and scalable preconditioner, we consider in Section 6
an approximation of inverses of K, R and S by algebraic multigrid cycles, in which
K = KAMG,R = RAMG and S = SAMG. We will denote this preconditioner by PAMG

t .
Multigrid approximations of K, R and S are spectrally equivalent approximations for
the matrices in question [6, Lemma 6.12] and hence satisfy (4.29).

4.2.2. Analysis. In proposing a practical preconditioner, we have thus far relied
on spectrally equivalent sub-matrices for guidance. We now prove that the spectrum of
the system of interest, preconditioned by (4.28), where K, R and S satisfy (4.29), can
be bounded independently of h. Klawonn [7] proved eigenvalue bounds for 2×2 block-
triangular preconditioners for a class of saddle point problems. We follow a similar
approach to Klawonn [7], but generalised for 3× 3 block-triangular preconditioners.

In the following we assume that ck > 1 in (4.29), and hence K − K is positive
definite. This is always possible by appropriate scaling even though K = K would
seem to be the simplest choice. We use this assumption in the analysis; the choice
K = K would lead to significant degeneracy. However, no rescaling is necessary in
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the numerical simulations in Section 6. In preparation for the analysis, we introduce
some definitions. Let A be defined by (4.1) and Pt by (4.28), then
(4.30)

P−1
t A =






K−1K η−1K−1GT η−1K−1GT

−R−1GK−1(K −K) −R−1(η−1S̃ + kC) −R−1η−1S̃

−S−1GK−1(K −K) −S−1η−1S̃ −S−1(η−1S̃ + ζ−1Q)




 ,

where we have used the shorthand

(4.31) S̃ = GK−1GT .

Introducing

(4.32) H =





η(K −K) 0 0
0 −R 0
0 0 −S



 ,

we note that

(4.33) HP−1
t A =






η(K −K)K−1K (K −K)K−1GT (K −K)K−1GT

GK−1(K −K) η−1GK−1GT + kC η−1GK−1GT

GK−1(K −K) η−1GK−1GT η−1GK−1GT + ζ−1Q




 .

We also introduce

(4.34) H̃ =





ηK 0 0
0 η−1S̄ + kC 0
0 0 η−1S̄ + ζ−1Q− η−1S̄(η−1S̄ + kC)−1η−1S̄



 .

We will consider bounds forHP−1
t A with respect toH (see also Lemma 3.4 of Klawonn

[7]). To find these bounds, we first formulate some intermediate results. We use the
notation A ≤ B to denote that B −A is symmetric positive semi-definite.

Lemma 4.4. Decomposing HP−1
t A as

(4.35) HP−1
t A = LDLT ,

where

(4.36) L =






I 0 0
η−1GK−1 I 0
η−1GK−1 η−1GK−1GT (η−1GK−1GT + kC)−1 I






and
(4.37)

D =





η(KK−1K −K) 0 0
0 η−1S̄ + kC 0
0 0 η−1S̄ + ζ−1Q− η−1S̄(η−1S̄ + kC)−1η−1S̄



 ,

there exist positive constants Ĉ0, Ĉ1, independent of h, k, η and ζ such that

(4.38) Ĉ0H̃ ≤ D ≤ Ĉ1H̃.
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Proof. From (4.29) and ck > 1 it immediately follows that Ĉ0 = min{(ck − 1), 1}
and Ĉ1 = max{(ck − 1), 1}.

Lemma 4.5. Assume η and ζ are positive bounded constants and defining

(4.39) β1 =
ηζ−1

1 + ηζ−1
,

the eigenvalues of LH̃LT are bounded by the extreme eigenvalues of H̃:

(4.40)
1

max

(

4, 6

β1 min( 1

cg
,1)

)H̃ ≤ LH̃LT ≤ 5max

(

1,
1

β1 min
(

1

cg , 1
)

)

H̃,

where cg is given by Lemma 4.3.
Proof. From

(4.41) LH̃LT =






ηK GT GT

G 2η−1S̄ + kC 2η−1S̄
G 2η−1S̄ 2η−1S̄ + ζ−1Q






we obtain

xTLH̃LTx =





u
p
pc





T

LH̃LT




u
p
pc





≤ ηuTKu+ 2|pTGu|+ 2|pTc Gu|+ 4η−1|pTc S̄p|
+ pT

(

2η−1S̄ + kC
)

p+ pTc

(

2η−1S̄ + ζ−1Q
)

pc.

(4.42)

Applying the Cauchy–Schwarz inequality and Young’s inequality ab ≤ a2/2 + b2/2,
we find

|pTGu| ≤ 1

2

(

pT
(

η−1S̄ + kC
)

p+ uT ηKu

)

,

|pTc Gu| ≤ 1

2

(

pTc

(

η−1S̄ + ζ−1Q
)

pc + uT ηKu

)

,

|pTc S̄p| ≤ 1

2

(

pTc S̄pc + pT S̄p
)

,

(4.43)

so that combining (4.42) and (4.43) we obtain

xTLH̃LTx ≤3ηuTKu+ 5pT
(

η−1S̄ + kC
)

p

+ 5pTc

(

η−1S̄ + ζ−1Q
)

pc.
(4.44)

From the definition of β1 (4.39) and using Lemmas 4.1 and 4.3, we find

pTc H̃33pc = pTc

(

η−1S̄ + ζ−1Q− η−1S̄(η−1S̄ + kC)−1η−1S̄
)

pc

≥ pTc ζ
−1Qpc ≥ pTc β1 min

(
1

cg
, 1

)(

η−1S̄ + ζ−1Q
)

pc
(4.45)
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so that

(4.46) 5pTc

(

η−1S̄ + ζ−1Q
)

pc ≤
5

β1 min
(

1

cg , 1
)pTc H̃33pc.

Combining (4.44) and (4.46) we find the upper bound in (4.40):

xTLH̃LTx ≤3uT H̃11u+ 5pT H̃22p+
5

β1 min
(

1

cg , 1
)pTc H̃33pc

≤5max

(

1,
1

β1 min
(

1

cg , 1
)

)

xT H̃x.
(4.47)

To obtain the lower bound in (4.40) we follow Klawonn [7] and consider

(4.48)
xTLH̃LTx
xT H̃x

=
yT H̃y

yTL−1H̃L−T y
,

where y := LTx was used as substitution. Now,

(4.49) L−1H̃L−T =






ηK −GT −GT + ΛT

−G 2η−1S̄ + kC ΞT

−G+ Λ Ξ Υ






where

Λ = η−1S̄(η−1S̄ + kC)−1G

Ξ = −η−1S̄(η−1S̄ + kC)−1η−1S̄

Υ = 2η−1S̄ + ζ−1Q− 2η−1S̄
(

η−1S̄ + kC
)−1

η−1S̄

+ η−1S̄
(

η−1S̄ + kC
)−1

η−1S̄(η−1S̄ + kC)−1η−1S̄.

(4.50)

Similar to the case of the upper bound, using the Cauchy–Schwarz inequality, Young’s
inequality and Lemma 4.1 it can be shown that

yTL−1H̃L−T y =





v
q
qc





T

L−1H̃L−T





v
q
qc





≤ 4ηvTKv + 4qT
(

η−1S̄ + kC
)

q + 6qTc

(

η−1S̄ + ζ−1Q
)

qc.

(4.51)

Using (4.45) we note that

(4.52) 6qTc

(

η−1S̄ + ζ−1Q
)

qc ≤
6

β1 min
(

1

cg , 1
)qTc H̃33qc.

Combining (4.51) and (4.52) we obtain

yTL−1H̃L−T y ≤4vT H̃11v + 4qT H̃22q +
6

β1 min
(

1

cg , 1
)qTc H̃33qc

≤max

(

4,
6

β1 min
(

1

cg , 1
)

)

yT H̃y.
(4.53)
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Using (4.48)

(4.54) xTLH̃LTx ≥ 1

max

(

4, 6

β1 min( 1

cg
,1)

)xT H̃x,

which is the lower bound in (4.40).
Lemma 4.6. Assume η and ζ are positive bounded constants and let β1 be given

by (4.39). There exist positive constants C̃0, C̃1, independent of h such that

(4.55) C̃0H̃ ≤ HP−1
t A ≤ C̃1H̃,

where

(4.56) C̃0 =
Ĉ0

max

(

4, 6

β1 min( 1

cg
,1)

) , C̃1 = 5max

(

1,
1

β1 min
(

1

cg , 1
)

)

Ĉ1

and Ĉ0 and Ĉ1 are the constants in Lemma 4.4.
Proof. Combine (4.38), (4.40) and (4.35) to find

(4.57)
Ĉ0

max

(

4, 6

β1 min( 1

cg
,1)

)H̃ ≤ Ĉ0LH̃LT ≤ HP−1
t A

and

(4.58) HP−1
t A ≤ Ĉ1LH̃LT ≤ 5max

(

1,
1

β1 min
(

1

cg , 1
)

)

Ĉ1H̃,

from which the Lemma follows with

(4.59) C̃0 =
Ĉ0

max

(

4, 6

β1 min( 1

cg
,1)

) , C̃1 = 5max

(

1,
1

β1 min
(

1

cg , 1
)

)

Ĉ1.

Building on Lemma 4.6 we now formulate bounds in terms of H.
Lemma 4.7. There exist positive constants C0 and C1, independent of h, such

that

(4.60) C0H ≤ HP−1
t A ≤ C1H.

Proof. Building on Lemma 4.6, we need to show that H (4.32) is spectrally
equivalent to H̃ (4.34). We do so by showing spectral equivalence of the corresponding
diagonal blocks in each matrix. It is clear thatH11 = η(K−K) is spectrally equivalent
to H̃11 = ηK by (4.29). Next, consider H22 = −R and H̃22 = η−1S̄ + kC and find,
using Lemma 4.3 and (4.29),

H̃22 = η−1S̄ + kC ≤ −cr max(cg, 1)R = −cH2R
H̃22 = η−1S̄ + kC ≥ −cr min(cg, 1)R = −cH22

R,
(4.61)
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so that −cH22
R ≤ H̃22 ≤ −cH22R, meaning that H̃22 is spectrally equivalent to H22.

Finally, consider H33 = −S and H̃33 = η−1S̄+ ζ−1Q−η−1S̄(η−1S̄+kC)−1η−1S̄. We
note that, using Lemmas 4.1 and 4.3, and (4.29),

H̃33 = η−1S̄ + ζ−1Q− η−1S̄(η−1S̄ + kC)−1η−1S̄

≤− 2cs max(cg, 1)S = −cH33S
H̃33 = η−1S̄ + ζ−1Q− η−1S̄(η−1S̄ + kC)−1η−1S̄

≥ζ−1Q = β2

(

(2η)−1 + ζ−1
)

Q ≥ −csβ2S = −cH33
S

(4.62)

where

(4.63) β2 =
ηζ−1

1

2
+ ηζ−1

which is positive and bounded because η and ζ are positive and bounded. From (4.62)
it therefore follows that −cH33

S ≤ H̃33 ≤ −cH33S, hence H̃33 is spectrally equivalent
to S. Since H̃11, H̃22 and H̃33 are spectrally equivalent to η(K − K), R and S,
respectively, H is spectrally equivalent to H̃ and the Lemma follows.

Theorem 4.8. The spectrum of P−1
t A is bounded by the positive constants C0

and C1 from Lemma 4.7:

(4.64) σ
(

P−1
t A

)

⊂ [C0, C1] .

Proof. The proof can be found in Klawonn [7, Theorem 3.5], and is provided
here for completeness. The constants C0 and C1 of Lemma 4.7 provide the lower and
upper bounds for the eigenvalues of the generalized eigenvalue problem

(4.65) HP−1
t Ax = λHx.

Since H is non-singular, the eigenvalues of the above problem are the same as the
eigenvalues of

(4.66) P−1
t Ay = λy.

We have thus far considered a lower block triangular preconditioner Pt (4.28).
An alternative would be to consider an upper block triangular preconditioner

(4.67) PtU =






ηK GT GT

0 R 0
0 0 S




 .

It was noted by Klawonn [7] that since

(4.68) HP−1
t A = AP−1

tU H,

the results in this section also apply to the spectrum of AP−1
tU .

Klawonn [7, Corollary 3.6] shows that H−1 defines an inner product on R
nu+2np

and that P−1A is symmetric positive definite in this inner product. This implies
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that one might employ the conjugate gradient method in the H−1 inner product.
Due to Theorem 4.8, this then results in optimality in h of the preconditioned CG
method. We, however, use the ℓ2 norm since using the H−1 inner product is not
computationally practical. A consequence of this choice is that we will require Krylov
methods for non-symmetric matrices. We consider both GMRES and Bi-CGSTAB.

Klawonn [7, Theorem 3.7] provides bounds on the convergence rate of the GM-
RES method using a norm equivalent to the H−1-norm, while Theorem 3.8 of [7]
provides bounds of the convergence rate of the GMRES method in the ℓ2-norm. The
convergence rate of the GMRES method in the ℓ2-norm, unfortunately, depends on
the condition number of the matrixH1/2. This condition number may depend on h, η,
ζ and k. Our numerical simulations in Section 6, however, do not show problem-size
dependence and show only slight dependence on the parameters η, ζ and k. Problem
size independence was also observed in [7]. In particular, the higher the bulk-to-shear-
viscosity ratio, the more iterations are required to converge to a given tolerance. This
is explained in Lemma 4.6 by noting that for small ηζ−1, the constant β1, defined
by (4.39), tends to zero. This implies that C̃0 and C̃1 tend to, respectively, zero
and infinity, leading to an unbounded spectrum of HP−1

t A in the limit of large bulk-
to-shear-viscosity ratio. The simulation results seem less dependent on k. Further
discussion of the parameters k, η and ζ is deferred to Section 6.

4.2.3. Variable parameter case. Theorem 4.8 states that the spectrum of
P−1
t A, where Pt is the preconditioner given by (4.28), is bounded above and below

by constants independent of h. This indicates that Pt will be a good preconditioner
for the system (4.1). To achieve this result we assumed k, η and ζ to be constant and
that K, R and S satisfy (4.29). For non-constant physical parameters we propose to
replace ηK by Kη and set

(4.69) R = −Qη − Ck, S = −Qζ
η,

which are such that they reduce to (4.26) and (4.27), respectively, when the physical
parameters are constant. Here Kη and Ck are the matrices defined in Section 3 and
Qη and Qζ

η are the matrices obtained from the discretization of the bi-linear forms

dη(·, ·) and dζη(·, ·), respectively, defined by

(4.70) dη(p, ω) =

∫

Ω

η−1pω dx, dζη(p, ω) =

∫

Ω

(

(2η)−1 + ζ−1
)

pω dx.

5. Block-diagonal preconditioner. The system in (4.1) is symmetric and
therefore the use of MINRES would be allowed so long as the preconditioner is sym-
metric and positive definite. The advantage of this over using GMRES with the lower
block triangular preconditioner of Section 4.1 is that less memory is required; the ad-
vantage over Bi-CGSTAB is that MINRES is guaranteed to converge (subject to the
usual floating-point caveats). These advantages motivate us to consider block-diagonal
preconditioners for (4.1). In working toward a diagonal preconditioner, ignoring the
off-diagonal blocks of (4.28) leads to a preconditioner of the form

(5.1) P⋆
d =





ηK 0 0
0 R 0
0 0 S



 ,

where K, R and S are chosen such that they satisfy (4.29). This preconditioner is
symmetric but not positive definite. Multiplying P⋆

d by the block diagonal matrix
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J = bdiag(Iu,−Ip,−Ip), where Iu ∈ R
nu×nu and Ip ∈ R

np×np are identity matrices,
we obtain the symmetric positive definite preconditioner

(5.2) Pd =





ηK 0 0
0 −R 0
0 0 −S



 ,

which we propose for use with the MINRES method.
As in the previous section, for non-constant physical parameters η, ζ and k, we

propose to replace ηK by Kη and we let R and S be given by (4.69).
By contrast to the block-triangular preconditioner, we have not been able to

prove boundedness of the spectrum for this block diagonal preconditioner. Instead,
in Section 6 we investigate its properties by computation.

6. Numerical simulations. In this section we examine numerically the per-
formance of the proposed preconditioners. For both the block-triangular and block-
diagonal preconditioners we consider two approaches for the action of the inverse of
the matricesK,R and S; LU decomposition (denoted by PLU ) and algebraic multigrid
(AMG, denoted PAMG). We use the LU decomposition as reference preconditioner
to which the AMG preconditioner can be compared. The LU-based preconditioner,
however, is not suitable for large-scale computations. We also remark that with the
LU preconditioner, the constants in (4.29) are all equal to unity. When using the
AMG-based preconditioners, we use smoothed aggregation algebraic multigrid for the
K block and classical algebraic multigrid for the R and S blocks. We use a single
multigrid V-cycle, and unless otherwise stated, for smoothed aggregation we use four
applications of a Chebyshev smoother with one symmetric Gauss–Seidel iteration for
each Chebyshev application. Although we use AMG to compute the action of the
inverse of the matrices K, R and S, we note that any spectrally equivalent operator
may be used.

In all test cases we use P 2–P 1–P 1 continuous Lagrange finite elements on sim-
plices; this combination satisfies (4.3) and will be inf–sup stable since ζ−1 > 0. More
is needed when ζ−1 = 0. We terminate the solver once a relative true residual of 10−8

is reached. In the case of GMRES, we use a restarted method with restarts after k
iterations. We denote this by GMRES(k).

All experiments have been performed using libraries from the FEniCS Project [8,
9] and the block preconditioning support from PETSc [10]. For smoothed aggregation
AMG, we use the library ML [11] while classical algebraic multigrid is used via the
BoomerAMG library [12]. The source code for reproducing all examples is freely
available in the supporting material [13].

6.1. Constant bulk and shear viscosity test case in two dimensions. In
this test case we consider the simplified two-phase flow equations in (2.2). For the
parameters in (2.3), we set η = 1, ζ = α+ 1/3 and

(6.1) k =
k∗ − k∗
4 tanh(5)

(
tanh(10x− 5) + tanh(10z − 5)

+
2(k∗ − k∗)− 2 tanh(5)(k∗ + k∗)

k∗ − k∗
+ 2

)

,

where k∗ and k∗ are parameters that control the maximum and minimum values of k
is a domain. We ignore the buoyancy terms but prescribe a source term f in (2.3a).
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The Dirichlet boundary condition and the source term are constructed such that the
exact solution is

ux = k∂xp+ sin(πx) sin(2πz) + 2,(6.2)

uz = k∂zp+
1

2
cos(πx) cos(2πz) + 2.(6.3)

p = − cos(4πx) cos(2πz),(6.4)

We consider this test case on a structured triangular mesh of the unit square Ω =
[0, 1]2. This test case was studied in [2].

6.1.1. Iteration counts for different preconditioners. We first consider the
case of (k∗, k

∗) = (0.5, 1.5) for the diagonal and block triangular preconditioners. Ta-
ble 6.1 presents the iteration counts for the two-field preconditioner from [2] and
the three-field block diagonal preconditioner from this work, using MINRES. In both
cases, LU and AMG versions are considered. The results in Table 6.1 show that the
LU versions of the preconditioners are optimal, with the three-field version showing
some sensitivity to the α parameter. Of greater interest is the performance of the
AMG-based preconditioners. In this case, the iteration count of the three-field pre-
conditioner is largely insensitive to the problem size or the α parameter. For the
two-field AMG preconditioner, the iteration count has a strong dependency on α. It
is this observation from [2] that motivated the present work.

Tables 6.2 and 6.3 present the number of iterations required to converge for the
block triangular preconditioner using Bi-CGSTAB and GMRES(100), respectively.
Compared to the three field diagonal preconditioner, the triangular preconditioner
requires fewer iterations. For the AMG-based cases, the three-field preconditioner
requires two to four times fewer iterations than the two-field preconditioner when
α = 100 and α = 1000. Noteworthy is that the Bi-CGSTAB tests require fewer
iterations than the GMRES(100) tests. Overall, the three-field preconditioners show
less sensitivity to the parameter α than the two-field preconditioner of Rhebergen
et al. [2] (see Table 6.1).

6.1.2. Observed convergence rates. To understand the behaviour of the two-
and three-field preconditioners, it is helpful to examine the change in the residual with
iteration count. This is shown in Figure 6.1 for the AMG-based two- and three-field
block diagonal preconditioners with MINRES, and the block-triangular preconditioner
with Bi-CGSTAB and GMRES(100). We observe that the residual with the two-field
preconditioner reduces rapidly to a relative residual of approximately 10−4, at which
point the convergence slows. This behaviour is not observed with the three-field
preconditioners.

We note that dropping just three orders in magnitude in the residual is a crite-
rion for convergence that is commonly used. With a relative tolerance of 10−3, the
performance of the two field preconditioner would appear to be very good and we
would draw substantially different conclusions on the relative merits of the two- and
three-field formulations. However, we have performed tests that show that a much
tighter tolerance is required to maintain the convergence rates to the exact solution
with mesh refinement. We discuss this in Appendix B.

6.2. Variable bulk and shear viscosity test case in two dimensions. In
this test case we consider a manufactured solution for the prescribed porosity field

φ =
1

2
(φ∗ + φ∗) +

1

2
(φ∗ − φ∗) cos(4π(x sin(π/6) + z cos(π/6))),
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Table 6.1: Iteration counts for constant bulk and shear viscosity tests using the two-
and three-field block diagonal preconditioners for different values of α. The number
of cells in the mesh is 2N .

PLU
d2 /MINRES

N α = − 1

3
α = 0 α = 1 α = 10 α = 100 α = 1000

322 8 8 8 7 7 5
642 8 8 8 7 7 5
1282 8 8 7 7 7 5
2562 7 6 6 6 7 4

PLU
d3 /MINRES

N α = − 1

3
α = 0 α = 1 α = 10 α = 100 α = 1000

322 8 15 22 33 39 39
642 8 15 21 33 37 39
1282 8 15 21 33 37 39
2562 8 13 21 33 39 39

PAMG
d2 /MINRES

N α = − 1

3
α = 0 α = 1 α = 10 α = 100 α = 1000

322 19 19 23 40 93 238
642 23 25 29 48 115 289
1282 26 29 33 57 133 338
2562 30 32 36 66 155 388

PAMG
d3 /MINRES

N α = − 1

3
α = 0 α = 1 α = 10 α = 100 α = 1000

322 29 25 35 60 73 82
642 34 29 39 66 84 73
1282 38 32 43 73 97 84
2562 43 36 46 78 108 95

where φ∗ and φ∗ are prescribed and φ∗ ≤ φ ≤ φ∗. Let η, ζ and k be given by

(6.5) k =
R2

rζ + 4/3

(
φ

φ0

)m

, η = 2 exp(−λ(φ− φ0)), ζ = rζ

(
φ

φ0

)−1

,

where R = δ/H , with δ the reference compaction length δ =
√
(rζ + 4/3)η0k0/µ,

µ is the (constant) melt viscosity, k0 is the characteristic permeability, η0 is the
characteristic shear viscosity, rζ = ζ0/η0 with ζ0 the characteristic bulk viscosity and
H a length scale. Furthermore, φ0 is the characteristic porosity and m and λ are
constants. We choose m = 2, λ = 27, rζ = 5/3, R = 0.1 and φ0 = 0.05. As before, we
neglect buoyancy and add a source term f to the right hand side of (2.3a). Again the
Dirichlet boundary condition and the source term are such that the exact solution for
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Table 6.2: Iteration counts for the constant bulk and shear viscosity tests using the
three-field block triangular preconditioner and Bi-CGSTAB for different values of α.
The number of cells in the mesh is 2N .

PLU
t /Bi-CGSTAB

N α = − 1

3
α = 0 α = 1 α = 10 α = 100 α = 1000

322 2 5 7 10 12 12
642 2 4 7 11 13 13
1282 2 4 7 11 13 13
2562 2 4 7 11 13 14

PAMG
t /Bi-CGSTAB

N α = − 1

3
α = 0 α = 1 α = 10 α = 100 α = 1000

322 6 7 10 20 25 27
642 8 8 12 22 28 34
1282 10 9 12 23 36 41
2562 11 10 12 27 41 50

Table 6.3: Iteration counts for the constant bulk and shear viscosity tests using the
three-field block triangular preconditioner and GMRES(100) for different values of α.
The number of cells in the mesh is 2N .

PLU
t /GMRES(100)

N α = − 1

3
α = 0 α = 1 α = 10 α = 100 α = 1000

322 4 8 12 19 21 21
642 4 8 12 19 21 22
1282 4 8 12 19 22 23
2562 4 8 12 18 22 23

PAMG
t /GMRES(100)

N α = − 1

3
α = 0 α = 1 α = 10 α = 100 α = 1000

322 11 13 18 33 41 45
642 13 14 21 39 50 54
1282 15 16 24 42 58 48
2562 18 18 27 48 66 58

the velocity u and the pressure p are given by (6.2), (6.3) and (6.4). The approximate
solution is computed on a structured triangular mesh of the unit square, Ω = [0, 1]2.
For the tests in this section, we fix φ∗ = 0.3 and vary φ∗.

To compare more fairly the three-field block diagonal preconditioner Pd3 with
the two-field block diagonal preconditioner Pd2 introduced in [2], we slightly mod-
ify the two-field block-preconditioner of [2] to include a porosity dependence. This
modification is described in Appendix C.
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Fig. 6.1: Residual decrease using preconditioned MINRES (with PAMG
d2 and PAMG

d3 )
and preconditioned Bi-CGSTAB and GMRES(100) (with PAMG

t ) for the unit square
test of Section 6.1. In all cases a mesh size of N = 2562 and α = 1000 are used.

Table 6.4: Iteration counts for the block diagonal preconditioners using MINRES for
the variable viscosity test in two dimensions. The number of cells in the mesh is 2N .
A dash indicates that we could not compute a converged solution to to breakdown of
the solver.

PLU
d2 /MINRES PAMG

d2 /MINRES
N φ∗ = 10−3 φ∗ = 10−5 φ∗ = 0 φ∗ = 10−3 φ∗ = 10−5 φ∗ = 0
322 76 - - 317 - -
642 71 - - 382 - -
1282 70 - - 428 - -
2562 67 - - 463 - -

PLU
d3 /MINRES PAMG

d3 /MINRES
N φ∗ = 10−3 φ∗ = 10−5 φ∗ = 0 φ∗ = 10−3 φ∗ = 10−5 φ∗ = 0
322 217 218 219 249 251 251
642 223 226 226 227 229 229
1282 216 222 222 227 243 243
2562 213 244 247 239 297 299

In Table 6.4 we record the number of iterations for the block diagonal precondi-
tioners with MINRES for different values of φ∗. For the AMG-based preconditioner,
the iteration count is lower for the three-field preconditioner. For low values of φ∗ we
could not compute converged solutions with the two-field preconditioner. Tables 6.5
and 6.6 record the number of iterations for the block triangular preconditioner using
Bi-CGSTAB and GMRES(100), respectively. We observe minimal sensitivity to φ∗

and, again, the iteration count for Bi-CGSTAB is significantly lower than for GM-
RES(100). For both Bi-CGSTAB and GMRES(100), the iteration counts with the
block triangular preconditioner are significantly less than for the two- and three-field
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Table 6.5: Iteration counts for the block-triangular preconditioner using Bi-CGSTAB
for the variable viscosity test in two dimensions. The number of cells in the mesh
is 2N .

PLU
t /Bi-CGSTAB PAMG

t /Bi-CGSTAB
N φ∗ = 10−3 φ∗ = 10−5 φ∗ = 0 φ∗ = 10−3 φ∗ = 10−5 φ∗ = 0
322 72 75 68 71 70 69
642 63 69 65 61 60 61
1282 69 67 68 51 52 51
2562 69 61 54 48 64 72

Table 6.6: Iteration counts for the block-triangular preconditioner using GMRES(100)
for the variable viscosity test in two dimensions. The number of cells in the mesh
is 2N .

PLU
t /GMRES(100) PAMG

t /GMRES(100)
N φ∗ = 10−3 φ∗ = 10−5 φ∗ = 0 φ∗ = 10−3 φ∗ = 10−5 φ∗ = 0
322 124 112 123 121 115 115
642 108 118 114 92 94 94
1282 113 104 98 85 86 86
2562 96 104 104 81 102 102

block-diagonal preconditioners with MINRES.

6.3. Constant bulk and shear viscosity test case in three dimensions.
In this test case we consider a subduction zone setting with a geometry described in
Figure 6.2 (this is the same geometry used in [2]). Boundary sub-domains are defined
as Γ1 = {x |x + z = 1}, Γ2 = {x | z = 1}, Γ3 = ∂Ω\(Γ1 ∪ Γ2). In this test case we
solve the simplified two-phase flow equations in (2.2). For the parameters in (2.3),
we set η = 1, α = 1000, ζ = α + 1/3, k = 0.9(1 + tanh(−2r)), with r =

√
x2 + z2,

and φ = 0.01. This test case was studied also in [2].
We apply the boundary conditions given by (2.4) with g = (1/

√
2, 0.1,−1

√
2) and

g = (0, 0, 0) on, respectively, Γ1 and Γ2, and gN = (0, 0, 0) on Γ3.
We compute the solution to this test case on three unstructured meshes with an

increasing number of degrees of freedom. We only consider the AMG-based precon-
ditioners. In Table 6.7 we present the number of iterations needed for convergence.
The reduced iteration counts for the three-field formulation, relative to the two-field
formulation, is clear. This is especially so for the Bi-CGSTAB case.

6.4. Porosity dependent test case in three dimensions. In this test case we
again consider the subduction zone-like domain in Figure 6.2. We set Γ1 = {x |x+z =
1, x > 0.1} and solve (2.3) with the constitutive relations in (6.5), although we slightly
modify the bulk viscosity. For the bulk viscosity we use

(6.6) ζ−1

mod
=

{

ζ−1 if ζ−1 > ζ−1
c

ζ−1
c otherwise,

with ζ−1
c being a cut-off inverted bulk viscosity. We choose ζ−1

c = 10−4 which roughly
corresponds to α = 1000 in (2.2). Other constants are chosen as m = 2, λ = 27,
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Fig. 6.2: Description of a wedge in a three-dimensional subduction zone used for the
test cases described in Sections 6.3 and 6.4.

Table 6.7: Iteration counts for the block preconditioners for the three-dimensional
wedge domain with constant viscosity.

DOFs PAMG

d2
/MINRES PAMG

d3
/MINRES PAMG

t
/Bi-CGSTAB PAMG

t
/GMRES(100)

419,486 694 366 123 193
1,905,881 772 280 71 115
8,493,971 766 258 74 144

rζ = 5/3, R = 0.1 and φ0 = 0.05. A modified bulk viscosity (6.6) is needed to prevent
the system of equations in (2.3) becoming under-determined; without the modified
bulk viscosity both (2.3b) and (2.3c) reduce to ∇ · u = 0 in the limit φ→ 0.

We prescribe the porosity field

(6.7) φ = (φ∗−φ∗) exp

(

− (x− xc)
2 + (y − yc)

2

2ω2

)

+φ∗, ω = (ω∗−ω∗)
z − 1

zc − 1
+ω∗,

with φ∗ = 0.2, φ∗ = 0, xc = 0.3, yc = 0.5, zc = 1− xc, ω
∗ = 0.07 and ω∗ = 0.01. The

porosity field is visualised in Figure 6.3a. We apply the boundary conditions in (2.4)
with g = (1/

√
2, 0.1,−1

√
2) on Γ1 and g = (0, 0, 0) on Γ2, and gN = (0, 0, 0) on Γ0

and Γ3. Once the solution (u, p, pc) to (2.3) has been computed, the magma velocity
may be recovered from

(6.8) uf = us −
k

φ
(∇p− e3) .

We depict the computed magma velocity in Figure 6.3b.
We compute the solution to this test case on three unstructured meshes with

differing numbers of degrees of freedom. It was not possible to compute a converged
solution for this test case with the two-field preconditioner (due to the low porosity)
and so we consider the three-field preconditioners only. We consider only the AMG-
based preconditioners.

Table 6.8 shows the number of iterations required to meet the convergence toler-
ance. We observe no pathological growth in the iteration count with mesh refinement;
on the contrary, the iteration count tends to drop with mesh refinement. We use un-
structured meshes for this test case, and speculate that the reduced iteration count
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(a) Porosity field. (b) Fluid velocity field.

Fig. 6.3: The given porosity field and computed fluid velocity in a three-dimensional
subduction zone. Test case of Section 6.4.

Table 6.8: Iteration counts for the variable viscosity wedge problem.

DOFs MINRES Bi-CGSTAB GMRES(300)
419,486 1607 320 918
1,905,881 1534 256 609
8,493,971 933 225 769

for finer meshes could be due to better mesh quality. Noteworthy, again, is the good
performance of Bi-CGSTAB.

6.5. Summary of numerical simulations. By numerical simulations we have
shown that for high bulk-to-shear-viscosity ratios, the three-field preconditioner is
more robust and has superior performance than the two-field preconditioner developed
in [2]. This parameter regime, which corresponds to low values of porosity, is common
in coupled magma/mantle dynamics simulations. It is exactly in this regime, where
compaction stresses dominate over shear stresses, that the two-field preconditioner
breaks down. The main reason to use a two-field preconditioner would be because
the global system is smaller than when using the three-field preconditioner. However,
for practical applications, the advantages of introducing the compaction pressure in
the three-field formulation as a new unknown certainly outweigh the increase in size
of the global system.

7. Conclusions. We have proposed, analysed, and numerically tested new pre-
conditioners for a three-field formulation of the flow equations for coupled magma/mantle
dynamics. The system of equations can be formulated as a two-field problem, but it
was shown numerically in our past work that a diagonal block preconditioner using
algebraic multigrid was not uniform with respect to a parameter that modulates com-
paction stresses. This motivated the development of preconditioners for a three-field
version of the equations, in which an extra pressure variable is introduced. Our anal-
ysis shows that for a lower block triangular preconditioner, the eigenvalues of the
preconditioned operator are independent of the problem size, and have a mild sensi-
tivity to the model parameters. The latter issue is associated with a degeneracy of
the model as porosity approaches zero. Numerical experiments indicate that the iter-
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ation count for solution of the three-field problem with the preconditioner developed
here does not grow with problem size and that the sensitivity to model parameters is
small. We therefore expect the preconditioners we have presented to be effective for
large-scale simulation of realistic subduction zones with large variations in parameters.
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Appendix A. Non-dimensionalization of the two-phase flow equations.
The two-phase flow equations that describe coupled magma/mantle dynamics,

as derived by McKenzie [1], are based on mass and momentum conservation. Mass
conservation for the solid (matrix) phase and fluid (melt) phase read

∂tφ−∇ ·
(
(1− φ)us

)
= 0,(A.1a)

∇ · (us + q) = 0,(A.1b)

where φ is the porosity, us is the velocity of the solid phase and q = φ
(
uf − us

)
, where

uf is the velocity of the melt phase. We have assumed that there is no melting/freezing
and we have taken the density of the solid and melt phases to be constant and uniform.
Momentum conservation of the melt phase (Darcy’s law) reads

(A.2) q = −k

µ
∇
(
pf + ρfgz

)
,

where k is the permeability, µ is the fluid viscosity, pf is the pressure in the fluid
phase, ρf is the mass density of the fluid and g is the constant acceleration due to
gravity. Momentum balance for the two-phase mixture reads

(A.3) −∇ · (2ηDus) +∇pf = ∇
((

ζ − 2

3
η

)

∇ · us

)

− ρ̄ge3,

where η is the shear viscosity of the solid, Dus =
1

2

(
∇us + (∇us)

T
)
is the strain rate,

ζ is the bulk viscosity, e3 is the unit vector in the z-direction, ρ̄ = ρfφ+ ρs(1− φ) is
the bulk density and ρs is the matrix mass density.

In this paper we are concerned with the efficient solution of (A.1b), (A.2) and (A.3)
for a given porosity field, hence we can discard (A.1a). Decomposing the melt pressure
as pf = p− ρsgz, where p is the dynamic pressure and ρsgz the ‘lithostatic’ pressure,
and substituting (A.2) into (A.1b) to eliminate the Darcy flux q, we obtain

−∇ · (2ηDus) +∇p = ∇
((

ζ − 2

3
η

)

∇ · us

)

+ g∆ρφe3,(A.4a)

∇ · us = ∇ ·
(
k

µ
∇ (p−∆ρgz)

)

,(A.4b)

where ∆ρ = ρs − ρf . Constitutive relations are required for the permeability and the
shear and bulk viscosities. For now we define

(A.5) k = k0k
′, η = η0η

′, ζ = ζ0ζ
′,

where k0, η0 and ζ0 are the characteristic permeability, shear viscosity and bulk
viscosity, respectively, and k′, η′ and ζ′ are non-dimensional functions that depend
on the porosity φ.

We non-dimensionalize (A.4) using

(A.6) us = u0u
′
s, x = Hx′, (η, ζ) = η0(η

′, rζζ
′), k = k0k

′, p = ∆ρgHp′,

where primed variables are non-dimensional, rζ = ζ0/η0, u0 is the velocity scaling
given by u0 = ∆ρgH2/η0 and H is a length scale. Dropping the prime notation, the
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two-phase flow equations (A.4) in non-dimensional form are given by

−∇ · (2ηDus) +∇p = ∇
((

rζζ −
2

3
η

)

∇ · us

)

+ φe3,(A.7a)

∇ · us = ∇ ·
(

R2

rζ + 4/3
k (∇p− e3)

)

,(A.7b)

where R = δ/H and δ =
√

(rζ + 4/3)η0k0/µ is the reference compaction length [14].
To simplify the notation, we re-define the non-dimensional permeability and shear

and bulk viscosities as

(A.8) k← R2

rζ + 4/3
k, η ← 2η, ζ ← rζζ,

so that (A.7) becomes

−∇ · (ηDus) +∇p = ∇
((

ζ − 1

3
η

)

∇ · us

)

+ φe3,(A.9a)

∇ · us = ∇ ·
(
k (∇p− e3)

)
.(A.9b)

Appendix B. Rates of convergence of the finite element discretization.

In this appendix we consider the rate at which the numerical error in the velocity
and fluid pressure fields decreases as function of the cell size. We use a quadratic
polynomial approximation for the velocity and a linear polynomial approximation for
the pressures, and let h be a measure of the cell size.

Table B.1 presents the error in the L2 norm for the two velocity components,
(u, v), and fluid pressure, p, and rates at which the errors reduce with decreasing h.
We show the errors and rates of convergence when the solver is terminated at: (a) a
relative preconditioned residual of 10−10; and (b) a relative preconditioned residual
of 10−5. When the relative preconditioned residual reaches 10−10 we observe that
the L2 errors of the velocity and pressure converge at O(h3) and O(h2), respectively.
However, when we compute the error with a relative preconditioned residual of only
10−5, the error stagnates, with no reduction in the error with mesh refinement. Similar
behaviour is observed for the two field formulation.

Appendix C. Two-field preconditioner including viscosity.
In this appendix we extend the two-field preconditioner of [2] to include a porosity

dependence. The idea is based on that of Grinevich and Olshanskii [15], in which we
scale the pressure mass matrix by the viscosity. The two-field preconditioner is given
by:

(C.1) P2 =

[

K̃η 0
0 Qη + Ck

]

,

where Qη, Ck and K̃η are the matrices obtained from, respectively, the discretization
of the bilinear forms dη(·, ·) in (4.70), c(·, ·) in (3.2c) and ã(·, ·) which is defined as

(C.2) ã(u,v) =

∫

Ω

ηDu : Dv dx+

∫

Ω

(

ζ − 1

3
η

)

(∇ · u)(∇ · v) dx.
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N ‖u− uh‖2 rate ‖v − vh‖2 rate ‖p− ph‖2 rate

Relative preconditioned residual: 10−10

162 3.48E-02 4.0 2.00E-02 4.2 4.80E-02 1.8
322 3.70E-03 3.2 1.95E-03 3.4 1.25E-02 1.9
642 4.56E-04 3.0 2.36E-04 3.0 3.16E-03 2.0
1282 6.00E-05 2.9 3.16E-05 2.9 7.92E-04 2.0
2562 8.96E-06 2.7 4.95E-06 2.7 1.98E-04 2.0

Relative preconditioned residual: 10−5

162 3.53E-02 4.0 2.04E-02 4.2 4.91E-02 1.8
322 5.75E-03 2.6 4.38E-03 2.2 1.73E-02 1.5
642 4.10E-03 0.5 4.00E-03 0.1 1.25E-02 0.5
1282 4.01E-03 0.0 4.03E-03 -0.0 1.22E-02 0.0
2562 4.01E-03 0.0 4.05E-03 -0.0 1.23E-02 -0.0

Table B.1: Converge of the finite element solution for P 2–P 1–P 1 elements on a unit
square test with α = 1 and (k∗, k

∗) = (0.5, 1.5) with different stopping criteria for the
linear solver. Here (u, v) are the two velocity components and p is the fluid pressure.


