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Self-adaptive so�ware (SAS) can recon�gure itself to adapt to the changing environment at runtime, aiming

for continually optimizing con�icted non-functional objectives, e.g., response time, energy consumption,

throughput and cost etc. In this paper, we present Feature guided and knEe driven Multi-Objective optimization

for Self-Adaptive so�wAre (FEMOSAA), a novel framework that automatically synergizes the feature model

and Multi-Objective Evolutionary Algorithm (MOEA), to optimize SAS at runtime. FEMOSAA operates in

two phases: at design time, FEMOSAA automatically transposes the engineers’ design of SAS, expressed as a

feature model, to �t the MOEA, creating new chromosome representation and reproduction operators. At

runtime, FEMOSAA utilizes the feature model as domain knowledge to guide the search and further extend

the MOEA, providing a larger chance for �nding be�er solutions. In addition, we have designed a new method

to search for the knee solutions, which can achieve a balanced trade-o�. We comprehensively evaluated

FEMOSAA on two running SAS: one is a highly complex SAS with various adaptable real-world so�ware

under the realistic workload trace; another is a service-oriented SAS that can be dynamically composed from

services. In particular, we compared the e�ectiveness and overhead of FEMOSAA against four of its variants

and three other search-based frameworks for SAS under various scenarios, including three commonly applied

MOEAs, two workload pa�erns and diverse con�icting quality objectives. �e results reveal the e�ectiveness

of FEMOSAA and its superiority over the others with high statistical signi�cance and non-trivial e�ect sizes.
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1 INTRODUCTION
Self-Adaptive So�ware (SAS) is a special type of so�ware that is capable of adapting and recon�g-

uring itself at runtime, through a set of known features (e.g., CPU cap, thread pool size and cache

size, etc), according to the changing environment [17]. One major goal of SAS is to continually

optimize multiple and o�en con�icting non-functional objectives, e.g., response time versus energy

consumption, throughput versus cost, etc. However, given the dynamic and uncertain nature of

running so�ware, it is di�cult to fully specify all possible conditions and their adaptation solutions

at design time. �us, designing an e�cient and e�ective runtime optimization approach is nec-

essary, yet challenging. Depending on the complexity of SAS, so�ware engineers have exploited

various search algorithms, e.g., exact or stochastic search, for continually �nding the optimal (or

near-optimal) adaptation solution for SAS at runtime [23][51][12][42][41][15][13].

To optimize SAS at runtime using the search algorithms, there are two crucial challenges: (i)

�rstly, it is di�cult to e�ectively and systematically convert the SAS design to the context of search

algorithmwhile considering the right encoding of features in the representation of optimization, e.g.,

using only the features that contribute to di�erent aspects of the variability of SAS. Here, the features

might be categorical or numeric, where the former refers to those with distinct characteristics,

e.g., the Cache feature is ‘on’ or ‘o�’; the la�er denotes those that can be quanti�ed, measured and

sorted, e.g., the size of max�reads. Furthermore, it is di�cult to e�ectively and systematically

handle the features’ dependencies, e.g., one can change Cache Mode only if the Cache feature is
‘turned on’. Dependency can become even more complex in the presence of numeric features, e.g.,

in Tomcat [2], the size of max�reads should not be less than the size of minSpare�reads. �ose

conversion tasks are non-trivial as the design of SAS can be complex and most search algorithms

cannot handle dependency constraints in nature. (ii) Secondly, optimizing multiple con�icting

objectives and managing their trade-o�s are complex and challenging, especially for SAS runtime.

�is is a�ributed to the huge number of alternative adaptation solutions and the required e�ciency

for the found solution to be e�ective. Moreover, the dynamic and uncertain nature of SAS further

complicates the con�icting relations between objectives, rendering the trade-o� surface di�cult

to be explored. �ose challenges, when not appropriately addressed, can result in compromised

quality, unacceptable running overhead and imbalanced trade-o� in SAS runtime optimization.

Most existing work fails to handle the �rst challenge as they have relied on a manual and/or

incomplete conversion of the SAS design into the search algorithm’s context [42][1][22][51],

which renders the process expensive, non-systematic and error-prone. Moreover, the feature

dependencies are o�en ignored, wasting the valuable function evaluations on invalid solutions at

SAS runtime while providing no guarantee on �nding the valid ones. Inspired by the applications

of search algorithms to So�ware Product Line problems [45], researchers [23][41] have combined

the feature model [33] with search algorithms to optimize SAS at runtime, considering categorical

dependencies. However, numeric features are ignored and a solution o�en encodes all the features

using a simple binary representation. �is might lead to the curse of dimensionality, and thereby

entailing unnecessary complexity at SAS runtime. Further, existing approaches cannot prevent

wasteful exploration of invalid solutions and di�cult to handle the dependencies related to numeric

features.

For the second challenge above, exact search [23] [9], with the helps of objective aggregation (e.g.,

a weighted sum), has been exploited for SAS runtime optimization. However, modern SAS o�en

exhibits high variability, leading to an explosion of the search space of all possible solutions and

rendering the problem intractable. Henceforth, exact search may fail to scale at runtime. In contrast,

stochastic search, particularly Evolutionary Algorithms that are widely applied in Search-Based

So�ware Engineering (SBSE), tends to be naturally robust in solving problems with extremely
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high number of alternatives and thus appealing for SAS optimization [29]. �ose algorithms,

when properly tailored, can lead to approximate and near-optimal solutions for complex so�ware

engineering problems with reasonable running time as of minutes, if not seconds [31]. Furthermore,

stochastic search has proven to be e�ective for many real-time systems [22][27][51][12]. O�en,

existing approaches rely on single-objective evolutionary algorithm to optimize SAS by simply

transforming a multi-objective problem into an aggregated single-objective one [42][27]. While

objective aggregation might be preferable for some contexts, it has been shown that there are cases

where assigning weights to di�erent objectives is a non-trivial task for so�ware engineers and

the aggregation can hardly maintain a good diversity of the solutions [29]. To alleviate this issue,

studies [1][22] [51] have used NSGA-II [20], a popular Multi-Objective Evolutionary Algorithm

(MOEA), to optimize SAS without using the weighted aggregation; they have shown that MOEA can

�nd more convergent and diverse solutions in the trade-o� surface than optimizing via objective

aggregation. However, NSGA-II has a coarse diversity preservation mechanism that is unable to

provide well distributed solutions in certain cases [52]. �erefore, it is desirable to have a general

framework that can easily work with di�erent MOEAs for optimizing SAS without su�ering the

limitation from one speci�c algorithm. In addition, given the fact that MOEAs produce a set of

non-dominated solutions, there is no established method for the SAS to choose an appropriate one

for adaptation at runtime, entailing the risk of imbalanced trade-o�s.

To address the aforementioned challenges and limitations, this paper presents Feature guided

and knEe driven Multi-Objective optimization for Self-Adaptive so�wAre (FEMOSAA), a novel

framework that automatically synergizes the feature model and a given MOEA, to optimize SAS at

runtime. Speci�cally, our contributions include:

— We rely on the feature model to represent the design of a given SAS with explicit considerations

of numeric features and their dependencies. In FEMOSAA, we provide an automatic and

systematic approach to transpose a given design of SAS, expressed as a feature model, into

the MOEA’s context at design time. Further, such transposition extends the internal structure

of MOEAs in order to improve their ability to search for be�er adaptation solutions at SAS

runtime. Notably, we contribute to the following in the transposition approach:

(1) To tailor the problem to be more suitable for SAS runtime, we discard the lengthy binary

encoding. Instead, our approach identi�es the elitist features from the feature model

to encode an elegant and polyadic chromosome representation in the MOEA. By elitist

features, we refer to those that cannot be removed in the optimization without damaging

the original variability of SAS while minimizing the length of encoding. �e bene�t of

such encoding is that (i) it is intuitive, simpler and enable direct dependency extraction

and (ii) reducing the number of genes helps to greatly shrink the search space and simplify

the dependency constraints, which also improves the quality of the solutions found while

shortening the running time of MOEA.

(2) To be�er guide the search and avoid exploring invalid solutions, our approach extracts

the feature dependencies with respect to the elitist features. �en, these dependencies

are injected into the basic mutation and crossover operators of the MOEA to create new

dependency aware operators. �ese operators can systematically steer the MOEA to focus

on exploring the valid solutions of SAS, creating a larger chance to �nd be�er ones.

— Without loss of generality, we design FEMOSAA in such a way that it can be seamlessly

integrated with di�erent MOEAs
1
to optimize SAS at runtime. �e elitist features and extracted

dependencies, as processed by the transposition approach at design time, are used to guide

1
In addition to MOEAs, FEMOSAA also works with single-objective evolutionary algorithms in which case the knee

selection method would be deactivated.
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the running behaviors of a given MOEA for SAS runtime optimization. In this work, we

run FEMOSAA with three fundamentally distinct yet widely-used MOEAs in the literature,

i.e., MOEA based Decomposition with STable-Matching model (MOEA/D-STM) [36], Non-

dominated Sort Genetic Algorithm-II (NSGA-II) [20] and Indicator Based EvolutionaryAlgorithm

(IBEA) [53].

— To achieve a balanced trade-o� in SAS optimization, FEMOSAA identi�es knee solutions

automatically from the �nal non-dominated set. �e knee solutions o�en imply well balanced

trade-o�s, such that any improvement on one objective of a knee will cause relatively severe

degradations on others.

— We conduct comprehensive experiments on two running SAS: one is a highly complex SAS

that consists of the eBay-like RUBiS benchmark [43] and a set of real-world adaptable so�ware

(i.e., Apache Tomcat [2], MySQL [40], Ehcache [3] and Xen [48]) under the realistic FIFA98

workload trace [5]; another is a service-oriented SAS that can be dynamically composed by

various services. We compare FEMOSAA with four of its variants (e.g., without dependency

aware operators) and three other state-of-the-art frameworks (i.e., DUSE [1], PLATO [42] and

FUSION [23]) under various scenarios, including three commonly appliedMOEAs (i.e., MOEA/D-

STM, NSGA-II and IBEA) and two di�erent workload pa�erns
2
(i.e., read-write and read-only)

along with diverse con�icting quality objectives. �e experiments reveal the e�ectiveness of

FEMOSAA and its superiority over the others when optimizing con�icting objectives for SAS,

with statistically signi�cant results and non-trivial e�ect sizes.

�e contributions have clear impact on the synergy between so�ware engineering for SAS and

evolutionary computation as FEMOSAA combines the strengths from both �elds. Unlike many SBSE

work that simply formulates the so�ware engineering problem as a classic optimization problem

for some MOEAs, our deeper synergy takes one step further by automatically and dynamically

extracting the domain information of SAS to extend the internal structure of MOEA, improving its

search ability. As a result, to control and exploit the power of MOEAs, the so�ware engineers of

SAS only need to provide the feature model when using FEMOSAA, without being an expert on

MOEA. In addition, FEMOSAA improves MOEA and provides insights for MOEA researchers to

design be�er algorithms for SAS, since the identi�ed elitist features and their dependencies serve

as the engineers’ systematic domain knowledge by which we can reduce the search space and

be�er guide the search, providing a larger chance for �nding be�er solutions.

�e reminder of this paper is organized as follows: Section 2 illustrates a detailed motivating

example of SAS. Section 3 presents the background and the extended notions of numeric features

in the feature model. Section 4 gives an overview of FEMOSAA. Section 5 illustrates our approach

that transposes a feature model to MOEA. Section 6 presents how the internal structure of existing

MOEAs can be extended to combine with our dependency aware operators and knee selection.

Experimental results, veri�ability and threats to validity are discussed in Section 7. Finally, Sections 8

and 9 present related work and conclusion respectively.

2 A DETAILED MOTIVATING SCENARIO OF SELF-ADAPTIVE SOFTWARE
While our work can be applied to di�erent contexts that demand runtime adaptation, we draw on

a representative and realistic SAS to motivate and illustrate the need. As shown in Figure 1, like

many SAS, the SAS example consists of two parts: an adaptable so�ware that is being managed

at runtime, and an engine that controls the adaptation. Additionally, the SAS contains a complex

so�ware stack consisting of RUBiS
3
[43], Apache Tomcat [2], Ehcache [3] and MySQL [40], running

2
Di�erent workload pa�erns will create diverse behaviors of the SAS.

3
An eBay like so�ware application with 26 services.
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Fig. 1. An example of SAS.

on the virtualization hypervisor Xen [48]. �e RUBiS benchmark serves as a representative of many

real-world so�ware applications that o�ers diverse functionalities and services to many end-users

concurrently. We can see from Figure 1, as the case of most practical so�ware applications, the

SAS’s so�ware stack contains many o�-the-shelf real-world so�ware as described above. Each of

the so�ware supports various control features, which, together with those from the other so�ware

in the stack, can be changed dynamically on-the-�y to in�uence the runtime behaviors of the

so�ware system. Example of the control features includes the number of threads, the memory

allocation and enabling/disabling cache mechanism, etc. By design, all the possible con�gurations

of control features form the search space, or variability of the SAS. As the workload changes, the

SAS is capable of adapting the features at runtime to optimize for various non-functional quality

a�ributes, e.g., response time. To achieve such goal, thanks to the rapid development of search

algorithms, through which the SAS is o�en designed as to continually search for the combination

of feature con�gurations that lead to the optimal (or near optimal) quality at runtime. However, to

e�ectively and e�ciently engineer the SAS in this way is challenging for the following reasons:

Encoding the Features from the SAS Design. Consider a complex SAS which contains many

features and con�gurations, systematically and generically choosing the right features and encode

them into the representation of search algorithm is di�cult. To optimize the SAS at runtime, such

representation de�nes the fundamental search space of the problem to be explored, therefore the

encoding of features could have positive or negative impact on the search ability of a potential

search algorithm. Given that some features in the SAS design do not contribute to the SAS’s

variability or they can represent the same aspect of variability [6], existing work [23] [41] that

simply encodes all features in a binary format is unnecessary. Suppose a feature model with 100

features, binary representation can easily create a search space of 2
100

and this, as we will show in

Section 7.4.1, can negatively a�ect the adaptation quality and overhead.

Handling the Dependencies in the SAS Design. Many widely-used exact and stochastic

search algorithms, e.g., MOEA, are not designed to handle dependencies constraints. �is makes

the treatment of dependencies di�cult especially when the dependencies in SAS come in a mixture

of categorical dependencies, e.g., Cache Mode require Cache, and numeric ones, e.g., max�reads ≥
minSpare�reads. As we will show in Section 7.4.2, those dependencies, when ignored [42] [1] [27]

or incorrectly handled [23] [41] (as in existing work), can degrade the adaptation quality.

Explosion of the Search Space. Modern SAS o�en has high variability leading to an explosion

of the search space. For example, the original design of the SAS shown in Figure 1 has a search

space of more than a billion, which we will elaborate in details at Section 3.3.
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Trade-o� on the Con�icting Objectives. SAS o�en exhibits multiple con�icting quality

objectives, e.g., response time versus energy consumption and throughput versus cost, which need

to be optimized simultaneously and trade-o� needs to be made to comprise some of them. In

general, many existing approaches [42] have assumed that the relative importance of objectives can

be correctly quanti�ed as numeric weights, which has been found to be di�cult in some cases [29].

�ose weights, when inappropriately speci�ed and expressed, would inevitably create negative

impact on the search process and result in unwanted bad adaptation quality. It is even more di�cult

to achieve balanced trade-o�.

�ese di�culties motivate our work, which automatically synergizes the feature model of SAS

and a given MOEA, creating feature guided MOEA with knee selection, to optimize SAS at runtime.

Algorithm 1 General algorithmic process of MOEA

Input: given mutation rate rm , crossover rate rc and the maximum number of evaluation evalmax , which is o�en equivalent to the size

of population × the maximum number of generations

Output: a set of optimized non-dominated solutions

1: start evolution
2: P = ∅
3: eval = 0

4: for i = 1 to Psize do
5: S = getRandomSolution()

6: evaluateFitness(S )

7: eval = eval + 1
8: P = P + S
9: end for
10: while eval < evalmax do
11: P0 := ∅
12: while |P0 | ≤ Psize do
13: parents := doMatingSelection(P )

14: of f spr inд := doCrossover(parents , rc )

15: for each solution S in of f spr inд do
16: doMutation(S , rm )

17: end for
18: evaluateFitness(of f spr inд)

19: eval := eval + |of f spr inд |
20: P0 := P0 ∪ of f spr inд
21: end while
22: P := P ∪ P0
23: doSurvivalSelection(P , Psize )

24: end while
25: return getNonDominatedSolutions(P )

26: end evolution

3 BACKGROUND AND PRELIMINARIES
3.1 Multi-Objective Evolutionary Algorithm (MOEA)
Evolutionary algorithm, a stochastic search-based meta-heuristic, has been widely accepted as a

major approach for solving multi-objective optimization problems [19], in which case it is also

known as MOEA. In MOEA, the population contains a set of solutions (individuals), each of which

is represented by a �xed-length thread-like chromosome carrying di�erent values at each gene. As

shown in Figure 2 and Algorithm 1, the evolutionary search of MOEA starts a�er the initialization

of the population (line 2 to 9). During the search process, the elite information can propagate

from the parents to the o�spring via some random and probabilistic reproduction operations (i.e.,

crossover and mutation) upon the mating parents chosen from the mating selection procedure.

Inspired by the survival of the ��est rule from the evolutionism, the survival selection preserves

the high quality individuals, having superior �tness values, to the next iteration (generation), as

shown from line 10 to 24. �e evolution process repeats until a stopping criteria, e.g., a prede�ned

function evaluation threshold, is satis�ed. �e major di�erence between MOEA and the classic
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single-objective evolutionary algorithm lies in the mating and survival selection mechanisms. In

particular, instead of �nding a single optimal (or near optimal) solution as in the single-objective

evolutionary algorithm, MOEA aims to �nd a set of non-dominated solutions
4
that approximates

the Pareto Front with a good convergence and uniform distribution (line 25). Notably, for every

solution in the non-dominated set, any improvement of an objective will result in a degradation for

at least one other objective.

Generally, the existing MOEAs can be divided into the following three categories according to

the survival selection mechanisms:

• Decomposition-based method: �e MOEA decomposes the original multi-objective optimiza-

tion problem into several single-objective optimization subproblems by linear or non-linear

aggregation methods [38]. �en, it uses a population-based technique to solve these subprob-

lems in a collaborative manner. MOEA/D [52], MOEA/D-STM [36] and NSGA-III [18] are the

representative algorithms of this sort.

• Pareto-based method: �e MOEA uses Pareto dominance relation as the primary selection

criterion to push the solutions towards the Pareto front as close as possible. In the meanwhile, it

employs some density estimation techniques, e.g., the crowding distance [20] and the clustering

analysis [54], to maintain the population diversity. �e representative algorithms are NSGA-

II [20], SPEA2 [54] and PAES [34] etc.
• Indicator-based method: Here, sophisticated performance indicators are designed to measure

the overall quality of a solution set. �e representative algorithm is IBEA [53], which transfers

the multi-objective optimization problem into a new single-objective one that aims to �nd the

optimal set of solutions with respect to a given indicator.

3.2 Knee Solutions
�eMOEA generates a set of non-dominated solutions that approximate the Pareto front. However,

not every non-dominated solutions can lead to balanced trade-o� for SAS runtime optimization.

Indeed, the most common purpose of MOEA is to search and visualize a set of non-dominated

solutions that are as close to the true Pareto front as possible. �en, a human decision maker can

pick whichever solution that s/he prefers. However, there is no such a human available in the SAS

optimization problem. �erefore, a method is required to pick a sole solution from the resulted set

of non-dominated solutions to execute adaptation.

A simple Pareto optimal front is shown in Figure 3 where the two objectives should be minimized.

Clearly, solutions near the edges strongly favor one objective over the other but there is a visible

bulge around the middle, which is the knee region. �ose solutions in the knee region (or simply

knee solutions) are characterized by the fact that a small improvement in either objective will cause

4
A solution dominates another if it has at least one objective be�er than another while all other objectives are not worse

than another. Non-dominated solutions denote those solutions that are not dominated by any other solutions in the set.
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a large deterioration in the other. In case where the human intervention is limited while the two

objectives are equally important; or it is di�cult to correctly weight them (which is common for

SAS), the knee solutions are more balanced than the others and they are almost the most preferable

ones. �is is because the knee solutions achieve a good sense of compromise, while moving the

solution in any direction from the knee region would create a bias towards an objective, leading

to imbalanced adaptation results. Finding the knee solutions is challenging because real-world

runtime SAS problems may not pose a perfect convex objective surface as shown in Figure 3.

3.3 Feature Model with Numeric Features
�e feature model [16], expressed as the tree structure, is a widely used notation for so�ware

engineers to represent the functional variability of a so�ware [6]. In the feature oriented domain

analysis, the feature model is particularly important for expressing the possible variations under

which a so�ware system can operate in order to improve functional and non-functionary quality [33].

In this perspective, features de�ne the prominent or distinctive aspects between di�erent variations

of a so�ware system [33], which range from high-level architectural elements (an entire component)

to low-level con�gurations (a speci�c parameter).

In the context of SAS, the inherited concept of a feature model allows it to de�ne the extent

to which the SAS is able to adapt at runtime, i.e., a range of variations that the SAS can achieve.

Given such nature, there has been some successful a�empts that apply the feature model to design

SAS [23][41]. �erefore, to correctly exploit the feature model for SAS, the so�ware engineer must

identify (i) the variations of di�erent features that are supported by the SAS; and (ii) the dependency

constraints that determine the validity of a given variation (adaptation solution). However, while

the feature model is useful to express the variability of SAS, i.e., the search space of the adaptation

decision making problem, it does not correlate the e�ects of those variations to the concerned

quality a�ributes. �erefore, in this work, we exploit additional system model to evaluate how a

variation can a�ect the quality of SAS, as we will discuss in Section 7.2.

Figure 4 shows an example of a feature model for one of the SASs we study in this paper
5
. As

we can see there are four types of in-branch relation between a feature and its parent:

• Optional refers to the feature might be deselected, e.g., Cache.
• Mandatory denotes core features, which cannot be deselceted, e.g., �read Pool.
• XOR represents the feature in a group such that exactly one group member can be selected,

e.g., Cache Mode.
• OR means a group that at least one group member needs to be selected, e.g., Cache Size.

When a feature is selected, it means that such a feature is ‘turned on’; similarly, deselection of a

feature refers to it is ‘turned o�’. Selecting a feature implies that its parent should be selected too.

In this work, we call a feature deselectable if it has Optional , OR or XOR relation to its parent; or

conditionally deselectable if it has Mandatory relation to its parent but there exist deselectable

ancestors. On the other hand, common cross-branch relations include:

• Fi require Fj means the former can only be selected if the la�er is selected.

• Fi exclude Fj denotes two features are symmetrically mutually exclusive.

• Fi at -least -one-exist Fj is an implied relation between themembers of anOR group. It represents

the same notion as that of OR.

5
In this paper, we use graphical �gure of the feature model for more intuitive presentation. In practice, the feature model

might be expressed in XML or conjunctive normal form, which can be parsed and analyzed directly by FEMOSAA.
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• Fi at -least -one-require Fj is an implied relation between a member of an OR group and another

external feature, which has require to the root of the said OR group. It means Fi can only be

selected if at least one member of the OR group, which Fj belongs to, is selected.

All those relations constitute to the dependency chain(s) in the model. As in Figure 4, the number

of features in the above example is 1151 with a search space of more than a billion.

To be�er incorporate the feature model with SAS and simplify the design, we distinguish

categorical features and numeric features. We de�ne numeric features as: a feature is numeric if
it has more than one child in itsXOR group and all its children can be quanti�ed by real numbers. For
example, in Figure 4, the Memory is clearly a numeric feature. Otherwise, the feature is categorical,

e.g., Cache Mode. Similarly, a dependency is numeric as long as it is linked to numeric features

and it involves quantitative comparisons. As in Figure 4, we propose the following cross-branch

numeric dependencies for the engineers to specify in their design:

• range-to-range . �is is associated with two numeric features and it can be expressed as, e.g.,

Fi range-to-range Fj (Fi < Fj ), meaning that Fi ’s selected child in its XOR needs to be smaller

than that of Fj . It can be easily translated into categorical dependency: Fi < Fj simply means

Fi ’sXOR childC would have exclude dependency on each Fj ’sXOR child, which is larger than

or equal to the value of C . Other quantitative comparisons (e.g., >) can be also applied.

• to-range . �is constrains a categorical feature Fi (dependent) with respect to a numeric feature

Fj (main), e.g., Fi to-range Fj (Fj < 10), meaning that Fi can only be selected if Fj ’s selected
child in its XOR falls in the given range, as expressed by the mathematical formula. �is can

be translated to categorical dependency such that Fi would have exclude dependency on each

of Fj ’s XOR children that are not in the range.

• range-to. �is is the inverse of to-range dependency where a numeric feature (dependent) is

constrained by a categorical feature (main).

Clearly, numeric dependencies can only be cross-branched while categorical ones exist on both

in-branch and cross-branch. When a dependency is associated with one categorical feature and

one numeric feature (i.e., to-range and range-to), we call it hybrid dependency which is a special

case of numeric dependency. Note that numeric features might have all types of dependencies but

categorical features cannot be linked to the range-to-range numeric dependency.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:10 Tao Chen, Ke Li, Rami Bahsoon, and Xin Yao

Adaptable Software

SensorSensor ActuatorActuator

MOEA

Knee SelectionModelerModeler

RuntimeDesign Time

FEMOSAA (Adaptation Engine)

OptimizerFinding
Elitist 

Features

Finding
Elitist 

Features

Extracting
Dependencies

Extracting
Dependencies

FEMOSAA

design time data runtime data

Feature Model of SAS

Legend

2. elitist 
features

3. dependencies

4. knee1. data

2. models 3. non-dominated set1. elitist 
features

Fig. 5. The architecture of FEMOSAA.

3.3.1 The benefits of explicitly considering numeric features. As mentioned, given that the feature

model is discrete and statically de�ned at design time, it is possible to convert those numeric

features and their dependencies into categorical ones without a�ecting the original variability

of SAS. However, explicitly considering numeric features in the feature model will introduce the

following bene�ts in terms of both design time analysis and runtime optimization in FEMOSAA:

• Explicitly considering the numeric features provides simpler and more intuitive design of the

feature model as numeric features can be interpreted directly by the so�ware engineers.

• Converting the numeric features into categorical ones will unnecessarily complicate the feature

model, which can implicitly induce the so�ware engineers to design the feature model in a way

that the children of numeric features would need to be encoded as genes. As mentioned, this

will largely increase the number of solution variables in the optimization, leading to the curse

of dimensionality. �erefore, explicitly considering numeric features can provide us with the

foundation to design novel and simpler encoding of chromosome representation in MOEA, as

we will show in Section 5.1.

• Explicitly considering the numeric features results in less number of dependencies in contrast

to the case where the numeric features are converted into categorical ones. As we will show in

Section 5.2, this simpli�es our dependency extraction process for injecting the dependencies

into mutation and crossover operators of MOEA. In addition, less number of dependencies

implies simpler dependency structure, i.e., a dependent feature has less number of main features,

which in turn reduces the running overhead of our dependency aware operators at runtime.

4 FEMOSAA OVERVIEW
As shown in Figure 5, a SAS generally consists of two parts: an adaptable so�ware that is managed

at runtime, and an engine that controls the adaptation. �e adaptable so�ware could be a so�ware

stack that contains di�erent inter-connected so�ware or middleware.

Our FEMOSAA framework is deployed as the adaptation engine and it operates on both design

time and runtime of the SAS. At design time, FEMOSAA analyzes and transposes the feature model

of SAS, which is provided by the so�ware engineers, to the context of MOEA. �e transposition at

�rst identi�es the elitist features (see Section 5.1), which are passed to the process for extracting the

dependency to accommodate with the selected features (step 1), as we will explain in Section 5.2.

With the help of FEMOSAA, those elitist features and dependencies are stored and will be used

directly by the MOEA at runtime (step 2 and 3). Given that only the elitist features would be

encoded into the chromosome representation of MOEA, the identi�ed elitist features can be used

as the objective functions’ inputs, and can serve as the indication of which sensors/actuators to use

or to implement (step 2).
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FEMOSAAhas twomain components at runtime: aModeler which contains the objectives (�tness)
functions that build the correlation between features and quality a�ributes. �ose objectives func-

tions can be created using analytical models [44], simulation [26] or machine learning [10] [11] [14]

in which they might be updated on-the-�y using the data from sensors; and an Optimizer that
realizes the MOEA (extended by our knee selection), which is guided by the transposed informa-

tion from the feature model, to �nd a single optimized solution for adaptation via actuators (see

Section 6).

Given the uncertain and dynamic environment, these two components constitute the feedback

loop that continually adapts the SAS towards be�er quality, e.g., improve response time. �e

adaptation cycle starts from monitoring status of the SAS and the environment (step 1), which is

then used to update the objective functions and model (step 2). Next, the feature guided MOEA

optimizes and searches for a set of non-dominated solutions based on the updated objective

functions (step 3), a�er which the knee selection selects the most balanced one for adaptation (step

4). �e optimization can be triggered either by the violations on the quality requirements or, as

what we did in this work, by a �xed frequency, e.g., at each point in time. Note that we consider

the execution order of a solution as a separate issue from the optimization. �us, given a valid and

optimized solution, we assume that the valid order of execution, with respect to the dependency, is

enforced in the actuators through analyzing the dependencies in the feature model.

5 TRANSPOSING FEATURE MODEL OF SELF-ADAPTIVE SOFTWARE TO MOEA AT
DESIGN TIME

In this section, we present an automatic and systematic approach as part of FEMOSAA that

transposes a feature model into MOEA’s context. At design time, the approach �nds the elitist

features from the model, by which we refer to those that cannot be removed in the optimization

without damaging the original variability of SAS while minimizing the length of encoding, to form

chromosome representation; and then extracts the feature dependency with respect to the elitist

features. Such information will be used at runtime to guide the evolutionary optimization.

To guarantee correctness of the transposition, it is imperative to ensure that the feature model

has been fully tested and veri�ed by existing tools [6]. Henceforth, this ensures that faults, e.g.,

dead features, false options and contradictory relations, have been already dealt with before the

transposition. �e veri�cation of a feature model is beyond the scope of this work, however. Unlike

our work, the dependency related to numeric features is not treated explicitly in existing testing

tools. However, as discussed in Section 3.3, the numeric (and hybrid) dependency can be easily

transferred into the categorical dependency, which can be then tested directly. We also assume

that all possible children (including 0) of numeric features are discretized and prede�ned. It is

worth noting that discretizing the numeric features is the �rstly step to remove the unnecessary

complexity of our SAS optimization problem, this is because many real-world features are o�en

discrete and/or can be customized based on so�ware engineers’ knowledge, e.g., it can be known

that changing memory allocation by less than 1MB does not a�ect the behaviors and quality of

SAS, henceforth, instead of considering the memory feature as a continuous feature, the possible

child features of the memory feature can be discretized at every 1MB.

While FEMOSAA is generic and can be applied on any cases as long as the feature model and

MOEAs are involved, in the following, we specify the transposition approach in FEMOSAA for

the general cases but refer to a concrete example for more intuitive illustration where appropriate.

Speci�cally, in Section 5.1, we introduce the approach to identify the elitist chromosome repre-

sentation of a SAS’s feature model. Subsequently, in Section 5.2, we illustrate how the related
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Fig. 6. The growing process in SAS’s feature model.

dependency chains and the value trees can be extracted (Section 5.2.1) and merged (Section 5.2.2),

according to the genes identi�ed in Section 5.1.

5.1 Finding Elitist Features for Chromosome Representation
5.1.1 Growing the Feature Model Tree. Deselectable features in a feature model o�en do not

explicitly indicate the ‘on’ and ‘o�’ features as children, but they are important information for us

to parse and understand the full variability of the model. Hence, to correctly transpose the feature

model, we �rstly grow the feature model tree for disclosing the hidden information inferred from

the deselectable features. As illustrated in Figure 6, this is achieved by adding children representing

On and/or O� to any given feature F in the feature model using the following steps in order:

• G-1. If F is a leaf feature that hasOR relation to its parent, we then add two children representing

On and O� in a XOR group to F . �is explicitly states that in such case, the leaf F can have

two mutually exclusive options, which is important to our encoding.

• G-2. If F is a leaf feature that has neither OR nor XOR relation to its parent, we then add one

child representing On in a XOR group to F . �is ensures that every feature has the option of

’on’ (and translate them into branches to be parsed by G-3), except those with OR nor XOR

relation to its parent, as the former has been considered in G-1 while the la�er’s ‘on’ option

can be expressed by the parent.

• G-3. If F is a branch feature that has Optional , OR or XOR relation to its parent, we then

add one child representing O� in a XOR group to F and to the descendants of F that are

branch features (if they do not currently have child representing O� ). �is ensures that both

the deselectable and conditionally deselectable features expose the option of ‘o�’.

A�er growing the tree, the added features and the steps that create them are shown in Figure 7.

5.1.2 Identifying Genes from the Feature Model Tree. We have now obtained a model with

no hidden information, the next phase is to �nd the elitist features for genotype encoding in

MOEA, creating an elitist chromosome representation. Intuitively, following the grown tree, our

approach encodes a feature F as gene in the chromosome, if and only if, it is the parent of a XOR
group, which contains more than one group member. Hence, F ’s children within the XOR group

constitute its set of alternative optional values to be chosen in MOEA, subject to the constraints

in dependencies. Drawing on this, the representation can be simpli�ed in three aspects without

a�ecting the original variability:

(1) Eliminating features whose variability can be expressed by their parent, i.e., those with XOR

relations to the parent, e.g., the variability of CPU ’s children can be represented by itself.
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(2) Eliminating features whose variability can be expressed by their descendants, e.g., the variability

of Cache feature can be represented by the combination of Cache Mode and Cache Size features;
Cache Mode can be represented by Heap Size and Disk Size.

(3) Eliminating the features that have no implication on the variability, e.g., the �read Pool is
always mandatory. �is, however, does not mean that we simply remove all mandatory features

(as in [31]); instead, our approach retains those mandatory features that with a XOR group of

children as they would o�en help us to considerably reduce the number of genes even more, as

explained in (1) above.

From now on, we call those features, which are chosen to be encoded in the chromosome, as genes.
It is easy to see that numeric features are always chosen as genes. As shown in Figures 7 and 8,

there are 10 features being considered as genes in the example feature model of SAS
6
. To make

the model informative, we prune the features that are the only member in their corresponding

XOR group. For all genes, if they select O� or 0 as their value then it means they are deselected;

any other values mean that they are selected. Note that when a gene selects 0, it implies that the

numeric value is 0 and that the feature is ‘turned o�’, which will have no further e�ects on the SAS.

In this way, the elitist chromosome representation is polyadic, elegant and free of unnecessary

information (e.g., some unneeded relations to parent of a feature), which is otherwise unavoidable

in the classic binary representation. �is, as we will show in Section 7.4.1, can bring non-trivial

bene�ts for the optimization quality and runtime overhead.

6
�e other features, which are not genes, can be �xed to On in the SAS
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5.2 Extracting Feature Dependency for Guiding Evolution
5.2.1 Analyzing and Refactoring the Dependency. While the identi�ed elitist chromosome repre-

sentation can naturally prevent violation of the XOR relation, it does not contain any information

about the other dependency constraints (require , OR, etc). �is issue is non-trivial as leaving it

without treatment could result in a high possibility of exploring invalid solutions, which negatively

a�ect the quality of adaptation. To this end, our next step in the transposition is to extract and

analyze the dependency chain(s) to accommodate with the genes, so that they can be injected into

the mutation and crossover operators of MOEA to prevent the search from exploring the invalid

solution. Here, a single dependency between two genes represents the constraint on the dependent

gene with respect to the conditions of main gene. �e extracted dependencies and their imposed

constraints are shown in the Table 1, which will be discussed in Section 5.2.2. Speci�cally, we

distinguish two categories of dependency: in-branch and cross-branch.
Extracting in-branch dependency chain(s) aims to handle the constraints introduced by Optional ,

Mandatory , OR and XOR relations with respect to the genes. To achieve this, the features’ in-

branch dependencies are extracted in both vertical and horizontal directions while considering all

the four relations.

Vertical analysis for extracting in-branch dependency helps to ensure that the in-branch relation

between feature and parent are captured. As shown in Figure 9, for any feature F in the original

feature model, we conduct the following vertical analysis:

• VA-1. If F is a gene and it is deselectable (Optional , OR or XOR to its parent) or conditionally

deselectable (Mandatory to its parent but has deselectable ancestors), then for each path from

F , the closest descendant gene Dд of F would have require dependency on F , as Dд cannot be
selected without the presence of F . Additionally, if Dд has Mandatory relation to its parent

and the path between F and Dд does not contain deselectable features, then F would also have

require on Dд , as both features need to be selected at the same time.

• VA-2. In addition to VA-1, if F has XOR relation to its parent and it is a gene, then F would

have a require on its parent, denoted as Pд = α (F ’s parent Pд would always be a gene as ensured
by our gene identi�cation process), where α is the reference of F in Pд ; similarly, Pд = α would

also have require on F , as both features need to be selected at the same time. On the other hand,
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if F has XOR relation to its parent but it is not a gene, then for each path from F , the closest
descendant gene Dд of F would have its own require on Pд = α . Under the same case, if Dд has

Mandatory relation to its parent and the path between F and Dд does not contain deselectable

features, then Pд = α would also need to have require on Dд .
• VA-3. In addition to VA-1, if F has OR relation to its parent, we �nd the closest deselectable

ancestor of F , denoted as A, if such a A does exist. Now, if at least one ancestor of F is gene;

or F ’s parent is neither deselectable nor conditionally deselectable; or there exist at least one

closest descendant gene, Dд , of a path fromA, such that Dд has Mandatory relation to its parent

and there is no deselectable features in the path between Dд andA, then this means that the OR

group, for which F ’s parent is the root, needs to select at least one group member. �us, unless

there already exist an at -least -one-exist dependency, F (if F is a gene) or its closest descendant

genes, each of which follows di�erent paths (if F is not a gene), would have at -least -one-exist
on (i) the other closest descendant genes of F if it is not gene; (ii) those sibling genes of F in the

same OR group; and (iii) the closest descendant genes, each of which follows di�erent paths

from the F ’s siblings that are not genes but in the same OR group as F .

�e horizontal refactoring, on the other hand, is to ensure the elimination of some features does

not mislead the dependencies implied by the original variability. Suppose that F is a feature in the

original feature model and that A is the closest deselectable ancestor of F , if such a A does exist.

Now, assuming that A is not a gene, and that there is no gene on the path from A to F , we then
conduct the following horizontal refactoring, illustrations can be found in Figure 10:

• HR-1. If F has Optional relation to its parent then we do nothing, even if it is a gene. �is is

because the selection of F does not a�ect A’s closest descendant genes, each of which follows

the other paths from A.
• HR-2. If F is a gene that has Mandatory relation to its parent and it is conditionally deselectable,

then for each path from A, the closest descendant gene Dд of A (excluding F itself) would have

require on F . �is can ensure when Dд is selected, F would be also selected.

• HR-3. If F has OR relation to its parent and it does not have at -least -one-exist dependency

for the group, then for each path from A (except the paths that pass through F ’s OR group),

the closest descendant gene Dд of A would have at -least -one-require on F , if F is a gene; or on

those closest descendant genes of F , each of which follows di�erent paths from F , if F is not a

gene. Hence, when Dд is selected, at least one member of the OR group of F (or their closest

descendant genes) would be also selected.

• HR-4. If F has XOR relation to its parent then we do nothing, even if it is a gene. �is is

because our gen identi�cation process ensures that the parent of F would always be a gene,

which also express the selection of F .
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A�er considering the in-branch dependency, we now focus on refactoring the cross-branch

dependency. If both sides of a cross-branch dependency are genes, then it can be extracted directly.

However, if either side (or both) of the feature is not a gene, then a treatment is needed. Suppose

that a feature F is associated with one or more cross-branch dependency and that F is not a gene,

we then do the following refactoring as shown in Figure 11:

• CR-1. If F is a branch, then its cross-branch dependencies are migrated to those closest

descendant genes of F , each of which follows di�erent paths from F . Further, if F is the root of

a OR group and it is the main feature in any require dependency, then those require would be

changed to at -least -one-require , which are migrated to the member genes of F ’s OR group, and

to the closest descendant genes, each of which follows di�erent paths from those members that

are not genes.

• CR-2. If F is a leaf, then its cross-branch dependencies are migrated to the parent of F , denoted
as Pд , where the dependency would remain the same but the main gene becomes Pд = α , where
α is the reference of F in Pд . Here, F would always have XOR relation to Pд , because if F was

to has Mandatory relation to Pд , then there would be a contradiction as the main feature of a

cross-branch dependency is mandatory. In addition, when F is a leaf, our growing process has

ensured that F has neither OR nor Optional relation to Pд which would always be a gene.

Finally, pu�ing everything together, the extraction which occurs on the model and the extracted

dependency chain(s), with respect to the elitist chromosome, are shown in Figure 12 and 13

respectively. �e constraint of a dependent gene imposed by a dependency, according to Table 1,

can be expressed using a value tree, where each leaf is a set of optional values constrained by

the corresponding condition in a branch, i.e., the selected values of the main gene. For example,

in Figure 14, the value tree for the dependency between Cache Mode (G2) gene and Transmission
Compression (G1) gene constrains that the former can only be O� or Unzipped if the la�er is On; or
any optional values, otherwise. Note that if a gene is not a dependent of any dependency, then it

would have a value tree without any branches.

5.2.2 Merging the Dependency. A�er the extraction, we can see that a dependent gene might

have multiple dependencies on the same or di�erent main genes. To construct a combined value

tree for a dependent gene, the dependencies, by which it is constrained, need to be merged one by

one using set operators (union or intersection) to combine the leaves from their value trees. Table 1

shows what set operators are needed for each dependency type when merging with the others,

which is derived from the conjuncture normal form of the related genes.
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Fig. 13. The extracted dependency chains of genes for the example feature model.

Speci�cally, for every dependent gene, the merging process has the following steps:

— Step 1. If it has two or more dependencies with identical main genes, then the leaves, which

are constrained by the same condition in the branches, would be combined directly using the

set operations shown in Table 1.

— Step 2. If it has dependencies on di�erent main genes, all branch nodes of one single or already

combined value tree are replicated and gra�ed (as a whole) to each right-most branch node of

another single or already combined value tree, forming new levels for the newly combined value

tree, representing the combinatorial conditions. �en, for the two value trees that were gra�ed,

their leaves, whose original ancestors are now on the same path from root to a right-most node

in the newly gra�ed tree, are combined using the set operations shown in Table 1 to create the

new leaf-set.

�e process stops when all related dependencies are merged and their value trees are combined,

resulting a �nally combined value tree. As an example, Figure 14 illustrates the merging process and

the �nally combined value tree for Cache Mode (G2) gene, which originally contains dependencies

on three di�erent main genes. �e same merging procedure is repeated for every dependent gene.

To ensure the correctness of merging, in both steps, the dependencies that require union are

always merged ahead of the others, leading to a set of partially merged dependencies. Since each
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Table 1. The Extracted Dependency Constraints Between two Genes and The Related Set Operations for
Merging Dependency.

Dependency (denoted as D) Constraints on Gi Merge with Other Dependency D′
Gi require G j ifG j = Of f or 0, thenAs = {Of f }or {0}. Otherwise,As = A. As ∩ A′s .
Gi = α require G j if G j = Of f or 0, then As = A − {α }. Otherwise, As = A. As ∩ A′s .
Gi require G j = α if G j , α , then As = {Of f } or {0}. Otherwise, As = A. As ∩ A′s .
Gi = α1 require G j = α2 if G j , α2 , then As = A − {α1 }. Otherwise, As = A. As ∩ A′s .
Gi exclude G j ifG j , Of f or 0, thenAs = {Of f }or {0}. Otherwise,As = A. As ∩ A′s .
Gi = α exclude G j if G j , Of f or 0, then As = A − {α }. Otherwise, As = A. As ∩ A′s .
Gi = α1 exclude G j = α2 if G j = α2 , then As = A − {α1 }. Otherwise, As = A. As ∩ A′s .
Gi at -least -one-require G j ifG j = Of f or 0, thenAs = {Of f }or {0}. Otherwise,As = A. ifD′ is (or merged from only) at -least -

one-require that related to the same

root of OR group as D ’s, then As ∪
A′s . Otherwise, As ∩ A

′
s .

Gi = α at -least -one-require
G j

if G j = Of f or 0, then As = A − {α }. Otherwise, As = A. ifD′ is (or merged from only) at -least -
one-require that related to the same

root of OR group as that of D , then

As ∪ A′s . Otherwise, As ∩ A
′
s .

Gi at -least -one-exist G j ifG j = Of f or 0, thenAs = A− {Of f }or A− {0}. Otherwise,
As = A.

ifD′ is (or merged from only) at -least -
one-exist that related to the same root

of OR group as that of D , then As ∪
A′s . Otherwise, As ∩ A

′
s .

Gi range-to-range G j (e.g.,

Gi < G j )

if G j = α , then As = {α1, ..., αn } where ∀αn ∈ A, and ∀αn
meets the given condition with respect to α , e.g., ∀αn < α , etc.

As ∩ A′s .

Gi (R) range-to G j if G j = Of f or 0, then As = A − R . Otherwise, As = A. As ∩ A′s .
Gi (R) range-to G j = α if G j , α , then As = A − R . Otherwise, As = A. As ∩ A′s .
Gi to-range G j (R) ifG j = α ; α < R , thenAs = {Of f }or {0}. Otherwise,As = A. As ∩ A′s .
Gi = α1 to-range G j (R) if G j = α2 ; α2 < R , then As = A − {α1 }. Otherwise, As = A. As ∩ A′s .
Additionally, when the set operation leads to an empty set, we �x As = {Of f } or {0}.
Gi andG j are dependent and main gene, respectively; A is the entire set of optional values forGi ; As denotes the set of values forGi , given a
selected value of G j ; α , α1 , α2 and αn denote some selected values for Gi or G j ; R is a given constrained set of range, e.g., G j < 10, etc; D′ is
another single or merged dependency for which Gi is the dependent gene; A′s denotes the set of values for Gi , given the selected value(s) of the
main gene(s) in D′.
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Fig. 14. The example of dependency merging and the combined value tree for the gene G2 (Cache Mode),
which is the dependent gene of three di�erent main genes, i.e.,G1 (Transmission Compression),G3 (Heap Size)
and G4 (Disk Size). As and A′s denote two sets of values (leaf-set) to be combined, as specified in Table 1.
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of them are merged from the identical dependency type, as shown in Table 1, they can then be

merged with each others (and the remaining single dependencies) using the same set operators as

if they are single dependencies.

It is worth noting that, despite the given feature model is contradictions free, it might still be

possible for the combined leaves to have an empty set under some conditions. For example, recall

Disk Size gene from Figure 13, when its require dependency on Cache Mode merges with its at -least -
one-exist on Heap Size, then combing the leaves for the condition where Cache Mode selects O� and

Heap Size selects 0 MB would lead to an empty set. �is is due to the fact that some dependencies

have di�erent priorities: in the above example, at -least -one-exist would constrain Disk Size only if

it is allowed to be selected as indicated by the require on Cache Mode. In those cases, we �x {O f f }
(or {0}) as the new leaf-set for the dependent gene’s combined value tree, representing the fact that

it needs to be ‘turned o�’and cannot a�ect the SAS under the corresponding conditions.

In Section 6, we will describe how the elitist chromosome, the extracted dependency chain(s)

and the (combined) value trees of genes are seamlessly injected into the MOEA for optimizing SAS

at runtime, regardless to the order of changes on genes.

6 FEATURE GUIDED AND KNEE DRIVEN MOEA AT RUNTIME
We have now completed all the design time transposition and analysis in FEMOSAA. Next, to

optimize the SAS at runtime using FEMOSAA, we extend MOEA with the domain information

gathered from the feature model, creating a feature guided MOEA with knee selection, as shown

in Figure 15 and Algorithm 2. In particular, the elitist features from Section 5 form the basic

chromosome representation of the solution in MOEA. To avoid exploring invalid solutions, we

explicitly inject the extracted dependencies (e.g., Figure 13) and the (combined) value trees of genes

(e.g., Figure 14) into the basic mutation and crossover phases of MOEA to create dependency aware

Algorithm 2�e Extended Feature Guided MOEA with Knee Selection

Input: the extracted dependency chain(s) C and the (combined) value trees of the genes VT , in addition to the inputs in Algorithm 1

Output: a single knee solution

1: start evolution
2: P = ∅
3: eval = 0

4: for i = 1 to Psize do
5: S = getRandomSolution()

6: doDependencyAwareMutation(S ,1,C ,VT ) Bmutation rate of 1 means mutating every gene.

7: evaluateFitness(S )

8: eval = eval + 1
9: P = P + S
10: end for
11: while eval < evalmax do
12: P0 = ∅
13: while |P0 | ≤ Psize do
14: parents = doMatingSelection(P )

15: of f spr inд = doDependencyAwareCrossover(parents ,rc ,C ,VT )

16: for each solution S in of f spr inд do
17: doDependencyAwareMutation(S ,rm ,C ,VT )

18: end for
19: evaluateFitness(of f spr inд)

20: eval := eval + |of f spr inд |
21: P0 = P0 ∪ of f spr inд
22: end while
23: P = P ∪ P0
24: doSurvivalSelection(P , Psize )

25: end while
26: P = getNonDominatedSolutions(P )

27: return getKneeSolution(P )

28: end evolution
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Fig. 15. The workflow of the extended feature guided MOEA with knee selection.

operators (line 6, 15 and 17). Finally, we apply the knee selection proposed in Section 6.4 to identify

a single adaptation solution from the set of non-dominated solutions returned by MOEA (line 27).

6.1 Objective Functions
�e elitist chromosome representation from Section 5 also helps to de�ne the inputs of the objective

(�tness) functions used in the optimization. It is worth noting that FEMOSAA works with a range

of quanti�able quality objectives and is agnostic to the actual objective functions, as the framework

itself does not rely on any assumptions about the internal structure of those objectives. FEMOSAA

is also possible to consider more than two objectives but we use two in this paper to provide more

intuitive illustration, since the fundamental principle of multi-objective optimization is the same

regardless to the objective number.

�e actual objective functions exploited by FEMOSAA can be built using various modeling

approaches from the literature, e.g., machine learning based [10][14][11], analytical [44] and

simulation based [26], as long as they are compatible with the genes identi�ed by FEMOSAA. In

Section 7.2, we will elaborate the concrete objective functions, which are built by using di�erent

approaches, for each subject SAS.

6.2 Dependency Aware Mutation Operator
At runtime, to prevent generating invalid o�spring when mutating the solutions, the extracted

dependency chain(s) and the (combined) value trees of the genes are seamlessly injected into

the mutation operation. In this work, we use the boundary mutation operator as the basis, in

which each gene might be mutated subject to a mutation rate. Upon mutation of a gene, one of

its optional values is randomly assigned. �e reason why the boundary mutation operator was

chosen is because: (i) it is one of the most commonly used mutation operator; and (ii) it works

under discrete optimization problems while allowing to randomly select a value from a prede�ned

value tree, which particularly �ts with our SAS optimization problem. However, since the violation

of dependency is prevented whenever a gene is changed, it is easy to modify FEMOSAA to work

with any other operators that mutate the genes in a similar way as the boundary mutation operator.

As illustrated in Algorithm 3 and Figure 16, our extended dependency aware mutation operator

has the following recursive steps:

— Step 1. When a geneG (e.g., Cache Mode) needs to be mutated as identi�ed by the basic mutation

operator or due to its violation, we randomly select a value from its (combined) value tree with

respect to the selected values of G’s main genes (e.g., Transmission Compression, Heap Size and
Disk Size).

— Step 2. �en, we propagate, according to the dependency chain, to G’s dependent genes
(e.g., Heap Size and Disk Size) and we then validate if those genes in the solution violate
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Fig. 16. Workflow of dependency aware mutation operator. (The example genes from le� to right represent
Transmission Compression, Cache Mode, Heap Size and Disk Size)

Algorithm 3 Dependency aware mutation operator

Input: given a valid solution S , the extracted dependency chain(s) C and the (combined) value trees of the genes VT
Output: a mutated valid solution (individual) S
1: start mutation
2: Gset = the genes that requires mutation as identi�ed by the basic crossover operator based on mutation rate

3: for each G in Gset do
4: mutateWithDependency(G ,S )

5: end for
6: return S
7: end mutation
Function: mutateWithDependency(G ,S )

1: VTд = the (combined) value tree of G from VT
2: randomly choose a new value for G of S from VTд
3: Cд = the chain that contains G from C
4: for each dependent gene of G (Gd ) in Cд do
5: VTд = the (combined) value tree of Gd from VT
6: validate Gd based on current conditions in VTд
7: if Gd ’s value in S is invalid then
8: mutateWithDependency(Gd ,S )

9: end if
10: end for

any dependency using their (combined) value trees. If violation found, we would mutate the

corresponding gene and start from Step 1 for it (e.g., Heap Size=5MB in Figure 16), as shown

from line 4 to 10 of the mutateWithDependency function.

— Step 3. �e process stops when all the genes, which are identi�ed by the basic mutation

operator, have been mutated and there is no further violation found.

Using this operator, we guarantee that the mutation process in MOEA would be be�er guided,

such that only valid adaptation solutions can be explored regardless to the order of mutation. Since

the given feature model has been fully validated and exhibits no design errors, there will be at least

one state such that all genes can satisfy all dependencies, which in turn, preventing in�nite loop in

the presence of circular dependencies. As we will show in Section 7.4.2, the dependency aware

operators can lead to be�er quality of adaptations.

6.3 Dependency Aware Crossover Operator
Similar to the mutation process, it is necessary to eliminate invalid o�spring when swapping

elements of the solutions. To this end, the extracted dependency chain(s) and the (combined) value

trees can be injected into the given crossover operator
7
in the MOEA. In this work, we rely on

7
In this work, we have used the most common type of crossover operators that takes two parents and produces two

o�springs. However, our dependency can be injected with the other types of crossover operators (which are rare) in a

similar way.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:22 Tao Chen, Ke Li, Rami Bahsoon, and Xin Yao

On Unzipped 0MB 15MB

...

...

... Off Zipped 18MB 0MB

On Unzipped 0MB 0MB

On Unzipped 18MB 0MB

Off Zipped 18MB 15MB

Off Zipped 0MB 15MB

1

6

1.3

1.1 1.2 1.51.4

1.6

4532

swap

swap

...

...

...Changed
Gene

Unchanged
Gene

Direction and Order of 
Dependency Checking

Valid
Violated

1

Fig. 17. Workflow of dependency aware crossover operator. (The example genes from le� to right represent
Transmission Compression, Cache Mode, Heap Size and Disk Size)

Algorithm 4 Dependency aware crossover operator

Input: given two valid parent solutions S1 and S2 , the extracted dependency chain(s) C and the (combined) value trees of the genes VT
Output: two new valid solutions (individuals) Sn1 and Sn2
1: start crossover
2: Sn1 = S1
3: Sn2 = S2
4: Gset = the genes that requires crossover as identi�ed by the basic crossover operator based on crossover rate

5: for each G in Gset do
6: crossoverWithDependency(G ,S1 ,S2 ,Sn1 ,Sn2)

7: end for
8: return Sn1 and Sn2
9: end crossover
Function: crossoverWithDependency(G ,S1 ,S2 ,Sn1 ,Sn2)

1: if G in Sn1 and Sn2 has already been swapped then
2: return
3: end if
4: swap the values of G in Sn1 and Sn2
5: Cд = the chain that contains G from C
6: for each solution S in {Sn1 ,Sn2 } do
7: for each dependent gene of G (Gd ) in Cд do
8: VTд = the (combined) value tree of Gd from VT
9: validate Gd based on current conditions in VTд
10: if Gd ’s value in S is invalid then
11: crossoverWithDependency(Gd ,S1 ,S2 ,Sn1 ,Sn2)

12: end if
13: end for
14: VTд = the (combined) value tree of G from VT
15: validate G based on current conditions in VTд
16: if G ’s value in S is invalid then
17: for each main gene of G (Gm ) in Cд do
18: crossoverWithDependency(Gm ,S1 ,S2 ,Sn1 ,Sn2)

19: end for
20: end if
21: end for

the widely used uniform crossover where two genes, each of which from a di�erent parent and

both are at the same position in the chromosome, might be swapped subject to a crossover rate.

Such a uniform crossover operator was chosen because it mitigates the problem of genes locus, i.e.,

the ability to explore the search space is less sensitive to the closeness of highly dependent genes

(features) in the encoding, which helps to relax extra design requirements of the SAS. However,

since the violation of dependency is prevented whenever a pair of genes is swapped, it is easy to

modify FEMOSAA to work with any other operators in which each pair of the swapped genes

would be always at the same position in the encoding.

A�er the injection, as shown in Algorithm 4 and Figure 17, our dependency aware crossover

operator uses the following recursive steps:
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Fig. 18. Finding knee solution(s) in the non-dominated set.

— Step 1. When a geneG (e.g., Disk Size) needs to be swapped as identi�ed by the basic crossover

operator or due to violation, we swap it in the o�spring if it has not been swapped already.

— Step 2. We propagate, according to the dependency chain, to G’s dependent genes (Heap Size
and Cache Mode). If a dependent gene in an o�spring violates the dependency, we then a�empt

to swap the gene by repeating from Step 1 for it (e.g., Heap Size=0MB in Figure 17), as shown

from line 7 to 13 of the crossoverWithDependency function.

— Step 3. Next, we check if G in an o�spring violates dependencies; if violation exists, we then

a�empt to swap all the main genes of G (e.g., Cache Mode and Heap Size, but this is not needed
in the example shown) by repeating from Step 1 for each of them, as shown from line 14 to 20

of the crossoverWithDependency function.

— Step 4. �e process terminates when there is no dependency violation or all genes in the

parents have been swapped.

In this way, we guarantee that only valid adaptation solutions would be produced, given any

order of the crossover. As we will show in Section 7.4.2, the dependency aware operators can lead

to be�er quality of adaptations.

6.4 Knee Selection
As mentioned in Section 3.2, knee points are those solutions that achieve well-balanced trade-o� on

all the objectives. �is is particularly appealing as FEMOSAA aims for the cases where the relative

importance between con�icting objectives of SAS is unknown and it is too di�cult to quantify

them. As we can see in Figure 18, which shows the solutions that minimize both response time and

energy consumption, those more balanced knee solutions are likely to be around the visible bulge,

representing a good sense of compromise. Intuitively, the knee solutions tend to be the furthest

away from all the solutions that have the worst result on each single objective, i.e., the extreme

solutions. As a result, �nding the knee solutions within a non-dominated set is equivalent to search

for the solution(s) that has the largest general distance to the extreme solutions in the set.

To achieve this, we developed a knee selection method for selecting single solution from the

set returned by MOEA. As shown in Figure 18, given the �nal non-dominated set obtained by the

feature guided MOEA, we at �rst construct a line ` that connects the extreme solutions holding

the worst value at each single objective. �en, we calculate the perpendicular distance from each

non-dominated solution x to the `:

d (x, `) =



|ϵ |
√
a2+b2

, i f ϵ < 0

−
|ϵ |

√
a2+b2

, otherwise
(1)

where ϵ = a × f (x) + b × д(x) + c and the parameters a, b and c can be identi�ed through the

extreme solutions. In particular, ϵ < 0 means that x is on the le� side of `; otherwise, x is on
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the right side of `. Clearly, solutions on the le� side of ` are preferable than those on the right

when considering a minimization problem. �e solution(s), which has the largest perpendicular

distance to `, is the knee solution(s) that we are seeking. When there are multiple knee solutions,

we randomly select one for adaptation. As we will show in Section 7.4.3, the knee selection can

lead to more balanced trade-o�s on the quality of adaptations. Note that, by replacing ` with a

surface or a hyperplane, we can easily extend our knee selection for more than two objectives.

6.5 The Concrete MOEAs
Without loss of generality, FEMOSAA can work easily with a wide range of MOEAs. In this work,

we run FEMOSAA with three distinct MOEAs (i.e., MOEA/D-STM, NSGA-II and IBEA), each of

which is a widely-used representative of its own category as explained in Section 3.1. In the

following, we brie�y explain their principles and ideas, while the details are beyond the scope of

this paper.

• NSGA-II [20]—As one of the most popular MOEAs, NSGA-II at �rst uses the non-dominated

sorting to divide the population into several non-domination levels. Solutions in the �rst several

levels have a higher priority to survive to the next iteration. If the size of the current non-

dominated solution set exceeds the pre-de�ned threshold, NSGA-II uses the crowding distance,

a density estimation technique, to trim the population.

• IBEA [53]—�e basic idea of IBEA is to �rstly de�ne the optimization goal in terms of a binary

performance measure/indicator, which is then used to guide the survival selection process. In

this way, IBEA transfers a multi-objective optimization problem into a new single-objective

optimization problem, with respect to the chosen indicator, to facilitate the �tness assignment

procedure.

• MOEA/D-STM [36]—MOEA/D is a MOEA framework that combines the mathematical rigour

of the classic multi-objective optimization method and the implicit parallelism of evolution-

ary algorithms in a single paradigm. Di�erent from the classic multi-objective optimization

method [38], which can only obtain a single Pareto-optimal solution at a time by aggregating

all objectives into a single-objective aggregation function, MOEA/D decomposes the original

multi-objective optimization problem into a population of single-objective optimization sub-

problems. In particular, each subproblem corresponds to a pre-de�ned weight vector, generated

in a systematic manner [35]. A�erwards, MOEA/D uses a population-based technique to solve

these subproblems in a collaborative manner. As a recent variant of MOEA/D, MOEA/D-STM

achieves a balance between convergence and diversity by modifying the survival selection

mechanism of the original MOEA/D. In a nutshell, MOEA/D-STM treats subproblems and

solutions as two sets of agents. Each agent has its preferences over the agents on the other side.

In particular, subproblems concern convergence while solutions concern diversity. �e survival

selection process is modelled as a matching process between subproblems and solutions. �e

stable matching between them �nally turns out to be the selection result. Note that the stable

matching achieves an equilibrium between the preferences of subproblems and solutions, thus

the selection strikes the balance between convergence and diversity simultaneously.

7 EXPERIMENTS AND EVALUATION
By using the actual running SAS that consists of a stack of real-world so�ware, we have conducted

comprehensive experiments to evaluate the e�ectiveness of FEMOSAA by means of comparing it

with its variants and the state-of-the-art frameworks under di�erent metrics. �e source code of

FEMOSAA, the comparative variants and state-of-the-art frameworks, the subject SAS and all the
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experiment data can be publicly accessed via GitHub
8 9

. Speci�cally, our evaluation aims to answer

the following research questions:

• RQ1. What are the added values of the elitist chromosome representation in contrast to the

conventional binary representation?

• RQ2. What bene�ts do the dependency aware operators provide compared against the classical

and widely-used operators

• RQ3. What bene�ts does the knee selectionmechanism provide in contrast to selecting arbitrary

non-dominated solutions?

• RQ4. What is the e�ectiveness of FEMOSAA in contrast to other state-of-the-art search-based

frameworks?

• RQ5. What is the overhead of FEMOSAA, in terms of execution time, compared to other

state-of-the-art frameworks? Which part(s) cause the most overhead? Is the overhead suitable

for SAS runtime?

7.1 Verifiability and Methodology
We have conducted experiments on a dedicated server, which runs Ubuntu Linux 14.04 on an Intel

i5 2.8GHz�ad Core processor, 4GB RAM. To separate the adaptation engine and the adaptable

so�ware, we used Xen v3.0.3 [48] as the hypervisor to create a virtualized environment. We have

implemented FEMOSAA as the adaptation engine using Java, JDK 1.6, and it is deployed on the

Dom0 of Xen. For se�ing up all the MOEAs, we use a population size of 100 for 10 generations as

the termination criteria; the mutation and crossover rate are 0.1 and 0.9 respectively. In particular,

for IBEA, we use the ϵ-indicator and an archive size of 500; while for MOEA/D-STM, we apply

Tchebyche� aggregation for creating subproblems where the number of evenly distributed weight

vectors is 100 (i.e., 100 subproblems) and the size of each subproblem’s neighborhood is 20. �ose

se�ings are either common values or have been tailored for runtime optimization in our cases with

respect to quality and overhead. All MOEAs used in the experiments are extended from the jMetal

Framework [21]. To mitigate interference caused by the adaptation engine, we used one vCPU and

800MB RAM on Dom0.

7.2 The Subject SAS
We deploy two running SAS for our real-time experiments. �e two diverse subject SAS aims to

examine the generality and applicability of FEMOSAA under di�erent domains. On the micro level,

they help to demonstrate how FEMOSAA can be applied to di�erent feature models, dependency

structures, environmental factors, dimensions of quality objectives and degrees of objective con�icts:

— RUBiS-SAS. �is adaptable so�ware is a so�ware stack that contains RUBiS [43], which is

a well-known so�ware benchmark that simulates the eBay model, and a set of real-world

so�ware including Tomcat v6.0.28 [2], MySQL v3.23.58 [40] and Linux kernel v2.6.16.29 running

on a con�gurable guest virtual machine. Ehcache v2.6 [3] is plugged to RUBiS as the cache

management module. All the features that can be adapted at runtime are represented by the

feature model in Figure 4 with a total of 1151 features and a search space of around 1.3 × 1016

using the elitist chromosome representation (including both valid and invalid solutions). We

have also use two distinct workload pa�erns, a read-write pa�en and a read-only one, to

create diverse runtime behaviors of the SAS. To simulate a realistic time-varying environmental

conditions within the capacity of our testbed, we vary the number of clients according to the

compressed FIFA98 workload trace [5], as shown in Figure 19a. �is setup can generate up to 600

8
h�ps://github.com/taochen/ssase

9
h�ps://github.com/JerryI00/So�ware-Adaptive-System
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Fig. 19. The changing environment of subject SAS.

parallel requests, which o�ers su�cient dynamic and uncertainty. �e workload is generated by

another machine using the client emulator provided in RUBiS. In general, a heavier workload

implies more pressure on the SAS, which reduces the number of e�ected solutions and thus

make the problem harder. �e goal is to continually optimize the following two con�icting

quality a�ributes that need to be minimized:

(1) Response Time: In the RUBiS-SAS, response time is measured as the elapsed time between

a request’s arrival and its response. To express the quality of RUBiS-SAS by the end of a

time point, we calculated the average response time for all monitored requests served in

the past time interval.

(2) Energy Consumption: �e energy consumed by so�ware systems, which is accounted

for 2% of the global carbon emissions in 2007 [39], is increasingly becoming an important

quality concern that has clear con�icts with response time. Tomeasure energy consumption,

we leveraged PowerAPI [7], a tool that measures the actual energy (wa�) incurred by the

so�ware’s CPU and memory utilization through probing into the sensors of the hardware

infrastructure. For each time interval, we computed the average of 30 measurement results

of PowerAPI as the energy consumed by the RUBiS-SAS for that interval.
�ese two quality a�ributes serve as the case of moderate degree of con�ict. In other words,

it is easier to �nd solutions that have be�er response time and energy consumption when the

workload is lower. However, as the workload increases, the degree of con�ict between them

tends to amplify. Formally, the objective functions for RUBiS-SAS’s quality a�ributes are de�ned
as:

RT (t + 1) = f (G1 (t + 1),G2 (t + 1), ...,Gn (t + 1),δ (t )) (2)

EC (t + 1) = д(G1 (t + 1),G2 (t + 1), ...,Gn (t + 1),δ (t )) (3)

wherebyG1 (t +1),G2 (t +1), ...,Gn (t +1) denote the genes and their selected values in a possible

adaptation solution; δ (t ) denotes a set of most recent environmental factors, e.g., workload in

this paper. Given an adaptation solution, RT (t + 1) and EC (t + 1) are the expected �tness values
for response time and energy consumption respectively.

In RUBiS-SAS, we adopt the machine learning based model from [10][14][11] to build the ob-

jective functions for RUBiS-SAS, since it relies on few assumptions of the application domain. By

using the actual data of quality performance, so�ware status and environment monitored from

the SAS, this model can be continually updated at runtime to provide su�cient accuracy [11].

To stabilize the objective functions in this work, we pre-trained these models by monitoring the

data from SAS under random workload for 120 intervals, a�er which the models are gradually

and dynamically updated at runtime. �is step is similar to the testing phase before the actual

production deployment happened in the industry. As we will show for the next subject SAS,
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Fig. 20. The architecture of SOA-SAS.

other modeling approaches, e.g., analytical [44] or simulation based [26], can be easily applied

as long as they are compatible with the genes identi�ed by FEMOSAA.

To emulate the behaviors of running so�ware system, we run the SAS, empowered with

FEMOSAA, under the entire FIFA98 workload trace where the sampling interval is 120s for a

total of 102 timesteps, leading to around 5 hours per experiment run including the emulated

end-users’ thinking time. For all experiments, we trigger an optimization run by the end of

each interval.

— SOA-SAS. �is is a Service Oriented Architecture (SOA) based adaptable so�ware derived

from [49]. At the highest level, it is composed by 5 abstract services connected in parallel or in

sequence, as shown in Figure 20. Each abstract service can select up to 2 or 5 concrete services,

which are redundant parallel and associated with di�erent quality values. Each concrete service

could have up to 10 concurrent instances with the same quality of throughput and cost. �ose

abstract services, concrete services and their replicas are all considered as features of SOA-SAS
(e.g., a fragment in Figure 20), creating a total of 221 features in the feature model with a search

space of around 5.6 × 1018 using the elitist chromosome representation (including both valid

and invalid solutions). We have also placed various categorical and numeric dependencies on

the feature model. To simulate dynamic and uncertainty under time-varying environmental

conditions, we amended the throughput and cost of certain concrete services at each timestep,

i.e., changing their diversity level according to Gaussion distribution, as shown in Figure 19b.

Generally, more diverse concrete services implies more sparse adaptation solutions, which

reduces the number of e�ected solutions and thus make the problem harder. Here, we consider

the following con�icting objectives to be maximized and minimized for the entire composition:

(1) Throughput: In the SOA-SAS, throughput of each concrete service is its maximum capacity

under normal operation, expressed as number of requests per second. �e throughput of

the entire composition is calculated via an aggregate analytical model as shown in Eq. 4.

(2) Cost: Each concrete service, when utilized, comes with a monetary cost. �e cost of the

entire composition is again calculated via an aggregate analytical model as shown in Eq. 5.

As suggested in [49], the basic throughput and cost for each concrete service in SOA-SAS
were speci�ed following two di�erent Gaussian distributions such that a concrete service with

higher throughput would have higher cost too. In SOA-SAS, we leverage analytical model to

de�ne the objective functions:

T (t + 1) = min{a ∈ A :

a∑
i=1

Gi (t + 1) ×Ti (t )} (4)
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C (t + 1) =
n∑
i=1

Gi (t + 1) ×Ci (t ) (5)

where Gi (t + 1) is the ith gene (a concrete service) and its selected value (the actual number of

instances for that concrete service) in a possible adaptation solution for the total of n genes.

Ti (t ) and Ci (t ) are the related throughout and cost value, respectively. a refers to the genes

that is associated with a given abstract service, denoted by A. Since the analytical model is

customizable, we have forced the objective functions to produce a worst possible �tness value

for any invalid solutions, creating a stronger pressure for them to be eliminated in the classic,

non-dependency aware approaches.

Similar to RUBiS-SAS, there is a total of 102 timesteps and we trigger an optimization run by

the end of each interval.

As discussed, FEMOSAA �nds elitist features and extracts their dependencies at design time,

a�er which the outcomes are passed to the MOEA and knee selection for runtime optimization.

7.3 The Metrics
We consider the following metrics to evaluate various aspects of FEMOSAA:

— Individual�ality Attribute: In addition to the detailed plots of the results, we also report

on the Geometric Mean (GM) for all the observed objective values over 102 intervals, as GM

tends to be more resilient to the outliers than the arithmetic mean while still can be in�uenced

by those outliers. �is is important because outliers on the achieved quality are common in

real-world scenarios and thus they cannot be eliminated, but we need to prevent them from

strongly dominating the overall result.

— Aggregate �ality of SAS: To compare the overall quality for both objectives and provide an

overall assessment, we apply a modi�ed Hypervolume (HV) [55][37] for two objectives and

Euclidean Distance (ED) [50] on GMs to assess the balance in trade-o� and the extent to which

both objectives are optimized, respectively. �e GMs are normalized before computing those

metrics so that they range from 0 to 1. Hence, the modi�ed HV is computed as:

HV =
n∏
i=1

(1 −
GMi −GMi,b

GMi,w −GMi,b
) (6)

and ED can be calculated by:

ED =
1

n
×

√√ n∑
i=1

(
GMi −GMi,b

GMi,w −GMi,b
− 0)2 (7)

where n is the number of objectives and GMi is the GM for the ith objective; GMi,b and GMi,w
are the best and worst GMs that we observed for the ith objective, respectively. Notably, we

have converted the maximizing objective (e.g., throughput) into a minimizing one by inverting

the results.

— Percentage of Valid Solutions Found: For all the intervals, we also compare the average

percentage of valid adaptation solutions found in the �nal population.

— Running Overhead: We report on the mean running overhead, in terms of the execution time,

over all the intervals in the experiment runs.

To con�rm statistical signi�cance of the comparisons on the quality a�ributes, we performed

Wilcoxon Signed-Rank test (two-tailed) for all comparisons between FEMOSAA (or FEMOSAA-N)

and the others, as our data does not follow Gaussian distributions. We use 95% as the con�dence

interval (α = 0.05), which means that, if the test produces a p that is smaller than 0.05, then we can
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reject the null hypothesis H0, which states that the given two approaches cannot be statistically

distinguished when optimizing a quality a�ribute of the SAS. �e e�ect size for each test is also

reported and we follow the categories in [32] to measure the meaningfulness of e�ect size.

7.4 E�ectiveness of FEMOSAA
To ensure generality of the evaluation, we run each of the three MOEAs for optimizing the SAS

under each case which results in a total of 9 scenarios. Further, to evaluate the e�ectiveness of

FEMOSAA in each scenario, we compare FEMOSAA with numbers of its variants:

FEMOSAA-K—�is is similar to our FEMOSAA except that it relies on the classic, non-dependency

aware operators. �erefore, if the �nal population contains invalid solutions, it automatically �lters

them and work on the valid ones only. When no valid solutions found in the �nal non-dominated

set, it corrects the invalid solutions via dependency aware mutation operator. FEMOSAA-K aims to

examine whether the speci�cally tailored dependency aware operators can create bene�t over the

classic operators that are widely-used in SBSE.

FEMOSAA-D—Another variant of FEMOSAA without knee selection. Hence, in the �nal non-

dominated set, one solution is randomly selected for adaptation. FEMOSAA-D aims to examine

the importance of considering knee in runtime SAS optimization. Notably, the use of randomized

baseline is strongly recommended by existing SBSE community [4].

FEMOSAA-N—�is variant neither considers dependency nor knee selection in the evolutionary

optimization. Hence, it uses the same ad hoc strategies from FEMOSAA-D and FEMOSAA-K.

FEMOSAA-N is designed to evaluate the combinatorial bene�t of dependency aware operators and

the knee selection.

FEMOSAA-0/1—A baseline variant, built from FEMOSAA-N, that exploits the conventional

binary chromosome representation using all the features from the feature model. �us, it works

under a search space of 2
1151

and 2
221

for the two subject SAS, as opposed to the search space

of 1.3 × 1016 and 5.6 × 1018 when using the elitist chromosome representations. FEMOSAA-0/1

neither considers dependency nor knee in the evolutionary optimization. Note that if more than

one members in a XOR group are selected, we then randomly choose one among them to create a

computable solution for the �tness functions. FEMOSAA-0/1 aims to evaluate whether the elitist

chromosome representation outperforms the commonly used binary one.

We report the results for all the cases from Figures 21 to 29, we also plot the achieved quality

for all timesteps with respect to the environmental conditions in Figures 30 and 31, as well as the

results of an example optimization run in Figure 32. Note that, in Figures 30 and 31, the area near

the bo�om-le� line of the cube is the ideal area; the closer the points converge to that line, the

be�er the overall result is.

7.4.1 Evaluating the elitist chromosome representation. To evaluate the e�ectiveness of our

elitist chromosome representation in contrast to the conventional binary representation, we �rstly

compare FEMOSAA with FEMOSAA-0/1 for all cases on RUBiS-SAS, as shown in Figures 21 to 26.

Clearly, we see that FEMOSAA largely outperform FEMOSAA-0/1 on both response time and

energy consumption with p < 0.05 and non-trivial e�ect sizes. Further, FEMOSAA yields be�er

HV and ED values for all cases. In Figure 30, we also note that, in contrast to FEMOSAA-0/1 under

all cases, the quality achieved by FEMOSAA tends to be much more convergent to the le�-bo�om

line of the cube even under heavy workload, meaning that it leads to be�er quality results and

more balanced trade-o�. For SOA-SAS, we can observe similar results on throughput and cost, as

shown in Figures 27 to 29 and Figure 31.

However, the above comparison only demonstrates the combinatorial e�ectiveness of elitist

chromosome representation, the dependency aware operators and the knee selection, while it is not
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Fig. 21. Results with MOEA/D-STM under read-write pa�ern on RUBiS-SAS. (GM denotes Geometric Mean.
The significant statistics of comparisons, i.e., p < 0.05, are highlighted and shown in bold.)
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Fig. 22. Results with NSGA-II under read-write pa�ern on RUBiS-SAS. (GM denotes Geometric Mean. The
significant statistics of comparisons, i.e., p < 0.05, are highlighted and shown in bold.)
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Fig. 23. Results with IBEA under read-write pa�ern on RUBiS-SAS. (GM denotes Geometric Mean. The
significant statistics of comparisons, i.e., p < 0.05, are highlighted and shown in bold.)

clear whether the superiority over the conventional binary representation is truly resulted from the

elitist chromosome representation. To answer this, we then compare FEMOSAA-N with FEMOSAA-

0/1 for all cases on RUBiS-SAS, as shown in Figures 21 to 26. We see that, again, FEMOSAA-N

yields much be�er results on both quality a�ributes than FEMOSAA-0/1 under all cases while such

improvements are statistically signi�cant on at least one a�ribute with non-trivial e�ect sizes. It

also achieves be�er HV and ED results. Further, although it is less than 15%, FEMOSAA-N does

produce more valid solutions than FEMOSAA-0/1 which cannot identify any valid solution and thus

a�ect the quality of optimization. Next, we take a more detailed comparison between FEMOSAA-N

and FEMOSAA-0/1 through Figure 30, which reveals that, for all cases, the results of FEMOSAA-N

are more closed to le�-bo�om line of the cube when the workload is low, e.g., less than around

500 requests/min. For SOA-SAS, we observe even be�er results: FEMOSAA-N largely outperforms

FEMOSAA-0/1 on all the metrics, and the comparisons on quality a�ributes exhibit p < 0.05 and
large e�ect sizes for all cases, as shown in Figures 27 to 29 and Figure 31. �ose improvements of
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Fig. 24. Results with MOEA/D-STM under read-only pa�ern on RUBiS-SAS. (GM denotes Geometric Mean.
The significant statistics of comparisons, i.e., p < 0.05, are highlighted and shown in bold.)
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Fig. 25. Results with NSGA-II under read-only pa�ern on RUBiS-SAS. (GM denotes Geometric Mean. The
significant statistics of comparisons, i.e., p < 0.05, are highlighted and shown in bold.)
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Fig. 26. Results with IBEA under read-only pa�ern on RUBiS-SAS. (GM denotes Geometric Mean. The
significant statistics of comparisons, i.e., p < 0.05, are highlighted and shown in bold.)

elitist chromosome representation over the conventional binary representation are mainly due to

the fact that it fundamentally reduces the search space without a�ecting the original variability

of SAS, so that the search of MOEA has a larger chance to identi�ed the ideal solutions, leading

to more valid solutions and be�er quality. In addition, as we will show in Section 7.6, the elitist

chromosome representation can signi�cantly shorten the running time of MOEAs.

Notably, as shown in Figure 30 for RUBiS-SAS, when the workload increases (i.e., more than

500 requests/min), we can see that the achieved quality between FEMOSAA-N and FEMOSAA-

0/1 are barely di�erent. �is is because the number of good and e�ected solutions tends to be

limited when the workload is heavy, causing the bene�ts of reducing search space introduced

by the elitist chromosome representation less obvious. �ose results indicate that, overall, the

elitist chromosome representation can be�er guide the search towards ideal solutions but such

improvement tends to blur as the workload increases. Similarly, for SOA-SAS in Figure 31, we see
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Fig. 27. Results with MOEA/D-STM on SOA-SAS. (GM denotes Geometric Mean. The significant statistics of
comparisons, i.e., p < 0.05, are highlighted and shown in bold.)
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Fig. 28. Results with NSGA-II on SOA-SAS. (GM denotes Geometric Mean. The significant statistics of
comparisons, i.e., p < 0.05, are highlighted and shown in bold.)
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Fig. 29. Results with IBEA on SOA-SAS. (GM denotes Geometric Mean. The significant statistics of compar-
isons, i.e., p < 0.05, are highlighted and shown in bold.)

that although FEMOSAA-N creates be�er results than FEMOSAA-0/1 across di�erent levels of

diversity on the concrete services, the improvement tends to degrade under high diversity.

In summary, the results conclude that:

AnsweringRQ1—In contrast to the binary encoding, the elitist chromosome representation

helps to produce be�er optimized quality for SAS with statistically signi�cant results and

non-trivial e�ect sizes on at least one quality a�ribute. It can also shorten the running time

of MOEAs (in Section 7.6). However, the improvements might be hardly observed when

the number of e�ected solutions is limited, e.g., under heavy workload.

7.4.2 Evaluating the dependency aware operators. To evaluate the bene�t of dependency aware

operators, we �rstly compare FEMOSAA with FEMOSAA-N for RUBiS-SAS as shown in Figures 21

to 26. It is easy to see that for all cases, FEMOSAA yields be�er results on both quality a�ributes
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Fig. 30. Measured quality results with respect to workload for all the timesteps for RUBiS-SAS.
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Fig. 31. Measured quality results with respect to changes for all the timesteps for SOA-SAS.

with p < 0.05 and non-trivial e�ect sizes on at least one a�ribute. FEMOSAA also outperforms

FEMOSAA-N in terms of HV, ED and the number of valid solutions. In Figure 30, we can see that

the achieved quality of FEMOSAA be�er converges to the ideal area of the cube on di�erent degrees

of workload. Similar observations can be obtained for SOA-SAS as illustrated in Figures 27 to 29

and Figure 31.

However, the comparison above does not indicate whether the improvement is mainly introduced

by the dependency aware operators or the knee selection method, thus, we then further compare

FEMOSAA with FEMOSAA-K, which omi�ed the dependency aware operators. In Figures 21 to 26

for RUBiS-SAS, we see that FEMOSAA still exhibits superior quality results under all cases which are

statistically signi�cant on at least one a�ribute with non-trivial e�ect sizes; it also comes with be�er

HV and ED values while the number of valid solutions are 100% versus less than 20%. In all cases,

the achieved results of FEMOSAA, as shown in Figure 30, are more convergent around the ideal area

of the cube, especially when the workload is heavy, i.e., more than around 500 requests/min. Similar

results can be seen for SOA-SAS as shown in Figures 27 to 29 and Figure 31. But, FEMOSAA-K

is be�er than FEMOSAA on throughput when using MOEA/D-STM, the comparisons are not

statistically signi�cant though. �is means that the degree of objective con�icts in SOA-SAS is

much stronger than the case of RUBiS-SAS.
To gain a be�er understand about why our dependency aware operators can improve the quality

of optimization, in Figure 32, we plot the objective space of all searched, non-dominated and selected

valid solution(s) in the �nal population of an example run. We can clearly see that, under all studied

MOEAs, the dependency aware operators (i.e., FEMOSAA) can help to �nd solutions with be�er

convergence and diversity, when compared with the case where dependencies are ignored (i.e.,
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FEMOSAA-N). Such a bene�t eventually leads to a be�er set of non-dominated solutions within

which a �nal one can be selected for adaptation. Fundamentally, this is because the dependency

aware operators can be�er guide the search to prevent MOEAs from exploring the unneeded invalid

solutions, which virtually reduces the search space and provides a larger chance to �nd be�er

solutions.

Interestingly, when we compare FEMOSAA-D with FEMOSAA-N in Figures 21 to 26 for RUBiS-
SAS, we did not observe signi�cant di�erences between them in terms of all the metrics and their

comparison has also failed in all statistical signi�cance tests, which di�ers from our expectation

that FEMOSAA-D should achieve statistically be�er results. �e same can be also registered in

Figure 30. We believe the reason for this is due to although FEMOSAA-D can guide the search for

be�er solutions, the fact that a solution from the �nal non-dominated solutions is randomly selected

for adaptation has obscured the bene�ts of preventing the exploration of invalid solutions, as such

a solution might be highly imbalanced for the con�icting objectives. On contrary, for SOA-SAS
in Figures 27 to 29 and Figure 31, we see that FEMOSAA-D generally outperforms FEMOSAA-N

with be�er HV and ED values. In particular, under NSGA-II and IBEA, FEMOSAA-D is be�er on

both a�ributes with p < 0.05 and non-trivial e�ect sizes. �is implies that for a feature model with

relatively more complex dependencies as in the case of SOA-SAS, the dependency aware operators

can guide the search process to evolve many highly e�ected solutions in the �nal non-dominated

set, thus the randomly selected adaptation solution, although might be imbalanced, could still be

much be�er than those of the case when dependencies are omi�ed.

In conclusion, the results suggest that:

Answering RQ2—In contrast to the classic and widely-used operators, the bene�t of

dependency aware operators is that they help to �nd solution with be�er convergence and

diversity, leading to be�er optimized quality for SAS with statistically signi�cant results

and non-trivial e�ect sizes on at least one quality a�ribute. Such improvement can be more

obvious when the number of e�ected solutions is limited, e.g., when the workload is heavy.

However, applying dependency aware operators without ensuring balance of the selected

adaptation solution might obscure its e�ectiveness.

7.4.3 Evaluating the knee selection. We have already shown that the combination of dependency

aware operators and knee selection can lead to results that outperform the case where both of them

are omi�ed, we now evaluate whether the knee selection method itself can introduce bene�t for

runtime optimization of SAS. From Figures 21 to 26 for RUBiS-SAS, when comparing FEMOSAA

with FEMOSAA-D in which knee selecting has been omi�ed, we see that FEMOSAA achieves

superior HV, ED and be�er results on both quality a�ributes. �e comparisons are statistically

signi�cant with non-trivial e�ect sizes on at least one a�ribute for 5 out of 6 cases. In Figure 30,

we can see that the results of FEMOSAA are more balanced, i.e., points are more converge to

the bo�om-le�, and such improvement is more obvious when the workload is heavy under all

cases. For SOA-SAS, we observed similar outcomes overall as illustrated in Figures 27 to 29 and

Figure 31, except that FEMOSAA-D has be�er throughput than FEMOSAA under NSGA-II due

to the strong con�icts of the objectives in SOA-SAS. �ese results show that our knee selection

method in FEMOSAA contributes to the overall quality of adaptation by automatically selecting

the solution, which has balanced trade-o� on the objectives (i.e., a good sense of compromise), to

execute the adaptation. �e resulted quality achieved by those knee solutions are naturally the

most preferable ones, when the relative preferences between objectives are unknown or it is too

di�cult to quantify them (which is common for SAS).
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Fig. 32. Objective space of searched, non-dominated and selected valid solution(s) on a timestep of RUBiS-SAS.

For all the studied MOEAs in Figure 32 of RUBiS-SAS, we can see that, when comparing with

randomly selecting an adaptation solution from the non-dominated set (i.e., FEMOSAA-N), incor-

porating knee selection can indeed select more balanced solution for adaptation (i.e., FEMOSAA)

as it is closer to the bulge near the bo�om-le� area of the objective space.

Nevertheless, unlike our expectation, FEMOSAA-K and FEMOSAA-N do not yield statistically

signi�cant di�erences as shown in Figures 21 to 26 and Figure 30 for RUBiS-SAS. �is is because

the e�ectiveness of knee selection is fundamentally dependent on the quality of searched valid

solution; henceforth, as we have shown in the previous section, when the search process wastes

e�orts to explore invalid solutions, the quality of the solutions in the �nal population might be

compromised, which would negatively a�ect the bene�t that could have been introduced by our

knee selection method. Due to the same reason, for SOA-SAS in Figures 27 to 29 and Figure 31, we

see that although FEMOSAA-K slightly outperforms FEMOSAA-N on both a�ributes under all the

cases, the majority of the di�erences (5 out of 6) are not signi�cant statistically.

Overall, the results indicate that:

Answering RQ3—In contrast to the randomly selected non-dominated adaptation solution,

the knee selection helps to �nd a more balanced solution for adaptation, leading to be�er

optimized quality for SAS with statistically signi�cant results and non-trivial e�ect sizes on

at least one a�ribute. Such improvement can be more obvious when the number of e�ected

solutions is limited, e.g., when the workload is heavy. However, applying knee selection

without ensuring the quality of searched valid solution can obscure its e�ectiveness.
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7.5 Comparing FEMOSAA with State-of-the-art Frameworks
To further evaluate the e�ectiveness of FEMOSAA, we compare it with the following state-of-the-art

search-based frameworks from the literature:

DUSE10
[1]—A representative framework that optimizes SAS using NSGA-II. Since it does not

consider dependency and knee in the optimization, we adapt the ad hoc strategies applied by

FEMOSAA-D and FEMOSAA-K. As DUSE relies on manual transposition, we have used elitist

chromosome representations to ensure fair comparison and to eliminate bias in reproducibility.

PLATO [42]—An approach that applies weighted sum of objectives and Genetic Algorithm, a

popular single-objective evolutionary algorithm, in the optimization. It also does not consider

dependency in the optimization and thus we use the same ad hoc strategy as FEMOSAA-K. We

specify equal weights on the objectives to �nd the single best solution. As PLATO relies on manual

transposition, we have used elitist chromosome representations to ensure fair comparison and to

eliminate bias in reproducibility.

FUSION [23]—A well-known feature model based framework that formulates the SAS opti-

mization as an Integer Programming problem, which assumes aggregate objective function and

is resolved by an exact algorithm (we use Branch-and-Bound in the experiments). FUSION uses

binary representation of the solutions and it considers categorical dependency only, thus when no

valid solution found, we then �x the violations on numeric dependency. To avoid unacceptable

execution time, we forcibly return the best solution so far when it hits a time threshold, i.e., 40s.

Since the source codes of these state-of-the-art frameworks are not openly accessible, we have

reproduced the implementation of the optimization algorithms, which are core to these frame-

works, following the exact guidance and setups as mentioned in the work. Relevant open-sourced

frameworks (e.g., jMetal [21]) are exploited when possible. In particular, we have reproduced the

representation of the solution and dependency handling with respect to these algorithms as realized

by the state-of-the-art frameworks. �e other parts, e.g., the modeling component, are assumed to

be identical to FEMOSAA in all experiments. We apply the same set of metrics, statistical test and

method for categorizing e�ect size as discussed earlier.

As shown in Figure 33, for both workload pa�erns on RUBiS-SAS, we can see that FEMOSAA

with MOEA/D-STM, NSGA-II and IBEA obtain be�er quality results than the other state-of-the-art

frameworks. �ey also yield be�er results in terms of HV and ED. �e statistical tests and e�ect

size for the comparisons have been shown in Table 2, in which we can see that the improvements

obtained by FEMOSAA with all three MOEAs over the other state-of-the-arts frameworks have

been statistically signi�cant in general, resulting p < 0.05 with non-trivial e�ect sizes on at least

one quality a�ribute. �e superiority of FEMOSAA when compared with DUSE again conforms

that the combination of elitist representation, the dependency aware operators and knee selection

can guide the MOEA to achieve be�er quality results, even when using di�erent underlying MOEA.

PLATO, on the other hand, is further constrained by its nature of weighted sum objective functions,

preventing it from �nding some of the be�er trade-o� points. Although FUSION applies an exact

optimization algorithm which should obtain the optimal solution, the fact of the given large search

space has prevented it from reaching such an optimality in reasonable time, henceforth forcing

it to terminate when the time threshold is hit. Moreover, since the state-of-the-art frameworks

do not consider all dependency, their ratio of valid solutions ranges from 8.39% to 64.71% only.

For the case of SOA-SAS, as shown in Figure 34 and Table 3, we see that FEMOSAA with all three

MOEAs yield signi�cantly be�er results (p < 0.05) than PLATO on both quality a�ribute. �rough

spending the highest cost, DUSE achieves higher value than that of FEMOSAA on throughput under

MOEA/D-STM, but the comparison is statistically insigni�cant. Further, FEMOSAA is superior to

10
DUSE is actually the same as FEMOSAA-N with NSGA-II which we have evaluated in the previous sections.
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Fig. 33. Comparing FEMOSAA (under di�erent MOEAs) with state-of-the-art frameworks for RUBiS-SAS..
(GM denotes Geometric Mean. F*MOEA/D-STM, F*NSGA-II and F*IBEA denote FEMOSAA with MOEA/D-
STM, NSGA-II and IBEA, respectively.)

Table 2. Wilcoxon Signed-Rank Test Results Between FEMOSAA with Di�erent MOEAs and State-of-the-art
Frameworks for RUBiS-SAS. (The Significant Statistics, i.e., p < 0.05, are Highlighted and Shown in Bold)

(a) Read-Write Pa�ern

p value (e�ect size) for Response Time (ms) p value (e�ect size) for Energy Consumption (wa�)
FEMOSAA with

MOEA/D-STM

FEMOSAA with

NSGA-II

FEMOSAA with

IBEA

FEMOSAA with

MOEA/D-STM

FEMOSAA with

NSGA-II

FEMOSAA with

IBEA

DUSE .004 (medium) .043 (small) .327 (small) <.001 (large) .032 (medium) <.001 (large)
PLATO <.001 (large) .001 (large) .015 (medium) <.001 (large) <.001 (large) <.001 (large)
FUSION <.001 (large) <.001 (large) <.001 (large) <.001 (large) <.001 (large) <.001 (large)

(b) Read-Only Pa�ern

p value (e�ect size) for Response Time (ms) p value (e�ect size) for Energy Consumption (wa�)
FEMOSAA with

MOEA/D-STM

FEMOSAA with

NSGA-II

FEMOSAA with

IBEA

FEMOSAA with

MOEA/D-STM

FEMOSAA with

NSGA-II

FEMOSAA with

IBEA

DUSE .004 (medium) <.001 (large) .029 (medium) .246 (small) .624 (trivial) .005 (medium)
PLATO <.001 (large) <.001 (large) <.001 (large) .010 (medium) .303 (small) .001 (large)
FUSION <.001 (large) <.001 (large) <.001 (large) <.001 (large) <.001 (large) <.001 (large)

and more balanced than DUSE overall as evidenced by the greatly improved, statistically signi�cant

results on rest of the cases, as well as be�er HV and ED values. We can also observe that FUSION

has very competitive result on cost, which is the best for this quality. However, this is due to the fact

that the two quality a�ributes are strongly con�icting, which casues the exact search in FUSION

to trap at a local area of the search space within the given time. �is eventually resulted in an

unwisely strong bias towards the improvement of cost, as evident by the even larger degradation on

throughput in contrast to FEMOSAA, as well as the poor HV and ED values. FUSION leads to only

3% valid solutions as it considers categorical dependencies only while most of the cross-branched

dependencies in SOA-SAS are numeric.

In conclusion, those results suggest that:

Answering RQ4—In contrast to the state-of-the-art frameworks (DUSE, PLATO and FU-

SION), FEMOSAA achieves be�er optimized quality for SAS with statistically signi�cant

results and non-trivial e�ect sizes on at least one quality a�ribute, even when using di�erent

underlying MOEAs.
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Fig. 34. Comparing FEMOSAA (under di�erent MOEAs) with state-of-the-art frameworks for SOA-SAS. (GM
denotes Geometric Mean. F*MOEA/D-STM, F*NSGA-II and F*IBEA denote FEMOSAA with MOEA/D-STM,
NSGA-II and IBEA, respectively.)
Table 3. Wilcoxon Signed-Rank Test Results Between FEMOSAA with Di�erent MOEAs and State-of-the-art
Frameworks for SOA-SAS. (The Significant Statistics, i.e., p < 0.05, are Highlighted and Shown in Bold)

p value (e�ect size) for Throughput (request/second) p value (e�ect size) for Cost ($)
FEMOSAA with

MOEA/D-STM

FEMOSAA with

NSGA-II

FEMOSAA with

IBEA

FEMOSAA with

MOEA/D-STM

FEMOSAA with

NSGA-II

FEMOSAA with

IBEA

DUSE .451 (trivial) .300 (small) .007 (medium) <.001 (large) <.001 (large) <.001 (large)
PLATO <.001 (large) <.001 (large) <.001 (large) <.001 (large) <.001 (large) <.001 (large)
FUSION <.001 (large) <.001 (large) <.001 (large) <.001 (large) <.001 (large) <.001 (large)

Table 4. Comparing Mean Running Time For Producing An Adaptation Solution.

RUBiS-SAS with
Read-Write Pa�ern

RUBiS-SAS with
Read-Only Pa�ern

SOA-SAS

FEMOSAA with MOEA/D-STM 1.96s 1.88s 0.30s

FEMOSAA-N with MOEA/D-STM 2.04s 2.5s 0.43s

FEMOSAA-0/1 with MOEA/D-STM 22.02s 22.94s 1.06s

FEMOSAA with NSGA-II 0.9s 0.86s 0.08s

FEMOSAA-N with NSGA-II 0.94s 3.53s 0.04s

FEMOSAA-0/1 with NSGA-II 10.65s 10.48s 0.24s

FEMOSAA with IBEA 1.09s 1.12s 0.20s

FEMOSAA-N with IBEA 1.13s 1.12s 0.14s

FEMOSAA-0/1 with IBEA 20.90s 20.59s 1.45s

DUSE 0.94s 3.53s 0.04s

PLATO 0.99s 0.79s 0.02s

FUSION 37.98s 55.09s 54.54s

7.6 Runtime Overhead
Since we are interested in optimizing SAS at runtime, the running overhead of the MOEAs guided

by FEMOSAA is an important aspect to evaluate. In Table 4, we compare the runtime overhead

of FEMOSAA, FEMOSAA-N, FEMOSAA-0/1, DUSE, PLATO and FUSION under RUBiS-SAS’s two
di�erent workload pa�erns and SOA-SAS. For FEMOSAA and its variants, we examine them using

all the studied MOEAs. We report on the mean overhead over all the timesteps. As we can see,

under all MOEAs and both subject SAS, FEMOSAA (less than 2s) yields much smaller overhead than

FEMOSAA-0/1 (up to 22.94s) as the former encodes the elitist features only, which fundamentally

reduces the search space and also simpli�es the process of generating new solutions (individuals)

in MOEAs. Interestingly, we note that for RUBiS-SAS, FEMOSAA (0.9s to 1.96s) has slightly smaller

overhead than FEMOSAA-N (0.94s to 3.53s), which is quite surprising as we expected that the former

should introduce slightly bigger overhead as it exploits additional processes in the reproduction

operators and the selection of �nal solution for adaptation. �ese results could be a�ributed to two

reasons: (i) the extra e�orts spent in dependency aware operators and knee selection are negligible,

and (ii) the dependency aware operators tend to produce solutions that can a�ect the running time
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of MOEAs, for example, in NSGA-II, if the number of solutions in most of the higher ranked fronts

is smaller, then the calculation of their crowding distances would yield less running time.

In contrast to the state-of-the-art frameworks, FEMOSAA achieves competitive results on runtime

overhead, the actual time taken by FEMOSAA depends on the underlying MOEA though. Notably,

FUSION has the biggest overhead as exact algorithm fails to scale with large search space and the

optimization runs are o�en forcibly returned as they hit our prede�ned threshold of 40s.

To summary, the results reveal that:

AnsweringRQ5—While the running time of FEMOSAA depends on the underlying MOEA,

FEMOSAA has very competitive runtime overhead in contrast to the state-of-the-art frame-

works. In addition, the extra e�orts spent in dependency aware operators and knee selection

are negligible; sometimes, they can even slightly speedup the running time of MOEAs.

7.7 Discussion
7.7.1 FEMOSAA Benefits and Applicability. �e most notable bene�t of FEMOSAA is that

it advances the synergy between so�ware engineering for SAS and evolutionary computation.

Without in-depth expertise on evolutionary algorithms in general, so�ware engineers are granted

the ability to in�uence the behaviors of a MOEA in a way that they are familiar with, i.e., the feature

model design of a SAS. On the other hand, such a design serves as strong domain knowledge that

can extend the MOEA and guide the evolutionary search behavior, i.e., in form of elitist chromosome

and dependency aware operators, to produce be�er solutions, .

FEMOSAA exploits MOEA which particularly �ts for cases where the relative weights between

objectives are unknown or it is too di�cult to quantify them. In this perspective, the bene�t

of FEMOSAA is that it does not require one to specify weights, which could be labor intensive.

Indeed, we acknowledge that there are scenarios where the relative importance between con�icting

objectives is explicitly known, and their weights can be precisely speci�ed. In those cases, the

concept of MOEA and knee selection employed by FEMOSAA might be less sensible. However, it

is possible for FEMOSAA to work with single-objective evolutionary algorithms using aggregation

of the objectives while deactivating the knee selection, in which case the SAS can still bene�t from

the power of the elitist chromosome representation and the dependency aware operators.

Another point which is worth mentioning is that MOEA does not guarantee optimal solutions;

however, it is very e�cient in producing good approximation to complex and non-linear problems

that would be otherwise unsolvable by exact optimization. �us, we would not recommend to use

FEMOSAA on SAS that are simple, small in the search space and can be handled by exact search

that leads to an optimal solution.

7.7.2 FEMOSAA Running Time. Indeed, in contrast to FEMOSAA, the classic rule and policy

based decision making approach is very fast when adapting a SAS. However, its e�ectiveness of

adaptation quality relies on several important factors, including:

(1) �e full knowledge of every possible condition that the SAS may encounter.

(2) Some theoretical assumptions on the SAS and the environment that underpins the rules and

policies.

(3) �e manual reasoning of the optimal adaptation decision under a given condition (i.e., the

mapping between a condition and an adaptation decision).

For SAS works in highly dynamic and uncertain environments (e.g., in cloud computing and

so�ware de�ned networking), rule and policy based approaches would fail due to the fact that they
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heavily rely on human knowledge and there are emergent conditions that have not been accounted

for, given the requirements of points (1) and (2). Further, SAS o�en has a large variability, i.e., a

large number of alternatives as the two SAS we studied. �is makes point (3) in the rule and policy

based approaches unrealistic; in fact, an exact search optimization would also fail under the problem

with a large search space, as such a problem itself is intractable. In contrast, search-based so�ware

engineering techniques, particularly evolutionary algorithms, o�er a promising way to our SAS

optimization problem. �is is because being a metaheuristic, evolutionary algorithms are dynamic

in nature that are able to perform optimization without in-depth knowledge and assumptions of

the problem in hand (e.g., the property of the SAS and the environment). In addition, the notion of

natural evolution and population permits its ability to �nd approximately optimal solutions even

for intractable problems.

As we illustrated in Section 7.6, FEMOSAA achieves a runtime overhead of seconds under the two

SAS studied. �is may cause delay in adaptation under extreme scenarios where the transition needs

to be completed in microseconds. However, for other cases where the requirements of transition

time can be relaxed, the be�er quality of adaptation that is generated by the underlying evolutionary

algorithm has made the cost of its runtime overhead negligible, especially considering that the SAS

optimization problem would otherwise be unsolvable with rule and policy based approaches. In

fact, as we have shown throughout Section 7, the proposed elitist chromosome representation and

dependency aware operators in FEMOSAA have enabled the underlying evolutionary algorithm to

reach a be�er adaptation quality with even smaller runtime overhead.

7.7.3 Threats to Validity. Some threats to validity of FEMOSAA can be discussed as the following:

�reats to construct validity is concerned with whether the used metrics can indeed re-

�ect what we intend to measure. In this work, our experiments have selected wider range of

quality a�ributes, i.e., response time, energy consumption, throughput and cost. �ose quality

a�ributes and their metrics are the most commonly assessed quality aspects for SAS from the liter-

ature [39][49][23][42]. Further, we assessed the aggregated results of di�erent quality objectives

using HV and ED, which are widely applied metrics to measure the quality of solutions for multi-

objective optimization problems [50][37]. �reats to construct validity could be also related to the

stochastic nature of the considered MOEAs in experiments which can in�uence the measurements,

especially for those that do not account for dependency and knee in the optimization. Indeed,

to draw a meaningful conclusion of the measurements for stochastic search-based optimization,

repeated runs are necessary as suggested in [4]. We have mitigated such a bias by following the

design introduced in [4], including: conducting 102 optimization runs
11
for FEMOSAA and the

others; exploiting a statistical test to verify the signi�cance of comparisons and reporting the e�ect

size for con�rming the measured results are not occurred due to chance. Further, in the RUBiS-SAS
case, FEMOSAA has been evaluated and measured following the realistic FIFA98 workload trace.

�reats to internal validity is related to the values of parameters for the MOEAs. �e setup

in this work has been carefully tailored such that it produces good trade-o� between the quality of

optimization and the overhead. However, these values might vary depending on the characteristics

in the context, e.g., the given feature model, the types of SAS and the environmental conditions,

which itself could be a topic for future research. �reats to internal validity can be also arised from

the accidental bugs in the experimental implementations, which is always possible when writing

any kind of so�ware, especially for SAS which is naturally more complex than others. However, we

have tried to mitigate this unavoidable phenomenon by (i) exploiting well-established open-source

11
�e number of runs is an implied result of the client emulator’s setup for RUBiS-SAS and SOA-SAS
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framework whenever possible (e.g., jMetal [21]); (ii) following the exact guidance given in some of

the compared work; and (iii) debugging through formal so�ware testing procedure.

�reats to external validity is linked to the benchmark and scenario that are used in the

experiments. To improve generalization of the experimental evaluations, we have also evaluated

FEMOSAA with three widely applied but distinct MOEAs under two running SAS and di�erent

workload pa�erns, which can diversify the runtime behaviors of the SAS. In particular, one of

the SAS (i.e., RUBiS-SAS) contains a stack of real-world so�ware, which help to emulate more

realistic scenario of the running SAS. �ough our experimentation on the cases approximate real

and industrial scale, it is di�cult to claim complete generality; such claim would require much

large number of independent domain-speci�c cases and needs to be performed by independent

future adopters. In future work, we plan to evaluate FEMOSAA in other extreme context, e.g., in

mobile environment where computational resource is rather limited. However, it is worth noting

that the e�orts for building the experiments and deploying the running SAS are non-trivial, which

could involve potential expenses.

8 RELATEDWORK
Search-based optimization has been widely applied for SAS, either constitutes as a general frame-

work or being tailored to a speci�c domain, e.g., service systems or cloud systems. In this section,

we provide an overview of the most notable and relevant research in this area while examining

them in the light of FEMOSAA.

8.1 Evolutionary Optimization for SAS
A common way of optimizing multiple objectives is to simply aggregate di�erent objectives (e.g.,

weighted sum) such that they can be resolved in a single objective function. Hence, there exists

some work that leverages single-objective evolutionary algorithms for optimizing SAS based on an

objective aggregation. PLATO [42] and VALKYRIE [27] are two examples. However, as opposed

to the automatic transposition approach in FEMOSAA, they have relied on manual encoding of

the SAS into chromosome representation and they do not consider dependency between features.

Further, it is well-known that the relative weights are di�cult to be tailored by the engineers; and a

single aggregation could restrict the search, causing limitation when searching for good solutions

spread over the search space.

Exploiting MOEAs to handle the trade-o� between con�icting objectives is an emerging trend

for optimizing SAS at runtime. Among others, DUSE [1] uses NSGA-II to produce a set of non-

dominated solutions for SAS. Similarly, NSGA-II and other EAs, as well as other meta-heuristics

algorithms, have also been applied in [28][22][51][12][15], which focus on general SAS and the

speci�c SAS for cloud and service systems. Nevertheless, their encoding of the SAS has been

manual and no dependency between features are considered. Consequently, a signi�cant number

of function evaluations would be wasted to search for invalid solutions, which as we have shown,

can degrade the quality of solutions found. Furthermore, they rely on the non-dominated set,

from which any solution can be used for adaptation, which can entail imbalanced trade-o�. On

contrary, FEMOSAA �nds a knee solution that is generally preferable. Moreover, FEMOSAA relies

on automatic approach where the elitist features are identi�ed and the dependency is extracted to

guide MOEA.

�e closely related and most recent work is probably the one produced by Pascual et al. [41],

where they proposed a framework for self-adaptive mobile system, which uses the feature model

with MOEA while considering feature dependencies in the optimization. However, FEMOSAA is

di�erent from their work in various aspects:
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• Pascual et al.’s work relies on a binary representation of all features and only categorical features

are considered; while FEMOSAA encodes elitist features into the chromosome only to form a

polyadic representation which reduces the number of genes, and thereby considerably shrinking

the search space.

• Instead of modifying the reproduction operators, the work by Pascual et al. still allow the

operators to explore and generate invalid solutions but �xes those solutions using a random

repair strategy, i.e., each gene, which violates the categorical dependency, is �xed. However,

such a �x is not guided by the dependency chain, thus there is no guarantee that the �xed gene

would not cause additional violations (if there is a chain of dependency), and thereby it cannot

ensure that a valid solution is always produced. Indeed, in their work, the process is repeated

if the previous �x has not resolved all the violations, and the repair stops when a maximum

number of repeats has been reached. On the contrary, FEMOSAA extracts dependencies and

directly injects them to both the mutation and crossover operators, which are explicitly guided

by the dependency chains and the related value trees; this fundamentally prevents invalid

solutions from being explored.

• �e nature of binary representation in Pascual et al.’s work implies that it is di�cult for them

to handle numeric dependencies, which are covered by FEMOSAA.

• FEMOSAA considers knee selection for adaptation while Pascual et al.’s work selects any

non-dominated solution for adaptation, which could be highly imbalanced.

8.2 Evolutionary Optimization in So�ware Product Line Engineering
�e feature model is widely used in So�ware Product Line (SPL) for modeling variability, which

is similar to our use of feature model on SAS. In particular, MOEA has been applied to SPL,

see [45][46][31] for example. However, unlike SPL, where the objectives are highly concerned with

designing so�ware products that expose features’ richness, diversity and their known defects, etc,
our focus in SAS is on optimizing non-functional quality a�ributes, seeking adaptation decisions

that can be�er respond to dynamics and uncertainty in the environment with limited or no human

intervention. In addition, SPL assume design time while the SAS mainly focus on runtime.

Although given the di�erences mentioned above, some SPL work exhibits resemblance to

FEMOSAA: they both aim to transpose the design of the feature model into the context of MOEA.

�erefore, here we compare FEMOSAA with those SPL preventative approaches, where we speci�-

cally look at how the feature model is transposed into MOEA and their strategies to handle feature

dependencies. �is consideration is particularly essential to explain why it is insu�cient to di-

rectly apply the transposition used in the existing studies of the SPL domain, and what are the

improvements we have made in this aspect.

Among others, Sayyad et al. [45][46] exploit NSGA-II and IBEA for �nding optimal design of

product line using binary encoding of the features into chromosome representation. In contrast,

FEMOSAA does not rely on the lengthy binary representation and it encodes a polyadic chromosome

using elitists feature, which as we have shown, leading to be�er optimization results and running

time. Hierons et al. [31] proposed an extended MOEA encoding method for the feature model,

in which the basic encoding is still binary. Similar to our motivation, Hierons et al. [31] seek

simpli�cation by eliminating features which are the root of a OR group as their variability can be

represented by their children, e.g., Cache Mode in Figure 4. However, FEMOSAA goes one step ahead

by discarding the binary chromosome representation; this is achieved through selecting the elitists

features that cannot be removed without a�ecting the variability while minimizing the length of

encoding, which does not only eliminating any features whose variability can be represented by

their children (not restricted to the features that are root of OR group as in [31]), e.g., Cache and
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Cache Mode in Figure 4, but also eliminating those whose variability can be represented by their

parent, e.g., CPU ’s children in Figure 4. Unlike their work, we do not simply remove all mandatory

features; we retain those with a XOR group of children as they would help us to considerably

simplify the chromosome representation even more (e.g., CPU in Figure 4). Further, they have

ignored numeric features which are common in SAS. �e numeric features, if not speci�cally

handled, would lead to high computational overhead under binary encoding.

Another fact that distinguishes FEMOSAA and existing SPL work on the transposition process is

the way in which the dependencies are handled. Hierons et al. [31] and Sayyad et al. [45][46] simply

formulate dependency compliance as an additional objective to be optimized. �eir formulation

stems from the fact that it is too complex to explicitly handle dependency during the evolution due

to the inherited di�culty of the binary encoding. �e basic assumption is that, with a large number

of generations, the MOEAwould eventually discovery many valid solutions. While this schema may

be sensible for design time optimization problems, it is ill-suited for SAS where the optimizations

occur at runtime, because the extra dimension of dependency objective would impose too much

additional di�culty of the problem and, at the same time, still fail to guarantee valid solutions.

With the binary chromosome representation, Henard et al. [30] aim to overcome this by combing

MOEA with an o�-the-shelf CSP solver, in which the solvers act similarly to our dependency

aware operators. However, those solvers are general and have not been speci�cally tailored to the

needs of problem, which are o�en computationally expensive and they would not guarantee valid

solutions either. FEMOSAA, on the other hand, extracts the dependencies with respect to the elitist

chromosome representation at design time, and those dependencies are injected into the operators

of MOEA to fundamentally prevent the exploration of invalid solutions during runtime evolution.

Further, FEMOSAA handles complex dependencies related to the numeric features.

8.3 Non-evolutionary Optimization for SAS
Beside evolutionary algorithms, exact algorithms are also utilized for optimizing SAS [23][24][9],

as they guarantee to �nd the optimal solution and can easily work with single objective. Here, we

aim to consider the most noticeable non-evolutionary optimization approaches for SAS which do

not tie to the special characteristics of a speci�c application domain. FUSION [23] is a general

framework that optimizes SAS using exact algorithm. At design time, it also applies the feature

model to represent the design of a SAS. However, unlike FEMOSAA, it does not consider numeric

features and they formulate the problem as Integer Optimization problem using binary encoding

of all the features. Eshafani et al. [24] also follow similar idea of FUSION but they additionally

use Fuzzy logic to constitute the objective functions. MOSES [9] is a framework that is designed

for self-adaptive service systems, where the optimization is formulated as Linear Programming

problem that is convex and can be solved exactly.

One fundamental issue with the non-evolutionary and exact algorithm is that they fail to scale

when the search space is large, which is o�en the case for modern SAS. Furthermore, exact

approaches tend to be highly sensitive to the nature of the problem, e.g., whether they are convex or

concave. �is could impose extra di�culty because the analysis of problem nature for SAS is very

di�cult, if not impossible, due to the dynamic and uncertain nature of the context. Additionally,

exploiting exact algorithms o�en need to work on an objective aggregation, which limits their

applicability and capability.

In contrast, FEMOSAA relies on MOEA, which is a type of stochastic evolutionary optimization

algorithms that is speci�cally designed to handle multi-objective optimization problems. It is

known that MOEA can e�ciently �nd optimal (or near-optimal) solutions for problems with large

search space and is capable to reveal �ne-grained trade-o� surface without the need of objective
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aggregation. In addition, MOEA is problem agnostic and thereby it is less sensitive to the nature of

a given problem.

8.4 Other Approaches for Self-Adaptation at Runtime
Advanced control theory has also been used for SAS decision making because of their low latency.

Among others, Filieri et al. [25] propose a multi-objective controller where each objective would

have independent sensors and actuators; the reasoning relies on aggregation of objectives, however.

Simplex [47] is also another recent control theoretic method for SAS, where simplex optimization

algorithm is used in conjunction with the updates of controller’s gains.

Reinforcement Learning (RL) [8] is another thread that regards the SAS optimization problem as

a learning problem. However, in RL, there is no explicit optimization process due to the absence of

clear model, and therefore, the adaptation decision is o�en tailored in a trial-and-error manner

which could impose an expensive exploration phase.

Without an explicit search behavior, both control theoretic and learning based approaches lack

the ability to perform exploration without a�ecting the SAS. In addition, they do not consider

dependency constraints and they are di�cult to be adopted for e�ectively reasoning about trade-o�s

at runtime. In contrast, FEMOSAA exploits MOEA and the feature model, aiming to explicitly

handle multi-objective optimization while considering dependencies.

9 CONCLUSION
�is paper presents FEMOSAA, a novel framework that systematically and automatically synergizes

the feature model of SAS and a MOEA, to optimize the SAS at runtime. At design time, FEMOSAA

�nds the elitist features, including categorical and numeric ones, to create a polyadic chromosome

representation; it then extracts the dependencies between the genes, which are then used to extend

the underlying MOEA for runtime optimization. �e feature model serves as the engineers’ domain

knowledge that can reduce the search space (fundamentally and virtually) and guide the search,

henceforth increasing the chance for �nding be�er solutions. Further, FEMOSAA �nds the knee

solutions that achieve a balanced trade-o�. By extensively comparing FEMOSAA with its variants

and the state-of-the-art frameworks on two complex real-world SAS, using three widely applied

MOEAs and under two workload pa�erns for optimizing various con�icting objectives, we show

that FEMOSAA produces statistically be�er and more balanced results for trade-o� with reasonable

overhead. In particular, the most notable observations of FEMOSAA are that:

• Applying the elitist chromosome representation to encode the problem into MOEA helps to

produce be�er quality and smaller runtime overhead for optimizing SAS, but such improvement

tends to become marginal when the number of e�ected solution is small, e.g., the workload is

heavy.

• �e dependency aware operators can properly guide the search, �nding solutions with be�er

convergence and diversity, leading to be�er quality of SAS optimization. However, applying

dependency aware operators without ensuring the balance of the selected adaptation solution

might obscure its e�ectiveness.

• �e knee selection helps to �nd more balanced solution for adaptation. However, applying knee

selection without ensuring the quality of searched valid solution can obscure its e�ectiveness.

• In contrast to the state-of-the-arts framework from the literature, FEMOSAA, with all the

three studied MOEAs, produces statistically and practically be�er quality for optimizing SAS at

runtime.
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• Overall, FEMOSAA has very competitive runtime overhead in contrast to the state-of-the-art

frameworks. Further, the extra e�orts spent in dependency aware operators and knee selection

are negligible; sometimes, they can even slightly speedup the running time of MOEAs.

Our work impacts and advances the synergy between so�ware engineering for SAS and evo-

lutionary computation, combining the strengths from both �elds. Particularly, with FEMOSAA,

so�ware engineers can exploit MOEAs to tackle SAS optimization without prior extensive expertise

of the MOEA. On the other hand, automatic transposition of the feature model into MOEA’s context

can improve MOEA, and make the domain knowledge systematic and comprehensible for MOEA

researchers, who in turn can design more e�ective algorithms for SAS. In contrast to many SBSE

work, our deeper synergy takes one step further by automatically and dynamically extracting the

domain information of SAS to extend the internal structure of MOEA. In future work, we plan to

apply FEMOSAA in other domains of SAS and extend it for managing more con�icting objectives.
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Engels, G., Geihs, K., Göschka, K. M., Gorla, A., Grassi, V., Inverardi, P., Karsai, G., Kramer, J., Lopes, A., Magee,

J., Malek, S., Mankovskii, S., Mirandola, R., Mylopoulos, J., Nierstrasz, O., Pezzè, M., Prehofer, C., Schäfer,
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