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h i g h l i g h t s

• This model is nearly as simple as the original NaSch.
• However, deceleration rates are restricted to realistic values.
• Therefore, it is free of collisions.
• The models show different velocity-synchronized phases.
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a b s t r a c t

We present a very simple stochastic traffic cellular automaton (CA) model to re-
produce synchronized traffic. This model aims to be nearly as simple as the well-
known Nagel–Schreckenberg model, but to overcome to shortcomings of the latter: The
Nagel–Schreckenberg model (NaSch) and its variants achieve collision-free driving by ex-
plicitly allowing for unlimited braking capabilities. However, it is rather natural to view the
collision-free traffic flow as a consequence of moderate driving instead of infinite braking
capabilities. Therefore, our new CA model limits the vehicles’ acceleration and decelera-
tion rates to realistic values. Moreover, our model is able to reproduce several important
features of synchronized traffic flow.

Earlier models achieve identical goals only by using relatively complicated rules of
motion. Our model, however, introduces slight modifications of the easily comprehensible
NaSch. Thesemodifications lead to very stable stateswhere all vehicles tend to synchronize
their speed. Even though, or perhaps precisely because, the states of synchronized flow are
stable in our model, it allows to study several features of this traffic phase in great detail.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In 1992, Nagel and Schreckenberg [1] proposed one of the first stochastic discrete cellular automaton models of traffic
on a one-lane road. Various modifications and extensions such as for the analysis of city traffic [2], the influence of traffic
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lights [3], or the application to complex road networks [4,5] have been proposed since then (for reviews see, e.g., Refs.
[6,7]). The primary criterion to assess these models is their ability to reproduce empirically observed features of traffic
flow [8,9], which follows from the vehicles’ rules of motion.

In the Nagel–Schreckenbergmodel (NaSch), the road ismodeled as a one-dimensional array of sites. Each site is occupied
by atmost one vehicle. The position of the ith vehicle at time t is denoted by xit and the position of its immediate predecessor
by xi+1

t . A vehicle’s dynamics (i.e., its acceleration and deceleration) depends on its predecessor on the road. This behavior
is implemented by an update scheme in which the following simple rules are applied to each vehicle in parallel:

1. A car i with speed vi
t at time t accelerates if the distance to its predecessor δi

t = xi+1
t − xit is sufficiently large. That

means if δi
t is larger than vi

t + 1 then the speed is advanced by one until the car reaches its maximum speed vmax:
vi
t+1 = min(vi

t + 1, vmax).
2. If the distance δi

t is too small (i.e., δi
t ≤ vi

t+1), the car reduces its speed to avoid a collision: vi
t+1 = min(δi

t − 1, vi
t+1).

3. The car’s speed is decreased by one at random: vt+1 = max(0, vi
t+1 − 1) with probability 1 − pacc.

4. Finally, the vehicle moves from its current position xit to its new position xit+1 = xit + vi
t+1.

The success of the Nagel–Schreckenberg is based both on its simplicity and its ability to reproduce the spontaneous
transition from free to congested flow revealing the stochastic nature of a traffic breakdown [10]. The latter is a result of
the random deceleration of step 3 which leads to metastable states of free traffic flow. In this metastable regime, wide
moving jams (i.e., waves of stopped vehicles) can spontaneously emerge from free flow (F). (Similar observations have been
made for many modified versions of the NaSch [11–13].) Such a transition, however, conflicts with empirical observations:
according to Kerner’s three-phase theory1 of traffic [14,15] congested traffic divides into two phases, synchronized traffic
(S) andwidemoving jams (W); a transition from free to congested traffic always involves a transition to synchronized traffic
(F → S). Therefore, the behavior observed in the NaSch and its successors (F → J) does not correctly describe the physical
characteristics of traffic flow.

The physical properties of the three traffic phases and the relation between them is essential for a correct understanding
of traffic. In particular, the understanding of the synchronized phase (S) is the key to any progress both in theoretical and
application-oriented fields of research [16]. This insight has lead to the development of models that are based on Kerner’s
theory (e.g., Refs. [17–19]). These models successfully reproduce synchronized traffic and the corresponding transitions
(F ↔ S, S ↔ J). At the same time, they are quite complex and involve an extensive set of rules.

In this paper, we will present a simple stochastic cellular automaton model that is able to reproduce synchronized
traffic. Moreover, we achieve limited deceleration rates in our model by randomizing the acceleration step instead of the
deceleration step (cf. step 3 of the NaSch). As a consequence, there is no metastable regime in our model. Even though, or
perhaps precisely because, the states of synchronized flow are stable in our model, it allows to study several features of this
traffic phase in great detail.

2. Modified version of the NaSch

First, we will present our modified model (in the following: mNaSch). Let L ∈ N be the number of sites representing the
one-lane road. The discrete variable t denotes the time.

At time t , the car labeled i moves with speed vi
t which is bounded from above by µ(vi+1

t−1, δ
i
t−1). This upper boundary,

whose value depends both on the speed of the leading vehicle and the distance gap, ensures that there are no collisions of
two cars as we will show below. In our modified model, a car changes its speed according to the following rule:

vi
t =


vi
t−1 + 1 if vi

t−1 + 1 ≤ µ(vi+1
t−1, δ

i
t−1) and ξ ≤ pacc,

vi
t−1 if vi

t−1 + 1 ≤ µ(vi+1
t−1, δ

i
t−1) and ξ > pacc,

µ(vi+1
t−1, δ

i
t−1) otherwise.

(1)

The variable ξ denotes a randomnumber uniformly generated in [0, 1]. Note that it holds vi
t−1−1 ≤ vi

t ≤ vi
t−1+1. Thereby,

acceleration and braking capabilities are limited, and a car changes its speed by at most ±1.

2.1. Collision free driving

We will now determine the values of µ(vi+1
t , δi

t) for the mNaSch which ensure that there are no collisions between any
two cars. (Valid initial configurations for open and periodic boundaries are given in Appendix A.) We need to distinguish
between two cases:

1. The vehicle i does not have a predecessor. This is only possible in an open system. In this case the car’s speed is only
limited by vmax, the maximum technical speed of the car. (For the rest of this paper we set vmax = 6, but our findings
remain valid for other choices of vmax.)

1 This theory is solely based on the meticulous analysis of empirical data.
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Table 1
The values of the function µ(vi+1

t , δi
t ) for vmax = 6.

vi+1
t δi

t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 20 21 ≥22

0 0 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6
1 0 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6
2 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6
3 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6
4 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6
5 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6
6 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

2. The vehicle i does have a predecessor. That means that there is another car driving ahead of vehicle i. This is always the
case in a closed system. The maximum possible speed of car i at time t depends on (i) the speed of its predecessor and
(ii) the distance to its predecessor at time t − 1.
This is captured by the function µ(vi+1

t , δi
t) defined as follows:

µ(vi+1
t , δi

t) = min


1
2


8δi

t − 7 + 4vi+1
t


vi+1
t − 1


−

1
2


; vmax


, (2)

where ⌊·⌋ denotes the floor function and δi
t the distance between car i and its predecessor i + 1 at time t .

The values resulting from Eq. (2) are given in Table 1 for various combinations of a vehicle’s headway and speed.

(To some extent this approach is comparable to the work of Emmerich and Rank [20]. They investigated an update
mechanism which takes into account both a vehicle’s space gap and its speed as well. By ignoring the leading vehicle’s
speed, this mechanism cannot guarantee realistic deceleration rates.)

Theorem 1. It holds for all times (∀t ∈ N) that for any two cars i, j with i < j : xit < xjt . This means that there are no collisions
at any time.

Proof. From Table 1 we see that it holds

µ(vi+1
t−1, δ

i
t−1) < δi

t−1 + max{vi+1
t−1 − 1, 0} (3)

and therefore (using δi
t−1 = xi+1

t−1 − xit−1)

xit ≤ xit−1 + µ(vi+1
t−1, δ

i
t−1) < xi+1

t−1 + max{vi+1
t−1 − 1, 0} ≤ xi+1

t , (4)

where we assume without loss of generality that xit < xi+1
t ∀t ∈ N. Therefore, there are no collisions of any two cars for all

times t .

To understand the vehicle dynamics in our model, let us look at the values of µ(vi+1
t , δi

t) in Table 1. The values of
µ(vi+1

t , δi
t) represent a ‘‘safe’’ speed when following a vehicle at a distance δi

t which has the speed vi+1
t . The first row,

for example, provides the speeds which allow a vehicle to come to rest behind a stopped vehicle without exceeding the
maximum deceleration rate of one cell per time step. (A vehicle i driving with vmax and δi

t = 22 will reduce its speed to
vi
t+1 = 6, vi

t+2 = 5, . . . , vi
t+7 = 0. The total distance traveled in this case equals 21 leading to δi

t+7 = 1.) For any possible
configuration, the values provided by µ(vi+1

t , δi
t) guarantee that a vehicle can come to rest by reducing its speed by −1 in

each time step. Therefore, the condition vi
t−1 + 1 ≤ µ(vi+1

t−1, δ
i
t−1) in Eq. (1) guarantees that a vehicle accelerates only if it

is safe to do so. From this follows the limited acceleration rate: vi
t ≤ vi

t−1 + 1. Only the last condition in Eq. (1), which sets
µ(vi+1

t−1, δ
i
t−1) as the new speed vi

t , may cause a vehicle to decelerate.

Theorem 2. By the definition of the functionµ(v, δ), the braking capabilities of the cars are limited. This means that the following
inequality holds:

µ(vi+1
t , δi

t) ≥ µ(vi+1
t−1, δ

i
t−1) − 1 ∀t ∈ N. (5)

Proof. The theorem follows directly from the definition of µ(vi+1
t , δi

t) as shown in Table 1.

Altogether, we can conclude vi
t−1 − 1 ≤ vi

t ≤ vi
t−1 + 1.

3. Results

In this sectionwewill present results from simulations of themNaSch. To begin our analysis wewill present fundamental
diagrams for different values of pacc. For the simulation we used a road length of L = 104 sites and averaged over T = L time
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Fig. 1. Fundamental diagram in a closed system (i.e., periodic boundaries) for different values of pacc . As illustrated in Fig. 1(b), the reason for the peaks of
the fundamental diagrams for pacc > 0.5 are density-regions where the speed remains (nearly) constant.

Fig. 2. The distribution of vehicles’ speedmeasured after a relaxation time of 105 time steps (pacc = 0.9). Forwide density-regions, we find that all vehicles
travel with the same speed. Of course, this results in the plateaus observed in Fig. 1(b).

steps after a relaxation time of 10T . Densities 0.01 ≤ ρ ≤ 1 were simulated in steps of 0.01 for several values of pacc. The
fundamental diagrams are shown in Fig. 1.

Similar to the NaSch, the traffic flow increases rapidly until a certain density ρpacc is reached and decreases afterwards.
The reason is that for densities ρ < ρpacc all vehicles can accelerate to the maximal speed vmax. Therefore, the flow rate J is
given by J = ρ ·vmax. At higher densities, however, the behavior deviates from that of the NaSch: for pacc > 0.5 the flow rate
does no longer decrease monotonically with an increasing density, but shows distinct peaks. A comparison with Fig. 1(b)
reveals that the formation of the peaks is due to density regions,where the vehicles’ average speed is practically independent
from the density. The reason of this the major difference between the NaSch and the mNaSch is that the mNaSch converges
to stable states where all vehicles move with the same speed v (or with two different speeds v and v − 1, as we will see
later). We will refer to the first case as ‘‘speed-synchronized flow’’. When varying the system’s density, the latter case can
be regarded as a transition state between two speed-synchronized flows with speeds v and v − 1.

In Fig. 2 one can see distribution of vehicle speeds for a given density. It is easy to understand that an increase of the
vehicle density lowers the share of fast driving vehicles; as the average gap between vehicles decreases with more vehicle
on the road, the vehicles have to slow down to conserve collision-freeness.

3.1. Spatiotemporal dynamics

The synchronization between vehicles becomes very clear by analyzing the spatiotemporal dynamics. Therefore, Fig. 3
shows the vehicles’ dynamics for pacc = 0.7. The vehicles started from a compact jamwith speed zero. The synchronization
of speeds manifests itself by the cancellation of all but one or (at most) two distinct speeds. In the case where two speeds
predominate simultaneously, wave-like patterns form which separate groups of vehicles driving with different speeds
(Fig. 3(d)).

We may speak of these groups as clusters or platoons of vehicles. In contrast to an earlier model [21], vehicles within
such a platoon keep a realistic (i.e., non-zero) safety headway to their predecessor. This can be seen in Fig. 3(c) and (d) which
show the distributions of headways obtained from Fig. 3(a) and (b), respectively.

It is important to note that the two patterns found in Fig. 3(a) and (b) are characteristic for all densities and various initial
conditions (e.g., homogeneous or random placement of cars). Another important aspect is that due to themodel’s stochastic
acceleration (instead of stochastic deceleration) jams (so-called phantom jams) do not occur spontaneously in the mNaSch.
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Fig. 3. Spatiotemporal configurations for vehicle densities of (a) ρ = 0.2 and (b) ρ = 0.25 (pacc = 0.7). Blue lines show the trajectories of two vehicles
passing position 0 at times t = 101 000 and t = 105 400, respectively. The corresponding headway distribution is given in figures (c) and (d), respectively.
These distributions also discriminate between the distance of the vehicles and their speeds. At ρ = 0.2 all vehicles travel with v = 3, and the distance δ

to their predecessor measures either δ = 6 or δ = 7. At ρ = 0.25, practically all vehicles travel with a speed of v = 2 or v = 3. As one can see, the slower
vehicles also have a lower headway.

4. Conclusion and perspectives

The focus of this work was laid on a comparison of the Nagel–Schreckenberg model and our modified version (mNaSch).
We showed by means of simulations that the NaSch converges to either a steady state of speed-synchronized flow or a
steady state with only two different speeds. We regarded the latter case as a transition state between two states of speed-
synchronized flow.We found differences between the fundamental diagrams of the twomodels. The fundamental diagrams
of the mNaSch model have been shown to be more complex than those of the NaSch. Traffic flow is not simply increasing
until a certain density is reached and decreases then, but it is moving in waves with the peak-values decreasing in density.
The two principal differences between the NaSch and themNaSch are that (i) in themNaSch braking capabilities are limited
and (ii) vehicles accelerate with a certain probability whereas in the NaSch vehicles decelerate at random.

It is obvious that the latter causes the convergence towards steady states.
To fully understand the dynamics of the mNaSch it would be helpful to examine the convergence to stable states in an

analytical way. It might also be interesting to extend the model: there could be different maximal technical speeds for the
cars. This would lead to a non-linear relationship of density and traffic flow before the density is reached.

Appendix. Initial conditions guaranteeing collision free driving

The proof of collision free driving in Section 2.1 requires, of course, that the road’s previous configuration was free of
collisions as well. Therefore, we present valid initial configurations for both open and periodic boundaries. Note that the
presented configurations are very simple as the focus of this article is on the model’s dynamics on a circular road. Especially
with respect to open boundaries, the modeling of the boundaries may have a strong impact on the bulk dynamics (e.g.,
leading to boundary-induced phase transitions [22] or affecting the maximally achievable flow rate [23]).

The case of periodic boundaries, which represent a circular road, is trivial: initially, N vehicles are randomly set on the
road, and the initial speed of each vehicle is 0. Consequently, it holds that xi ≠ xj for i ≠ j and min(δi) ≥ 1 ∀i. Because the
road is modeled as a circle, it follows xit = (xit−1 + vi

t) mod L for all later times t .
An open system (i.e., open boundaries) represents a bottleneck situation where each car passes through the road only

once. New cars enter the road via the left boundary, which requires that the leftmost site (x = 1) is empty. In this case a new
car labeled k can be inserted with speed vk

t = min{vmaxin, µ(vk+1
t−1 , xk+1

t−1 − 1)} at position xkt = 1 + vk
t , where vmaxin denotes

the maximum speed of inserted cars. (In our simulations we set vmaxin = 2.) Afterwards, we apply the rules of motion to the
remaining cars (i.e., all but the newly inserted one) and obtain the road’s configuration at time t .
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