-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by University of Strathclyde Institutional Repository

University of 3-3/
Strathclyd

Glasgow

Anderson, Damien and Stephenson, Matthew and Togelius, Julian and
Salge, Christian and Levine, John and Renz, Jochen (2018) Deceptive

games. Lecture Notes in Computer Science, 10784. pp. 376-391. ISSN

0302-9743 , http:/ldx.doi.org/10.1007/978-3-319-77538-8_26

This version is available at https://strathprints.strath.ac.uk/63878/

Strathprints is designed to allow users to access the research output of the University of
Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights
for the papers on this site are retained by the individual authors and/or other copyright owners.
Please check the manuscript for details of any other licences that may have been applied. You
may not engage in further distribution of the material for any profitmaking activities or any
commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the
content of this paper for research or private study, educational, or not-for-profit purposes without
prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator:

strathprints@strath.ac.uk

The Strathprints institutional repository (https:/strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research
outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the
management and persistent access to Strathclyde's intellectual output.

https://core.ac.uk/display/156827208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Deceptive Games

Damien Anderson', Matthew Stephenson?, Julian Togelius?, Christoph Salge?,
John Levine!, and Jochen Renz?

! Computer and Information Science Department, University of Strathclyde,
Glasgow, UK,
Damien.Anderson@strath.ac.uk
2 Research School of Computer Science, Australian National University, Canberra,
Australia
3 NYU Game Innovation Lab, Tandon School of Engineering, New York University,
New York, USA

Abstract. Deceptive games are games where the reward structure or
other aspects of the game are designed to lead the agent away from a
globally optimal policy. While many games are already deceptive to some
extent, we designed a series of games in the Video Game Description
Language (VGDL) implementing specific types of deception, classified
by the cognitive biases they exploit. VGDL games can be run in the
General Video Game Artificial Intelligence (GVGAI) Framework, making
it possible to test a variety of existing Al agents that have been submitted
to the GVGAI Competition on these deceptive games. Our results show
that all tested agents are vulnerable to several kinds of deception, but
that different agents have different weaknesses. This suggests that we can
use deception to understand the capabilities of a game-playing algorithm,
and game-playing algorithms to characterize the deception displayed by
a game.

Keywords: Games, Tree Search, Reinforcement Learning, Deception

1 Introduction

1.1 Motivation

What makes a game difficult for an Artificial Intelligence (AI) agent? Or, more
precisely, how can we design a game that is difficult for an agent, and what can
we learn from doing so?

Early Al and games research focused on games with known rules and full
information, such as Chess [1] or Go. The game-theoretic approaches [2] to these
games, such as min-max, are constrained by high branching factors and large
computational complexity. When Deep Blue surpassed the top humans in Chess
[3], the game Go was still considered very hard, partly due to its much larger
branching factor. Also, the design of Arimaa [4], built to be deliberately difficult
for Al agents, relies heavily on an even higher branching factor than Go.

But increasing the game complexity is not the only way to make games more
difficult. To demonstrate this we will here focus on old arcade games, such as

Sokoban, Dig Dug or Space invaders, which can be implemented in VGDL. Part
of the motivation for the development of VGDL and GVGAI was the desire
to create a generic interface that would allow the same Als to play a range
of different games. GVGAI competitions have been held annually since 2013,
resulting in an openly accessible corpus of games and Al agents that can play
them (with varying proficiency).

VGDL games have relatively similar game complexity: the branching factor
is identical (there are six possible actions) and the game state space is not too
different between games because of the similar-sized levels. Yet, if we look at
how well different agents do on different games we can see that complexity is
not the only factor for game difficulty. Certain games seem to be very easy,
while others are nearly impossible to master for all existing agents. These effects
are still present if the agents are given considerably more time which could
compensate for complexity [5]. Further analyses also shows that games cannot
easily be ordered by difficulty, as agents based on different types of algorithms
seem to have problems with different games—there is a distinct non-transitivity
in performance rankings [6]. This raises the question of what makes a game
difficult for a specific agent but not for others?

One way to explain this is to consider that there are several methods for con-
structing agents to play games. One can train a function approximator to map
from a state observation to an action using reinforcement learning algorithms
based on approximate dynamic programming (the temporal difference family of
methods), policy gradients or artificial evolution; alternatively, and complemen-
tary, if you have a forward model of the game you can use tree search or evolution
to search for action sequences that maximize some utility [7]. Additionally, there
are hybrid algorithms combining elements from several of these methods, such
as the very successful AlphaGo[8] system which combines supervised learning,
approximate dynamic programming and Monte Carlo Tree Search.

A commonality between these game-playing methods is that they rely on
rewards to guide their search and/or learning. Policies are learned to maximize
the expected reward, and when a model is available, action sequences are selected
for the same criterion. Fortunately, rewards are typically well-defined in games:
gaining score is good, losing lives or getting hurt is bad. Indeed, one of the
reasons for the popularity of games as Al testbeds is that many of them have
well-defined rewards (they can also be simulated cheaply, safely and speedily).
But it’s not enough for there to be rewards; the rewards can be structured in
different ways. For example, one of the key problems in reinforcement learning
research, credit allocation, is how to assign reward to the correct action given
that the reward frequently occurs long after the action was taken.

Recently, much work has gone into devising reinforcement learning algorithms
that can learn to play simple arcade games, and they generally have good per-
formance on games that have short time lags between actions and rewards. For
comparison, a game such as Montezuma’s Revenge on the Atari 2600, where
there is a long time lag between actions and rewards, provides a very hard chal-
lenge for all known reinforcement learning algorithms.

It is not only a matter of the time elapsed between action and reward; rewards
can be more or less helpful. The reward structure of a game can be such that
taking the actions the lead to the highest rewards in the short-to-medium term
leads to lower overall rewards, i.e. playing badly. For example, if you spend all
your time collecting coins in Super Mario Bros, you will likely run out of time.
This is not too unlike the situation in real life where if you optimize your eating
policy for fat and sugar you are likely to achieve suboptimal global nutritional
reward. Designing a reward structure that leads an Al away from the optimal
policy can be seen as a form of deception, one that makes the game harder,
regardless of the underlying game complexity. If we see the reward function as a
heuristic function approximating the (inverse) distance from a globally optimal
policy, a deceptive reward function is an inadmissible heuristic.

1.2 Biases, deception and optimization

In order to understand why certain types or agents are weak against certain
kinds of deceptions it is helpful to consider different types of deception through
the lens of cognitive biases. Deceptive games can be seen as exploiting a spe-
cific cognitive bias? of the (human or AI) player to trick them into making a
suboptimal decision. Withholding or providing false information is a form of
deception, and can be very effective at sabotaging a player’s performance. In
this paper though, we want to focus on games where the player or Al has full
access to both the current game state and the rules (forward model). Is it still
possible to design a game with these constraints that tricks an artificial agent?
If we were facing an agent with unlimited resources, the answer would be no, as
unbounded computational resources makes deception impossible: an exhaustive
search that considers all possible action sequences and rates them by their fully
modeled probabilistic expected outcome will find the optimal strategy. Writing
down what a unbounded rational agent should do is not difficult. In reality, both
humans and AT agents have bounded rationality in that they are limited in terms
of computational resources, time, memory, etc.

To compensate for this, artificial intelligence techniques rely on approxima-
tions or heuristics that are easier to compute and still return a better answer
than random. In a naive interpretation, this seems to violate the free lunch the-
orem. This is still a viable approach though if one only deals with a subset of all
possible problems. These assumptions about the problems one encounters can
be turned into helpful cognitive biases. In general, and in the right context, this
is a viable cognitive strategy - one that has been shown to be effective for both
humans and AT agents [9,10]. But reasoning based on these assumptions also
makes one susceptible to deceptions - problems that violate this assumption and
are designed in a way so that the, now mistaken, assumption leads the player
to a suboptimal answer. Counter-intuitively, this means that the more sophis-
ticated an Al agent becomes, the better it is at exploiting typical properties of

4 To simplify the text we talk about the game as if it has agency and intentions; in
truth the intentions and agency lies with the game’s designer, and all text should be
understood in this regard.

the environment, the more susceptible it becomes to specific deceptions based
on those cognitive biases.

This phenomenon can be related to the No Free Lunch theorem for search
and optimization, which implies that, given limited time, making an agent per-
form better on a particular class of search problems will make it perform worse
on others (because over all possible search problems, all agents will perform the
same) [11]. Of course, some search algorithms are in practice better than others,
because many “naturally occurring” problems tend to fall in a relatively re-
stricted class where deception is limited. Within evolutionary computation, the
phenomenon of deceptive optimization problems is well-defined and relatively
well-studied, and it has been claimed that the only hard optimization problems
are the deceptive ones [12,13].

For humans, the list of cognitive biases is quite extensive, and subsequently,
there are many different deception strategies for tricking humans. Here we focus
on agent which have their own specific sets of biases. Identifying those cognitive
biases via deceptive games can help us to both categorize those agents, and help
us to figure out what they are good at, and on what problem they should be
used. Making the link to human biases could also help us to understand the
underlying assumptions humans use, enabling us to learn from human mistakes
what shortcuts humans take to be more efficient than Als.

1.3 Overview

The rest of this paper is structured as follows. We first outline some Al-specific
deceptions based on our understanding of current game-playing algorithms. We
present a non-exhaustive list of those, based on their assumptions and vulner-
abilities. We then introduce several new VGDL games, designed to specifically
deceive the existing Al algorithms. We test a range of existing agents from the
GVGALI framework on our new deceptive games and discuss the results.

2 Background

2.1 Categories of Deception

By linking specific cognitive biases to types of deception we can categorize differ-
ent deceptive games and try to predict which agents would perform well on them.
We can also construct deceptive games aimed at exploiting a specific weakness.
The following is a non-exhaustive list of possible Al biases and their associated
traps, exemplified with some of the games we present here.

Greed Trap: A common problem simplification is to only consider the effect
of our actions for a limited future. These greedy algorithms usually aim to max-
imize some immediate reward and rely on the assumption that the local reward
gradient will guide them to a global maximum. One way to specifically exploit
this bias (a greedy trap) is to design a game with an accumulated reward and

then use some initial small reward to trick the player into an action that will
make a later, larger reward unattainable. The later mentioned DeceptiCoins and
Sister Saviour are examples of this. Delayed rewards, such as seen in Invest and
Flower, are a subtype. In that case, an action has a positive reward that is only
awarded much later. This can be used to construct a greedy trap by combining
it with a smaller, more immediate reward. This also challenges algorithms that
want to attach specific rewards to actions, such as reinforcement learning.

Smoothness Trap: Several Al techniques also rely on the assumption that
good solutions are “close” to other good solutions. Genetic Algorithms, for exam-
ple, assume a certain smoothness of the fitness landscape and MCTS algorithms
outperform uninformed random tree search because they bias their exploration
towards branches with more promising results. This assumption can be exploited
by deliberately hiding the optimal solutions close to a many really bad solutions.
In the example of DeceptiZelda the player has two paths to the goal. One is a
direct, safe, low reward route to the exit which can be easily found. The other is
a long route, passing by several deadly hazards but incurring a high reward if the
successful route is found. Since many of the solutions along the dangerous part
lead to losses, an agent operating with the smoothness bias might be disinclined
to investigate this direction further, and would therefore not find the much bet-
ter solution. This trap is different from the greedy trap, as it aims at agents that
limit their evaluation not by a temporal horizon, but by only sampling a subset
of all possible futures.

Generality Trap: Another way to make decision-making in games more man-
ageable, both for humans and AT agents, is to generalize from particular situa-
tions. Rather than learning or determining how to interact with a certain object
in every possible context, an Al can be more efficient by developing a generalized
rule. For example, if there is a sprite that kills the avatar, avoiding that sprite as
a general rule might be sensible. A generality trap can exploit this by providing
a game environment in which such a rule is sensible, but for few critical excep-
tions. WafterThinMints aims to realize this, as eating mints gives the Al points
unless too many are eaten. So the agent has to figure out that it should eat a
lot of them, but then stop, and change its behavior towards the mints. Agents
that would evaluate the gain in reward greedily might not have a problem here,
but agents that try to develop sophisticated behavioral rules should be weak to
this deception.

2.2 Other deceptions

As pointed out, this list is non-exhaustive. We deliberately excluded games with
hidden or noisy information. Earlier GVGAI studies have looked at the question
of robustness [14], where the forward model sometimes gives false information.
But this random noise is still different from a deliberate withholding of game

information, or even from adding noise in a way to maximize the problems for
the Al

We should also note that most of the deceptions implemented here are fo-
cused on exploiting the reward structure given by the game to trick Als that
are optimized for actual rewards. Consider though, that recent developments in
intrinsically motivated Als have introduced ideas such as curiosity-driven Als to
play games such as Montezuma’s Revenge [15] or Super Mario [16]. The internal
curiosity reward enhances the Al’s gameplay, by providing a gradient in a flat
extrinsic reward landscape, but in itself makes the AI susceptible to deception.
One could design a game that specifically punished players for exploration.

3 Experimental Setup

3.1 The GVGAI Framework

The General Video Game Al competition is a competition focused on develop-
ing AI agents that can play real-time video games; agents are tested on unseen
games, to make sure that the developer of the agent cannot tailor it to a par-
ticular game [17]. All current GVGALI games are created in VGDL, which was
developed particularly to make rapid and even automated game development
possible [18]. The competition began with a single planning track which provided
agents with a forward model to simulate future states but has since expanded
to include other areas, such as a learning track, a rule generation track, and a
level generation track [19].

In order to analyze the effects of game deception on GVGAI agent perfor-
mance, a number of games were created (in VGDL) that implemented various
types of deception in a relatively “pure” form. This section briefly explains the
goal of each game and the reasons for its inclusion. In order to determine whether
an agent had selected the rational path or not, requirements were set based on
the agent’s performance, which is detailed in this section also.

3.2 DeceptiCoins (DC)

The idea behind DeceptiCoins is to offer agents two options for which path to
take. The first path has some immediate rewards and leads to a win condition.
The second path similarly leads to a win condition but has a higher cumulative
reward along its path, which is not immediately visible to a short-sighted agent.
Once a path is selected by the agent, a wall closes behind them and they are no
longer able to choose the alternative path.

In order for the performance of an agent to be considered rational in this
game, the agent must choose the path with the greatest overall reward. In figure
1, this rational path is achieved by taking the path to the right of the agent, as
it will lead to the highest amount of score.

Two alternative levels were created for this game. These levels are similar in
how the rules of the game work, but attempt to model situations where an agent

Fig. 1. The first level of De- Fig. 2. The second level Fig. 3. The third level of De-
ceptiCoins of DeceptiCoins ceptiCoins

may get stuck on a suboptimal path by not planning correctly. Level 2, shown in
figure 2, adds some enemies to the game which will chase the agent. The agents
need to carefully plan out their moves in order to avoid being trapped and losing
the game. Level 3, shown in figure 3 has a simple path which leads to the win
condition, and a risky path that leads to large rewards. Should the agent be too
greedy and take too much reward, the enemies in the level will close off the path
to the win condition and the agent will lose.
The sprites used are as follows:

— % Avatar - Represents the player/agent in the game.

— @ Gold Coin - Awards a point if collected.

- . G Square - Leads to winning the game when interacted with.

— @ Piranha - Enemies, if the avatar interacts with these, the game is lost.

The rational paths for level 2 and 3 are defined as reaching the win condition
of the level, while also collecting a minimum amount of reward (5 for level 2 and
10 for level 3).

3.3 DeceptiZelda (DZ)

DeceptiZelda looks at the risk vs reward behavior of the GVGAI agents. As in
DeceptiCoins, two paths are presented to the agent, with one leading to a quick
victory and the other leading to a large reward, if the hazards are overcome.
The hazards in this game are represented as moving enemies which must either
be defeated or avoided.

Two levels for this game were created as shown in figure 5 and figure 4. The
first level presents the agent with a choice of going to the right, collecting the
key and exiting the level immediately without tackling any of the enemies. The
second path leading up takes the agent through a hazardous corridor where they
must pass the enemies to reach the alternative goal. The second level uses the
same layout but instead of offering a win condition, a lot of collectible rewards
are offered to the agent, who must collect these and then return to the exit.

Fig.4. The first level of Decep- Fig. 5. The second level of Decep-
tizelda tizelda

The sprites used are as follows:

— % Avatar: Represents the player/agent in the game.

- & Spider: The enemies to overcome. If defeated awards 2 points.
- F Key: Used to unlock the first exit. Awards a point if collected.
— @ Gold Coin: Awards a point to the agent if collected.

- - Closed Door: The low value exit. Awards a point if moved into.

.y Open Door: The high value exit. Awards 10 points if moved into.

The rational path for this game is defined as successfully completing the
path with the most risk. In the first level, this is defined as achieving at least 10
points and winning the game. This can be done by taking the path leading up
and reaching the exit beyond the enemies. The second level of DeceptiZelda is
played on the same map, but instead of offering a higher reward win condition,
a large amount of reward is available, and the agent has to then backtrack to
the single exit in the level. This level can be seen in figure 5.

3.4 Butterflies (BF)

Butterflies is one of the original games for the GVGAI that prompted the be-
ginning of this work. This game presents a situation where if the agent aims for
the win condition too quickly, they will lower their maximum potential score for
the level. The goal of the game is simple; collect all of the butterflies before they
reach their cocoons, which in turn creates more butterflies. To solve the game
all that is required is that every butterfly is collected. Each collected butterfly
grants a small reward to the agent. If the agent is able to defend a single cocoon
and wait until all other cocoons have been spawned, there will be the maximum
number of butterflies available to gain reward from. So long as the last cocoon

Fig. 6. The first level of Butterflies

is not touched by a butterfly, the game can still be won, but now a significantly
higher score is possible. The level used is shown in figure 6.
The sprites used are as follows:

— 98 Avatar: Represents the player/agent in the game.
& Butterfly: Awards 2 points if collected.

- dg Cocoon: If a butterfly interacts with these, more butterflies are created.

The rational path for Butterflies is defined as any win condition with a final
score over 30. This is achieved by allowing more than half of the cocoons to be
spawned and then winning the level.

3.5 SisterSaviour (SS)

The concept of SisterSaviour was to present a moral choice to the agent. There
are 3 hostages to rescue in each level, and a number of enemies guarding them,
as shown in figure 7. It is not possible for the agent to defeat these enemies
immediately. The agent is given a choice of either rescuing the hostages or killing
them. If the agent chooses to rescue the hostages they receive a small reward
and will be able to defeat the enemies, which grants a large point reward. On the
other hand, if the agent chooses to kill the hostages, they are granted a larger
reward immediately, but now lack the power to defeat the enemies and will lose
the game.
The sprites used are as follows:

— R Avatar: Represents the player/agent in the game.

- & Scorpion: An enemy which chases the avatar. Immune to attacks from
the avatar, unless all of the hostages have been rescued. Awards 14 points if
defeated.

< Hostage: Can be either killed, by attacking them or rescued by moving
into their space. Awards 2 points if killed, and 1 point if rescued. If all are
rescued then the avatar can kill the enemy.

Fig. 7. The first level of Sis- Fig. 8. The first level of Invest
terSaviour

The rational path for SisterSaviour is defined as reaching a score of 20. This
involves rescuing all of the hostages, by moving the avatar onto their space, and
then defeating the enemy.

3.6 Invest (Inv)

Invest looks at the ability of a GVGAI agent to spend their accumulated reward,
with the possibility of receiving a larger reward in the future. This game is
shown in figure 8. The agent begins with a set number of points which need
to be collected from the level, which can then be spent on investment options.
This is done by moving onto one of the 3 human characters to the north of the
level. Investing will deduct an amount from their current score, acting as an
immediate penalty, and will trigger an event to occur at a random point in the
future where the agent will receive a large score reward. Should the agent invest
too much, and go into a negative score, then the game is lost, otherwise, they
will eventually win. The interesting point of this game was how much reward
they accumulate over the time period that they have, and would they overcome
any loss adversity in order to gain higher overall rewards?
The sprites used are as follows:

— R Avatar: Represents the player/agent in the game.

v Gold Coin: Awards a point when collected.

- ﬁ Green Investment: Takes 3 points when moved onto, returns 8.
— % Red Investment: Takes 7 points when moved onto, returns 15.

— ﬁ Blue Investment: Takes 5 points when moved onto, returns 10.

The rational path in Invest is defined as investing any amount of score suc-
cessfully without suffering a loss.

3.7 Flower (Flow)

Flower is a game which was designed to offer small immediate rewards, and
progressively larger rewards if some time is allowed to pass for the reward to
grow. As shown in figure 9, a single seed is available for the agent to collect,
which is worth 0 points. As time passes the value of the seed increases as it
grows into a full flower, from 0 up to 10. Once collected, the seed will begin to
regrow, starting from 0 again. The rational solution for this game is to wait for
a seed to grow into a full flower, worth 10 points, and then collecting it.
The sprites used are as follows:

— R Avatar Represents the player/agent in the game.
% Seed: Awards 0 points initially, but this increases up to 10.

The rational path in Flower is defined as achieving a score of at least 30.
This can only be done by allowing the flower to grow to at least the second stage
and consistently collecting at that level.

3.8 WaferThinMints (Mints)

WaferThinMints introduces the idea that gathering too much reward can lead
to a loss condition. The agent has to gather resources in order to increase their
reward, but if they collect too many they will die and lose the game.

Two variants of this game were created. One which includes an exit from
the level, shown in figure 11, and one that does not, shown in figure 10. These
variants were created in order to provide a comparison of the effect that the
deception in the level has on overall agent performance.

The sprites used are as follows:

— & Avatar: Represents the player/agent in the game.

— LD Cheese: Awards a point when collected. If 9 have been collected already,
then the 10th will kill the avatar causing a loss.

- Exit: Leads to a win condition when moved into.

The rational path for both versions of the game is defined as collecting a score
of 9, and then either waiting for the timeout, in level 1 or exiting the game, in
level 2.

4 Experiments and Results

The agents used were collected from the GVGAI competitions. Criteria for selec-
tion were the uniqueness of the algorithm used and competition ranking in the
past. The hardware used for all of the experiments was a Ubuntu 14.04 desktop
PC with an i7-4790 CPU and 16GB Ram.

Each agent was run 10 times on each level of the deceptive games outlined
in section 3. If an agent was disqualified for any reason it was given another

Fig.9. The first level of Fig.10. The first level of Fig.11. The second level of
Flower WaferThinMints WaferThinMints

run to collect 10 successful results for each game and agent. In addition to
comparing these performance statistics, observations were made on the choices
that the agents made when faced with potentially deceptive choices. Each game’s
rational path is defined in section 3. The results of these experiments are shown
in table 12. Each game was played a total of 360 times. The totals at the bottom
of the table show how many of those games were completed using the defined
rational path. The results are ranked in descending order by their number of
rational trials, and then the number of games where they managed to play with
100% rationality.

Noticeably from the initial results is that no single algorithm was able to solve
all the games, with DeceptiZelda and SisterSaviour being particularly challeng-
ing. Furthermore, no single algorithm dominated all others in all games. For
Example, IceLab, the top agent in overall results, only has 2 rational trials in
Butterflies, compared to 9 for Greedy Search, which is in the 33rd place. In
general, the results for Butterflies are interesting, as top agents perform poorly
compared to some of the lower ranking agents.

Butterflies also has a good spread of results, with all but 4 of the algorithms
being able to find the rational path at least once. While many of the algorithms
are able to make some progress with the game, only 2 are able to achieve 100%
rationality.

There is an interesting difference in the performance of agents between Decep-
tiCoins level 1 and 2. The agents that performed well in Decepticoins 1 seemed
to perform significantly worse in level 2. The requirements of the levels are quite
different which appears to have a significant effect on the agents. If a ranking
was done with only the performance of DeceptiCoins level 2 then IceLab, the
1st ranked in this experiment, would be in the bottom half of the results table.

The hardest games for the agents to solve were DeceptiZelda levels 1 and 2,
and SisterSaviour. DeceptiZeldas levels had only 4 and 13 runs solved respec-
tively, and SisterSaviour having 14. These games present interesting challenges
to the agents, with the rational solution requiring a combination of long-range
planning and sacrificing apparent reward for the superior, long-range goal.

Another interesting case here is Mints, the only game in our set with a
generalization trap. Most algorithms do well in Mints, suggesting that they do

not generalize. This is to be expected, as a tree search algorithm does not in
itself generalize from one state to another. But bladerunner, AtheneAl, and
SJA86 completely fail at these games, even though they perform reasonably well
otherwise. This suggests that they perform some kind of surrogate modeling
of game states, relying on a generality assumption that this game breaks. The
inclusion of an accessible win condition in Mints 2 also dramatically reduced
the number of algorithms that achieved the maximum amount of score, from
26 to 8. This seems to be due to also introducing a specific greed trap that
most algorithms seem to be susceptible too - namely preferring to win the game
outright, over accumulating more score.

Note that, the final rankings of this experiment differ quite significantly from
the official rankings on the GVGAI competition. It is important to note that a
different ranking algorithm is used in the competition, which may account for
some of the differences observed. Many of the agents have a vastly different level
of performance in these results compared to the official rankings. First of all,
IceLab and MH2015 have historically appeared low in the official rankings, with
their highest ranks being 10th place. The typical high ranking algorithms in the
official competition seem to have been hit a bit harder by the new set of games.
Yolobot, Return42, maastCTS2, YBCriber, adrienctx and number27 tend to
feature in the top 5 positions of the official rankings, and have now finished in
positions 2, 4, 15, 8, 9, and 7. For them to lose their positions in this new set of
games could show how the games can be constructed to alter the performance
of agents [17,19].

In order to look at the effect of deception on specific types of algorithms,
such as genetic algorithms (GA) or Tree Search techniques, a second set of
experiments were performed. A selection of algorithms were ran an additional
10 times on each of the games, and each algorithm was investigated to identify
the core component of its operation. It should be noted that these classifications
are simple, and an in-depth analysis of the specifics used by the algorithms
might reveal some further insights. The results for these experiments are shown
in figure 13.

These results show a number of interesting observations. First of all, for De-
ceptiZeldal and 2 it appears that agents using a genetic algorithm perform better
than most other approaches, but do poorly compared to tree search techniques
at SisterSaviour. Portfolio search agents, which employ different algorithms for
different games or situations, take the top two positions of the table and place
quite highly overall compared to single algorithm solutions.

5 Discussion and Future Work

The results suggest that the types of deception presented in the games have
differing effects on the performance of different algorithms. The fact that al-
gorithms, that are more sophisticated and usually perform well in the regular
competition are not on top of the rankings is also in line with our argument,
that they employ sophisticated assumptions and heuristics, and are subsequently

Agent Name DC1 DC2 DC3 DZ1 DZ2 SS BF Flow Inv Mints 1 Mints 2| Rational
1. IceLab
2. Return42
3.MH2015
4. YoloBot
5.jaydee
6. NovTea
7.number27
8. YBCriber
9. adrienctx
10. TeamTopBug
11. Catlinux
12. muzzle
13. novelTS
14. bladerunner
15. maastCTS2
16. SJA86
17. Catlinux3
18. aStar
19. AtheneAl
20. Rooot
21.SJA862
22. roskvist
23. EvolutionStrategies
24. AlJim
25. HillClimber
26. MnMCTS
27. mrtndwrd
28. simulatedAnnealing
29. TomVodo
30.ToVol
31. Thorbjrn
32.BFS
33. Greedy Search
34. IterativeDeepening
35. Catlinux4
36. DFS
Totals

~
[o2)

OO‘JNIG’O

W2 WWOo =~ 2 0PW_00=-N

_‘IO

OO0 00000000~ 00WOO0O0OD0ODO0ODO0OO0OO0OOOOO

~

Iwmw

~
OO0 oo OoO -~ BpPpOW-0NO

OCO0OO0OO0O PR OOOO 0 _2=_2NO_,LPOO_,W_2NPAERANMNNOTLODOOPROOWDE-=2N
OO OO0 O0OO0OO0DO0OO0O 000000000, 0WOOPRMRODOO 000 WOO
OO NOODODODOOPRODODODODODODODODODODODOODOOOOODODOOKOOONO
O=2NNWARMAEAPPPPTOOOAOUOOAOAOOOOAOUUOOIHDOHDOOOOOOOONNNNO©O®

OO0 OO0 UOO0OO0OO0OO0ODO0ODO-~~0N~NOO

L [=NeNeNeNeNeNeNeNoNeNoNeNe oo Ne Nl e Ne No il S e Neo Ne o Neo N No No o Neo Ne L k=]

=10 © ©

=
~
©

=
-
w
-
D
N
(o)

Fig. 12. The results of the first experiment

susceptible to deception. Based on the data we have now it would be possible
to build a game to defeat any of the agents on the list, and it seems possible to
design a specific set of games that would put any specific Al at the bottom of
the table. The difficulty of a game is, therefore, a property that is, at least in
part, only well defined in regards to a specific Al.

In regards to categorization, it seems there is a certain degree of similarity
between groups of games and groups of Als that perform similarly, but a more
in-depth analysis would be needed to determine what exact weakness each Al
has. The games in this corpus already contain, like Mints 2, a mixture of different
deceptions. Similarly, the more sophisticated agents also employ hybrid strategies

Agent Name Algorithm|DC1 DC2 DC3 DZ1 DZ2 SS BF Flow Inv Mints Mints 2| Rational

1. IceLab Portfolio & 0 0 o0 8
2. Return42 Portfolio 3 13 0 0 4 8
3.MH2015 GA 2 10 10 2 3 0 8
4.SJA86 MCTS 1 2 0 2 1 0 8
5. YBCriber Portfolio 9 0 0 0 7
6. YoloBot Portfolio 8 0 0 0 7
7. Catlinux GA 0 10 2 4 0 0 7
8. muzzle GA 12 &) 2 0 0o 1 0 7
9.NovTea Tree 8 7 200 o o0 (12 9 0 7
10. SJA862 MinMax 8 8 13 0 0 0 8 0 7
11. number27 Portfolio 0 9 6 0 1 o 1 0 7
12. adrienctx MCTS 0 () 10 0 0o o0 7 6
13. TeamTopBug GA 9 /200 0 0o o0 3 . 0 6
14. bladerunner Portfolio 6 12 4 I 0 |3 0 0 6
15. EvolutionStrategies |GA 0 1 1 0 0 0 3 8 1 6
16. HillClimber Hill &) 0 0 0 0 0 18 6 1 6
17.aStar A* 4 1 0 0 0O 0 O 0 5
18. novelTS Tree 2 5 2000 o o 0o 8 0 O 0 5
19. TomVodo MCTS S 0 0 0 0 0 14 8 3 0 5
20. mrtndwrd MCTS/A* [O 0 0 0 0 9 9 7 o0 [J200] o 4
21. simulatedAnnealing [SA 8 0 0 0 0O 0 14 10 O 0 1 4
22. Greedy Search Tree - 0 0 0 0O 0 10 O 0 0 0 2
23.BFS Best First 0 1 0 0 0O 0 8 0 0 0 0 2
24. IterativeDeepening [ID 0 0 0 0 0 F3s 1 0 0 0 0 2
25. DFS Depth 0 0 0 0 0O R 0 0 0 0 0 1
Total Clever 192 95 206 10 14 32 202 194 140 337 83

Fig. 13. The results of the second experiment.

and some, like YoloBot, switch between different AI approaches based on the
kind of game they detect [20]. One way to explore this further would be to use a
genetic algorithm to create new VGDL games, with a fitness function rewarding
a set of games that can maximally discriminate between the existing algorithms.

There are also further possibilities for deception that we did not explore here.
Limiting access to the game state, or even requiring agents to actually learn how
the game mechanics work open up a whole new range of deception possibilities.
This would also allow us to extend this approach to other games, which might
not provide the agent with a forward model, or might require the agent to deal
with incomplete or noisy sensor information about the world.

Another way to deepen this approach would be to extend the metaphor
about human cognitive biases. Humans have a long list of cognitive biases -
most of them connected to some reasonable assumption about the world, or
more specifically, typical games. By analyzing what biases humans have in this
kind of games we could try to develop agents that use similar simplification
assumptions to humans and thereby make better agents.

6 Acknowledgements

Damien Anderson is funded by the Carnegie Trust for the Universities of Scot-
land as a PhD Scholar. Christoph Salge is funded by the EU Horizon 2020
programme under the Marie Sklodowska-Curie grant 705643.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Turing, A.M.: Chess. In: Bowden, B.V. (ed.) Fasther than Thought, pp. 286-295.
Pitnam, London (1953)

Von Neumann, J., Morgenstern, O.: Theory of games and economic behavior.
Princeton University Press Princeton, NJ (1945)

Campbell, M., Hoane, A.J., Hsu, F.h.: Deep blue. Artificial intelligence 134(1-2),
57-83 (2002)

Syed, O., Syed, A.: Arimaa-a new game designed to be difficult for computers.
ICGA JOURNAL 26(2), 138-139 (2003)

Nelson, M.J.: Investigating vanilla mcts scaling on the gvg-ai game corpus. In:
Computational Intelligence and Games (CIG), 2016 IEEE Conference on. pp. 1-7.
IEEE (2016)

Bontrager, P., Khalifa, A., Mendes, A., Togelius, J.: Matching games and algo-
rithms for general video game playing. In: Twelfth Artificial Intelligence and In-
teractive Digital Entertainment Conference. pp. 122-128 (2016)

Yannakakis, G.N., Togelius, J.: Artificial Intelligence and Games. Springer (2018),
http://gameaibook.org

. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Driessche, G.V.D.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, 1., Lillicrap, T., Leach,
M., Kavukcuoglu, K.: Mastering the game of Go with deep neural networks
and tree search. Nature 529(7585), 484-489 (2016), http://dx.doi.org/10.1038/
naturel6961

Tversky, A., Kahneman, D.: Judgment under uncertainty: Heuristics and biases.
Science 185(4157), 1124-1131 (1974)

Gigerenzer, G., Goldstein, D.G.: Reasoning the fast and frugal way: models of
bounded rationality. Psychological review 103(4), 650 (1996)

Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
transactions on evolutionary computation 1(1), 67-82 (1997)

Whitley, L.D.: Fundamental principles of deception in genetic search. In: Founda-
tions of Genetic Algorithms (1991)

Deb, K., Goldberg, D.E.: Analyzing deception in trap functions

Pérez-Liébana, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S.M.: Analyzing
the robustness of general video game playing agents. In: Computational Intelligence
and Games (CIG), 2016 IEEE Conference on. pp. 1-8. IEEE (2016)

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., Munos, R.:
Unifying count-based exploration and intrinsic motivation. In: Advances in Neural
Information Processing Systems. pp. 1471-1479 (2016)

Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-driven exploration by
self-supervised prediction. arXiv preprint arXiv:1705.05363 (2017)

Perez-Liebana, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S.M.,
Couétoux, A., Lee, J., Lim, C.U., Thompson, T.: The 2014 general video game
playing competition. IEEE Transactions on Computational Intelligence and Al in
Games 8(3), 229-243 (2016)

Ebner, M., Levine, J., Lucas, S.M., Schaul, T., Thompson, T., Togelius, J.: To-
wards a video game description language. In: Dagstuhl Follow-Ups. vol. 6. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

Perez-Liebana, D., Samothrakis, S., Togelius, J., Lucas, S.M., Schaul, T.: General
video game ai: Competition, challenges and opportunities. In: Thirtieth AAAI
Conference on Artificial Intelligence (2016)

20. Mendes, A., Togelius, J., Nealen, A.: Hyper-heuristic general video game playing.
In: Computational Intelligence and Games (CIG), 2016 IEEE Conference on. pp.
1-8. IEEE (2016)

http://www.tcpdf.org

