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Abstract. The dynamic conditional correlation (DCC) model has been popularly used for modeling con-

ditional correlation of multivariate time series since Engle (2002). However, the stationarity conditions are

established only most recently and the asymptotic theory of parameter estimation for the DCC model has not

been discussed fully. In this paper, we propose an alternative model, namely the scalar dynamic conditional

correlation (SDCC) model. Sufficient and easy-checking conditions for stationarity, geometric ergodicity and

β-mixing with exponential decay rates are provided. We then show the strong consistency and asymptotic

normality of the quasi-maximum likelihood estimator (QMLE) of the model parameters under regular con-

ditions. The asymptotic results are illustrated by Monte Carlo experiments. As a real data example, the

proposed SDCC model is applied to analysing the daily returns of the FSTE 100 index and FSTE 100 futures.

Our model improves the performance of the DCC model in the sense that the LiMcleod statistic of the SDCC

model is much smaller and the hedging efficiency is higher.
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1 Introduction

The recent econometric and statistical literature has witnessed a growing interest in mod-

eling conditional correlations of multivariate time series. Especially in the study of financial

econometrics and risk management, how to efficiently measure and manage the market risk is

always a core topic. This topic has become more and more important for the competitiveness

and even survival of financial institutions in today’s global and highly volatile markets. One of

the critical inputs required by risk managers is cross-sectional (or cross-asset) correlations. For

example, the estimates of the correlations between the returns of the assets are required in the

financial hedge. If the correlations and volatilities are changing, then the hedge ratio should be
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adjusted to account for the most recent information. It is also the case for asset allocation, pric-

ing structured products and systemic risk measurement (Brownlees and Engle (2017)). These

facts motivate the construction of models that can summarize the dynamic properties of two

or more asset returns. A class of models that address this topic is the multivariate GARCH

models, in which volatilities and correlations at a given time are functions of lagged returns and

lagged values of themselves. Seminal works in this area are the Constant Conditional Corre-

lation (CCC) model of Bollerslev (1990), the Dynamic Conditional Correlation (DCC) model

of Engle (2002) and the Varying Correlation model of Tse and Tsui (2002). Extensions of the

CCC model and the DCC model have been proposed, among others, by He and Teräsvita (2004),

Cappiello, Engle and Sheppard (2006), Franses and Hafner (2009), Zaköıan (2010), Francq and

Zaköıan (2011), Aielli (2013), Aielli and Caporin (2014). For the reviews of the literature on

multivariate GARCH models, see Bauwens, Laurent and Rombouts (2006), Silvennoinen and

Teräsvirta (2009) and Francq and Zaköıan (2010) etc.

The existence and uniqueness of stationary and ergodic solution and the existence of mo-

ments for the multivariate GARCH are important in establishing the asymptotic results of

estimation. Such problems for multivariate GARCH models have been less investigated than

those for univariate models, although several papers have appeared on this aspect for differ-

ent specifications. Dennis et al.(2002) gave sufficient conditions for geometric ergodicity of the

so-called Baba, Engle, Kraft and Kroner (BEKK) representation of the multivariate ARCH(q)

model. Ling and McAleer (2003) established conditions under which the CCC model of Boller-

slev (1990) has a strictly stationary solution. Kristensen (2007) provided sufficient conditions

for geometric ergodicity for a variety of multivariate GARCH models, including the vector form

(VEC) of the BEKK GARCH model, see also Boussama et al. (2011) which established the

same results using Markovian chain theory combined with algebraic geometry theory. Hafner

(2003) derived conditions for the the existence of the fourth moment of multivariate GARCH

processes in vector specification which nests the BEKK model of Engle and Kroner (1995) and

the factor GARCH model of Diebold and Nerlove (1989) when the innovations belong to the

class of spherical distributions. He and Teräsvita (2004) gave a sufficient condition for the exis-

tence of the fourth moment and the complete fourth-moment structure for the extended CCC

model considered by Jeantheau (1998). Francq and Zaköıan (2011) gave sufficient and necessary

conditions for the strict stationarity of a class of multivariate asymmetric multivariate GARCH

models, including the extended CCC model in Jeantheau (1998).
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The asymptotic theory of estimation for multivariate GARCH is far from being coherent,

compared to univariate GARCH models. Bollerslev and Wooldridge (1992) proposed the con-

dition that the likelihood follows a uniform weak law of large numbers for consistency of the

QMLE. They also assumed asymptotic normality of the score but did not verify whether any of

the conditions actually holds for specific multivariate GARCH models. Jeantheau (1998) gave

conditions for the strong consistency of the QMLE for multivariate GARCH models and verified

the conditions for the extended CCC model. Jeantheau’s work did not require conditions on the

log-likelihood derivatives. Comte and Lieberman (2003) showed the consistency and asymptotic

normality of the QMLE for the BEKK formulation. Asymptotic results were established by

Ling and McAleer (2003) for the CCC formulation of an autoregressive moving average model

with GARCH noises (ARMA-GARCH). Hafner and Preminger (2009) investigated the asymp-

totic theory for VEC model proposed by Bollerslev, Engle and Wooldridge (1988). McAleer et

al.(2009) developed a constant conditional correlation vector ARMA-asymmetric GARCH model

and established the asymptotic normality of QMLE. Francq and Zaköıan (2011) established the

strong consistency and asymptotic normality of QMLE for a class of multivariate asymmetric

GARCH processes. Their processes generalize the extended CCC model of Jeantheau (1998) by

allowing cross leverage effects.

In contrast to the CCC model, the DCC model of Engle (2002) fit the conditional variance

of each component with a univariate GARCH model and the conditional correlation with a par-

ticular function of the past standardized residuals obtained in the separate GARCH fittings for

all components of returns. This model has two major advantages: capturing the dynamic struc-

ture of correlations and having a small number of parameters. Most recently, Fermanian and

Malongo (2016) established the stationary conditions for the DCC model based on Tweedie’s

(1988) criteria. However, as Aielli (2013) pointed out, the estimator of the location parameter in

the DCC model can be inconsistent, and the traditional GARCH-like interpretation of the DCC

correlation parameters can lead to paradoxical conclusions. The asymptotic theory of parameter

estimation for the DCC model has not been clearly established under regular conditions since

Engle and Sheppard (2001) gave only general conditions which are difficult to verify. Francq

and Zaköıan (2016) considered a new estimator for a wide class of multivariate volatility mod-

els including the CCC model and the BEKK model etc.. Strong consistency and asymptotic

normality were established for general constant conditional correlation models. However, the

asymptotic properties of their estimator for the DCC model is still an open issue. This motivates
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us to consider a scalar version of the DCC model of Engle (2002) in the sense that we assume

the conditional variance of every single asset to be constant but the correlation of the assets is

dynamic. That is, we only focus on the dynamics of correlations. To apply the proposed SDCC

model to practice, one should standardize the data for every individual asset first. In the SDCC

model the location parameter is treated as a free estimator and may fit the data more ade-

quately compared with the DCC model in which the location parameter is estimated by sample

estimator (see Remark 2 in section 2 and the real data example in section 4). Referring to the

result of Boussama et al. (2011), we will discuss the probabilistic structure of the SDCC model

and derive its stationarity under simple conditions. Furthermore, we will show that the QMLE

is strongly consistent provided that the model is stationary. The asymptotic normality of the

QMLE is established under the assumption that the innovation has finite (8 + δ)th moment for

some δ > 0.

The rest of this paper is organized as follows: Section 2 introduces the scalar DCC model

and gives the existence of strictly stationary solution with finite second moment to the model.

Section 3 establishes the consistency and asymptotic normality of the QMLE. Section 4 discusses

the finite sample performance of the QMLE through Monte Carlo simulations and a real data

example on empirical application of the SDCC model to financial futures hedging problem. All

proofs are presented in section 5.

In the sequel,
L→,

P→ and
a.s→ denote convergence in distribution, in probability and almost

surely respectively. A′ denotes the transpose of a vector or a matrix A, Tr(A) is the trace of a

matrix A, |A| denotes the determinant of matrix A, and ‖ · ‖ denotes the Euclidean norm for

both vectors and matrices, i.e. ‖A‖ =
√

Tr(A′A). Im is an m×m identity matrix and K is a

constant or a random variable which does not depend on sample size and may be different at

different places.

2 The model and its stationarity

Consider an m−dimensional time series Xt = (X1t, · · · ,Xmt)
′, e.g. a sequence of return

vectors of m assets. Assuming the conditional variance of each component is unity but the

conditional correlation between components is dynamic, we propose the following scalar dynamic

conditional correlation (SDCC) model:
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Xt = R
1/2
t ηt

Rt = Σ−1
t∗ ΣtΣ

−1
t∗

Σt = C +

q
∑

i=1

αiXt−iX
′
t−i +

p
∑

j=1

βjΣt−j =: (σ2ij,t)m×m

Σt∗ = diag{σii,t}

(2.1)

where αi ≥ 0, i = 1, · · · , q, βj ≥ 0, j = 1, · · · , p, and C = (cks)m×m is a positive definite matrix

with unit-diagonal elements. R
1/2
t is the unique positive definite square root of Rt. Furthermore,

{ηt} is a sequence of independent and identically distributed (iid) random vectors with E(ηt) = 0

and V ar(ηt) = Im, and ηt is independent of Ft−1 = σ
(
Xt−k, k ≥ 1

)
for all t.

Remark 1. Here the condition that C is unit-diagonal is a simple normalization such that

the conditional correlation process is identifiable.

Remark 2. The SDCC model (2.1) focuses on capturing the dynamics of the conditional

correlation. In fact, the conditional variance of i-th component Xit can be assumed as σ2it. We

standardize the data by dividing them by their conditional standard deviations before applying

this model. So we assume the conditional variance to be unity in the model for simplicity.

We have two ways to apply the proposed SDCC model to real data of financial returns. The

approximate way is that we can standardize the data by dividing them using the sample standard

deviations over a moving window. But the usual way is the following two steps,and see the real

data example in section 4 below for illustration.

Step 1. To capture the heteroscedasticity of each asset, fit a GARCH-type model or

any other type of models to the conditional variance to each asset returns, and

then obtain residuals for each asset. The specification of the univariate GARCH

type models is not limited to the standard GARCH model, but can include any

GARCH type process such as EGARCH, TGARCH, APGARCH, depending on

special features of the data.

Step 2. To capture the dynamic conditional correlation across assets, fit model (2.1) to

the m−dimensional vector time series of residuals.

Now we establish the stationarity of Xt defined in model (2.1) under the typical basic as-

sumptions:
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A1. The distribution Γ of ηt is absolutely continuous with respect to the Lebesgue

measure on Rm and the point zero is in the interior of E := supp(Γ).

A2.
∑q

i=1 αi +
∑p

j=1 βj < 1.

Theorem 1. Suppose that assumptions A1-A2 hold. Then there exists a unique strictly sta-

tionary solution Xt to model (2.1), and Xt is geometrically ergodic and geometrically β-mixing.

Furthermore, E‖Xt‖2 <∞ and E‖Σt‖ <∞.

Remark 3. Please refer to Fan and Yao (2003) for the definition of ergodicity, geometric

ergodicity and β−mixing condition.

Remark 4. The moment structure of model (2.1) is very simple. Noting that Rt is bounded

in the sense that ‖Rt‖ ≤ m a.s., for any τ > 0 we have E‖Xt‖τ < ∞ provided that E‖ηt‖τ <
∞. Thus, if model (2.1) has a strictly stationary solution, it is also weakly stationary when

E‖ηt‖2 <∞. This is different from the BEKK model. The BEKK model might have a strictly

stationary solution with infinite second moment even when the innovations have finite variance.

Although in principle the main problem is only to find an appropriate function for the Foster-

Lyapunov drift criterion, as Boussama et al. (2011) pointed out, it seems impossible to extend

the univariate result to cover the BEKK model at the moment.

Remark 5. Since one usually uses absolutely continuous innovations ηt, such as multivariate

Gaussian or multivariate student-t innovations with finite second moments, assumption A2 is

the only condition to be checked. Furthermore, assumption A1 can be weakened further, see

Boussama et al. (2011) for details.

3 Asymptotic properties of QMLE

The parameter in the SDCC model consists of the coefficients of the lower triangular part

of the intercept matrix C and αi, βj , i = 1, · · · , q, j = 1, · · · , p. The number of unknown

parameters is thus d = m(m − 1)/2 + p + q, and the parameter vector is denoted by θ =

(θ1, · · · , θd)′ with true parameter θ0 = (θ10, · · · , θd0)′. Let X1, · · · , Xn be observations from

model (2.1). Conditionally on initial values X0, · · · , X1−q, Σ̃0, · · · , Σ̃1−p, the Gaussian quasi-

likelihood function is

GLn(θ) =

n∏

t=1

1

(2π)m/2|R̃t(θ)|1/2
exp

{

− 1

2
X ′

tR̃
−1
t (θ)Xt

}

,

where R̃t(θ) are recursively defined, for t ≥ 1, by
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R̃t(θ) = Σ̃−1
t∗ (θ)Σ̃t(θ)Σ̃

−1
t∗ (θ),

Σ̃t(θ) = C +

q
∑

i=1

αiXt−iX
′
t−i +

p
∑

j=1

βjΣ̃t−j(θ) =: (σ̃2ij,t(θ))m×m,

Σ̃t∗(θ) = diag{σ̃ii,t(θ)}.

(3.1)

The model is not assumed to be necessarily Gaussian, but we work with the Gaussian quasi-

likelihood. The quasi-maximum likelihood estimator (QMLE) θ̂n is defined as

θ̂n = argmax
θ
GLn(θ) = argmin

θ
L̃n(θ),

where

L̃n(θ) =
1

n

n∑

t=1

l̃t(θ) and l̃t(θ) = X ′
tR̃

−1
t (θ)Xt + log |R̃t(θ)|. (3.2)

It will be convenient to approximate the sequence l̃t(θ) by an ergodic stationary sequence.

Therefore, we define

Ln(θ) =
1

n

n∑

t=1

lt(θ) and lt(θ) = X ′
tR

−1
t (θ)Xt + log |Rt(θ)|, (3.3)

where







Rt(θ) = Σ−1
t∗ (θ)Σt(θ)Σ

−1
t∗ (θ)

Σt(θ) = C +

q
∑

i=1

αiXt−iX
′
t−i +

p
∑

j=1

βjΣt−j(θ) =: (σ2ij,t(θ))m×m

Σt∗(θ) = diag{σii,t(θ)}

(3.4)

We need the following assumptions to establish the strong consistency of the QMLE θ̂n.

A3. The parameter space Θ is compact, and θ0 ∈ Θ.

A4. For any θ ∈ Θ,
∑p

j=1 βj < 1.

A5. Any element of Xt can not be determined by the other elements of Xt and Ft−1.

The following theorem gives the strong consistency of the QMLE.

Theorem 2. Under assumptions A1-A5, θ̂n
a.s.→ θ0.
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Remark 6. Assumption A5 is the identification condition for model (2.1). Jeantheau (1998)

gave primitive conditions for identifiability for an extended version of the CCC model, see also

Francq and Zaköıan (2011). For the discussion of the identification problem of the BEKK model

and factor GARCH models, see Sherrer and Ribarits (2007), Fiorentini and Sentana (2001), and

Doz and Renault (2004). However, the identifiability of the DCC model of Engle (2002) is still

open.

To establish the asymptotic normality of the QMLE θ̂n, we need the following additional

assumptions.

A6. θ0 is an interior point of Θ.

A7. E|ηt|8+δ <∞ for some δ > 0.

A8. ηtη
′
t is non-degenerate with Eηtη

′
t = Im.

Theorem 3. Under assumptions A1-A8,

√
n(θ̂n − θ0)

L→ N(0, J−1HJ−1),

where

H = E
[∂lt(θ0)

∂θ

∂lt(θ0)

∂θ′

]

and J = E
[∂2lt(θ0)

∂θ∂θ′

]

.

4 Numerical properties

4.1 Simulation

This subsection presents numerical evidence on the finite sample performance of asymptotic

results of the QMLE through a simulation study. We computed the estimator for a bivariate

SDCC model (2.1) of order q = 1 and p = 1 with ηt ∼ N(0, I2) based on 1000 independent

simulated trajectories with sample size n = 500. Table 1 lists the mean, bias, root mean square

error (RMSE) of the QMLE for each parameter. The estimates are very accurate in general. To

investigate the sampling distributions of the QMLE, we give the empirical distribution of the

QMLE in figure 1 for each parameter. As we see, it can be well approximated by a Gaussian

law.
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4.2 A real data example: empirical analysis of financial hedging

4.2.1 Data description

The data used in this paper consist of the spot and futures prices of FSTE 100 index. The

sample period covers from 12/11/2009 to 23/3/2012 with the sample size 597. Both the spot

and futures prices are obtained from Forexpros. To avoid thin markets and expiration effects,

the nearby futures contract is rolled over to the next nearest contract when it emerges as the

most active contract. We split the sample into two subperiods: from 12/11/2009 to 4/11/2011

as the in-sample period, and from 7/11/2011 to 23/3/2012 as the out-sample period.

Table 2 lists the unit root and cointegration tests for the FSTE 100 futures and spot prices.

The results of the Augmented Dickey-Fuller unit root test (ADF) indicate that both series of

futures and spot indices are nonstationary. However, the first differences of the logarithmic stock

indices (i.e. log-returns) of both futures and spot are stationary. In addition, the Engle-Granger

two-step method reveals that the logarithm of spot price and the logarithm of futures price

are cointegrated with a cointegrating vector near (1,−1), implying that the spreads between

log-prices of spot and futures can serve as the error correction term.

Table 3 presents a summary of the statistics for the in-sample data, including the mean,

median, standard deviation, skewness and kurtosis. Also presented in Table 3 are the results

of the Jarque and Bera normality test and the Ljung-Box test for returns and square returns.

Initially, the mean returns of both spot and futures are close to 0. The sample standard deviation

of the futures returns is larger than that of the spot returns, indicating that the futures market

is more volatile than the spot market. For both spot and futures the skewness coefficients are

negative, and the kurtosis coefficients significantly exceeds three. The Jarque-Bera test provides

clear evidence to reject the null hypothesis of normality for the returns of both spot and futures.

The Ljung-Box statistics of returns and squared returns indicate possible serial correlation and

autoregressive conditional heteroscedasticity (ARCH) effects in both spot and futures return

series.

4.2.2 Estimation results

As Lien and Yang (2008) pointed out, the theory of storage suggests that spot and futures

prices move up and down together in a long run; however, the short-run deviations from the

long run equilibrium could take place due to mispricing of either futures or spot price. The
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lagged basis helps to determine the spot and futures price movement, therefore, to facilitates

adjustment of price deviation. Since the cointegration test indicates that the basis can serve as

the error correction term, we impose the following mean models:

rst = φs0Bt−1 +

p
∑

i=1

φsirs,t−i +

q
∑

i=1

ψsirf,t−i + εst (4.1)

rft = φs0Bt−1 +

p
∑

i=1

φfirs,t−i +

q
∑

i=1

ψfirf,t−i + εft (4.2)

where rst = log(St)−log(St−1), rft = log(Ft)−log(Ft−1), St and Ft denote spot and futures price

at time t respectively, and Bt = log(St)− log(Ft) is the spread at time t. Before estimating the

mean equations, we use the Akaike Information Criterion to determine p and q and obtain that

p = q = 2. Table 4 presents the estimation results for the mean equations (4.1) and (4.2). The

feedback effects between the spot and futures markets are observed. That is, the lagged spot (or

futures) returns help to predict current futures (or spot) returns. More specifically, the one-step

lagged futures returns have positive effects on current spot returns and negative effects on current

futures returns, the two-step lagged futures returns have positive effects on both current spot

returns and futures returns, the one-step lagged spot returns have positive effects on current

futures returns, and the two-step lagged spot returns have negative effects on both current

spot returns and futures returns. Furthermore, when considering only statistically significant

estimates at a conventional significance level of 1%, the futures returns tend to increase when

the basis is large in order to restore the long-run equilibrium relationship. Based on the above

estimation, we adopt the SDCC model with p = q = 1 in this paper and the DCC model of

Engle (2002) to model the conditional correlation between the spot returns and the futures

returns. Since the DCC model is estimated by two steps through QMLE and the SDCC is used

for standardized data, we fit GARCH(1,1) models for the residuals of equation (4.1) and (4.2)

first, namely,

εit = h
1/2
it eit and hit = ωi + θi1ε

2
it + θi2hit−1, i = s, f (4.3)

where ωi > 0, θi1 ≥ 0, θi2 ≥ 0 and θi1 + θi2 < 1 for i = s, f . Then for the standardized residuals

et = (est, eft)
′, we describe the dynamic conditional correlation coefficients between the spot
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returns and the futures returns through a DCC and a SDCC model respectively, i.e.







et = R
1/2
t ηt

Rt = Q−1
t∗ QtQ

−1
t∗

Qt = (1− α− β)Q̄+ αet−1e
′
t−1 + βQt−1 = (qij,t)

Qt∗ = diag{√qii,t}

(4.4)

and






et = R
1/2
t ηt

Rt = Σ−1
t∗ ΣtΣ

−1
t∗

Σt = C + αet−1e
′
t−1 + βΣt−1 = (σ2ij,t)

Σt∗ = diag{σii,t}

(4.5)

where Q̄ is the unconditional covariance of the standardized residuals resulting from the first

stage estimation, C = (cij) is unit-diagonal positive definite, and α > 0, β > 0. We call the above

SDCC model a GARCH-SDCC model, since the volatilities are modeled by the GARCH(1,1)

models and the residuals are modeled by the SDCC model. On the other hand, we estimate

volatility simply by the sample standard deviations of the log-returns data in a moving window

with width 10. Namely, hit is estimated by the sample variance of ri,t−1, · · · , ri,t−10, i = s, f .

Then, we standardize the log-returns data by
√
hit, i = s, f , and fit a SDCC model with

p = q = 1 for the standardized data (this model is called a STD-SDCC model). Table 4 presents

the estimation results and the LiMcLeod statistics for the conditional variance equations (4.3)

and the correlation equations (4.4) and (4.5). Being consistent with Q2 statistics (in Table 2),

both ARCH (θs1 and θf1) and GARCH (θs2 and θf2) effects are found to be significant at 5%

level in both spot and futures returns, with the GARCH effect being the dominant factor. The Q

and Q2 statistics indicate that the conditional variance models for both spot returns and futures

returns are adequate. For the conditional correlation, the “GARCH” effect is the dominant

factor for the DCC model. However, “ARCH” effect and “GARCH” effect are almost the same

for the SDCC model. Furthermore, α̂ + β̂ is closed to 1 for both DCC and SDCC models,

which implies the persistency of the past values in the conditional correlation. The LiMcleod

statistics imply that the estimated DCC, GARCH-SDCC and STD-SDCC are all adequate and

the SDCC model provides a better modeling for the data since the LiMcleod statistics of the

SDCC models are much smaller than that of the DCC model. Intuitively, this result is natural
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since the SDCC model is more flexible in the sense that the constant matrix is not set as in

the DCC model. Figure 2 presents the estimated conditional correlation coefficients for the in-

sample period and the forecasting conditional correlation coefficients. For the in-sample period,

the DCC, GARCH-SDCC and STD-SDCC give similar results at least for the trend. However,

for the out-sample period, the DCC gives more violent results which contradicts the relationship

between the spot and futures. This may be caused by the inconsistency of the estimator of DCC

model.

4.2.3 Potential effects on dynamic hedging strategy

In this subsection, we discuss the potential impacts on dynamic hedging due to the different

correlations captured by the SDCC model and the DCC model. By the minimum variance

principle, the optimal hedging ratio is defined as

∆t = ρt+1

√

hst+1/hft+1,

where ρt is referred to as the conditional coefficient between spot returns and futures returns at

time t, and hst, hft denote conditional variances of spot returns and futures returns at time t

respectively. We use two measures to investigate the performance of the hedging strategy. The

first measure is to compute the reduction of the variance after hedging, namely

HE =
V ar(ru(t))− V ar(r(∆t))

V ar(ru(t))
= 1− V ar(r(∆t))

V ar(ru(t))

where V ar(ru(t)) is the variance of un-hedged portfolio and V ar(r(∆t)) is the variance of hedged

portfolio. The second measure is the following mean-variance utility function:

U = E(rt)− γV ar(rt)

where E(rt) and V ar(rt) are the expected return and variance of hedged portfolio, and γ is the

degree of risk aversion, which is assumed to be 4 (see, for example, Grossman and Shiller (1981)).

Table 5 presents the values of HE and U for the DCC, GARCH-SDCC and STD-SDCC, which

indicates that the SDCC model outperforms the DCC model in the hedging for both in-sample

period and out-sample period.
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5 Proofs

5.1 Proof of Theorem 1

The main idea of the proof of Theorem 1 is to apply the theory of Boussama et al. (2011)

to the SDCC model. We introduce some notations first. Denote the k−dimemsional Euclidean

space by Rk, the set of real m×d matrices byMm×d(R), the vector space of real m×m matrices

by Mm(R), the subspace of symmetric matrices by Sm, the positive semi-definite cone by S+
m

and positive definite matrices by S++
m . Let N be the set of natural numbers and N ∗ be the set

of natural numbers excluding zero (i.e. N ∗ \ {0} ). Put

Yt =
(
vech(Σt)

′, · · · , vech(Σt−p+1)
′,X ′

t, · · · ,X ′
t−q+1

)′
, (5.1)

where vech is a transformation mapping Sm to Rm(m+1)/2 by stacking the lower triangular

portion of a matrix. By (2.1) and (5.1), Yt has the form

Yt = F (Yt−1, ηt) (5.2)

and F is a continuous map (i.e. C1-map) from U × Rm into U , where U is the open set in
(
Rm(m+1)/2

)p ×
(
Rm

)q
defined as

U = vech(S++
m )× · · · × vech(S++

m )
︸ ︷︷ ︸

p

×Rm · · · ×Rm
︸ ︷︷ ︸

q

.

Thus {Yt} is a Markov chain in U . Obviously, model (2.1) has a stationary solution if and only

if (5.2) does. Suppose assumptions A1-A2 in section 2 hold. To apply the result of Boussama

et al. (2011), we need to prove the following assertions, which are listed as lemmas 5.1-5.4, hold

for the model under consideration.

Lemma 5.1. There exists a point ω ∈ intE and a point Ψ ∈ U such that the sequence

(Y z
t )t∈N defined by Y z

0 = z and Y z
t = F (Y z

t−1, ω) for t ≥ 1 converges to the point Ψ for all

z ∈ U .

Proof. For arbitrary y ∈ U and t ≥ 1, define the sequence (Y z
t )t∈N by Y z

0 = z and

Y z
t = F (Y z

t−1, 0). We denote by Xz
t and vech(Σz

t ) in Y z
t−1 the associated values of Xt and

vech(Σt) in Yt. Noting that Xt = Σ−1
t∗ ΣtΣ

−1
t∗ ηt, we have Xz

t = 0 for all t ≥ 1 which yields that

vech(Σz
t ) = vech(C) +

p
∑

j=1

βjvech(Σ
z
t−j)
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Therefore, for all t ≥ q and z ∈ U , the following equality holds

Y z
t = Λ + B̃Y z

t−1, (5.3)

where

Λ = (vech(C)′, 0, · · · , 0)′ ∈ (Rm(m+1)/2)p × (Rm)q, B̃ =




B 0

0 0



 ∈Mpm(m+1)/2+qm,

and

B =














β1Im(m+1)/2 β2Im(m+1)/2 · · · βp−1Im(m+1)/2 βpIm(m+1)/2

Im(m+1)/2 0 · · · 0 0

0 Im(m+1)/2 · · · 0 0
...

. . .
. . . 0

...

0 · · · 0 Im(m+1)/2 0














∈Mpm(m+1)/2(R).

Since
∑q

j=1 βj < 1, we get that the spectral radius of the matrix
∑q

j=1 βjIm(m+1)/2 is less than

1, which implies the same case for B by Proposition 4.5 of Boussama et al. (2011). Thus, (5.3)

means Lemma 5.1 hold with ω = 0 and Ψ defined by

Ψ = Λ+ B̃Ψ. (5.4)

Let

Σ̄ =
1

1−∑p
j=1 βj

C. (5.5)

Then, Σ̄ is positive definite by assumption A2. We can easily verify that Ψ can be written as

Ψ =
(
vech(Σ̄)′, · · · , vech(Σ̄)′
︸ ︷︷ ︸

p

, 0, · · · , 0
︸ ︷︷ ︸

qm

)′ ∈ U. (5.6)

Now, we complete the proof of Lemma 5.1.

Lemma 5.2. There exist an algebraic varietyW ⊆
(
Rm(m+1)/2

)p×
(
Rm

)q
, a C1-map f from

U ×Rm into Rm and a regular map φ from
((
Rm(m+1)/2

)p×
(
Rm

)q
)

×Rm into
(
Rm(m+1)/2

)p×
(
Rm

)q
such that

(i) F (z, y) = φ(z, f(z, y)) for all (z, y) ∈ U ×Rm,

(ii) φ(W ∩ U ×Rm) ⊆W ∩ U ,

(iii) for all z ∈ U , the map fz(·) = f(z, ·) is a C1-diffeomorphism.

14



Proof. From (2.1) and (5.1), we obtain immediately a regular map (for the definition of a

regular map, see Boussama et al. (2011)) as follows

φ :
((
Rm(m+1)/2

)p ×
(
Rm

)q
)

×Rm →
(
Rm(m+1)/2

)p ×
(
Rm

)q
such that Yt = φ(Yt−1,Xt). (5.7)

Let f be a map from U ×Rm into Rm such that

f : U ×Rm → Rm, (Yt−1, ηt) → (Σ−1
t∗ ΣtΣ

−1
t∗ )1/2ηt = Xt.

Since (Σ−1
t∗ ΣtΣ

−1
t∗ )1/2 is invertible, we obtain that fz(·) = f(z, ·) for z ∈ U is a C1-diffeomorphism,

which means (iii) of Lemma 5.2 hold. Noting that Xt = (Σ−1
t∗ ΣtΣ

−1
t∗ )1/2ηt, for Yt defined in (5.1),

we have

Yt = F (Yt−1, ηt) := φ
(
Yt−1, fYt−1

(ηt)
)
= φ(Yt−1,Xt), (5.8)

where F is a C1-map from U×Rm into U . Thus, we establish (i) of Lemma 5.2. In the following,

we show that (ii) of Lemma 5.2 hold. Define φk recursively by φ1 = φ and

φk+1 :
((
Rm(m+1)/2

)p ×
(
Rm

)q
)

×
(
Rm

)k+1 →
(
Rm(m+1)/2

)p ×
(
Rm

)q
,

φk+1(y, x1, · · · , xk, xk+1) = φ
(
φk(y, x1, · · · , xk), xk+1

)
.

By Proposition 3.7 of Boussama et al. (2011), we can get the algebraic variety of states

W =Z
⋃

k∈N ∗

φk(Ψ, (Rm)k),

where Ψ is defined in (5.4) and satisfies (5.6), ZA denotes the closure of a set A in the Zariski

topology. Here, Zariski topology means the topology over
(
Rm(m+1)/2

)p ×
(
Rm

)q
for which the

algebraic sets in
(
Rm(m+1)/2

)p ×
(
Rm

)q
are the closed sets, and the Zariski closure of a set A is

defined by

ZA =
⋂

D Zariski closed,D⊇A

D.

For any k ∈ N ∗, consider y(k) ∈ φk
(
Ψ, (Rm)k

)
defined as

y(k) = φk(Ψ, x1, · · · , xk) =: (vech(σk)
′, · · · , vech(σk−p+1)

′, x′k, · · · , x′k−q+1)
′

with x1, · · · , xk ∈ Rm. Denote x(k) =
(
vech(xkx

′
k)

′, vech(xk−1x
′
k−1)

′, · · · , vech(xk−q+1x
′
k−q+1)

′
)′

and σ(k) =
(
vech(σk)

′, · · · , vech(σk−p+1)
′
)′

with σ(0) =: σ =
(
vech(Σ̄)′, · · · , vech(Σ̄)′

)′
and

x(0) = 0, where Σ̄ is defined in (5.5). It is easy to verify that

σ(k + 1) = Λ1 +Ax(k) +Bσ(k), (5.9)
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where Λ1 = (vech(C)′, 0, · · · , 0)′ ∈ (Rm(m+1)/2)p and

A =











α1Im(m+1)/2 α2Im(m+1)/2 · · · αqpIm(m+1)/2

0 0 · · · 0
...

. . .
. . .

...

0 · · · 0 0











∈Mpm(m+1)/2×qm(m+1)/2(R).

By (5.4), (5.6) and the definition of σ(0), we can obtain σ = Λ1 +Bσ, which implies that

σ =
k−1∑

i=0

BiΛ1 +Bkσ.

Therefore, (5.9) yields that

σ(k) =
k−1∑

i=1

BiΛ1 +Bkσ +
k−1∑

i=1

BiAx(k − i) = σ +
k−1∑

i=0

BiAx(k − i).

Hence, we have

vech(σk−j) = vech(Σ̄) +
k−1∑

i=1

Qi,j+1vech(xk−i−jx
′
k−i−j),

where for all i ∈ {1, · · · , k − 1} and j ∈ {0, · · · , p − 1}, Qi,j+1 is defined by Qi,j+1 = [BiA]1,j+1

with the convention B0 = Ipm(m+1)/2, B
i = 0 if i < 0 and [Q]1,j+1 is them(m+1)/2×m(m+1)/2

block from lines 1 to m(m+ 1)/2 and from columns jm(m+ 1)/2 + 1 to (j + 1)m(m+ 1)/2 of

a matrix BiA. Therefore, W is the Zariski closure of

SΨ =
⋃

k∈N ∗

{

y(k) : x1, · · · , xk ∈ Rm
}

=
⋃

k∈N ∗

{

Ψ+
k−1∑

i=1

Qi,1vech(xk−ix
′
k−i), · · · ,Ψ+

k−1∑

i=1

Qi,pvech(xk−p+1−ix
′
k−p+1−i), x1, · · · , xk

}

.

Noting that φ(U×Rm) ⊆ U by its definition and φ(SΨ×Rm) ⊆ SΨ due to the above arguments,

we have

φ(W ∩ U ×Rm) ⊆ φ
(Z
SΨ ×Rm

)
⊆Z φ(ZSΨ ×Rm) =Z φ(SΨ ×Rm) ⊆Z SΨ =W,

since φ is a regular map and thus continuous with respect to the Zariski topology. This completes

the proof of Lemma 5.2.

Lemma 5.3. There exist a function V and positive constants τ < 1 , b < ∞ as well as a

small set K inW ∩U such that the Foster-Lyapunov condition is satisfied, i.e. for any x ∈W ∩U

E
[
V (Yt)|Yt−1 = x

]
≤ τV (x) + b1K(x).
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Proof. Let

Σ =
C

1−∑q
i=1 αi −

∑p
j=1 βj

.

Since C is positive definite, assumption A2 implies that Σ is also positive definite. Furthermore,

it is easy to verify that

Σ = C +

p
∑

j=1

βjΣ+

q
∑

i=1

αiΣ. (5.10)

Define

V (Yt) =

p
∑

j=1

Tr(VjΣt−j+1) +

q
∑

i=1

X ′
t−i+1Vp+iXt−i+1 + 1,

Vk =
p− k + 1

p+ q
C +

p
∑

j=k

βjΣ, k = 1, · · · , p,

Vk+p =
q − k + 1

p+ q
C +

q
∑

i=k

αiΣ, k = 1, · · · , q.

Thus, we have

E
[
V (Yt)|Yt−1 = y

]
= E

[
Tr(V1Σt) +X ′

tVp+1Xt|Yt−1 = y
]

+

p
∑

j=2

Tr(VjΣt−j+1) +

q
∑

i=2

X ′
t−i+1Vp+iXt−i+1 + 1. (5.11)

By the formulation of Σt, we get

E
[
Tr(V1Σt)|Yt−1 = y

]

= E
{

Tr
[
V1(C +

q
∑

i=1

αiXt−iX
′
t−i +

p
∑

j=1

βjΣt−j)
]∣
∣Yt−1 = y

}

= Tr(V1C) +

p
∑

j=1

βjTr(V1Σt−j) +

q
∑

i=1

αiX
′
t−iV1Xt−i. (5.12)

Since Xt = R
1/2
t ηt, Rt = R

1/2
t R

1/2
t , Eηtη

′
t = Im, and every entry of Σ−1

t∗ is less than 1, it follows

that

E
[
X ′

tVp+1Xt|Yt−1 = y
]

= E
[
Tr(Vp+1R

1/2
t ηtη

′
tR

1/2
t )

∣
∣Yt−1 = y

]

= Tr(Vp+1Σ
−1
t∗ ΣtΣ

−1
t∗ )

≤ Tr(Vp+1Σt)

= Tr(Vp+1C) +

p
∑

j=1

βjTr(Vp+1Σt−j) +

q
∑

i=1

αiX
′
t−iVp+1Xt−i. (5.13)
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Combining (5.11)-(5.13), we obtain

E
[
V (Yt)|Yt−1 = y

]

= Tr
{
[β1(V1 + Vp+1) + V2]Σt−1

}
+ · · ·+ Tr

{
[βp−1(V1 + Vp+1) + Vp]Σt−p+1

}

+Tr
[
βp(V1 + Vp+1)Σt−p

]
+X ′

t−1[α1(V1 + Vp+1) + Vp+2]Xt−1 + · · ·

+X ′
t−q+1[αq−1(V1 + Vp+1) + Vp+q]Xt−q+1 +X ′

t−qαq(V1 + Vp+1)Xt−q

+Tr[(V1 + Vp+1)C] + 1. (5.14)

By the definition of Vi, we deduce

βk(V1 + Vp+1) + Vk+1 = Vk −
1

p+ q
C, k = 1, · · · , p− 1, (5.15)

βp(V1 + Vp+1) = Vp −
1

p+ q
C, (5.16)

αk(V1 + Vp+1) + Vp+k+1 = Vp+k −
1

p+ q
C, k = 1, · · · , q − 1, (5.17)

αq(V1 + Vp+1) = Vp+q −
1

p+ q
C. (5.18)

Because Vk is positive definite, and αi > 0, βj > 0,i = 1, · · · , q, j = 1, · · · , p, we have Vk − 1
p+qC

is also positive definite, k = 1, · · · , p + q. Consider the non-negative constants (τk)1≤k≤p+q

defined by

τk = max
{

x′(Vk −
1

p+ q
C)x : x ∈ Rm, x′Vkx = 1

}

.

Noting that {x : x′Vkx = 1} is a compact set, there exists xk ∈ Rm such that x′Vkx = 1 and

τk = x′k(Vk −
1

p+ q
C)xk = 1− x′kCxk

p+ q
.

The positive definiteness of C means that 0 ≤ τk < 1, k = 1, · · · , p+ q. Put τ0 = max{τk, k =

1, · · · , p + q} and we have τ0 ∈ [0, 1) and

Vk −
1

p+ q
C ≤ τ0Vk, k = 1, · · · , p+ q.

Therefore, for any M ∈ S++
d , we get

Tr
[
(Vk −

1

p+ q
C)M

]
≤ τ0Tr(VkM), k = 1, · · · , p+ q. (5.19)

From (5.14)-(5.19), we obtain that

E
[
V (Yt)|Yt−1 = y

]
≤ τ0V (y) + Tr(ΣC) + 1− τ0.
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If we choose τ = (τ0 + 1)/2 ∈ [1/2, 1), b = Tr(ΣC) + 1 − τ0 ∈ (0,∞), the (FL) condition is

satisfied with the set given by

K = {W ∩ U : V (x) ≤ b

τ − τ0
}.

Following the proof of Theorem 2.4 of Boussama et al. (2011), we can show that K is a small

set. This complete the proof of Lemma 5.3.

Lemma 5.4. Any strictly stationary solution of the Markov chain Yt+1 = F (Yt, ηt) takes its

values in the algebraic variety W ∩ U .

Proof. Suppose Xn be a strictly stationary solution of model (2.1). Define

Σ(k) =
(
vech(Σk)

′, · · · , vech(Σk−p+1)
′
)′
, X(k) =

(
vech(XkX

′
k)

′, · · · , vech(Xk−q+1X
′
k−q+1)

′
)′
.

Noting that Σ(k + 1) = Λ1 +AX(k) +BΣ(k), we can deduce

Σ(k + 1) =

j−1
∑

i=0

Λ1 +BjAΣ(k − j) +

j
∑

i=1

Bi−1AX(k − i)

for all k ∈ N . Under assumption A2, the spectral radius of B is less than 1 by Proposition 4.5

of Boussama et al. (2011). Using similar arguments to the proof of Theorem 4.8 of Boussama

et al. (2011), we obtain that

Σ(k) = σ +
∞∑

i=1

Bi−1AX(k − i) a.s.

Thus,

vech(Σk) = vech
(
Σ̄
)
+

∞∑

i=1

Qivech
(
Xk−iX

′
k−i

)
a.s.,

with Qi the the m(m+ 1)/2×m(m+1)/2 block from lines 1 to m(m+1)/2 and from columns

m(m + 1)/2 + 1 to m(m + 1) of a matrix Bi−1A,which implies that Yt takes its values in the

variety W and hence in W ∩ U .

Proof of Theorem 1. Boussama et al. (2011) pointed out that W may not be of full

dimension because of the non-invertibility of the coefficient matrices in the BEKK model. How-

ever, such degeneracy does not occur in the SDCC model (2.1) since none of the coefficient

matrices in Σt is singular. So, combining assumption A1 and lemmas 5.1-5.4, we know that all

conditions of Boussama et al. (2011)’s result are satisfied, and then Theorem 1 follows.
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5.2 Proofs of Theorem 2 and Theorem 3

For the consistency of the QMLE, under assumptions A1-A5, we need to establish that

C1. limn→∞ supθ∈Θ
∣
∣Ln(θ)− L̃n(θ)

∣
∣ = 0, a.s.

C2. E|lt(θ0)| <∞, and if θ 6= θ0, Elt(θ) > Elt(θ0).

C3. For any θ 6= θ0, there exists a neighborhood N(θ) such that

lim inf
n→∞

inf
θ∗∈N(θ)

L̃n(θ
∗) > El1(θ0) a.s.

For the asymptotic normality of the QMLE, under assumptions A1-A8, we need to show that

N1. n−1/2
∑n

t=1
∂lt(θ0)

∂θ
L→ N(0,H) for a nonrandom H.

N2. J =: E[∂2lt(θ0)/∂θ∂θ
′] =

(

E
[
Tr

( ·

Rt,iR
−1
t

·

Rt,jR
−1
t

)])

i,j=1,··· ,d
< ∞ and J is

non-singular.

N3. E supθ∈Θ

∣
∣
∣

∂3lt(θ)
∂θi∂θj∂θk

∣
∣
∣ <∞ for all i, j, k = 1, · · · , d.

N4.
∥
∥n−1/2

∑n
t=1

(∂lt(θ0)
∂θ − ∂l̃t(θ0)

∂θ

)∥
∥ P→ 0 and

sup
θ∈Θ

∥
∥n−1

n∑

t=1

(∂2lt(θ)

∂θ∂θ′
− ∂2 l̃t(θ)

∂θ∂θ′
)∥
∥ P→ 0.

(Refer to the proofs of Theorem 2.1 and 2.2 in Francq and Zaköıan (2004) for the univariate

case.)

Before we prove the above assertions, some notations and elementary results on the norm of

matrices and the differentiation of expressions involving matrices are introduced first. Let f(A)

be a real valued function of a matrix A whose elements aij are functions of some variable y.

Then, for square matrices A and B we have the following equalities and inequalities (see Magnus

and Neudecker (1988)):

∂f(A)

∂y
= Tr

{∂f(A)

∂A′

∂A

∂y

}

,
∂ log |A|
∂A′

= A−1,
∂A−1

∂y
= −A−1 ∂A

∂y
A−1, (5.20)

|Tr(AB)| ≤ ‖A‖‖B‖, ‖AB‖ ≤ ‖A‖‖B‖. (5.21)

For any function ft(θ), denote ∂ft(θ)/∂θi by
·

f t,i(θ), ∂
2ft(θ)/∂θi∂θj by

··

f t,ij(θ), ∂
3ft(θ)/∂θi∂θj∂θk

by
···

f t,ijk(θ), and f(θ0) by f . From (3.4), we get
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·

Rt,i(θ) = −Σ−1
t∗ (θ)

·

Σt∗,i(θ)Rt(θ) + Σ−1
t∗ (θ)

·

Σt,i(θ)Σ
−1
t∗ (θ)−Rt(θ)

·

Σt∗,iΣ
−1
t∗ (θ); (5.22)

··

Rt,ij(θ) = Σ−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

·

Σt∗,i(θ)Rt(θ)− Σ−1
t∗ (θ)

··

Σt∗,ij(θ)Rt(θ)

−Σ−1
t∗ (θ)

·

Σt∗,i(θ)
·

Rt,j(θ)− Σ−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

·

Σt,i(θ)Σ
−1
t∗ (θ)

+Σ−1
t∗ (θ)

··

Σt,ij(θ)Σ
−1
t∗ (θ)− Σ−1

t∗ (θ)
·

Σt,i(θ)Σ
−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

−
·

Rt,j(θ)
·

Σt∗,i(θ)Σ
−1
t∗ (θ)−Rt(θ)

··

Σt∗,ij(θ)Σ
−1
t∗ (θ)

+Rt(θ)
·

Σt∗,i(θ)Σ
−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ); (5.23)

···

Rt,ijk(θ) = −Σ−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

·

Σt∗,i(θ)Rt(θ)

+Σ−1
t∗ (θ)

··

Σt∗,jk(θ)Σ
−1
t∗ (θ)

·

Σt∗,i(θ)Rt(θ) + Σ−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

··

Σt∗,ik(θ)Rt(θ)

−Σ−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ)

·

Σt∗,i(θ)Rt(θ) + Σ−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

·

Σt∗,i(θ)
·

Rt,k(θ)

+Σ−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ)

··

Σt∗,ij(θ)Rt(θ)− Σ−1
t∗ (θ)

···

Σt∗,ijk(θ)Rt(θ)− Σ−1
t∗ (θ)

··

Σt∗,ij(θ)
·

Rt,k(θ)

+Σ−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ)

·

Σt∗,i(θ)
·

Rt,j(θ)− Σ−1
t∗ (θ)

··

Σt∗,ik(θ)
·

Rt,j(θ)− Σ−1
t∗ (θ)

·

Σt∗,i(θ)
··

Rt,jk(θ)

+Σ−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

·

Σt,i(θ)Σ
−1
t∗ (θ)

−Σ−1
t∗ (θ)

··

Σt∗,jk(θ)Σ
−1
t∗ (θ)

·

Σt,i(θ)Σ
−1
t∗ (θ)

+Σ−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ)

·

Σt,i(θ)Σ
−1
t∗ (θ)

−Σ−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

··

Σt,ik(θ)Σ
−1
t∗ (θ)

+Σ−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

·

Σt,i(θ)Σ
−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ)

−Σ−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ)

··

Σt,ij(θ)Σ
−1
t∗ (θ) + Σ−1

t∗ (θ)
···

Σt,ijk(θ)Σ
−1
t∗ (θ)

−Σ−1
t∗ (θ)

··

Σt,ij(θ)Σ
−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ)

+Σ−1
t∗ (θ)

·

Σt,k(θ)Σ
−1
t∗ (θ)

·

Σt∗,i(θ)Σ
−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

−Σ−1
t∗ (θ)

··

Σt,ik(θ)Σ
−1
t∗ (θ)

·

Σt,j(θ)Σ
−1
t∗ (θ)

+Σ−1
t∗ (θ)

·

Σt,i(θ)Σ
−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

−Σ−1
t∗ (θ)

·

Σt,i(θ)Σ
−1
t∗ (θ)

··

Σt∗,jk(θ)Σ
−1
t∗ (θ)

+Σ−1
t∗ (θ)

·

Σt,i(θ)Σ
−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ)

−
··

Rt,jk(θ)
·

Σt∗,i(θ)Σ
−1
t∗ (θ)−

·

Rt,j(θ)
··

Σt∗,ik(θ)Σ
−1
t∗ (θ)

+
·

Rt,j(θ)
·

Σt∗,i(θ)Σ
−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ)−

·

Rt,k(θ)
··

Σt∗,ij(θ)Σ
−1
t∗ (θ)

−Rt(θ)
···

Σt∗,ijk(θ)Σ
−1
t∗ (θ) +Rt(θ)

··

Σt∗,ij(θ)Σ
−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ)

+
·

Rt,k(θ)
·

Σt∗,i(θ)Σ
−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)
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+Rt(θ)
··

Σt∗,ik(θ)Σ
−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

−Rt(θ)
·

Σt∗,i(θ)Σ
−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

+Rt(θ)
·

Σt∗,i(θ)Σ
−1
t∗ (θ)

··

Σt∗,jk(θ)Σ
−1
t∗ (θ)

−Rt(θ)
·

Σt∗,i(θ)Σ
−1
t∗ (θ)

·

Σt∗,j(θ)Σ
−1
t∗ (θ)

·

Σt∗,k(θ)Σ
−1
t∗ (θ). (5.24)

We then introduce several lemmas.

Lemma 5.5. Under assumption A5, model (2.1) is identifiable, namely For θ, θ0 ∈ Θ,

Rt(θ) = Rt(θ0) a.s. implies θ = θ0, where Rt(θ) is defined in (3.4).

Proof. We treat the case with q = 1, p = 0 and m = 2 first. Suppose Rt(θ) = Rt(θ0) a.s.

Then we have

σ212(θ0)

σ11,t(θ0)σ22,t(θ0)
=

σ212(θ)

σ11,t(θ)σ22,t(θ)
,

which means

(c0 + α0X1,t−1X2,t−1)
2

(1 + α0X2
1,t−1)(1 + α0X2

2,t−1)
=

(c+ αX1,t−1X2,t−1)
2

(1 + αX2
1,t−1)(1 + αX2

2,t−1)
.

After straight computation, we have

c20 − c2 + (c20α− c2α0)(X
2
1,t−1 +X2

2,t−1) + (c20α
2 − c2α2

0 + α2
0 − α2)X2

1,t−1X
2
2,t−1 +

2(c0α− cα0)X1,t−1X2,t−1 + 2(c0αα0 − cα0α)X1,t−1X2,t−1(X
2
1,t−1 +X2

2,t−1) +

2(c0α0α
2 − cαα2

0)X
3
1,t−1X

3
2,t−1 + (αα2

0 − α0α
2)X2

1,t−1X
2
2,t−1(X

2
1,t−1 +X2

2,t−1) = 0

If θ0 6= θ, then there exists at least one random term in above equation whose coefficient is non-

zero. By implicit function theorem X1t can be determined by X2t which contradicts assumption

A5. Thus θ0 = θ. For general cases, σij,t(θ) can be represented as the sum of constant term, the

function of XitXjt term and the function of Ft−2 term. Similar method can yield the result of

Lemma 5.5 under assumption A5.

Lemma 5.6. Suppose assumptions A1-A3 hold. Then it follows that, for i, j, k = 1, · · · , d,
(i) for any ∆ > 0,

E
[

sup
θ∈Θ

∥
∥

·

Rt,i(θ)
∥
∥

]∆
<∞, E

[

sup
θ∈Θ

∥
∥
··

Rt,ij(θ)
∥
∥

]∆
<∞, E

[

sup
θ∈Θ

∥
∥
···

Rt,ijk(θ)
∥
∥

]∆
<∞;

(ii) if E‖ηt‖2w <∞ for some w > 0, we have E
[

supθ∈Θ
∥
∥R−1

t (θ)
∥
∥

]w
<∞.

Proof. (i) First, similar to the univariate case (see Berkes et al. (2003) and Francq and

Zaköıan (2004)), under assumptions A1-A2, we have
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E
[
sup
θ∈Θ

∥
∥Σ−1

t∗ (θ)
·

Σt∗,i(θ)
∥
∥∆

]
<∞, E

[
sup
θ∈Θ

∥
∥Σ−1

t∗ (θ)
·

Σt,i(θ)Σ
−1
t∗ (θ)

∥
∥∆

]
<∞,

E
[
sup
θ∈Θ

∥
∥Σ−1

t∗ (θ)
··

Σt∗,ij(θ)
∥
∥∆

]
<∞, E

[
sup
θ∈Θ

∥
∥Σ−1

t∗ (θ)
··

Σt,ij(θ)Σ
−1
t∗ (θ)

∥
∥∆

]
<∞,

E
[
sup
θ∈Θ

∥
∥Σ−1

t∗ (θ)
···

Σt∗,ijk(θ)
∥
∥∆

]
<∞, E

[
sup
θ∈Θ

∥
∥Σ−1

t∗ (θ)
···

Σt,ijk(θ)Σ
−1
t∗ (θ)

∥
∥∆

]
<∞ (5.25)

for any ∆ > 0 and i, j, k = 1, · · · , d. From (5.22), we have

∥
∥

·

Rt,i(θ)
∥
∥ ≤

∥
∥Σ−1

t∗ (θ)
·

Σt∗,i(θ)‖+ ‖Σ−1
t∗ (θ)

·

Σt,i(θ)Σ
−1
t∗ (θ)‖+ ‖

·

Σt∗,i(θ)Σ
−1
t∗ (θ)

∥
∥.

Combining with (5.25), we obtain that E
[
supθ∈Θ

∥
∥

·

Rt,i(θ)
∥
∥
]∆

<∞. Similarly, we can prove the

latter two inequalities of (i) hold.

(ii) Note that each element of Σ2
t∗(θ) follows an univariate GARCH form. Since 1−∑p

j=1 βj > 0

under assumption A2, there exist some 0 < ρ < 1 and positive constant K such that

σ2ii,t(θ) ≤ 1 +K
∞∑

j=1

ρjX2
i,t−j ,

for i = 1, · · · ,m. Since Θ is compact by assumption A3, we have

E
[

sup
θ∈Θ

σ2ii,t(θ)
]w

<∞ (5.26)

if E‖Xt‖2w <∞, which is ensured by the definition of model (2.1) and the condition E‖ηt‖2w <
∞. According to appendix of Comte and Lieberman (2003), for a positive definite matrix D

and a positive semi-definite matrix G, we have

‖(D +G)−1‖ ≤ K
√

Tr(D−4). (5.27)

Since Θ is compact and C is positive definite, (3.1), (3.4) and (5.27) imply

sup
θ∈Θ

‖Σ−1
t (θ)‖ ≤ K, sup

θ∈Θ
‖Σ̃−1

t (θ)‖ ≤ K, sup
θ∈Θ

‖Σ−1
t∗ (θ)‖ ≤ K, sup

θ∈Θ
‖Σ̃−1

t∗ (θ)‖ ≤ K. (5.28)

Due to (5.26) and (5.28), we get

E
[
sup
θ∈Θ

∥
∥R−1

t (θ)
∥
∥
]w ≤ E

[
sup
θ∈Θ

∥
∥Σ2

t∗(θ)
∥
∥
]w[

sup
θ∈Θ

∥
∥Σ−1

t (θ)
∥
∥
]w ≤ K

d∑

i=1

[sup
θ∈Θ

∥
∥σ2ii,t(θ)

∥
∥
]w

<∞.

This completes the proof of Lemma 5.6.

Lemma 5.7. Suppose assumption A8 holds. If for some constant vector x = (x1, · · · , xd)′,
∑d

k=1 xk
·

Rt,k = 0 a.s. for any t, then we have x = 0.
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Proof. By (5.22) and Rt = Σ−1
t∗ ΣtΣ

−1
t∗ , we have

·

Rt,k = −Σ−1
t∗

·

Σt∗,kΣ
−1
t∗ ΣtΣ

−1
t∗ +Σ−1

t∗

·

Σt,kΣ
−1
t∗ − Σ−1

t∗ ΣtΣ
−1
t∗

·

Σt∗,kΣ
−1
t∗ .

Multiplying Σt∗ from both the left and right sides of
∑d

k=1 xk
·

Rt,k = 0 yields

d∑

k=1

xk
(
−

·

Σt∗,kΣ
−1
t∗ Σt +

·

Σt,k − ΣtΣ
−1
t∗

·

Σt∗,k

)
= 0. (5.29)

Note that Σt∗ is diagonal. From (2.1), we have Σ−1
t∗

·

Σt∗,k =
·

Σt∗,kΣ
−1
t∗ = 1

2Σ
−2
t∗

·

Σ2
t∗,k = 1

2

·

Σ2
t∗,kΣ

−2
t∗ ,

where
·

Σ2
t∗,k = ∂Σ2

t∗/∂θk. Multiplying Σ2
t∗ from both the left and right sides of (5.29) yields

d∑

k=1

xk
(
2Σ2

t∗

·

Σt,kΣ
2
t∗ −

·

Σ2
t∗,kΣt − Σt

·

Σ2
t∗,k

)
= 0.

It is easy to verify that
·

Σ2
t∗,k = 0 for k = 1, · · · ,m(m− 1)/2 for model (2.1). Thus, we have

m(m−1)/2
∑

k=1

2xkΣ
2
t∗

·

Σt,kΣ
2
t∗ +

d∑

k=m(m−1)/2+1

xk
(
2Σ2

t∗

·

Σt,kΣ
2
t∗ −

·

Σ2
t∗,kΣt − Σt

·

Σ2
t∗,k

)
= 0. (5.30)

Note that the digonal elements of the first part of the left side of (5.30) are all zeros. Consider

(i, i)th elements of the left side of (5.30), and we have

d∑

k=m(m−1)/2+1

xk
(
2σ4ii,t

∂σ2ii,t
∂θk

− 2σ2ii,t
∂σ2ii,t
∂θk

)
= 0

Since the probability of σ2ii,t = 1+
∑q

s=1 αsX
2
i,t−s+

∑q
r=1 αsσ

2
ii,t−r > 1 is positive under assump-

tion A8, we have

d∑

k=m(m−1)/2+1

xk
∂σ2ii,t
∂θk

= 0.

The same argument as Francq and Zaköıan (2004) together with assumption A8 yields that

xk = 0 for k = m(m− 1)/2 + 1, · · · , d. Thus, from (5.30) we obtain

m(m−1)/2
∑

k=1

2xkΣ
2
t∗

·

Σt,kΣ
2
t∗ = 0.

On the other hand, the (i, j)th (i 6= j) element of the left side of the above equation is

xm(i−1)+jσ
2
ii,t/(1 − ∑q

s=1 βs). Since σ2ii,t/(1 − ∑q
s=1 βs) > 0 , we obtain xk = 0 for k =

1, · · · ,m(m− 1)/2. Now, we complete the proof of Lemma 5.7.
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Proof of C1. By the compactness of Θ and assumption A2, we get supθ∈Θ
∑p

j=1 βj < 1.

Due to (3.1) and (3.4), we deduce that, almost surely

sup
θ∈Θ

∥
∥Σt(θ)− Σ̃t(θ)

∥
∥ ≤ Kρt (5.31)

for any t, where 0 < ρ < 1 is a constant and K is a random variable which depends on the past

values {Xt, t ≤ 0}. Since K does not depend on n, we can treat it as a constant. Note that

sup
θ∈Θ

∣
∣Ln(θ)− L̃n(θ)

∣
∣ ≤ 1

n

n∑

t=1

sup
θ∈Θ

∣
∣X ′

t(R
−1
t (θ)− R̃−1

t (θ))Xt

∣
∣+

1

n

n∑

t=1

sup
θ∈Θ

∣
∣ log |Rt(θ)| − log |R̃t(θ)|

∣
∣

=: P1 + P2. (5.32)

We deal with P1 first. Due to (3.1) and (3.4), we have

R−1
t (θ)− R̃−1

t (θ) = Σt∗(θ)Σ
−1
t (θ)Σt∗(θ)− Σ̃t∗(θ)Σ̃

−1
t (θ)Σ̃t∗(θ)

=
(
Σt∗(θ)− Σ̃t∗(θ)

)
Σ−1
t (θ)Σt∗(θ) + Σ̃t∗(θ)

(
Σ−1
t (θ)− Σ̃−1

t (θ)
)
Σt∗(θ)

+Σ̃t∗(θ)Σ̃
−1
t (θ)

(
Σt∗(θ)− Σ̃t∗(θ)

)

=: P11 + P12 + P13

Furthermore, (5.28) and (5.31) imply

1

n

n∑

t=1

sup
θ∈Θ

|X ′
tP11Xt| =

1

n

n∑

t=1

sup
θ∈Θ

Tr(P11XtX
′
t)

≤ 1

n

n∑

t=1

sup
θ∈Θ

‖P11‖‖XtX
′
t‖

≤ K

n

n∑

t=1

ρt‖Σt∗‖‖XtX
′
t‖.

Duo to Theorem 1, there exists a δ > 0 such that

E
(
‖Σt∗‖δ‖XtX

′
t‖δ

)
<∞.

Thus, we have

∞∑

t=1

P
(
ρt‖Σt∗‖‖XtX

′
t‖ > ε

)
≤

∞∑

t=1

ρtδE
(
‖Σt∗‖δ‖XtX

′
t‖δ

)

εδ

=
E
(
‖Σt∗‖δ‖XtX

′
t‖δ

)

εδ

∞∑

t=1

ρtδ

< ∞.

By the Borel-Cantelli lemma, we have

ρt‖Σt∗‖‖XtX
′
t‖

a.s.−→ 0.
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Therefore,

1

n

n∑

t=1

sup
θ∈Θ

|X ′
tP11Xt| a.s.−→ 0 (5.33)

due to the Cesáro lemma. Noting that ‖Σ̃t∗‖ ≤ ‖Σt∗‖ + Kρt, and using similar arguments to

the proof of (5.33), we can get

1

n

n∑

t=1

sup
θ∈Θ

|X ′
tP13Xt| a.s.−→ 0. (5.34)

But, because

1

n

n∑

t=1

sup
θ∈Θ

|X ′
tP12Xt| =

1

n

n∑

t=1

sup
θ∈Θ

Tr(P12XtX
′
t)

≤ 1

n

n∑

t=1

sup
θ∈Θ

‖P12‖‖XtX
′
t‖

=
1

n

n∑

t=1

sup
θ∈Θ

∥
∥Σ̃t∗(θ)Σ̃

−1
t (θ)

(
Σt(θ)− Σ̃t(θ))Σ̃

−1
t (θ)Σt∗(θ)

∥
∥‖XtX

′
t‖

≤ K

n

n∑

t=1

ρt‖Σ̃t∗‖‖Σt‖‖XtX
′
t‖,

similar to (5.33), we can show that

1

n

n∑

t=1

sup
θ∈Θ

|X ′
tP12Xt| a.s.−→ 0. (5.35)

Combining (5.33), (5.34) and (5.35), we see that P1
a.s.→ 0.

We turn to P2 now. Notice that log(1 + x) ≤ x for x ≥ −1. We have

log |Rt(θ)| − log |R̃t(θ)| = log
∣
∣Im + (Rt(θ)− R̃t(θ))R̃

−1
t (θ)

∣
∣

≤ m log
∥
∥Im + (Rt(θ)− R̃t(θ))R̃

−1
t (θ)

∥
∥

≤ m log
(√
m+ ‖Rt(θ)− R̃t(θ))‖‖R̃−1

t (θ)‖
)

≤ K +m log
(
1 + ‖Rt(θ)− R̃t(θ))‖‖R̃−1

t (θ)‖/√m
)

≤ K +
√
m‖Rt(θ)− R̃t(θ))‖‖R̃−1

t (θ)‖.

Symmetrically, we get

log |R̃t(θ)| − log |Rt(θ)| ≤ m‖Rt(θ)− R̃t(θ))‖‖R−1
t (θ)‖.

Using similar argument to the proof of P1
a.s.→ 0 , we can get P2

a.s.→ 0. Thus, the proof of C1 is

completed.
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Proof of C2. We first show that Elt(θ) is well defined for all θ ∈ Θ. Noting that for positive

semi-definite matrices G1 and G2, |G1 +G2| ≥ max{|G1|, G2|}, we have

El−t (θ) ≤ E log− |Rt(θ)|

≤ Emax
{
0,− log |Σt∗(θ)|−2 − log |Σt(θ)|

}

≤ Emax
{
0, |Σt∗(θ)|δ − log |C|

}

< +∞,

which implies that Elt(θ) is well defined. Furthermore, we have

E
∣
∣ log |Rt(θ0)|

∣
∣ = E

∣
∣ log |Σ−2

t∗ (θ0)|+ log |Σt(θ0)|
∣
∣

≤ | log |C||+ | log |C∗||+ E|Σt∗(θ0)|+ E|Σt(θ0)|

< +∞,

where C∗ = diag{cii, i = 1, · · · ,m}. Therefore,

E|lt(θ0)| ≤ E|X ′
tRt(θ0)Xt|+ E

∣
∣ log |Rt(θ0)|

∣
∣ = 1 + E

∣
∣ log |Rt(θ0)|

∣
∣ <∞.

Let λi,t be the eigenvalues of R
1/2
t (θ0)R

−1
t (θ)R

1/2
t (θ0). We have λi,t > 0 sinceR

1/2
t (θ0)R

−1
t (θ)R

1/2
t (θ0)

is positive definite. Thus, we have

Elt(θ)−Elt(θ0)

= E log
|Rt(θ)|
|Rt(θ0)|

+E
{

η′t
[
R

1/2
t (θ0)R

−1
t (θ)R

1/2
t (θ0)− Im

]
ηt

}

= E log
∣
∣R

1/2
t (θ0)R

−1
t (θ)R

1/2
t (θ0)

∣
∣+ Tr

{

E
[
R

1/2
t (θ0)R

−1
t (θ)R

1/2
t (θ0)− Im

]
Eηtη

′
t

}

= E
[

m∑

i=1

(λi,t − 1− log λi,t)
]

≥ 0,

due to log x ≤ x − 1 for any x > 0. Furthermore, log x = x − 1 if and only if x = 1, so the

inequality above is strict unless for all i, λi,t = 1 a.s., which implies Rt(θ) = Rt(θ0) a.s.. By

Lemma 5.5, we obtain θ = θ0 and thus assertion C2 holds.

Proof of C3. For any θ ∈ Θ and any positive integer k, let Nk(θ) be the open ball with

center θ and radius 1/k. By C1, we have

lim inf
n→∞

inf
θ∗∈Nk(θ)∩Θ

L̃n(θ
∗) ≥ lim inf

n→∞
inf

θ∗∈Nk(θ)∩Θ
Ln(θ

∗)− lim sup
n→∞

sup
θ∗∈Θ

|Ln(θ
∗)− L̃n(θ

∗)|

≥ lim inf
n→∞

1

n

n∑

t=1

inf
θ∗∈Nk(θ)∩Θ

lt(θ
∗).
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By the ergodic theorem, we get

lim inf
n→∞

1

n

n∑

t=1

inf
θ∗∈Nk(θ)∩Θ

lt(θ
∗) = E inf

θ∗∈Nk(θ)∩Θ
l1(θ

∗).

Due to the Beppo-Levi theorem, E infθ∗∈Nk(θ)∩Θ l1(θ
∗) increases to El1(θ) when k increases to

∞. By C2, we complete the proof of assertion C3.

Proof of N1. We show H <∞ first. Note that, from (3.3) and (5.20),

∂lt(θ)

∂θi
= Tr

( ·

Rt,i(θ)R
−1
t (θ)−XtX

′
tR

−1
t (θ)

·

Rt,i(θ)R
−1
t (θ)

)
(5.36)

for i = 1, · · · , d. By Minkowski inequality and Lemma 5.6, we have

E
[
Tr

( ·

Rt,iR
−1
t

)]2 ≤ E
[∥
∥

·

Rt,i

∥
∥2
∥
∥R−1

t

∥
∥2
]
≤

[
E‖

·

Rt,i‖2+
8

δ

] δ
4+δE

[
‖R−1

t ‖2+ δ
2

] 4

4+δ < +∞ (5.37)

provided that E‖ηt‖4+δ <∞ for some δ > 0. Similarly, we have

E
[
Tr

(
XtX

′
tR

−1
t

·

Rt,iR
−1
t

)]2
= E

[
Tr

(
ηtη

′
tR

−1/2
t

·

Rt,iR
−1/2
t

)]2

≤ E
[∥
∥ηtη

′
t

∥
∥2
∥
∥R

−1/2
t

·

Rt,iR
−1/2
t

∥
∥2
]

≤ KE
[
Tr(R−1

t

·

Rt,iR
−1
t

·

Rt,i)
]

≤ KE
[
‖(R−1

t

·

Rt,iR
−1
t

·

Rt,i)‖
]
<∞. (5.38)

By (5.36), (5.37) and (5.38), we have

E
[∂lt(θ0)

∂θi

]2
≤ 2E

[
Tr

( ·

Rt,iR
−1
t

)]2
+ 2E

[
Tr

(
XtX

′
tR

−1
t

·

Rt,iR
−1
t

)]2
<∞, (5.39)

which implies

E
∣
∣
∣
∂lt(θ0)

∂θi

∂lt(θ0)

∂θj

∣
∣
∣ ≤

{

E
[∂lt(θ0)

∂θi

]2
E
[∂lt(θ0)

∂θj

]2}1/2
<∞.

Therefore, H <∞.

On the other hand, by (5.36), we have

E
(∂lt(θ0)

∂θ

∣
∣Ft−1

)

= E
[

Tr
( ·

Rt,iR
−1
t −R

1/2
t ηtη

′
tR

−1/2
t

·

Rt,iR
−1
t

)∣
∣Ft−1

]

= Tr
( ·

Rt,iR
−1
t −R

1/2
t ImR

−1/2
t

·

Rt,iR
−1
t

)

= 0.

Thus ∂lt(θ0)/∂θ are stationary martingale differences. Applying the martingale central limit

theorem, we get the assertion N1.
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Proof of N2. From (5.36), it follows that

∂2lt(θ)

∂θi∂θj
= Tr

( ··

Rt,ij(θ)R
−1
t (θ)−

·

Rt,i(θ)R
−1
t (θ)

·

Rt,j(θ)R
−1
t (θ)

+XtX
′
tR

−1
t (θ)

·

Rt,j(θ)R
−1
t (θ)

·

Rt,i(θ)R
−1
t (θ)−XtX

′
tR

−1
t (θ)

··

Rt,ij(θ)R
−1
t (θ)

+XtX
′
tR

−1
t (θ)

·

Rt,i(θ)R
−1
t (θ)

·

Rt,j(θ)R
−1
t (θ)

)

. (5.40)

By Lemma 5.6, similarly with (5.37), we obtain that

E
∣
∣Tr
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XtX
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·

Rt,jR
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t

·
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t
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∣

= E
∣
∣Tr

(
ηtη

′
tR

−1/2
t

·
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t

·
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∥
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·
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·
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·
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·

Rt,iR
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= KE
[
Tr

( ·

Rt,jR
−1
t

·

Rt,iR
−1
t

·

Rt,jR
−1
t

·

Rt,iR
−1
t

)]1/2

≤ KE
[∥
∥

·

Rt,i

∥
∥

·

Rt,j

∥
∥
∥
∥R−1

t

∥
∥2
]

< ∞,

provided that E‖ηt‖4+δ < ∞ for some δ > 0. If E‖ηt‖4+η < ∞, we can similarly show that the

expectation of the norms for the other terms in the right side of (5.40) is finite. Thus,

E
∣
∣
∂2lt(θ0)

∂θi∂θj

∣
∣ <∞.

On the other hand, from (5.40) we have ,

E
(∂2lt(θ0)

∂θi∂θj

∣
∣Ft−1

)

= Tr
( ·

Rt,iR
−1
t

·

Rt,jR
−1
t

)
, (5.41)

which implies that J =
(

E
[
Tr

( ·

Rt,iR
−1
t

·

Rt,jR
−1
t

)])

i,j=1,··· ,d
. Similar proof of E

∣
∣∂2lt(θ0)/∂θi∂θj

∣
∣ <

∞ yields J <∞.

Next, we will prove J is positive definite. Let At,i = R− 1

2

·

Rt,iR
− 1

2

t , where R− 1

2 is the unique

positive definite square root of R−1
t . From (5.22), we have

·

Rt,i is symmetric. Using that

Tr(AB) = vec(A′)′vec(B) and vec(ABC) = (C ′ ⊗A)vec(B), we have

Tr(At,iAt,j) = vec(At,i)
′vec(At,j)

= vec(
·

Rt,i)
′(R

− 1

2

t ⊗R
− 1

2

t )(R
− 1

2

t ⊗R
− 1

2

t )vec(
·

Rt,j)

= vec(
·

Rt,i)
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t ⊗R−1
t )vec(

·

Rt,j).
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Let P ′
t =

(
vec(

·

Rt,1), · · · , vec(
·

Rt,d)
)
and we have

E
(∂2lt(θ0)

∂θi∂θj

∣
∣Ft−1

)

= Pt(R
−1
t ⊗R−1

t )P ′
t. (5.42)

Since R−1
t is positive definite, we have R−1

t ⊗ R−1
t is positive definite using the fact that the

eigenvalues of A⊗B for any matrices A and B are λiνj, where λi and νj are the eigenvalues of

A and B respectively. It follows that Pt(R
−1
t ⊗R−1

t )P ′
t is at least positive semi-definite. If there

exists a constant vector x such that x′Jx = 0, due to (5.42) we have

E
[
(Ptx)

′(R−1
t ⊗R−1

t )Ptx
]
= 0.

As the term under the expectation is non-negative, it is necessarily zero. Together with the

positive definiteness of R−1
t ⊗R−1

t , we obtain

Ptx = 0 a.s.

Recall the definition of Pt, we have

d∑

k=1

xk
·

Rt,k = 0 a.s.

By Lemma 5.7, we have x = 0, which means that J is positive definite. This proves assertion

N2.

Proof of N3. From (5.40), we obtain that the third order derivatives of the log-likelihood

involves such terms as

Tr
( ··

Rt,ij(θ)R
−1
t (θ)

·
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t (θ)

)
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)
,

and the traces of the same matrices pre-multiplied by XtX
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t (θ). Therefore, for instance,
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by Lemma 5.6 provided that E‖ηt‖8+δ <∞ for some δ > 0. Using similar method, we can show

that if E‖ηt‖8+δ <∞ for some δ > 0,

E
[
sup
θ∈Θ

Tr
(∣
∣XtX

′
tR

−1
t (θ)

··

Rt,ij(θ)R
−1
t (θ)

·

Rt,k(θ)R
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t (θ)

)∣
∣
]
<∞

and

E
[
sup
θ∈Θ

Tr
(∣
∣XtX

′
tR

−1
t (θ)

···

Rt,ijk(θ)R
−1
t (θ)

)∣
∣
]
<∞.

Therefore,

E sup
θ∈Θ

∣
∣
∣
∂3lt(θ)

∂θi∂θj∂θk

∣
∣
∣ <∞

for all i, j, k = 1, · · · , d.

Proof of N4. From (5.36), we deduce that

∣
∣
∣
∂lt(θ0)

∂θi
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∂θi

∣
∣
∣ =

∣
∣Tr

( ·

Rt,iR
−1
t

)
− Tr

( ·

R̃t,iR̃
−1
t

)
−X ′

tR
−1
t

·

Rt,iR
−1
t Xt +X ′

tR̃
−1
t

·

R̃t,iR̃
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t Xt

∣
∣.

There are thus two types of terms to study. First, due to (5.22), we have

∣
∣Tr
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)
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Similarly to the proof of Theorem 4 in Comte and Lieberman (2003), we can show that

sup
θ∈Θ

∥
∥

·

Σt∗,i(θ)−
·

Σ̃t,i(θ)
∥
∥ ≤ Ktd0ρt−1, (5.43)

where d0 = max(p, q)d(d + 1)/2, and K is a random variable which depends on the past values

(Xt, t ≤ 0) and can be then treated as a constant since it does not depend on n. Using the same

method as the proof of assertion C1, we can obtain that

1

n

n∑
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∣
∣Tr
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− Tr
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Second, the same method is suitable for
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tR
−1
t

·

Rt,iR
−1
t Xt −X ′

tR̃
−1
t

·

R̃t,iR̃
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t Xt

∣
∣. Thus, the first

equality in N4 holds. Noting that the result in (5.43) can be extended to
··

Σt, namely

sup
θ∈Θ

∥
∥
··

Σt∗,i(θ)−
··

Σ̃t,i(θ)
∥
∥ ≤ Ktd0ρt−1.
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Then, applying the same method as above, we know that the second equality in N4 holds.
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Figure 1: Kernel density estimator (full line) of the distribution of the QMLE errors for the estimation

of c12(the left figure), α (the middle figure) and β (the right figure) and Gaussian density (dotted line)

with the same mean and variance.

TABLE 1

Estimation results of QMLE for SDCC(1, 1) model

parameter true value means bias RMSE

c12 0.4 0.4007 0.0007 0.0411

α 0.2 0.2164 0.0164 0.1064

β 0.5 0.4708 -0.0292 0.2593

TABLE 2

Unit root and cointegration tests of FSTE 100 futures and spot prices

lns lnf Rs Rf Error

ADF -2.4039 -2.5240 −16.8242∗∗∗ −14.5936∗∗∗ −4.1916∗∗∗

Note: ***, ** and * refer to significance at level 1%, 5% and 10% respectively and we use the same

notation in the following. The critical values at 1%, 5% and 10% for the ADF test are -3.44, -2.86

and -2.57 respectively.

36



TABLE 3

Summary statistics of FSTE 100 futures and spot returns

Mean SD Sknewness Kurtosis JB Q(10) Q2(10)

Rs 0.0000 0.0123 -0.3821 5.5880 151.095∗∗∗ 15.994∗ 97.889∗∗∗

Rf 0.0001 0.0145 -0.6685 9.4576 902.375∗∗∗ 39.108∗∗∗ 207.488∗∗∗

Note: The critical value at 1% for the JB test is 9.2103. The critical values at 1%, 5% and 10% for

Ljung & Box test are 23.209 18.307and 15.987 respectively.

TABLE 4

Estimation results for conditional mean, conditional variance and correlation coefficients

Estimation results for conditional mean

φi0 φi1 φi2 ψi1 ψi2

rs -0.0050 0.0004 -0.1750 0.1581 0.0759

(−0.2323) (0.0065) (−3.2663∗∗∗) (3.3299∗∗∗) (1.6323∗)

rf 0.0975 0.1755 -0.2144 -0.1265 0.1823

(3.9840∗∗∗) (3.0252∗∗∗) (−4.3232∗∗∗) (−1.9669∗∗∗) (3.4373∗∗∗)

Estimation results for conditional variance

ωi θi1 θi2 Q(10) Q2(10)

hs 0.0757 0.1485 0.7998 2.9131 4.2999

(2.0842∗∗) (2.7711∗∗∗) (12.6570∗∗∗)

hf 0.0697 0.1148 0.8500 7.4618 13.9580

(2.3103∗∗) (2.7920∗∗∗) (21.1420∗∗∗)

Estimation results for conditional correlation coefficients of DCC, GARCH-SDCC and STD-SDCC

α β c12 LiMcLeod

DCC 0.1266 0.8706 44.6077

(3.9920∗∗∗) (24.4071∗∗∗)

GARCH-SDCC 0.5013 0.4985 0.7444 34.1978

(1.5707∗) (1.7983∗∗) (20.4119∗∗∗)

STD-SDCC 0.4443 0.5556 0.5979 35.2534

(1.3568∗) (2.1698∗∗) (4.6148∗∗∗)

Note: The critical value at 10% for the LiMcLeod statistic is 51.8051.

TABLE 5

The hedging performance of DCC and SDCC

in-sample out-sample

HE U HE U

DCC 0.4835 -3.1158 0.7540 -0.9566

GARCH-SDCC 0.5140 -2.9305 0.9228 -0.8108

STD-SDCC 0.4645 -2.9980 0.7871 -0.9530

37



0 500
−0.5

0

0.5

1
DCC

in
 s

am
pl

e

0 500
−0.5

0

0.5

1
GARCH−SDCC

0 500
−0.5

0

0.5

1
STD−SDCC

0 50 100
−1

−0.5

0

0.5

1

ou
t s

am
pl

e

DCC

0 50 100

0.7

0.8

0.9

1
GARCH−SDCC

0 50 100
0.2

0.4

0.6

0.8

1
STD−SDCC

Figure 2: The estimated conditional correlation coefficients (the up panel) and the forecasting conditional

correlation coefficients (the down panel) for the DCC (left), GARCH-SDCC (middle) and STD-DCC

(right) .
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