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Article

Histology, vascularity and innervation
of the glenoid labrum

Abduelmenem Alashkham1,2,3, Abdulrahman Alraddadi2,4,
Paul Felts2 and Roger Soames2

Abstract
Background: Although the glenoid labrum has an important role in shoulder stability, little is known about its com-
position, vascularity and innervation. The aims of this study were therefore to evaluate the histology, vascularity and
innervation of the glenoid labrum. Materials and methods: Ten glenoid labrum specimens (three male, two female:
mean age 81.2 years, range 76–90 years) were detached at the glenoid neck. Following decalcification, sections were cut
through the whole thickness of each specimen perpendicular to the glenoid labrum at 12 radii corresponding to a clock
face superimposed on the glenoid fossa. Then they were stained using haematoxylin and eosin, a silver nitrate protocol or
subjected to immunohistochemistry using anti-protein gene protein 9.5 to demonstrate neuronal processes. Results:
The labrum was fibrocartilaginous, being more fibrous in its free margin. There was a variable distribution of blood vessels,
being more vascular in its periphery, with many originating from the fibrous capsule and piercing the glenoid labrum.
Immunohistochemistry revealed positive staining of nerve fibres within the glenoid labrum. Conclusion: The glenoid
labrum is fibrocartilaginous, being more fibrous in its periphery, and is vascularized, with the anterosuperior aspect having a
rich blood supply. Free sensory nerve fibres were also present; no encapsulated mechanoreceptors were observed. The
presence of sensory nerve fibres in the glenoid labrum could explain why tears induce pain. It is postulated that these sensory
fibres could play a role in glenohumeral joint proprioception.
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Introduction

Descriptions of the constitution of the glenoid labrum are

somewhat diverse. It has been described as a fibrous ring or

band effectively increasing the depth of the glenoid fossa.1–3

Others, however, describe it as a cartilaginous structure.4–9

One study10 stated that in week 10 of gestation, the glenoid

labrum is fibrocellular rather than fibrocartilaginous with

collagen fibres; furthermore, it is vascularized with capil-

laries growing into its free margin by week 12½. In contrast,

several studies11–14 report that the glenoid labrum is com-

posed of dense fibrous tissue with a narrow fibrocartilagi-

nous zone between the articular hyaline surface and the

labrum.

Neural receptors of the glenohumeral joint have rarely

been observed. Vangsness et al.15 observed slow adapting
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Ruffini end organs, rapidly adapting Pacinian corpuscles

and free nerve ending in the fibrous capsule and the gleno-

humeral, coracoclavicular and coracoacromial ligaments.

Free nerve endings were noted in the peripheral part of the

glenoid labrum as well as the subacromial bursae. No

encapsulated free nerve endings were detected in the gle-

noid labrum. However, Guanche et al.16 reported Golgi’s,

Ruffini’s and Pacini’s corpuscles and free nerve ending in

45% of the superior glenohumeral ligament, 42% of the

middle glenohumeral ligament, 48% of the inferior gleno-

humeral ligaments and 47.5% of the fibrous capsule. Only

free nerve endings were observed in the long head of

biceps tendon and the attached part of the superior glenoid

labrum. According to Machner et al.,17 the proprioceptive

sensation of the glenohumeral joint is deficient in post-

traumatic anterior glenohumeral instability: Nevertheless,

significant improvement in joint proprioception was

achieved 18 months following arthroscopic labral repair.

The aims of this study were therefore to evaluate the his-

tology, vascularity and innervation of the glenoid labrum.

Materials and methods

Ten glenoid labrum specimens (three male, two female:

mean age 81.2 years, range 76–90 years) with no evidence

of trauma or degeneration were utilized from five formalin-

embalmed cadavers. Sections were cut through the whole

thickness of each specimen from the centre of the glenoid

fossa perpendicular to the glenoid labrum at 12 radii cor-

responding to a superimposed clock face. The result was

triangular-shaped wedges of the glenoid labrum with the

fibrous capsule attached at the periphery. Each wedge was

washed in phosphate-buffered saline (PBS) and embedded

in paraffin wax using standard techniques. Sections were

cut from one non-overlapping radius of each specimen.

Sections were stained using haematoxylin and eosin, a sil-

ver nitrate protocol or subjected to immunohistochemistry.

Gless–Marsland modification

The tissue is fixed in formalin saline or natural-buffered

formalin solution and the paraffin sections cut at 6–8 mm

thickness.

Solutions and reagents

1. Twenty percentage of silver nitrate stock solution:

dissolve 10 g silver nitrate in 50 ml of distilled water.

2. Ten percentage of formalin solution and must be

alkaline: add 10 ml of 37–40% formaldehyde to

90 ml of distilled water.

3. Glees’s silver solution: add 30 ml from the 20% silver

nitrate stock solution to 20 ml alcohol, then add strong

ammonia (0.88) drop by drop with constant agitation

until it dissolves and finally add five more drops.

4. Five percentage of aqueous sodium thiosulphate.

Method

1. Rehydrate and clear sections using ethanol and

Histo-Clear, then place the sections in distilled

water.

2. Place in silver nitrate solution at 37�C for 25–30

min.

3. Rinse in distilled water.

4. Rinse twice and quickly (within 10 s) with 10%
formalin solution.

5. Wash off the formalin with Glees’s silver solution

for 30 s.

6. Pour off the silver solution and flood the slide with

formalin solution for 1 min.

7. Examine under microscope, and if sections are not

clear, repeat steps 5 and 6.

8. Rinse in distilled water.

9. Place in sodium thiosulphate 5 min.

10. Dehydrate and clear using 95% ethanol, 100%
ethanol then Histo-Clear and mount.

Axons and dendrites are stained black, other structures

are stained light yellow-brown.

Immunohistochemistry

Anti-protein gene protein 9.5

Anti-protein gene protein 9.5 (PGP 9.5) are neuronal mar-

ker antibodies. Slides were prepared and divided into two

groups: group I had antigen retrieval using 10% formic acid

and group II was a negative control (no primary antibo-

dies). The protocol of the procedure was as follows:

1. Antigen retrieval: 10% formic acid was applied for

10 min.

2. 20 ml PBSþ 0.1 ml (0.5%) Triton was mixed well

and then added to all groups. This was repeated

three times and each time for 5 min. Then wash up

gently with PBS.

3. Circulate around the tissue section as close as pos-

sible using the hydrophobic pen. This step is crit-

ical because the tissue section might become dry

and in order to prevent this, PBS should be applied

while waiting for the hydrophobic circle to dry.

4. Prepare antibodies diluent: 10 ml PBS þ 100 mg

albumin bovine (mix well) and then add 10 ml

tween 20 (mix well). The antibodies diluent needs

to be fresh or no more than a few days old and kept

refrigerated.

5. Add 10 ml primary antibodies (PGP 9.5) to 1000 ml

antibodies diluent (nota bene [NB]: the antibodies

are added to the diluent not vice versa) with the

concentration being 1:100.

6. The primary antibodies (1:100) are put on the

slides of group I, while group II had the diluent

only (negative control). All tissue sections were

2 Journal of Orthopaedic Surgery 26(2)



confirmed to be completely covered by the solu-

tion, after which they were incubated in a humid

box in the refrigerator for 2 days.

7. Rinse each slide gently with PBS 3� for 5 min.

8. Apply the secondary antibody (Chemicon

AQ132P) goat anti-rabbit horseradish peroxidase

(HRP) conjugate diluted 1:200 in dilution buffer

for 5 h at room temperature.

9. Rinse each slide gently with PBS 3� for 5 min.

10. Apply DAB solution (0.05% diaminobenzidine

tetrahydrochloride plus 0.03% hydrogen peroxide

(H2O2) in PBS): To make, add 5 mg DAB plus

10 ml 30% H2O2 in 10 ml PBS. Then examine the

reaction: it takes 2–5 min until the background

colour starts to appear.

11. Wash several times with PBS and rinse briefly in

water.

12. Dehydrate, clear and coverslip as usual.

Anti-calcitonin gene-related peptide

Anti-calcitonin gene-related peptide (CGRP) is a sensory

fibres marker. Slides were prepared and divided into three

groups: group I had antigen retrieval using 10% formic acid

and group II was a negative control (no primary antibo-

dies). Positive control sections of skin and axillary artery

were processed in parallel for quality control. The protocol

of the procedure was as follows:

1. Antigen retrieval: 10% formic acid was applied for

10 min.

2. 20 ml PBSþ 0.1 ml (0.5%) Triton was mixed well

and then added to all groups. It was repeated three

times and each time remained for 5 min. Then

wash up gently with PBS.

3. Circulate around the tissue section as close as pos-

sible using the hydrophobic pen. This step is crit-

ical because the tissue section might become dry

and in order to prevent this, PBS should be applied

while waiting for the hydrophobic circle to dry.

4. Prepare antibodies diluent: 10 ml PBS þ 100 mg

albumin bovine (mix well) and then add 10 ml

tween 20 (mix well). The antibodies diluent needs

to be fresh or few days old and kept refrigerated.

5. Add 10 ml primary antibodies (CGPR) to 1000 ml

antibodies diluent (NB: add antibodies to the dilu-

ent not vice versa) resulting in a concentration of

1:100.

6. The primary antibodies (1:100) were put on the

slides of groups I (including the positive control),

while group II has the diluent only (negative con-

trol). All tissue sections were confirmed to be

completely covered with the solution. Then they

were incubated in a humid box in the refrigerator

for 2 days.

7. Rinse each slide gently with PBS 3� for 5 min.

8. Apply the secondary antibody (Chemicon AQ132P)

goat anti-rabbit HRP conjugate diluted 1:200 in

dilution buffer for 5 h at room temperature.

9. Rinse each slide gently with PBS 3� for 5 min.

10. Apply DAB solution (0.05% diaminobenzidine

tetrahydrochloride plus 0.03% H2O2 in PBS):

To make, add 5 mg DAB plus 10 ml 30% H2O2

in 10 ml PBS. Then examine the reaction: it takes

2–5 min until the background colour starts to

appear.

11. Wash several times with PBS and rinse briefly in

water.

12. Dehydrate, clear and coverslip as usual.

Results

Haematoxylin and eosin

The glenoid labrum was observed to be fibrocartilaginous,

being more fibrous in its free margin. It was attached to

the articular surface of the glenoid fossa centrally and the

glenoid bone peripherally. Some attachments of the lab-

rum to the underlying glenoid bone reached as far as the

bone marrow. In different regions, the fibrous capsule

split into an internal, covering the internal aspect of the

glenoid labrum, and an external, covering the external

aspect of the glenoid labrum parts (Figure 1). A variable

distribution, in terms of the number and size, of blood

vessels was observed in each region, with a greater num-

ber of vessels being present in the periphery, many of

which arose from the fibrous capsule to pierce the

glenoid labrum.

Silver nitrate

Sections stained with silver nitrate revealed nerve fibres

scattered within the glenoid labrum (Figure 2).

Figure 1. Attachment of the fibrous capsule to the glenoid lab-
rum at 11o’clock left side is shown. BV: blood vessels.
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Immunohistochemistry

PGP 9.5, which is known to label nerve fibres, positively

stained numerous nerve fibres in the glenoid labrum

(Figure 3). Negative control slides, excluding the primary

antibody, did not show any nerve fibre staining. CGRP, a

specific marker for sensory nerve fibres, labelled such

fibres within the glenoid labrum (Figure 4). Blood vessel

sections used as a positive control clearly showed positive

labelling for sensory nerve fibres (Figure 5). Negative con-

trol sections, lacking primary antibody, showed no evi-

dence of nerve fibre labelling.

Discussion

The exact morphology of the glenoid labrum is a matter of

some debate. It is described as a fibrous ring or fibrous

band,1–3 whereas others4–9 state that it is a cartilaginous

structure. However, Nazir et al.10 report that it is fibrocel-

lular rather than fibrocartilaginous with collagen fibres. In

contrast, other studies11–14 are of the opinion that the gle-

noid labrum is composed of dense fibrous tissue with a

narrow fibrocartilaginous zone between the articular hya-

line surface and the glenoid labrum. One study13 also added

that cellularity and vascularity of the labrum and the transi-

tional zone increased with age. Ockert et al.18 confirmed

that the glenoid labrum has a circumferentially avascular

fibrocartilaginous zone constituting up to one-third of the

glenoid labrum in cross section, the rest being dense fibrous

tissue. Arai et al.19 reported that the composition of the

superior glenoid labrum is collagen fibres that run circum-

ferentially along with some elastic fibres. Using electron

microscopy, the glenoid labrum found to have three layers

of collagen: the first is a superficial layer consisting of a

thin reticular fibrillar network, the second is a stratified

layer while the third layer consisted of densely arranged

bundles of fine fibrils which ran parallel to each other but

oblique to the glenoid rim.20 Hill et al.21 reported three

glenoid labrum zones: the first is a superficial mesh of

multidirectional fine fibrils, the second is a loose orienta-

tion of fibres characterized by its vascularity and noted to

be most common in the anterosuperior region compared to

other regions and the third is the central core which consists

of large dense fibre bundles circumferentially oriented and

avascular. Using light microscopy, the current study agrees

with Ockert et al.18 stating that the glenoid labrum is fibro-

cartilaginous, becoming more fibrous in the periphery. It

supports Hill et al.21 in that the whole glenoid labrum is

vascular, with the anterosuperior aspect of the glenoid lab-

rum having a rich blood supply.

Two studies14,21 reported that the glenoid labrum is

attached to the underlying glenoid bone by vertical and

oblique interweaving fibres with associated Sharpey’s

fibres anchoring onto the superficial bony surface of the

glenoid. Whereas the attachment to the underlying hyaline

cartilage is by finger-like processes via foramen in the

superficial aspect of the hyaline cartilage in association

with Sharpey’s fibres. The interdigitating anchoring fibres

and Sharpey’s fibres attach to the underlying glenoid bone

and cartilage in different orientations supporting the idea

that the glenoid labrum is subjected to various multidirec-

tional forces. They have added that collagen fibres of the

glenoid labrum at the labrum–articular cartilage interface

were not very dense between 11 and 4 o’clock and were

associated with a loose or incomplete attachment of the

glenolabral junction. A complete attachment between the

glenoid labrum and the underlying articular cartilage

between 5 and 11 o’clock was observed. The glenoid lab-

rum region between 10 and 12 o’clock was attached to the

apex of the glenoid rim, while in the other regions of the

clock face the articular cartilage did not extend to the gle-

noid edge because the glenoid labrum had a bony founda-

tion and was covered by the glenoid edge. Clinically, a

series of studies22,23 reported that injury of the superior and

anterior aspect of the glenoid labrum such as Bankart and

superior labral tear from anterior to posterior (SLAP)

lesions have high incidence in patients with shoulder dis-

location. The current study agrees, observing that the gle-

noid labrum attaches to the underlying articular surface

centrally and was anchored to the underlying glenoid bone

peripherally, reaching to bone trabeculae in some regions.

Grossly, the superior half of the glenoid labrum (mainly

from 11 to 2 o’clock) was incompletely attached to the

underlying articular surface and glenoid bone. These find-

ings could explain why with shoulder dislocations have a

high incidence of Bankart or SLAP lesions.

The consistency of the glenoid labrum ranged from rub-

bery to firm. Shoulders of individuals in their fifth decade

at the time of death had a glenoid labrum that was thin and

virtually absent. The glenoid labrum was sparsely vascu-

larized without any configurative pattern of distribution

and the vascularity was observed to decrease with age.24

In contrast, one study25 reported that the vascular channels

Figure 2. Glenoid labrum stained with silver nitrate showing
nerve fibres (arrow).
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Figure 4. (a) GL and FC. (b) NFs inside the GL. (c): Blood vessel with nerve fibres in its wall. GL: glenoid labrum; FC: fibrous capsule;
NF: nerve fibre.

Figure 3. (a) GL and FC; (b) and (c) NFs within the GL. GL: glenoid labrum; FC: fibrous capsule; NF: nerve fibre.

Alashkham et al. 5



proliferating inside the glenoid labrum and glenoid bone

increased with gestational age. The current study observed

that the consistency of the superior half of the glenoid

labrum was rubbery in 97.86% (n ¼ 137) and firm in

2.14% (n ¼ 3) of specimens, whereas the entire inferior

half was firm. Assuming that the shape and size of the

glenoid labrum is linked to its consistency, the superior half

of the glenoid labrum was triangular and thicker giving it

the rubbery appearance while the inferior half was rounded

and smaller in size, making it firm.

Neural receptors of the glenohumeral joint have rarely

been observed; the first report was by Vangsness et al.15

using a modified gold chloride stain. In the fibrous capsule,

there were slow adapting Ruffini end organs, rapidly adapt-

ing Pacinian corpuscles and free nerve endings in the gleno-

humeral, coracoclavicular and coracoacromial ligaments.

Free nerve endings were noted in the present study, but could

not be confirmed, in the peripheral part of the glenoid labrum

as well as the subacromial bursae. The number of neural

receptors was not quantified. The encapsulated mechanore-

ceptors could not be detected in the glenoid labrum. How-

ever, Guanche et al.,16 using the same stain as Vangsness

et al.,15 reported four neural receptors, these being Golgi,

Ruffini and Pacini corpuscles as well as free nerve endings

in 45% of the superior glenohumeral ligament, 42% of the

middle glenohumeral ligament, 48% of the inferior gleno-

humeral ligaments and 47.5% of the fibrous capsule. Only

free nerve endings were revealed in the long head of biceps

tendon and the attached part of the superior glenoid labrum.

According to Machner et al.,17 the proprioceptive sensations

of the glenohumeral joint were deficient in post-traumatic

anterior glenohumeral instability: A significant improve-

ment in joint proprioception was achieved 18 months fol-

lowing arthroscopic labral repair, which raises the question

of whether the sensory nerve fibres of the glenoid labrum

play a role in the proprioception of the glenohumeral joint.

The current study augments, using silver nitrate stain, the

findings of Vangsness et al.,15 Guanche et al.16 and Machner

et al.17 and for the first time, using immunohistochemistry,

confirms that there are free sensory nerve fibres in the gle-

noid labrum. No encapsulated nerve endings were observed.

As many free nerve endings act as nociceptors, this finding

emphasizes that the tears of the glenoid labrum could induce

pain; furthermore, if the glenoid labrum is enriched with

sensory fibres, it could play a role in glenohumeral joint

proprioception.

A series of studies26–29 has reported shoulder pain as a

sign of glenoid labrum tear, but in contrast nothing has been

reported about the glenoid labrum type of nerve fibres. A

major advantage of the current study, in investigating the

Figure 5. (a) Transverse section of a BV positive control, (b) NFs and (c) NFs. BV: blood vessel; NF: nerve fibre.
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type of nerve fibres of the glenoid labrum, was to use both

PGP 9.5 and CGRP antibodies. PGP 9.5 antibody has been

used in several previous studies and specifically in the

identification of neuronal cell bodies and nerve fibres of

all types in the peripheral tissue.30–38 Whereas CGRP anti-

body is generally considered as neurotransmitters of noci-

ceptive sensory neurons.39 The staining pattern observed in

the current study is consistent with the previous studies that

used the same PGP 9.5 and CGRP antibodies.30–39 The

correlation between the number of nerve fibres of the gle-

noid labrum and glenoid labrum region, age, sex or side is

still unknown. Further study is therefore recommended to

evaluate the association between the number of the glenoid

labrum nerve fibres and glenoid labrum region, age, side

and sex.

Conclusion

The glenoid labrum is a fibrocartilaginous structure that

becomes more fibrous peripherally. It is attached to the

underlying articular surface centrally and anchored to the

underlying glenoid bone peripherally, reaching to bony tra-

beculae in some regions. The whole of the glenoid labrum

is vascular, especially the anterosuperior aspect that has a

rich blood supply. Several blood vessels were observed

arising from the fibrous capsule to supply the glenoid lab-

rum. Occasionally, the glenoid labrum was observed to

reach bony trabeculae through the periosteal layer, provid-

ing additional blood supply. Using a silver nitrate stain and

immunohistochemistry, free sensory nerve fibres were

observed in the glenoid labrum; however, no encapsulated

nerve endings were observed. The presence of sensory

nerve fibres could explain why tears of the glenoid labrum

induce pain. Furthermore, these sensory nerve fibres could

play a role in glenohumeral joint proprioception.
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