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ABSTRACT
Background: Large doses of whey protein consumed as a preload
before single high–glycemic load meals has been shown to improve
postprandial glycemia in type 2 diabetes. It is unclear if this effect re-
mains with smaller doses of whey co-ingested at consecutive mixed-
macronutrient meals.Moreover, whether hydrolyzedwhey offers fur-
ther benefit under these conditions is unclear.
Objective: The aim of this study was to investigate postprandial
glycemic and appetite responses after small doses of intact and hy-
drolyzed whey protein co-ingested with mixed-nutrient breakfast and
lunch meals in men with type 2 diabetes.
Design: In a randomized, single-blind crossover design, 11 men with
type 2 diabetes [mean± SD age: 54.9± 2.3 y; glycated hemoglobin:
6.8% ± 0.3% (51.3 ± 3.4 mmol/mol)] attended the laboratory on
3 mornings and consumed 1) intact whey protein (15 g), 2) hy-
drolyzed whey protein (15 g), or 3) placebo (control) immediately
before mixed-macronutrient breakfast and lunch meals, separated by
3 h. Blood samples were collected periodically and were processed
for insulin, intact glucagon-like peptide 1 (GLP-1), gastric inhibitory
polypeptide (GIP), leptin, peptide tyrosine tyrosine (PYY3–36), and
amino acid concentrations. Interstitial glucose was measured during
and for 24 h after each trial. Subjective appetite was assessed with
the use of visual analog scales.
Results: Total postprandial glycemia area under the curve was re-
duced by 13% ± 3% after breakfast following the intact whey pro-
tein when compared with control (P < 0.05). Hydrolyzed whey at-
tenuated early glucose after breakfast when compared with control
(P < 0.05). Glycemia was improved postlunch after the intact whey
protein only when compared with control (P < 0.05). Greater sati-
ety was observed after the intact whey protein only after both meals
when compared with control (P < 0.05). Insulin concentrations in-
creased after both the intact and hydrolyzed whey protein, showing
strong positive correlations with increases in valine and isoleucine
(P< 0.05). Incretin and appetite regulatory hormone responses were
similar across trials (P > 0.05).

Conclusions: The consumption of a small 15-g dose of intact whey
protein immediately before consecutive mixed-macronutrient meals
improves postprandial glycemia, stimulates insulin release, and in-
creases satiety in men with type 2 diabetes. This trial was regis-
tered at www.clinicialtrials.gov as NCT02903199. Am J Clin
Nutr 2018;107:550–557.
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INTRODUCTION

Reducing postprandial glucose excursions is important in the
management of type 2 diabetes due to their predictive relation
with glycated hemoglobin (HbA1c) (1) and future cardiovascu-
lar disease events (2). Moreover, postprandial glycemia has been
shown to be an independent risk factor for cardiovascular dis-
ease (3, 4) due to the high glucose excursions driving increased
glucose variability, oxidative stress, inflammation, and vascular
dysfunction (3–6), and thus promotes diabetes complications
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(7, 8). A substantial economic cost is associated with poorly
controlled postprandial hyperglycemia in type 2 diabetes (9),
underlining the need for more refined and cost-effective strate-
gies for improvement in postmeal glycemic control.

Current interventional studies have sought to improve post-
prandial glycemia through premeal supplementation of whey pro-
tein, including intact and hydrolyzed (more rapidly digested)
forms (10–12). Whey protein contains an abundant source of
amino acids and bioactive peptides that are rapidly absorbed into
the circulation after digestive breakdown (13). These properties
of whey protein are potent insulin secretagogues that directly
stimulate pancreatic β cells (14) and augment the incretin effect
through glucagon-like peptide 1 (GLP-1) and gastric inhibitory
polypeptide (GIP) secretion (10, 11), thereby creating a postpran-
dial glycemia-reducing milieu (15, 16). In addition to increased
insulinotropic activity (17), incretin peptide secretion exerts posi-
tive influences on gastric emptying, reduced hepatic glucose pro-
duction, and increased satiety (18, 19). An increase in satiety has
also been reported after whey protein ingestion in nondiabetic in-
dividuals (20), mediated by a suppression of orexigenic drive and
stimulation of episodic satiety signals (21); however, this has yet
to be assessed in type 2 diabetes.

There are practical limitations associated with implementing
premeal whey protein supplementation as a therapeutic option
in type 2 diabetes. First, studies have investigated the glycemic
response to a single test meal of primarily high–glycemic in-
dex carbohydrate content, such as powdered potatoes and glu-
cose syrup (10, 22), without investigations at subsequent meals.
Second, dosages of whey protein administered are generally un-
realistically large (45–55 g) (10, 23, 24), providing a significant
caloric burden (∼220 kcal). Finally, whey protein has shown ben-
efit in type 2 diabetes when supplemented ∼30 min before the
main meal (10, 22), thus restricting its ecologic validity when ap-
plied in free-living conditions.

Therefore, the objective of this study was to assess the
glycemic and appetite effects of whey protein, in intact and hy-
drolyzed fractions, within the parameters of small, realistic doses
ingested immediately before the initiation of mixed-nutrient and
habitually consumed breakfast and lunch meals. Second, we in-
vestigated the relative contribution of putative mechanisms of
incretin peptide secretion and amino acid appearance on the in-
sulinotropic effect of whey protein.

METHODS

Participants

The CONSORT (Consolidated Standards of Reporting Trials)
flow diagram is shown in Supplemental Figure 1. Eleven male
patients with type 2 diabetes, managed by metformin monother-
apy (500–2000 mg/d; n = 8) or diet and lifestyle modification
(n = 3), were studied after providing written informed consent.
Their mean ± SEM age was 54.9 ± 2.3 y, with a BMI (kg/m2)
of 31.8 ± 2.6, HbA1c of 6.8% ± 0.3% (51.3 ± 3.4 mmol/mol),
and a duration of known diabetes of 4 ± 1 y. Exclusion cri-
teria included smokers and those with prescribed medications
affecting appetite and gastrointestinal function, those receiving
insulin therapy, and those with food intolerances or allergies.
The study was approved by the local National Health Service
Research Ethics Committee with procedures in accordance with

the revised Helsinki Declaration of 1983. All medication doses
were kept the same throughout the trial period. This trial was reg-
istered at www.clinicialtrials.gov as NCT02903199.

Prelaboratory phase

For standardization of appetite perceptions and gut hormone
variables (25), patients were provided with a meal to be con-
sumed the evening before each trial (635 kcal; beef lasagna;
Tesco). Patients also received dietary recording sheets, food
scales (kitchen scale; Salter), and a self-monitoring glucose an-
alyzer (Accu-Chek Mobile; Roche Diagnosis Ltd.). Continuous
glucose-monitoring (CGM) systems (Dexcom G4; Dexcom) and
pedometers (Digital Daffodil) were fitted to patients∼36 h before
each trial initiation. CGM sensors were fitted as previously de-
scribed by Campbell et al. (26) and removed 24 h after leaving the
laboratory. For CGM calibration purposes, self-reported capillary
blood glucose concentrations were performed ≥4 times/d with
the use of a finger-prick glucose analyzer (Accu-Chek Mobile;
Roche Diagnostics Ltd.). Sensor data were retrospectively stored
and analyzed with the use of Dexcom software (Dexcom Stu-
dio; Dexcom). Patients were requested to record and replicate diet
and activity patterns (steps per day) for the 24 h preceding each
trial and to avoid strenuous activity and alcohol for the previous
48 h. Stature, mass, and waist circumference were recorded ∼36
h before the first trial.

Laboratory protocol

Each patient was studied on 3 separate occasions, separated
by 7 d, in a randomized, single-blind, crossover design. Trial se-
quences were randomly assigned with the use of a computerized
random-number generator (www.randomization.com). After an
overnight fast, patients reported to the Newcastle National Insti-
tute for Health Research Clinical Research Facility of the Royal
Victoria Infirmary in Newcastle upon Tyne, United Kingdom, at
0800. On arrival, patients were seated and an intravenous can-
nula was inserted into the antecubital vein for repeated blood
sampling. After fasted blood sampling, patients consumed 1) in-
tact whey protein concentrate (68 kcal; Lacprodan DI-8790; Arla
Foods), 2) hydrolyzed whey protein (68 kcal; PSNU 28600; Arla
Foods), or 3) a placebo beverage (<1 kcal; flavored water) im-
mediately followed by mixed-nutrient breakfast or lunch meals.
Both whey beverages contained 15 g protein. For breakfast and
lunch, patients ate 60 g whole-grain cereal (Nestlè) with 250 mL
whole milk (Tesco) (387 kcal, 56 g carbohydrate, 11 g fat, and
13 g protein) and 4 slices of wheat bread (Warburtons), 100 g
chicken sandwich filler (Tesco), and 5 g butter (Arla) (879 kcal,
117 g carbohydrate, 27 g fat, and 37 g protein), respectively.
Treatments were masked by standardization of supplement taste,
smell, and visual cues and served with calorie-free citrus flavor-
ing (Fun One; <1 kcal) in 150-mL opaque bottles. Patients were
permitted ad libitum water intake, for which timing and quantity
were recorded during the initial trial and replicated at subsequent
trials.

Venous blood plasma samples were collected at 5, 10, 15,
30, 45, 60, 90, 120, 150, and 180 min post-breakfast and -lunch
meals to capture time-course changes in plasma amino acids, in-
sulin, leptin, GIP, active GLP-1, and peptide tyrosine tyrosine
(PYY3–36). The Vacutainers (Becton Dickinson, Sweden) were
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FIGURE 1 Time-course changes in interstitial glucose during breakfast (A), lunch (B), and evening (C) and nocturnal (D) phases (n = 11). The vertical
dashed lines indicate the start of each phase. The blue-shaded area indicates intact whey protein; the orange-shaded area indicates hydrolyzed whey protein;
and the green shaded area indicates control. Values are means ± SEMs and time and interaction (Tx*time) effects. Data were analyzed by 2-factor (Tx*time)
repeated-measures ANOVA, with Bonferroni-adjusted post hoc comparisons where significant time and time × treatment effects were found. Pre, before
treatment; Tx*time, treatment × time.

pretreated with protease inhibitors, di-peptidyl peptidase-4 in-
hibitor (DPP-IV; 30 µL) and aprotinin (∼500 Kallikrein inhibitor
unit), to preserve GIP and intact GLP-1 without affecting con-
centrations of other measured hormones (27) before centrifuga-
tion at 3000 rev/min for 15 min at 4°C. Plasma was separated
and stored at −80°C for subsequent analysis. An ELISA was
performed to measure plasma concentrations of human insulin,
active GLP-1, and leptin (Multi-spot Assay; Meso Scale Dis-
covery), GIP (Human Total GIP Kit; Meso Scale Discovery),
and PYY3–36 (PYY3–36 EIA Kit; Phoenix Pharmaceuticals, Inc.).
Plasma amino acids were analyzed via HPLC (Waters 474 scan-
ning fluorescence detector; Milford) via o-phthaladehyde derivi-
tization. Detection was performed fluorometrically, as described
by Frank and Powers (28).

Postlaboratory phase

Before leaving the laboratory, patients were given an evening
meal, consisting of 450 g chicken biryani (Tesco) and a mini naan
bread (Tesco) (1007 kcal, 145 g carbohydrate, 28 g fat, and 37 g
protein) to be consumed at ∼1900. Patients were instructed to
report water intake immediately upon leaving the laboratory at
the first trial and replicate this at subsequent visits. No further
supplementation of whey protein was administered at the evening
meal. Dietary, activity, and CGM measures were recorded until
24 h posttrial.

Outcomes and measurements

The primary outcomes were mean and AUC concentrations for
postprandial glucose. Secondary outcome measures were mean
and AUC concentrations of plasma insulin, amino acids, incretin
and appetite hormones, and subjective measures of appetite. AUC
was calculated with the use of the trapezoidal rule over 0–30
min, 0–60 min, 0–90 min, and 0–180 min to capture early and
total postprandial concentrations of glycemic and appetite vari-
ables. Measures of subjective appetite (hunger, fullness, satisfac-
tion, and prospective food intake) were assessed with the use of
previously validated visual analog scales (29).

Sample-size calculation

Sample-size calculations were based on protocol pilot data. To
detect a difference of ≥10% in glucose AUC, a sample of 11 par-
ticipants would be required to test the null hypothesis that the
population means are similar across trials with a probability of
0.8 and associated type 1 error of 0.05.

Statistical analysis

The variables were assessed with the use of 2-factor repeated-
measures ANOVA, with treatment and time as factors. Post hoc
analyses, adjusted for multiple comparisons by Bonferroni cor-
rection, were performed if ANOVAs showed significant treat-
ment effects. AUC values were compared with the use of 1-factor

Downloaded from https://academic.oup.com/ajcn/article-abstract/107/4/550/4964657
by Leeds Beckett University user
on 27 April 2018



EFFECT OF WHEY PROTEIN ON POSTPRANDIAL GLYCEMIA 553

FIGURE 2 Time-course changes in the plasma amino acids valine (A), leucine (B), isoleucine (C), threonine (D), phenylalanine (E), histidine (F), tryp-
tophan (G), and lysine (H) after breakfast (n = 11). Blue lines indicate intact whey protein; orange lines indicate hydrolyzed whey protein; and green lines
indicate control. *Control different from intact and hydrolyzed whey protein, acontrol different from hydrolyzed whey protein, bcontrol different from intact
whey protein, and †intact whey protein different from hydrolyzed whey protein (P < 0.05). Values are means ± SEMs and time and interaction (Tx*time)
effects. Data were analyzed by 2-factor (time × treatment) repeated-measures ANOVA, with Bonferroni-adjusted post hoc comparisons where significant time
and time × treatment effects were found. Tx*time, treatment × time.
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TABLE 1
Postprandial AUCs for plasma insulin after breakfast and lunch meals in men with type 2 diabetes1

Plasma insulin AUC, µU/mL (%)

Control Intact whey protein Hydrolyzed whey protein

Breakfast
0–30 min 1656.0 ± 209.5 2178.9 ± 215.6 (31.5)* 1913.9 ± 211.3 (15.5)
0–60 min 3999.9 ± 490.1 5011.0 ± 480.7 (25.3)* 4745.9 ± 469.6 (18.7)
0–90 min 6507.9 ± 766.9 8236.1 ± 791.7 (26.6)* 7608.6 ± 712.1 (16.9)
0–180 min 12,779.1 ± 1767.5 15,371.4 ± 1693.5 (20.3)* 14,586.2 ± 1588.7 (14.1)*

Lunch
0–30 min 1973.6 ± 307.9 2585.9 ± 410.6 (31.1) 2455.8 ± 412.5 (24.5)
0–60 min 4853.6 ± 758.1 5659.0 ± 1013.9 (16.6) 5581.7 ± 888.4 (15)
0–90 min 7806.2 ± 1341.7 8691.7 ± 1572.9 (11.3) 8630.1 ± 1503.8 (10.6)
0–180 min 17,233.4 ± 3115.3 18,366.9 ± 3133.8 (9.6) 18,444.6 ± 3409.0 (7)

1Values aremeans± SEMs unless otherwise indicated; n= 11. Percentages (in parentheses) represent the change in postprandial
response as a percentage of the control trial. *Different from control, P< 0.05. Data were analyzed by 1-factor (treatment) repeated-
measures ANOVA, with Bonferroni-adjusted post hoc pairwise comparisons where significant treatment effects were found.

repeated-measures ANOVA. To study whether the plasma insulin
concentrations correlated with the postprandial concentrations of
any amino acids, the AUC for insulin was divided by the AUC for
blood glucose to obtain the insulinogenic index (30). Relations
between variables were assessed with the use of univariate lin-
ear regression analysis. All of the analyses were performed with
SPSS (version 22; IBM). Data are presented as means ± SEMs.
P < 0.05 was considered significant.

RESULTS

Prelaboratory phase

All of the participants showed full compliance with the study
methodology. Prelaboratory dietary (kilocalories per day), physi-
cal activity (steps per day), and interstitial glycemia were similar
during the 24 h before arriving at the laboratory (P > 0.05).

Laboratory phase

Baseline concentrations of interstitial glucose, plasma insulin,
GLP-1, GIP, leptin, PYY3–36, valine, leucine, isoleucine, threo-
nine, phenylalanine, histidine, tryptophan, and lysine were con-
sidered highly comparable. Capillary glucose AUC0–60 values are
presented in Supplemental Figure 2, and time-course changes
in interstitial glucose postbreakfast and postlunch are presented
in Figure 1A, B. There was a significant time effect and con-
dition × time interaction for absolute interstitial glucose con-
centrations after breakfast [P < 0.001 (partial η2 = 0.842);
P< 0.001 (partial η2 = 0.321)] and after lunch [P< 0.001 (partial
η2 = 0.731); P < 0.001 (partial η2 = 0.201)], respectively. Re-
ductions in peak postprandial hyperglycemia and reduced post-
prandial AUC0–180 were observed after breakfast and lunch after
the intact whey protein compared with the control (Supplemental
Figure 2; P < 0.05). Similar glycemic responses were observed
between the intact and hydrolyzed trials. There were no differ-
ences in postprandial glycemic variability across trials at break-
fast (percentage of CV—intact whey protein: 13.9% ± 1.2%; hy-
drolyzed whey protein: 15.7% ± 1.6%; control: 15.5% ± 1.4%;
P = 0.650) or lunch (percentage of CV—intact whey protein:
14.4% ± 2.1%; hydrolyzed whey protein: 14.2% ± 1.4%; con-
trol: 11.4% ± 1.3%; P = 0.347).

The postbreakfast responses of amino acids valine, leucine,
isoleucine, threonine, phenylalanine, histidine, tryptophan, and
lysine are presented in Figure 2. There were significant increases
in each amino acid after the intact and hydrolyzed whey protein
trials when compared with placebo (P< 0.05). There was a more
rapid release of the amino acids valine, isoleucine, leucine, and
threonine within 30–45 min after the hydrolyzed trial than after
the intact whey protein trial (P < 0.05). There were strong pos-
itive correlations between 0–30-min insulinogenic index scores
and incremental AUCs for valine (rs = 0.680, P = 0.021) and
isoleucine (rs = 0.751, P = 0.008) concentrations and for valine
concentrations only for 0–90 min (rs = 0.671, P = 0.024) and
0–180 min (rs = 0.669, P = 0.024).

Plasma insulin AUC responses after breakfast and lunch are
presented in Table 1. Significantly greater concentrations of
plasma insulin were observed after both intact and hydrolyzed
trials at breakfast when compared with the control (P < 0.05;
Table 1). Absolute plasma active GLP-1 and total GIP responses
after breakfast and lunch are presented in Figure 3. There were
similar responses observed for PYY3–36 and leptin after the break-
fast and lunch meals (see Supplemental Figure 3).

Subjective ratings of fullness (AUC0–180 min) were signifi-
cantly greater after breakfast when intact whey protein was in-
gested when compared with control (973 ± 46.2 compared with
801 ± 40.6 cm/min; P = 0.043). After lunch, increased satiety
was reported after intact whey compared with after placebo, with
reduced ratings of hunger AUC0–180 min (595.4 ± 62.3 compared
with 718.1 ± 67.0 cm/min; P = 0.041) and prospective food in-
take AUC0–180 min (662.7 ± 68.9 compared with 891.0 ± 75.7
cm/min; P < 0.001).

Postlaboratory phase

Postlaboratory evening and nocturnal interstitial glucose re-
sponses are presented in Figure 1C, D. At the evening meal
(1800–2100), observations of interstitial glucose concentrations
showed a significant main effect for time (P < 0.001, partial
η2 = 0.381) but no differences were observed between condi-
tions (P = 0.889, partial η2 = 0.074). Dietary intake (kilocalo-
ries per day) and physical activity (steps per day) in the follow-
ing 24 h were also similar between conditions [P= 0.505 (partial
η2 = 0.046) and P = 0.883 (partial η2 = 0.012), respectively].
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FIGURE 3 Time-course changes in plasma active GLP-1 and GIP after breakfast (A, C) and lunch (B, D) (n= 11). Blue lines indicate intact whey protein;
orange lines indicate hydrolyzed whey protein; and green lines indicate control. Values are means ± SEMs and time, and interaction (Tx*time) effects. Data
were analyzed by 2-factor (Tx*time) repeated-measures ANOVA, with Bonferroni-adjusted post hoc comparisons where significant time and Tx*time effects
were found. GIP, gastric inhibitory polypeptide; GLP-1, glucagon-like peptide 1; Tx*time, treatment × time.

DISCUSSION

The aim of this study was to investigate postprandial glycemia
and appetite responses after breakfast and lunch meals co-
ingested with either small doses of intact or hydrolyzed whey
protein in men with type 2 diabetes. We show a reduction in post-
prandial glycemia after both the intact and hydrolyzed whey pro-
tein after breakfast and an increase in satiety after breakfast and
lunch after the intact whey protein only.Moreover, despite a more
rapid release of amino acids into the circulation, hydrolyzedwhey
did not provide any further benefit toward glycemic control or ap-
petite hormone response.

An attenuation of postprandial glucose concentrations after
whey protein ingestion was observed alongside elevations in
plasma insulin despite similar plasma GIP and GLP-1 responses.

Previous research has identified an important role for incretin
peptides in mediating the insulinotropic activity of whey protein
(10). Our study is in contrast to these data; studies that adminis-
tered larger doses of whey protein, from 27 to 55 g (10, 11, 24),
observed a significantly increased incretin response, whereas ad-
ministering smaller doses, including 25 g (22) and 15 g in the
current study, showed no difference in GLP-1 and GIP responses.
Furthermore, the lack of change in the incretin hormones is also
likely due to whey protein co-ingestion with the meal, as opposed
to being ingested as a preload 30 min before the meal (10). A
reduced gastric-emptying rate after whey protein ingestion has
been suggested to influence the attenuation of glucose concentra-
tions when ingested as a 30-min preload (31). However, gastric-
emptying rates may still be slowed but to a much lesser extent
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when whey is co-ingested with a meal (10), compared with as a
preload; therefore, the observed glycemic responses in our study
are potentially due to a minor slowing of gastric emptying com-
bined with increased postprandial insulin concentrations.

Whether the glycemic-lowering effect of the whey protein
would still be as effective if it was incorporated into each meal,
rather than as a preload, is unknown. Previous research has shown
that there is a loss of the glycemic-lowering effect when the whey
is consumed within the meal, as opposed to as a 30-min preload
(10). However, with our participants consuming the whey imme-
diately before each meal, and with a far lower dose than the study
of Ma et al. (10) (55 compared with 15 g), there is potential that
the same effect would have been elicited whether the whey was
a preload bolus or incorporated into the meal. However, from a
clinical and real-world viewpoint, the use of a preload is likely a
more practical option for patients, rather than having to incorpo-
rate whey into each meal.

The amino acids leucine, isoleucine, phenylalanine, and ly-
sine are also reported to increase insulin through several amino
acid–mediated pathways in pancreatic β cells (17, 32, 33). Our
results showed marked elevations in each of these amino acids af-
ter whey protein ingestion, with plasma concentrations of valine
and isoleucine strongly correlated to insulinogenic index values,
which suggests that branched-chain amino acids may have been
important determinants of the insulinotropic effect of whey we
observed. Despite a more rapid absorption of valine, leucine, and
isoleucine after the hydrolyzed whey trial, when compared with
intact whey protein, our data showed no discernible glycemic, in-
sulinemic, or hormonal differences between whey fractions.With
intact whey also being a quickly digested protein form, it is likely
that any further benefit of hydrolysis would be minimal.

To the best of our knowledge, this is the first study to investi-
gate self-rated appetite responses in patients with type 2 diabetes
after whey protein ingestion. Our findings show increased satiety
(fullness, hunger, and prospective food intake) after co-ingestion
of intact whey protein with breakfast and lunch when compared
with a control. Despite a caloric surplus of 68 kcal with whey
meals, our findings are supported by Doyon et al. (34), who doc-
umented a similar impact on satiety when yogurt was enriched
with whey in isocaloric testing conditions.

The subjective appetite responses were observed without any
conditional differences in the postprandial appetite control hor-
mones GLP-1, GIP, PYY3–36, or leptin. However, insulin has a
potent anorectic effect (35) and has been shown to be positively
associated with fullness sensations after the ingestion of whey
protein (36). In addition, increases in plasma amino acids are also
potential mediators of the increased satiety response (37).

In summary, a small dose (15 g) of whey protein, when
co-ingested with mixed-nutrient meals, improves postprandial
glycemia and increases satiety in men with type 2 diabetes.
Further research is required to explore the clinical efficacy of
mealtime whey protein ingestion on long-term glycemic control
(HbA1c, glucose variability), food intake, and weight manage-
ment in type 2 diabetes.
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