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HENSELIANITY IN THE LANGUAGE OF RINGS

SYLVY ANSCOMBE AND FRANZISKA JAHNKE

Abstract. We consider four properties of a field K related to the existence of (de-
finable) henselian valuations on K and on elementarily equivalent fields and study the
implications between them. Surprisingly, the full pictures look very different in equichar-
acteristic and mixed characteristic.

1. Introduction

The study of henselian fields in the language of rings started with a work by Prestel
and Ziegler ([PZ78]) where they introduced and discussed t-henselian fields. We say that
a field is t-henselian if it is Lring-elementarily equivalent to some henselian field, i.e., a
field admitting a nontrivial henselian valuation. Although this does not coincide with
the definition given in [PZ78], our definition and theirs are equivalent, using the Lring-
definition of the henselian topology in [Pre91, p. 203]. Real closed fields and algebraically
closed fields of positive characteristic are t-henselian but may not be henselian, e.g. R and
Fp are t-henselian but not henselian. In particular, Prestel and Ziegler showed that these
are not the only examples of t-henselian fields which are not henselian. These results
are strongly linked to the question of which fields admit a nontrivial definable henselian
valuation. Here, we say that a valuation v is definable on a field K if its valuation
ring Ov is an Lring-definable subset of K (possibly with parameters from K) and that v
is ∅-definable if it is definable and no parameters were needed in the defining formula.
Henselianity is an elementary property of valued fields, in particular, it is preserved under
elementary equivalence in the language Lval = Lring∪{O} where the unary relation symbol
O is interpreted as the valuation ring. Thus, if some nontrivial henselian valuation ring
is a ∅-definable subring of K, then any L which is Lring-elementarily equivalent to K also
admits a nontrivial henselian valuation. In particular, if K is henselian and some Lring-
elementarily equivalent L is non-henselian, then K cannot admit a ∅-definable nontrivial
henselian valuation. Under which conditions fields admit definable nontrivial henselian
valuations (with or without parameters) has been investigated in a number of (mostly)
recent papers ([Hon14], [JK15a], [JK15b], [Koe94], [Pre15]) and some of these results
have been applied in connection with the Shelah–Hasson conjecture on NIP fields (see
[Joh15] and [Kru15]).

The aim of this paper is to clarify the implications and relationships between these
properties of a field K, more precisely:

(h) K is henselian (i.e., K admits a nontrivial henselian valuation),
(eh) any L which is Lring-elementarily equivalent to K is henselian,

(∅-def) K admits a ∅-definable nontrivial henselian valuation, and
(def) K admits a definable nontrivial henselian valuation.
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We call a field elementarily henselian if it satisfies (eh). There are some immediate
implications between these properties, as summarised in the following diagram: 1

(∅-def)

��

+3 (eh)

��
(def) +3 (h)

Figure 1: The obvious implications

Our aim is to work out the full picture, i.e., to describe which other implications hold,
including which arrows can be reversed. It turns out that in the class of all fields (or even
in the class K0 of all non-algebraically closed fields of characteristic zero), no implications
hold that are not already included in Figure 1 (see part (C) of Theorem 1.1).

In order to show this, we use the canonical henselian valuation vK to partition K0 into
subclasses, depending on the residue characteristic of vK :

K0,0 = {K field | char(K) = char(KvK) = 0, K not algebraically closed}
and for any prime p

K0,p = {K field | char(K) = 0 and char(KvK) = p}.
See section 2 for the definition of the canonical henselian valuation and a proof that
these classes are closed under Lring-elementary equivalence. We then investigate the
corresponding pictures with respect to these subclasses which surprisingly turn out to
look rather different in mixed characteristic and equicharacteristic 0. As our main result,
we obtain the following

Theorem 1.1. (A) In the class K0,0 the complete picture is

(∅-def)

��

ks +3 (eh)

��
(def) +3 (h)

(B) For each prime p, in the class K0,p the complete picture is

(∅-def)
KS

��

+3 (eh)
KS

��
(def) +3 (h)

(C) Consequently, in the class K0 the complete picture is given by Figure 1.

On an algebraically closed field, any valuation is henselian. Thus, any algebraically
closed fields of characteristic zero admits many nontrivial henselian valuations (for exam-
ple, consider any extension of the p-adic valuation, for a prime p). Since any algebraically
closed field is strongly minimal, every definable subset is either finite or cofinite. In par-
ticular, no such field can admit a definable nontrivial henselian valuation. Therefore,

1Our convention is that such diagrams implicitly include concatenations of arrows, although we do
not draw them. For example, Figure 1 implicitly includes the implication (∅-def) =⇒ (h).
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algebraically closed fields of characteristic zero satisfy both (h) and (eh), and neither
(def) nor (∅-def).

The paper is organized as follows. In the next subsection (subsection 1.1), we introduce
the basic terminology which we use throughout the paper and discuss the implications
and non-implications in our diagrams which are already known.

In section 2, we recall the definition of the canonical henselian valuation vK and show
that certain properties of the valued field (K, vK) are preserved under elementary equiv-
alence in Lring (Proposition 2.1). In particular, we obtain that the classes K0,0 and K0,p

(for a fixed prime p) are closed under Lring-elementary equivalence.
In section 3, we show part (A) of Theorem 1.1. In order to do this, we first show the

implication which occurs in the picture in (A) but not in Figure 1 (see Proposition 3.5).
We then combine this with the examples discussed in subsection 1.1 to complete the proof
of Theorem 1.1 (A) (see subsection 3.2).

The proof of part (B) of Theorem 1.1 takes some more work. Section 4 treats the
constructions which we use to show the non-implications in the diagram: The main
result of this section is the existence of non-henselian t-henselian fields K (which are
neither real closed nor separably closed) of any characteristic such that there is some
tame L ≡ K with divisible value group (see subsection 4.2 for the definition of ‘tame’,
and Proposition 4.13 for the statement).

In subsection 5.2, we use the fields constructed in section 4 and the machinery developed
in subsection 5.1 to show that for every prime p, there are fields in K0,p which do not
admit ∅-definable nontrivial henselian valuations (see Example 5.5). We then go on to
show that for every prime p and every K ∈ K0,p, the properties (def) and (∅-def) are
equivalent (see Theorem 5.7). Finally, we assemble the facts we have shown about fields
in K0,p to prove Theorem 1.1 (B) in subsection 5.4.

1.1. Preliminaries and known results. For basic definitions and notions regarding
valuation theory, we refer the reader to [EP05]. We use the following notation: If (K, v)
is a valued field, we let Ov denote the valuation ring, mv denote the maximal ideal, Kv
denote the residue field, and vK denote the value group. For a ∈ Ov, let a denote the
residue of a.

The properties (eh) and (∅-def) are obviously preserved under Lring-elementary equiv-
alence. Some real closed fields are henselian, for example R((xQ)); and others are not,
for example R. Here R((xQ)) denotes the field of generalized power series with coeffi-
cients from R and exponents in Q, see [Efr06, 4.2]. This field admits a unique nontrivial
henselian valuation vx, namely the power series valuation with residue field R and value
group Q. In fact, vx is the canonical henselian valuation on this field, see section 2 for
details. The completeness of the theory of real closed fields shows that

(1) (h) is not preserved under Lring-elementary equivalence and
(2) (h) does not imply (eh) for fields in K0,0.

Since real closed fields are o-minimal, no real closed field admits a definable nontrivial
henselian valuation. Thus

(3) (h) does not imply (def) for fields in K0,0.

Consequently, (h) implies neither (eh) nor (def), for all fields in K0. However, even if
we exclude real closed fields, these implications do not hold: for (2) this is shown by an
example of Prestel and Ziegler in [PZ78, p. 338], and for (3) this is shown by an example
of Jahnke and Koenigsmann in [JK15a, Example 6.2].

Furthermore, Jahnke and Koenigsmann give an example of a henselian field which
does admit a nontrivial definable henselian valuation but does not admit a nontrivial
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∅-definable henselian valuation ([JK15a, Example 6.3]). In fact, the field K constructed
is again in the class K0,0 and Lring-elementarily equivalent to some non-henselian field L.
Thus, we get

(4) (def) is not preserved under Lring-elementary equivalence,
(5) (def) does not imply (∅-def) in K0,0 (and hence in K0).

However, even in the equicharacteristic zero setting there are unanswered questions. Per-
haps the most obvious is the following, which is labelled ‘Question 5.6’ in [JK15a].

Question 1.2. Does (eh) imply (∅-def) for non-separably closed fields?

We answer this question negatively for the class K0, however, we show that it does
hold when we restrict our attention to K0,0 (see Proposition 3.5).

2. The canonical henselian valuation

Recall that any henselian field K may admit many non-trivial henselian valuations.
However, unless K is separably closed, these all induce the same topology on K. This
fact ensures that there is always a canonical one among the henselian valuations on a
field. The canonical henselian valuation vK on K is defined as follows: We divide the
class of henselian valuations on K into subclasses, namely

H1(K) = {v henselian on K | Kv not separably closed}
and

H2(K) = {v henselian on K | Kv separably closed}
If H2(K) 6= ∅, i.e., if K admits a henselian valuation with separably closed residue field,
then vK is the (unique) coarsest such. In particular, we have vK ∈ H2(K). In this case,
any henselian valuation with non-separably closed residue field is a proper coarsening of
vK and any henselian valuation with separably closed residue field is a refinement of vK .

If H2(K) = ∅, i.e., if K admits no henselian valuations with separably closed residue
field, then vK is the (unique) finest henselian valuation on K and any two henselian
valuations on K are comparable. In this case, we have vK ∈ H1(K).

In any case, we denote by OK the valuation ring of vK . Note that whenever K is not
separably closed and admits some nontrivial henselian valuation then vK is nontrivial,
i.e., we have OK ( K. In case K is separably closed, we let vK ∈ H2(K) be the trivial
valuation. See [EP05, §4.4] for more details and proofs.

We now show that certain key properties of the canonical henselian valuation vK on K
are preserved under Lring-elementary equivalence.

Proposition 2.1. Let p be any prime. The following properties of a field K are preserved
under Lring-elementary equivalence:

(1) ‘vK ∈ H2(K)’,
(2) ‘vK has residue characteristic p’,
(3) ‘vK has residue characteristic zero’, and
(4) ‘K admits a henselian valuation of mixed characteristic (0, p)’.

Proof. Let L ≡ K be a pair of elementarily equivalent fields. In each case we suppose
that the relevant property holds in K and show that it also holds in L.

(1) Assume that vK ∈ H2(K). By compactness, there exists an elementary extension
(K, vK) � (K∗, v∗K) such that L elementarily embeds into K∗; we identify L with
its image under this elementary embedding. Let w denote the restriction of v∗K to
L. Since L is relatively algebraically closed in K∗, (L,w) is henselian. By Hensel’s
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Lemma, Lw is relatively separably algebraically closed in K∗v∗K , and the latter is
separably closed. Thus Lw is separably closed. Therefore we get w ∈ H2(L) and
hence H2(L) 6= ∅. We conclude vL ∈ H2(L).

Both parts (2) and (3) follow from the following claim.

Claim 2.1.1. If K ≡ L, then the residue characteristics of vK and vL are equal.

Proof of claim. We will distinguish two cases, based on whether or not H2(K) is empty.
By part (1), H2(K) is empty if and only if H2(L) is empty. In each case we will use again
the construction from part (1) in which we identify L with an elementary subfield of K∗,
where (K∗, v∗K) is an elementary extension of (K, vK). We let w denote the restriction of
v∗K to L. Since L is relatively algebraically closed in K∗, w is henselian; and thus Lw is
relatively separably closed in K∗v∗K .

(i) First we suppose that H2(K) = ∅. It suffices to show that if one of (K, vK)
and (L, vL) has residue characteristic p, then so has the other. Without loss of
generality, we suppose that char(KvK) = p. Then char(K∗v∗K) = p; and since w
is a restriction of v∗K , we have that char(Lw) = p. As H2(L) = ∅ holds, vL is a
(possibly improper) refinement of w. Thus char(LvL) = p, as required.

(ii) Next we suppose that H2(K) 6= ∅. We first show that if one of (K, vK) and (L, vL)
has residue characteristic zero, then so has the other. Without loss of generality,
we suppose that char(KvK) = 0. Then char(Lw) = 0. Since vK ∈ H2(K), KvK
and K∗v∗K are separably closed fields. Since Lw is relatively separably closed in
K∗v∗K , Lw is also separably closed. Thus w is a (possibly improper) refinement
of vL. Thus char(LvL) = 0, as required.

Now, assume char(KvK) = p > 0. In particular, for any w henselian on K
we have char(Kw) ∈ {0, p}. Take any elementary extension M of K. Then, we
have char(MvM) > 0 by the above, and the restriction of vM to K is a henselian
valuation of mixed characteristic. We conclude char(KvK) = char(MvM). For
any L ≡ K there is some M such that both K and L embed elementarily into M .
Thus, we get char(KvK) = char(LvL).

This completes the proof of the claim. �

(4) Suppose that K admits a henselian valuation v of mixed characteristic (0, p), for
a prime p. If vK is of mixed characteristic (0, p) then we simply apply part (2).
Otherwise vK is of residue characteristic zero and v is a proper refinement of
vK . Thus vK ∈ H2(K), and both KvK and Kv are separably closed fields. By
parts (1) and (3), LvL is also a separably closed field of characteristic zero. Such
fields always carry nontrivial henselian valuations of mixed-characteristic (0, p).
Since the composition of two henselian valuations is henselian (see [EP05, Corol-
lary 4.1.4]), the composition of vL with any of these gives a nontrivial henselian
valuation of mixed-characteristic (0, p) on L. �

Corollary 2.2. Let K be a field. The property

(mc) ‘K admits some mixed characteristic henselian valuation’

implies that K is elementarily henselian.

Proof. Assume that K admits a mixed characteristic henselian valuation. By part (4)
of Proposition 2.1, all fields L elementarily equivalent to K admit mixed characteristic
henselian valuations. Such valuations are necessarily nontrivial. Thus L is henselian. �

As a consequence we obtain the following.
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Corollary 2.3. If K is a non-separably closed non-elementarily henselian field then all
henselian valuations on fields L ≡ K are equicharacteristic and H2(L) = ∅.

Proof. Let L ≡ K. If K is a non-separably closed non-elementarily henselian field,
then so is L. By the contrapositive of Corollary 2.2, any henselian valuation on L is
equicharacteristic.

Finally, if H2(L) 6= ∅, then vL ∈ H2(L). By Proposition 2.1 part 1, we get vM ∈ H2(M),
for any M ≡ L. In particular, L is elementarily henselian. �

3. Fields of equicharacteristic zero

In this section, we show part (A) of Theorem 1.1. Note that we only need to show
one further arrow to complete the picture, namely (eh) =⇒ (∅-def). This is done in
subsection 3.1. Afterwards, in subsection 3.2, we explain why combined with the results
in subsection 1.1, this indeed proves Theorem 1.1 part (A).

3.1. ‘Elementarily henselian’ implies ‘∅-definable’. In this subsection, we show why
in the class K0,0 of non-algebraically closed fields K with char(KvK) = 0, the implication
(eh) =⇒ (∅-def) holds. We will apply the following theorem from [JK15a].

Theorem 3.1. [JK15a, Theorem B (version given in section 6)] Let K be a non-separably
closed henselian field. Then K admits a definable nontrivial henselian valuation (using
at most 1 parameter) unless

(1) KvK 6= Kvsep
K , and

(2) KvK � L for some henselian L with vLL divisible, and
(3) vKK is divisible.

Lemma 3.2. If K ∈ K0,0 is elementarily henselian then K admits a nontrivial henselian
valuation which is definable using at most 1 parameter. In particular, for non-algebraically
closed fields of equicharacteristic zero, (eh) implies (def).

Proof. We show the contrapositive. Let K ∈ K0,0 and suppose that K does not admit a
nontrivial henselian valuation which is definable using at most 1 parameter. If K is not
henselian then we are done; otherwise K is henselian and we may apply Theorem 3.1,
since K is not separably closed. Therefore:

(1) KvK 6= Kvsep
K , and

(2) KvK � L for some henselian L with vLL divisible, and
(3) vKK is divisible.

Both (K, vK) and (L, vL) are henselian valued fields with divisible value groups. By the
definition of the canonical henselian valuation, KvK is either separably closed or not
henselian. By (1), KvK is not separably closed; thus KvK is not henselian and L is non-
elementarily henselian. Applying Corollary 2.3 to L, we get that char(LvL) = 0 holds.
By applying the Ax–Kochen/Ersov principle ([PD11, Theorem 4.6.4]) several times, we
conclude:

K ≡ KvK((xQ))

≡ L((xQ))

≡ LvL((yQ))((xQ))

≡ L.

where ≡ is always meant as elementary equivalence in Lring. Therefore, K ≡ L ≡ KvK
holds. Thus, K is not elementarily henselian. �
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Definition 3.3. We say that a valuation ring O on a field K is n≤-henselian if for any
separable monic polynomial f ∈ O[X] of degree ≤ n, and any a ∈ O with f(a) = 0 and

f
′
(a) 6= 0, there exists an α ∈ O with f(α) = 0 and α = a.

We now want to use Lemma 3.2 to show our missing arrow. The argument works
via the Omitting Types Theorem. Thus, we first start by giving names to the relevant
(partial) types.

Definition 3.4. Let φ(x; y) be an Lring-formula, where x and y are single variables, and
let n ∈ N. Let δφ,n(y) be the Lring-formula that defines the set of elements b such that
φ(x; b) defines a nontrivial n≤-henselian valuation ring. We let Dφ(y) denote the partial
type

{δφ,n(y) | n < ω}.

Note that Dφ(y) is realised in K if and only if there exists some b ∈ K such that
φ(K; b) is a nontrivial henselian valuation ring of K.

Proposition 3.5. If K ∈ K0,0 is elementarily henselian then K admits a nontrivial ∅-
definable henselian valuation. Equivalently, for non-algebraically closed fields of equichar-
acteristic zero, we have

(eh) =⇒ (∅-def).

Proof. First we show that there is a single formula which defines (with parameters) a
nontrivial henselian valuation ring in every L ≡ K.

Consider the following countable set of partial types (with respect to the theory of K):

D := {Dφ(y) | φ ∈ Lring, Dφ(y) is consistent with Th(K)} .

We suppose, seeking a contradiction, that none of these types is principal. By the Omit-
ting Types Theorem (see [TZ12, Corollary 4.1.3]), there exists some L ≡ K in which
none of these types is realised. That is: L does not admit a nontrivial definable henselian
valuation, defined using at most 1 parameter. Now Lemma 3.2 implies that L is not
elementarily henselian, which contradicts our assumption that K ≡ L is elementarily
henselian.

Thus there exists an Lring-formula φ(x; y) such that Dφ(y) is principal. Let ψ(y) be a
formula which is consistent and isolates Dφ(y), i.e.

K |= ∀y
(
ψ(y) −→ δφ,n(y)

)
,

for all n < ω. Then ψ(y) defines a nonempty set of realisations of Dφ(y) in any L ≡
K. Each element a in this definable set, together with the formula φ(x, y), defines a
nontrivial henselian valuation; that is, we have a ∅-definable family of nontrivial henselian
valuations. It remains to show that we can ∅-define one such.

If H2(K) 6= ∅ then there exists a nontrivial ∅-definable henselian valuation, by [JK15a,
Theorem A]. On the other hand, if H2(K) = ∅, then all henselian valuations on K are
pairwise comparable. Let Φ(x) be the formula

∀y (ψ(y) −→ φ(x; y)) .

This formula ∅-defines the intersection of the ∅-definable chain of nontrivial henselian
valuation rings shown to exist above; and this intersection is also a nontrivial henselian
valuation ring. �
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3.2. The full picture in equicharacteristic zero. We are now in a position to give
the following:

Proof of part (A) of Theorem 1.1. Our aim is to establish that the complete picture of
implications in the class K0,0 is given by the following diagram.

(∅-def)

��

ks +3 (eh)

��
(def) +3 (h)

The implication (eh) =⇒ (∅-def) was shown in Proposition 3.5. The other implications
in the above diagram already hold in the class of all fields (see Figure 1). Finally,
the discussion in subsection 1.1 shows that any implication not contained in the above
diagram does not hold in the class K0,0. �

4. Fields of divisible-tame type

The aim of this section is to construct a t-henselian but non-henselian field of divisible-
tame type (see Definition 4.4), in any given characteristic. Later, specifically in Exam-
ple 5.5, we will rely on the existence of such fields.

Our construction is a slight modification of that found in the recent paper [FJ15]. It has
three main stages. In Lemma 4.8 we construct a valuation with prescribed residue field
and satisfying various properties. Then in Lemma 4.11 we study ‘infinite compositions’
of such valuations. In the final step, which is Proposition 4.13, we combine these lemmas
to construct the t-henselian and non-henselian field of divisible-tame type, as required.

4.1. Defectless and n≤-defectless valued fields. We begin by defining and studying
‘n≤-defectless’ valued fields. This notion is a weakening of the usual notion of ‘defectless’,
and it is central to our construction.

Definition 4.1. A valued field (K, v) is n≤-defectless if the fundamental equality

[L : K] = [Lw : Kv] · (wL : vK)

holds for each extension (L,w)/(K, v) of degree ≤ n. A valued field (K, v) is defectless if
it is n≤-defectless for all n ∈ N.

Lemma 4.2. If (K, v) is (n!)≤-defectless then it is n≤-henselian.

Proof. By the fundamental inequality (see [EP05, Theorem 3.3.4]), v must extend uniquely
to every Galois extension of degree ≤ n!. By [FJ15, Lemma 6.3(2)], it follows that (K, v)
is n≤-henselian. �

4.2. ‘Divisible-tame’ type, and q-henselianity. We recall the following definition.

Definition 4.3. A valued field (K, v) of residue characteristic p is tame if v is henselian,
the residue field Kv is perfect, the value group vK is p-divisible, and (K, v) is defectless.

For more detail on tame valued fields we refer the reader to [Kuh16].

Definition 4.4. We say that a t-henselian field k is of divisible-tame type if there exists
some K ≡ k and a nontrivial valuation v on K such that (K, v) is tame and vK is
divisible.

One variant of henselianity is n≤-henselianity, as defined in Definition 3.3. Another is
‘q-henselianity’, which we recall in the next definition.
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Definition 4.5. Let (K, v) be a valued field and q a prime. We say that (K, v) is
q-henselian if v extends uniquely to every Galois extension of K of q-power degree.

See [FJ15] for some further details on n≤-henselian valuations and [JK15b] for more on
q-henselian valuations. We will encounter q-henselian valuations again in subsection 5.3.
Note that if (K, v) is henselian, then it is n≤-henselian for all n ∈ N and q-henselian for
all primes q.

4.3. The construction, stage I. Now we come to the construction, which aims to build
a t-henselian field of divisible-tame type which is not henselian. We begin by recalling
the following fact, which is sometimes known as ‘Galois’ Translation Theorem’. For a
field K, we denote its absolute Galois group by GK .

Fact 4.6 (cf. [Lan05, Theorem 4.5]). Let K/F be a Galois extension with group G. Let
E be an arbitrary extension field of F . Assume that K,E are both contained in some
field, and let KE be the composite field. Then KE is Galois over E. The map

GKE/E −→ GK/F given by σ 7−→ resK(σ),

i.e. the restriction of an element of GKE/E to K, gives an isomorphism of GKE/E with
GK/(K∩E).

The following lemma, from [FJ15], is a key step in the construction in that paper. Let
P be the set of prime numbers.

Lemma 4.7 ([FJ15, Lemma 6.4]). Let K0 be a field of characteristic zero that contains
all roots of unity. Let n ∈ N, n < q ∈ P, and P ⊆ P. Then there exists a valued field
(K1, v) with the following properties:

(1) K1v = K0 and vK1 = Z[1
p

: p ∈ P \ P ]

(2) v is n≤-henselian but not q-henselian
(3) GK1 = 〈H1, H2〉, where H1

∼= Zq and there is N C H2 closed with N ∼=
∏

p∈P Zp
and H2/N ∼= GK0.

The first stage of our construction, Lemma 4.8, is to give a new version of this lemma
which is suitable for arbitrary characteristic. Although parts of our argument vary only
slightly from the proof of [FJ15, Lemma 6.4], we nevertheless give the proof in full for
the convenience of the reader.

Lemma 4.8. Let p be a prime or zero and let K be a perfect field of characteristic p
that contains all roots of unity. Let n ∈ N with p < n, and let q be a prime such that
(n!2!) < q. Then there exists an equicharacteristic valued field (K ′, v) such that

(1) K ′v = K
(2) vK ′ = Q,
(3) K ′ is perfect,
(4) (K ′, v) is not q-henselian,
(5) (K ′, v) is (n!2!)≤-henselian, and
(6) (K ′, v) is n≤-defectless.

Proof. We work inside the field K((xQ)) of generalized power series with exponents in Q,
together with the x-adic valuation, which we denote by vx. In fact, vx will also denote
the restriction of the x-adic valuation to any subfield of K((xQ)). Let F := K(xQ) =
K(xγ | γ ∈ Q). The valued field (F, vx) has residue field Fvx = K and value group
vxF = Q.

9



By [AF16, Proposition 4.6], the valued field (K((xQ)), vx) is tame. Let F ra := F alg ∩
K((xQ)) denote the relative algebraic closure of F in K((xQ)) and consider the extension

(F ra, vx) ⊆ (K((xQ)), vx).

The corresponding extension of residue fields is trivial, since both residue fields are equal
to K. In particular the extension of the residue field is algebraic. Thus we may apply
[Kuh16, Lemma 3.7] to find that (F ra, vx) is tame.

Exactly as in the proof of [FJ15, Lemma 6.4], we argue that there exists a subgroup
Gq ≤ GF with Gq

∼= Zq, as follows. Let f be the polynomial T q−(x+1) ∈ K(x)[T ]. Since
K contains q-th roots of unity and p 6= q, by Hensel’s Lemma there is a root α ∈ F ra

of f , and the Galois group of F (α)/F is isomorphic to Cq, the cyclic group of order q.
If Q denotes a q-Sylow subgroup of GF , then the image of Q under the restriction map
res : GF −→ Gal(F (α)/F ) is the entirety of Gal(F (α)/F ). We choose σ ∈ Q such that
res(σ) generates Gal(F (α)/F ), and let Gq denote the procyclic subgroup of GF generated
by σ. Since Gq is procyclic, pro-q, and torsion-free, we have that Gq

∼= Zq.
Let E denote the fixed field of Gq and let K ′ be the intersection E ∩ F ra. The valued

field (K ′, vx) has residue field K ′vx = K and value group vxK
′ = Q. Note also that K ′

is perfect, since it is the intersection of two perfect fields.
It remains to show that (K ′, vx) is not q-henselian, is (n!2!)≤-henselian, and is n≤-

defectless.

Claim 4.8.1. (K ′, vx) is not q-henselian.

Proof of claim. Assume that (K ′, vx) is q-henselian. Note that the splitting field of f over
K ′ is a Galois extension of degree q. By the q-henselian version of Hensel’s Lemma (see
[EP05, Theorem 4.2.3(2)], f has a root in K ′. This is a contradiction because f has no
roots in E. �

Claim 4.8.2. (K ′, vx) is (n!2!)≤-henselian.

Proof of claim. Denote by O the valuation ring of vx in F ra. Let g ∈ (O ∩K ′)[X] be of
degree ≤ n!2!, let a ∈ O ∩ K ′, and suppose that vx(g(a)) = 0 and vx(g

′(a)) > 0. Since
(F ra, vx) is henselian, g must have a root α ∈ F ra. Clearly [K ′(α) : K ′] ≤ n!2!. Since
n!2! < q, we have α ∈ E. Thus α ∈ K ′. This shows that (K ′, vx) is (n!2!)≤-henselian. �

Claim 4.8.3. (K ′, vx) is n≤-defectless.

Proof of claim. Let (L, u)/(K ′, vx) be an extension of degree ≤ n. Consider the normal
hull LN/K ′ of L/K ′, and let w denote any extension of u to LN . It suffices to show that
(LN , w)/(K ′, vx) is defectless.

If k denotes the degree [LN : K ′], then k ≤ n! < q. Therefore LN is a subfield of E and
so K ′ = LN∩F ra. Since LN/K ′ is Galois, we apply Fact 4.6 to find that LN/K ′ is linearly
disjoint from F ra. Therefore k = [LNF ra : F ra], where LNF ra denotes the compositum of
LN and F ra. Let vx also denote the unique extension of vx to LNF ra, and its restriction
from LNF ra to LN . Since (F ra, vx) is henselian, so is (LNF ra, vx).

Although the rest of this argument is standard, we include it for the convenience of
the reader. The value group vxF

ra = vxK
′ = Q is divisible, and so any finite extension is

trivial. Since (F ra, vx) is defectless, we have the equality:

k = [LNF ravx : K].

By the primitive element theorem and the henselianity of (LNF ra, vx), there exists b ∈
LNF ra of degree k over K such that LNF ravx = K(bvx).
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Finally, we argue that b ∈ LN . Since b is of degree k over K ′, we have [LN(b) : K ′] ≤ k2.
Therefore the normal hull of LN(b)/K ′ is an extension of degree at most k2! ≤ n!2! < q.
Consequently LN(b) is a subfield of E, and so LN(b)/K ′ is linearly disjoint from F ra.
Therefore the degree [LN(b) : K ′] is equal to the degree k = [F raLN : F ra]. This shows
that b is already an element of LN . Thus the residue field extension LNvx/K

′vx is of
degree k, and so (LN , vx/(K

′, vx) is defectless. In particular, vx extends uniquely from
K ′ to LN . Thus w = vx, and so in fact we have shown that (LN , w)/(K ′, vx) is defectless.
This completes the proof of the claim. �

The theorem now follows. �

4.4. Compositions of n≤-defectless valuations. Our next step is to prove the fol-
lowing lemma about compositions of n≤-defectless valuations. First we deal with finite
compositions, and then certain infinite compositions.

Lemma 4.9. The composition of two n≤-defectless valuations is n≤-defectless. More
precisely: let u, v be two valuations on K such that u is a coarsening of v let v̄ denote the
valuation induced on Ku by v, and suppose that (K, u) and (Ku, v̄) are both n≤-defectless;
then (K, v) is n≤-defectless.

Proof. Let (L, v′)/(K, v) be an extension of degree l ≤ n. We aim to show that this
extension satisfies the fundamental equality [L : K] = [Lv′ : Kv] · (v′L : vK).

Let ∆ be the convex subgroup of vK corresponding to the coarsening u; then uK =
vK/∆ and v̄(Ku) = ∆. If ∆′ denotes the convex hull of ∆ in v′L, then ∆′ corresponds
to the unique extension of u to L, which we denote by u′, so that u′L = v′L/∆′ and
v̄′(Lu′) = ∆′.

Claim 4.9.1. We have the equality (v′L : vK) = (u′L : uK) · (∆′ : ∆).

In the absence of a convenient reference, we give a proof of the claim.

Proof of claim. The extensions (L, v′)/(K, v) and (L, u′)/(K, u) induce embeddings of
value groups, by which we identify uK with the subgroup (vK + ∆′)/∆′ of vL/∆′ = u′L.
Thus the index (u′L : uK) really means the index(

v′L/∆′ : (vK + ∆′)/∆′
)
.

By the Isomorphism Theorems, there is an isomorphism

v′L
/

(vK + ∆′) −→ (v′L/∆′)
/(

(vK + ∆′)/∆′
)
.

This establishes the equality (u′L : uK) = (v′L : vK + ∆′). Secondly, by another
application of the Isomorphism Theorems, we have the equality (vK + ∆′ : vK) = (∆′ :
∆), since ∆ is the intersection vK ∩ ∆′. Putting these conclusions together and using
the usual multiplicativity of indices, we have established the following

(v′L : vK) = (v′L : vK + ∆′) · (vK + ∆′ : vK)

= (u′L : uK) · (∆′ : ∆).

This finishes the proof of the claim. �

Since (K, u) is n≤-defectless we have

[L : K] = [Lu′ : Ku] · (u′L : uK).
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In particular, the degree [Lu′ : Ku] is bounded above by [L : K] = l ≤ n. Thus
(Lu′, v̄′)/(Ku, v̄) is an extension of degree ≤ n. Since (Ku, v̄) is n≤-defectless we have

[Lu′ : Ku] = [(Lu′)v̄′ : (Ku)v̄] · (v̄′(Lu′) : v̄(Ku))

= [Lv′ : Kv] · (∆′ : ∆).

Combining these observations together with the claim, we deduce the following equality,
as required:

[L : K] = [Lu′ : Ku] · (u′L : uK)

= [Lv′ : Kv] · (∆′ : ∆) · (u′L : uK)

= [Lv′ : Kv] · (v′L : vK). �

Definition 4.10. An extension (L,w)/(K, v) of valued fields is immediate if both the
value group extension and the residue field extension are trivial, i.e. vK = wL and
Kv = Lw. A valued field that admits no proper algebraic immediate extensions is said
to be algebraically maximal.

Lemma 4.11. Let K be a field equipped with a family of valuations (vn)n<ω such that
the corresponding valuation rings (On)n<ω form an increasing chain with K =

⋃
n<ωOn.

Suppose there is k < ω such that for all n < ω we have

(1) (K, vn) is k≤-henselian, and
(2) (Kvn+1, vn) is k≤-defectless;

where vn denotes the valuation induced on Kvn+1 by vn.
Then, for each n < ω, the valued field (K, v0) does not admit any non-trivial immediate

extension of degree ≤ k.

Proof. For brevity, we write v = v0. Let (L,w)/(K, v) be an immediate extension of
degree ≤ k. This means that the extension Lw/Kv of residue fields and the extension
wL/vK of value groups are trivial. Our aim is to show that [L : K] = 1, i.e. L = K. For
each n < ω, there is a unique valuation wn on L that extends vn and coarsens w. Let
Own (respectively, mwn) be the valuation ring (resp., maximal ideal) of wn. Since L/K is
algebraic, there is no nontrivial valuation on L which is coarser than all of the valuations
wn, n < ω. Thus we have L =

⋃
n<ωOwn , and equivalently {0} =

⋂
n<ω mwn . Also, we

denote by wn the valuation induced on Lwn+1 by wn.
We may assume that L = K(α), for some α ∈ Ow0 . Let f ∈ K[X] be the minimal

polynomial of α overK. SinceK is perfect, f is separable. Thus f(α) = 0 andDf(α) 6= 0,
where Df denotes the formal derivative of f .

We choose N < ω large enough such that f ∈ OvN [X]. and Df(α) /∈ mwN
. Applying

the residue maps of vN and wN , we have

(DfvN)(αwN) = Df(α)wN 6= 0,

and trivially (fvN)(αwN) = f(α)wN = 0. Thus αwN ∈ LwN is a simple root of fvN .
Consider the compositions ṽ := vN−1 ◦ . . .◦v0 and w̃ := wN−1 ◦ . . .◦w0. By Lemma 4.9,

the composition of finitely many k≤-defectless valuations is k≤-defectless. Thus (KvN , ṽ)
is k≤-defectless, and so the fundamental equality

[LwN : KvN ] = [(LwN)w̃ : (KvN)ṽ] ·
(
w̃(LwN) : ṽ(KvN)

)
holds for the extension (LwN , w̃)/(KvN , ṽ). The value groups w̃(LwN) and ṽ(KvN) are
in fact the same convex subgroup of wL = vK, and thus the extension of value groups is
trivial. Therefore, we have

[LwN : KvN ] = [(LwN)w̃ : (KvN)ṽ] = [Lw : Kv] = 1,
12



by our assumption that (L,w)/(K, v) is immediate. Therefore LwN = KvN .
Putting all of this together, αwN ∈ KvN is a simple root of fvN . Since (K, vN) is k≤-

henselian by assumption, there exists a ∈ ON ⊆ K such that avN = αwN and f(a) = 0.
This shows that [L : K] = 1, as required. �

4.5. The construction, stage II.

Lemma 4.12. For each n < ω, there exists a sentence πn in the language of valued fields
such that for all (n!)≤-henselian valued fields (K, v) the following are equivalent:

(1) (K, v) |= πn
(2) (K, v) admits no proper immediate extensions of degree ≤ n.

Proof. We follow closely the idea of [Kuh10, Proposition 6.3], and we assume some
familiarity with Kaplansky’s theory of pseudo-Cauchy sequences (also called ‘pseudo-
convergent’ sequences) from [Kap42]. It is clear that the property ‘for all f ∈ K[X] of
degree ≤ n the set v imK(f) = {v(f(a)) | a ∈ K} has a maximum’ is expressible by a
sentence in the language of valued fields. Choose πn to be any such sentence.

Let (K, v) be an (n!)≤-henselian valued field. From [FJ15, Lemma 6.3] it follows that v
extends uniquely to every Galois extension of degree ≤ n!. Therefore v extends uniquely
to every extension of degree ≤ n.

(1 =⇒ 2) Suppose that (L,w)/(K, v) is a proper immediate extension of degree ≤ n.
Let a ∈ L \K. By [Kap42, Theorem 1], there is a pseudo-Cauchy sequence (cν)ν<λ in K
without a limit in K of which a is a limit. Let f ∈ K[X] be the minimal polynomial of a
over K. Of course deg(f) ≤ n. As argued above, the extension of v to L is unique. Thus
we may apply [Kuh10, Lemma 2.11] to find that v imK(f) has no maximum.

(1⇐= 2) Let f ∈ K[X] be of degree ≤ n, and suppose that v imK(f) has no maximum.
In particular f is of degree ≥ 2. By [Kuh10, Lemma 6.1], there is a pseudo-Cauchy
sequence (cν)ν<λ in K which is of algebraic type, is without a limit in K, and is such
that (f(cν))ν<λ is a strictly increasing cofinal sequence in v imK(f). In particular, the
polynomial f witnesses that (cν)ν<λ is of algebraic type. Let g be the polynomial of
minimum degree that witnesses that (cν)ν<λ is of algebraic type. Then g is irreducible
and we have 2 ≤ deg(g) ≤ deg(f). By [Kap42, Theorem 3], (K, v) admits a proper
immediate extension generated by a root of g.

This proves the stated equivalence. �

Finally we are ready for the final stage of the construction.

Proposition 4.13. Let p be a prime or zero. There exists a non-henselian t-henselian
field of characteristic p of divisible-tame type which is not separably closed.

This proposition is our version of [FJ15, Construction 6.5], which uses our Lemma 4.8
instead of [FJ15, Lemma 6.4]. As such, our proof is very similar to that of [FJ15, Con-
struction 6.5]. Nevertheless, we go into some detail in order to be able to highlight the
points of difference.

Proof. Let K0 be any field of characteristic p which is perfect and contains all roots of
unity. For each n < ω, write kn := n+ p+ 1 and choose a prime qn such that kn!2! < qn.

We apply Lemma 4.8 to obtain a valued field (K1, v̄0) which is not q0-henselian, but
is (k0!2!)≤-henselian, and is (k0)≤-defectless. Also K1 is of characteristic p and is perfect
and contains all roots of unity. Finally, the residue field K1v̄0 is K0, and the value group
v̄0K1 is Q.
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We continue to apply Lemma 4.8 recursively. In this way we obtain a sequence
(Kn+1, v̄n)n<ω of valued fields with the corresponding places forming a chain:

. . . 99K Kn

v̄n−1

99K Kn−1 99K . . . K1
v̄0
99K K0,

such that each (Kn+1, v̄n) is not qn-henselian, but is (kn!2!)≤-henselian, and is (kn)≤-
defectless. Moreover (Kn+1, v̄n) has residue field Kn+1v̄n = Kn and value group v̄nKn+1 =
Q.

For n > m, there is the composition vn,m := v̄m◦. . .◦v̄n−1. This is a nontrivial valuation
on Kn with residue field Knvn,m = Km and value group vn,mKn ≡ Q. We denote by On,m
the valuation ring corresponding to vn,m, and we write O0,0 = K0. Then for n > m the
residue map On,m −→ Km restricts to a ring epimorphism πn,m : On,0 −→ Om,0. Thus
the rings (On,0)n<ω together with the maps (πn,m)m<n form a projective system.
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Figure 2: The projective system

Let O together with the natural projections π∞,n : O −→ On,0 be the projective limit
of this system, and let K be the quotient field of O. By [FP11, Lemma 3.5], O is a
valuation ring. For each n < ω, let pn denote the kernel of π∞,n, and let Opn denote the
localisation of O at pn. Since pn ⊇ pn+1, we have Opn ⊆ Opn+1 . Since {0} =

⋂
n<ω pn, we

have K =
⋃
n<ωOpn .

Let vn denote the valuation on K with valuation ring Opn . Then (vn)n<ω is a strictly
increasing (i.e. increasingly coarse) chain of valuations on K; and the finest common
coarsening of this chain is the trivial valuation. Moreover, each vn induces the valuation
v̄n on the residue field Kvn+1 = Kn+1. For each n < ω, the value group vnK is the
directed union of the convex subgroups vm,nKm, for m > n; and each of these subgroups
is nontrivial and divisible. Thus vnK is also nontrivial and divisible.

By the argument in the first paragraph of the proof of [FJ15, Proposition 6.7], (K, vn)
is (kn!2)≤-henselian. Trivially this implies that (K, vn) is (kn!)≤-henselian and (kn)≤-
henselian.
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Now, for each n < ω, we have shown that the hypotheses of Lemma 4.11 are satisfied by
K together with the family (vm+n)m<ω, for k = kn. Therefore (K, vn) does not admit any
non-trivial immediate extensions of degree ≤ kn. By Lemma 4.12, we have (K, vn) |= πkn .

Let (K∗, v∗) be the ultraproduct of the family (K, vn)n<ω with respect to a non-principal
ultrafilter. By  Loś’s Theorem [Hod97, Theorem 8.5.3], (K∗, v∗) is a perfect equicharac-
teristic nontrivially valued field with divisible value group. Since ‘n≤-henselianity’ is an
elementary property of valued fields, again by  Loś’s Theorem, we have that (K∗, v∗) is
n≤-henselian, for all n < ω. Thus (K∗, v∗) is henselian. By yet another application of
 Loś’s Theorem, (K∗, v∗) |= πn, for each n < ω. Since (K∗, v∗) is also henselian, we have
that (K∗, v∗) is algebraically maximal, by Lemma 4.12. In [Kuh16, Corollary 3.4a] it is
shown that a perfect equicharacteristic valued field which is algebraically maximal is in
fact henselian and defectless. In particular (K∗, v∗) is tame. Therefore K is a t-henselian
field of divisible-tame type.

The field K is non-henselian by exactly the same arguments as in [FJ15, Proposition
6.7]: if w were an henselian valuation on K then w would be a coarsening of vn, for each
n < ω, but their least common coarsening is trivial. Note that since K admits nontrivial
non-henselian valuations, K is not separably closed. Therefore K is a non-henselian t-
henselian field of characteristic p of divisible-tame type which is not separably closed, as
required. �

5. Fields of mixed-characteristic

The goal of this section is to prove part (B) of Theorem 1.1. We’ve already seen in
Corollary 2.2 that (mc) implies (eh). This leaves us with showing for mixed characteristic
fields that

(1) (h) does not imply (∅-def), and
(2) (def) implies (∅-def).

5.1. Self-similarity. As a preliminary to deducing (1) in Example 5.5, we first adapt the
Ax–Kochen/Ershov argument from the proof of Lemma 3.2 to the slightly more general
setting of t-henselian fields of divisible-tame type.

Lemma 5.1. Let k be a t-henselian field of divisible-tame type. Then k � k((tQ)).

Proof. By definition of ‘divisible-tame type’ there exists a field K ≡ k and a nontrivial
valuation v on K such that (K, v) is tame and vK is divisible. Using the compactness the-
orem, we may assume that v is equicharacteristic and that K is an elementary extension
of k. Moreover, both K and k are perfect.

Consider the field K((tQ)) together with the valuation u, which we define to be the
composition v ◦ vt of v with the t-adic valuation vt. Then (K((tQ)), u)/(K, v) is an
extension of equicharacteristic tame valued fields. The extension of residue fields is the
identity map Kv −→ Kv, which is elementary. Moreover the extension of value groups
is elementary since the theory of nontrivial divisible ordered abelian groups is model-
complete. By the AKE�-principle for the theory of tame valued fields (see [Kuh16,
Theorem 1.4]), we have that (K, v) � (K((tQ)), u) is an elementary extension of valued
fields.

Since k is perfect, (k((tQ)), vt) is tame. By another application of the AKE�-principle
for tame valued fields, (k((tQ)), vt) � (K((tQ)), vt) is also an elementary extension of
valued fields. In particular, both K � K((tQ)) and k((tQ)) � K((tQ)) are elementary
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extensions of fields. Finally we consider the following diagram of field extensions.

K((tQ))

k((tQ)) K

k

Since each solid line represents an elementary extension of fields, the dotted line is also
elementary. Thus k � k((tQ)) is elementary, as required. �

Of course, in mixed-characteristic, a field cannot be elementarily equivalent to its
residue field, simply for reasons of characteristic. Instead, we give the following definition.

Definition 5.2. We say a valued field (L,w) is self-similar if there is an elementary
extension (L∗, w∗) � (L,w) and a valuation u on L∗ which is not equivalent to w∗ such
that (L∗, w∗) ≡ (L∗, u).

It is clear that if (L,w) is self-similar then w cannot be ∅-definable.

Proposition 5.3. Let p be any prime, let k be a t-henselian field of characteristic p of
divisible-tame type, and let (L,w) be a mixed-characteristic tame valued field with wL ≡ Q
and Lw = k. Then (L,w) is self-similar.

Proof. Let (L′, w′) be any extension of (L,w) such that w′L′ is divisible, and the residue
field extension L′w′/Lw is k((tQ))/k. For example, to find such (L′, w′) we can apply
[Kuh04, Theorem 2.14].

Let (L̂, ŵ) be a maximal immediate extension of (L′, w′). Then L̂ is henselian and
defectless, with nontrivial divisible value group, and perfect residue field k((tQ)). Thus

(L̂, ŵ) is a mixed-characteristic tame valued field. Consider the extension (L̂, ŵ)/(L,w).
By the model completeness of the theory of nontrivial divisible ordered abelian groups, the
extension of value groups is elementary. By an application of Lemma 5.1, the extension
of residue fields is also elementary. Therefore, by the AKE�-principle for tame valued
fields (see [Kuh16, Theorem 1.4]), (L,w) � (L̂, ŵ) is an elementary extension.

Next we let u be the composition vt ◦ ŵ. Then (L̂, u) is henselian and defectless. The

value group uL̂ is an extension of Q by a nontrivial divisible ordered abelian group,
thus uL̂ is divisible. By another application of the model completeness of the theory of
nontrivial divisible ordered abelian groups, the extension of value groups is elementary.
The residue field L̂u is k, and the extensions of residue fields is simply the identity map
k −→ k. In particular, the extension of residue fields is elementary. Therefore, by
another application of the AKE�-principle for tame valued fields (see [Kuh16, Theorem

1.4]), (L,w) � (L̂, u) is an elementary extension.

L̂
ŵ // k((tQ))

vt // k

L
w // k

We have shown that both (L̂, ŵ) and (L̂, u) are elementary extensions of (L,w). Since
ŵ is a proper coarsening of u, we conclude that (L,w) is self-similar. �
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5.2. ‘Henselian’ does not imply ‘definable’. One of the remaining questions in mixed
characteristic (short of giving a characterisation of fields with (def)) is whether or not
all fields in K0,p admit definable nontrivial henselian valuations. The answer is ‘not’. For
any prime p, we exhibit in Example 5.5 a field in K0,p which does not admit a ∅-definable
nontrivial henselian valuation. By Theorem 5.7, these fields do not even admit a definable
nontrivial henselian valuation.

Proposition 5.4. Let (L,w) be a tame valued field of mixed characteristic such that
wL = Q and Lw is a non-henselian t-henselian field of divisible-tame type which is not
separably closed. Then L does not admit a ∅-definable nontrivial henselian valuation.

Proof. The residue field Lw is not separably closed by assumption, therefore all henselian
valuations on L are comparable to w. Moreover, we have assumed that Lw is non-
henselian, thus no proper refinement of w is henselian. Also, the value group wL is
archimedean, so there are no nontrivial proper coarsenings of w. Putting these three
facts together we deduce that w is the only nontrivial henselian valuation on L.

Next we note that (L,w) satisfies the hypotheses of Proposition 5.3, from which we
conclude that (L,w) is self-similar, This means that there exists an elementary extension
(L,w) � (L∗, w∗) and a valuation u on L∗, which is different from w∗, such that (L∗, w∗) ≡
(L∗, u). Consequently, w∗ is not ∅-definable in L∗, and w is not ∅-definable in L. Since
L admits no other nontrivial henselian valuation, as argued above, we conclude that L
admits no ∅-definable nontrivial henselian valuation. �

Example 5.5. We are now able to exhibit the promised example to demonstrate that
‘henselian’ does not imply ‘definable’ for fields in K0,p. Let p be any prime and let
k be a non-henselian t-henselian field of characteristic p of divisible-tame type which
is not separably closed. For example we may choose k to be any field constructed by
Proposition 4.13. By [Kuh16, Lemma 3.1], tame valued fields are perfect. Since k is
elementarily equivalent to a field that admits a nontrivial tame valuation, k is also perfect.
Let (L,w) be a mixed-characteristic tame valued field with wL = Q and Lw = k. For
example, we start with the valued field of p-adic numbers (Qp, vp). Then, by [Kuh04,
Theorem 2.14], there exists an extension (K, v)/(Qp, vp) such that vK = Q and Kv ∼= k.
In particular (K, v) is of mixed characteristic. Now let (L,w) be a maximal immediate
extension of (K, v). Since (L,w)/(K, v) is immediate, wL = Q and Lw ∼= k. By [Kuh16,
Theorem 3.2], (L,w) is tame. Applying Proposition 5.4 to L, we conclude that L does
not admit any ∅-definable nontrivial henselian valuation.

Since Lw ∼= k is not separably closed, vL is a refinement of w. Consequently, the
characteristic of LvL is also p. Since also the characteristic of L is zero, we conclude that
L ∈ K0,p, as required.

5.3. ‘Definable’ implies ‘∅-definable’. The aim of this subsection is to show that for
any prime p and any K ∈ K0,p, we have

(def) =⇒ (∅-def)

The proof uses the machinery of q-henselian valuations as developed in [JK15b]. Let
q be any prime. Recall that a valuation v on a field L is called q-henselian if v extends
uniquely to every Galois extension of L of q-power degree. Let L be a field admitting
nontrivial Galois extensions of q-power degree; we denote this by L 6= L(q). Then, there
is always a canonical q-henselian valuation vqL, and the definiton is similar to that of the
canonical henselian valuation. Again, we divide the class of q-henselian valuations on L
into two subclasses, namely

Hq
1(L) = {v q-henselian on L |Lv admits a Galois extension of degree q}
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and

Hq
2(L) = {v q-henselian on L |Lv does not admit a Galois extension of degree q}.

One can deduce that any valuation v2 ∈ Hq
2(L) is strictly finer than any v1 ∈ Hq

1(L), i.e.
Ov2 ( Ov1 , and that any two valuations in Hq

1(L) are comparable. Furthermore, if Hq
2(L)

is non-empty, then there exists a unique coarsest valuation vqL in Hq
2(L); otherwise there

exists a unique finest valuation vqL ∈ Hq
1(L). In either case, vqL is called the canonical

q-henselian valuation. Note that any henselian valuation on L is q-henselian and thus
comparable to vqL We denote by OqL the valuation ring of vqL, and continue to denote by
OL the valuation ring of the canonical henselian valuation vL on L.

Our proof uses a special case of the uniform definability of canonical q-henselian valua-
tion as proven in [JK15b, Main Theorem]: Let Fq be the (elementary) class of fields L such
that L 6= L(q), and that L contains a primitive qth root of unity ζq in case char(L) 6= q.
In case q = 2, assume further that L is non-orderable. There is a parameter-free Lring-
formula ϕq(x) such that we have

L ∈ Fq =⇒ ϕq(L) = OqL.
Furthermore, we will make repeated use of the following

Fact 5.6 ([EP05, p. 43 and Corollary 4.1.4]). Let O ⊆ K be a valuation ring. The
overrings of O in K form a chain under inclusion and each overring is a valuation ring.
If O is henselian, then all overrings of O in K are henselian.

We can now prove the main result of this subsection:

Theorem 5.7. If (K, vK) has mixed-characteristic then

(def) =⇒ (∅-def).

Proof. Fix a prime p. Let K be a field with char(K) = 0 and char(KvK) = p > 0
which admits a definable nontrivial henselian valuation. Then vK is also nontrivial,
since (K, vK) has mixed characteristic. Since K admits a definable nontrivial henselian
valuation, it is not separably closed. Furthermore, by [JK15a, Theorem A], we may
assume that KvK 6= Kvsep

K . Since K is not separably closed, there exists a prime q and
a finite extension L0/K such that L0 6= L0(q) and ζq ∈ L0. Let n := [L0 : K] and define

L := {L | [L : K] = n, L 6= L(q), ζq ∈ L}.
Observe that for any field L, L 6= L(q) implies that L admits a Galois extension of degree
q, by Sylow’s Theorems. Therefore the family L is uniformly interpretable in K: we
quantify over those n-tuples from K which are the coefficients of irreducible polynomials
over K, such polynomials are the minimal polynomials of generators of extensions L/K,
and we can define those tuples corresponding to extensions L ∈ L, using the observation.

Next we explain a few basic facts about the canonical q-henselian valuations vqL that we
will repeatedly use. Let L ∈ L. Since L/K is a finite extension and KvK is not separably
closed, vL is the unique extension of vK to L. Since vqL is comparable to vL, vqL|K is also
comparable to vK . Again, since vqL is comparable to vL, the residue characteristic of vqL
is either 0 or p. Finally, since vL is a nontrivial q-henselian valuation and L 6= L(q), we
have that vqL and thus vqL|K are nontrivial.

We define
L1 := {L ∈ L | char(LvqL) = p}

and
L2 := {L ∈ L | char(LvqL) 6= p} = {L ∈ L | char(LvqL) = 0}.
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Just as for L above, both L1 and L2 are uniformly interpretable in K. To see that L1 is
uniformly interpretable: given a uniform interpretation of L, we then need to define which
n-tuples correspond to extensions L/K such that char(LvqL) = p, and this follows from
the fact that vqL is uniformly ∅-definable in L, using the formula ϕq(x), by [JK15b, Main
Theorem]. Let Λ1(y) and Λ2(y) be the formulas that define those n-tuples corresponding
to extensions L/K in L1 and L2, respectively.

Furthermore, using the uniform interpretation of L, we may find a formula φq(x,y)
such that if b ∈ Λ1(K) ∪ Λ2(K) defines a field L ∈ L1 ∪ L2 then φq(x,b) defines in K
the intersection ϕq(L) ∩K = OqL ∩K.

We proceed by a case distinction. In each case our goal is of course to find an ∅-definable
nontrivial henselian valuation on K.

Case 1: Suppose first that L2 6= ∅ and let L ∈ L2. As noted above, OqL is comparable
to OL. Since L ∈ L2, char(LvqL) = 0. Thus OL ⊂ OqL and OK = OL ∩K ⊂ OqL ∩K. We
have the following diagram.

L

K OqL

OqL ∩K OL

OK
We let

O1 :=
⋂
L∈L2

OqL ∩K.

It is immediate that OK ⊆ O1. By Fact 5.6, O1 is an henselian valuation ring. As noted
above, each OqL ∩ K is nontrivial. Since O1 ⊆ OqL ∩ K, for each L ∈ L2, O1 is also
nontrivial.

Finally, O1 is ∅-defined in K by the formula

∀y (Λ2(y) −→ φq(x,y)).

Case 2: Now suppose that L2 = ∅. Let φ(x, t) be an Lring-formula with parameters
t ∈ Kn, for some n ∈ ω, that defines in K a nontrivial henselian valuation ring Ot, i.e.
φ(K, t) = Ot.

For L ∈ L, let Ot,L denote the unique extension of Ot to L. Then Ot,L is henselian,
thus q-henselian. Therefore Ot,L is comparable to OqL, and so their restrictions to K
(which are Ot and OqL ∩K) are comparable. Therefore

L1 = {L ∈ L1 | OqL ∩K ⊆ Ot} t {L ∈ L1 | Ot ⊂ OqL ∩K}.
This allows us to distinguish two subcases: in Case 2a, for some L ∈ L1 the ring OqL∩K
is a strict coarsening of Ot; whereas in Case 2b, for every L ∈ L1 the ring OqL ∩K is a
refinement of Ot.

In the meantime, we let S :=
⋃
L∈L1 O

q
L ∩K, and note that S is ∅-defined in K by the

formula
∃y (Λ1(y) ∧ φq(x,y)).

As S is a union of valuation rings each of which is comparable to Ot, S is also comparable
to Ot. In fact, in Case 2a, we have Ot ⊂ S; and in Case 2b, we have S ⊆ Ot.
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From now on we separate the subcases.
Case 2a: We suppose that for some L′ ∈ L1 the ring OqL′ ∩K is a strict coarsening

of Ot. If we let L′1 := {L ∈ L1 | Ot ⊂ OqL ∩K} then our assumption may be rephrased
as L′1 6= ∅. We will show that S is a mixed characteristic nontrivial henselian valuation
ring, and we already know that S is ∅-definable in K. Note that, as discussed above, in
this subcase we have Ot ⊂ S, although we do not make direct use of this fact.

For each L ∈ L1 \ L′1, we have

OqL ∩K ⊆ Ot ⊂ OqL′ ∩K ⊆ S.

Consequently

S =
⋃
L∈L1

OqL ∩K =
⋃
L∈L′1

OqL ∩K,

and therefore S is a union of valuation rings each of which is a strict coarsening of Ot.

K

S =
⋃
L∈L′1
OqL ∩K

Ot

By Fact 5.6, the coarsenings of Ot form a chain under inclusion, and so S is a union of
a chain of valuation rings. Therefore S is a valuation ring. Since S coarsens Ot, S is
henselian. Finally, since S is a union of mixed characteristic valuation rings, S has mixed
characteristic. In particular, S is nontrivial.

Case 2b: We suppose that for every L ∈ L1 the ring OqL ∩K is a refinement of Ot.
As noted above, we have S ⊆ Ot.

Since S contains a valuation ring (e.g. OqL ∩K, for any L ∈ L1), the set of subrings of
K which contain S is totally ordered, by Fact 5.6. Therefore, any (nonempty) union or
intersection of rings containing S is also a valuation ring.

Let ut denote the valuation on K corresponding to Ot. We now consider a final
distinction into (subsub)cases depending on the characteristic of Kut. Note that since ut
is henselian, it is a coarsening of vK which has mixed characteristic. Thus char(Kut) ∈
{0, p}.

If, for s ∈ Kn, φ(K, s) is a valuation ring then it will be denoted Os and its corre-
sponding valuation will be denoted us.

Case 2b(i): Suppose that char(Kut) = p. Let

O2 :=
⋃
{φ(K, s) | Os = φ(K, s) is a val. ring, S ⊆ Os, char(Kus) = p}.
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We have the following picture.

K

O2

Ot

S

As noted above, O2 is a union of a chain of rings containing S, thus O2 is a valuation
ring in K. In fact, since O2 is a union of mixed characteristic valuation rings, O2 has
mixed characteristic. Thus O2 is nontrivial. By Fact 5.6, since Ot = φ(K, t) ⊆ O2, we
have that O2 is henselian.

Finally, note that O2 is ∅-defined in K by the following formula.

∃s
(
Vφ(s) ∧ ∀y

(
y ∈ S −→ φ(y, s)

)
∧ ¬φ(p−1, s) ∧ φ(x, s)

)
,

where Vφ(s) is a formula defining those s such that φ(K, s) is a valuation ring. This
finishes Case 2b(i).

Case 2b(ii): Suppose that char(Kut) = 0. Let

O3 :=
⋂
{φ(K, s) | Os = φ(K, s) is a val. ring, S ⊆ Os, char(Kus) = 0}.

We have the following picture.

K

Ot

O3

S

As noted above, as an intersection of a chain of rings containing S, O3 is a valuation ring
in K. In fact, since O3 is an intersection of equal characteristic valuation rings, O3 has
equal characteristic. Since O3 ⊆ Ot, O3 is nontrivial.

We claim that O3 is a coarsening of OK , i.e. OK ⊆ O3. To see this: let L ∈ L. As
noted above, OqL ∩K is comparable to OK . Either

OK ⊆ OqL ∩K ⊆ S ⊆ O3,

as required; or

OqL ∩K ⊂ OK .
In the latter case, OK and O3 are both coarsenings of OqL∩K; and so they are comparable,
by Fact 5.6. Since O3 has residue characteristic zero, OK ⊂ O3. In either case, we have
shown that O3 is a coarsening of OK . Consequently, O3 is henselian.
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Since S is a union of valuation rings of residue characteristic p, if φ(K, s) = Os is a
valuation ring that contains S, then Os has residue characteristic 0 or p. Therefore O3 is
∅-defined in K by the following formula.

∀s
((
Vφ(s) ∧ ∀y

(
y ∈ S −→ φ(y, s)

)
∧ φ(p−1, s)

)
−→ φ(x, s)

)
,

where, as above, Vφ(s) is a formula defining those s such that φ(K, s) is a valuation ring.
This finishes Case 2b(ii), and hence the proof of the theorem. �

5.4. The full picture in mixed-characteristic. We can now collect the facts we have
proven for fields in K0,p and assemble them to a proof of Theorem 1.1 (B):

Proof of part (B) of Theorem 1.1. We want to show that for each prime p, in the class
K0,p the complete picture is

(∅-def)
KS

��

+3 (eh)
KS

��
(def) +3 (h)

Apart from the trivial implications as given in Figure 1, we have shown in Corollary 2.2
that for any K ∈ K0,p

(h) ⇐⇒ (eh)

and furthermore in Theorem 5.7 that also

(def) ⇐⇒ (∅-def)

holds. Finally, Example 5.5 shows that we have

(h) 6=⇒ (∅-def)

in K0,p. This completes the proof. �
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