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SI-1: Supplementary to male population study 

Chemicals and Stock Solutions. C13 and C12 mono-ester phthalate monomethyl 

phthalate (MMP), monoethyl phthalate (MEP), monobutyl phthalate (MBP), mono-2-

ethylhexyl phthalate (MEHP), monobenzyl phthalate (MBzP), mono-2-ethyl-5-

hydroxyhexyl phthalate (MEHHP), mono-2-ethyl-5-carboxypentyl (MECPP) and 

mono-2-ethyl-5-oxohexyl phthalate (MEOHP) were purchased from CIL (Cambridge 

Isotope Laboratory Ins, USA). The steroid hormone standards of androstenedione 

(ASD) and testosterone were purchased from Dr. Ehrenstorfer GmbH (Germany), the 

isotope D3-testosterone was purchased from Cerilliant (Promochem, Wesel, Germany). 

Escherichia coli β-glucuronididase was purchased from Sigma-Aldrich, USA. Oasis 

HLB solid phase extraction (SPE) cartridges (60 mg, 3 mL, Waters, USA) were 

purchased from Waters Corporation (Milford, MA). All other chemicals were analytical 

grade. 

Deconjugating of the glucuronidated phthalate metabolite. Aliquots of 1 mL urine 

were buffered to pH = 6.5 by sodium acetate (1 mL, 0.1 M NaAc adjusted with 1 M 

HCl), and spiked with a mixture of isotope labeled phthalate monoesters as the internal 

standards (20 µL, 50 ng/mL). β-Glucuronidase (10 µL, 200 units/mL) was added as 

deconjugation enzyme and 4-methylumbelliferyl glucuronide (20 µL, 80 ng/mL) was 

added as the control indicator of the enzyme activity. The samples were incubated at 

37oC for 90 min to deconjugate the glucuronidated phthalate metabolites and the 

reaction was stop through the addition of 1 mL of 3.6 M phosphoric acid. 
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SPE Purification. The column was preconditioned with acetonitrile (3 mL) and 

phosphate buffer (3 mL, pH = 2, 0.14 M NaH2PO4 in 0.85% H3PO4) in sequence. The 

treated urine was loaded onto the cartridge at a rate of 1 mL/min. Then it was rinsed 

with 0.1 M formic acid (2 mL) and H2O (1 mL) and dried with a gentle airflow. The 

analytes were eluted with acetonitrile (3 mL) followed by ethyl acetate (2 mL) at 1 

mL/min. The eluate was evaporated to dryness under a gentle stream of nitrogen at 45oC 

and the dried residue was re-suspended in 200 µL of 60% acetonitrile (0.1% acetic acid) 

until further analysis. 

HPLC-ESI-MS/MS analysis. The target compounds were separated by the LC-20A 

prominence (Shimadzu, Kyoto, Japan) high-performance liquid chromatography 

(HPLC) equipped with the Phenomenex® (Torrance, CA, USA) guard column (Phenyl, 

4.0 mm × 2.0 mm internal diameter) and separation column (Luna Phenyl-hexyl, 100 

mm×2.0 mm internal diameter, 3.0 µm particle size). Mobile phase A was 0.1% acetic 

acid in water and B was 0.1% acetic acid in acetonitrile. Table S1 shows the HPLC 

gradient program. The mobile phase flow rate was set at 0.25 mL/min, and the column 

temperature was set at 30oC. The total run time for each injection was 20 min and the 

injection volume was 20 µL. 

The target compounds were ionized by electrospray ionization (ESI) and detected 

by the tandem mass spectrometry (MS/MS) (Applied Biosystems, Concord, Ontario, 

Canada). The mass specific detection was achieved using a MDS Sciex 3200 Q TRAP 

triple quadrupole linear ion trap mass spectrometer equipped with a TurboIonSpray ESI 

source and Analyst Software version 1.5 (Applied Biosystems, Concord, Ontario, 
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Canada). ESI-MS/MS was performed at unit mass resolution in multiple reaction 

monitoring (MRM) under the negative ion mode with the following parameters: source 

temperature (TEM) 550oC, ion spray voltage (IS) -4500 V, curtain gas (CUR) 10 psi 

(46 kPa of nitrogen), ion source gas 1 (GS1) 40 psi (276 kPa of nitrogen), ion source 

gas 2 (GS2) 40 psi (276 kPa of nitrogen), collision gas pressure (nitrogen) medium 

[corresponds to value of 3 (arbitrary scale of 1–12)], and dwell time of 50 ms per 

channel. Optimization of the compound-dependent MS/MS parameters was performed 

with phthalate metabolites standards via direct injection into the mass spectrometer 

using a syringe pump at a flow rate of 10 µL/min. Optimal settings for compound-

dependent MS/MS parameters are shown in Table S2. 

The Absolute Recovery of SPE Extraction. The phthalate metabolite’s standard curve 

regression equation and absolute recoveries during SPE extraction were calculated 

(Table S3 and S4). Considering the background analytes in the urine, we used the 

labeled internal standard to track the SPE recovery instead of the native compounds. 

One of the paired spiking samples was added the labeled internal standards before SPE 

(Concbefore); the other was added the labeled internal standards after SPE (Concafter). 

The SPE recovery was calculated as: SPE recovery = (Concafter/Concbefore)  100%. 

Because of the recoveries in the urine expression step are close to hundred percent for 

the analytes, the absolute recoveries of the whole sample preparation procedure should 

be comparable with the reported SPE extraction recoveries for adult urine analysis1. In 

case of the low SPE recovery, the stable isotope-labeled compounds as internal 

standards had been used to correct the possible matrix effects and to improve method 
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accuracy and precision. 

 

 

 

 

Table S1. Mobile Phase Gradient Programa 

Time (min) 0 0.3 1.3 8.0 12 12.5 13.5 14.0 20.0 

A (%) 5 5 40 20 20 0 0 5 5 

B (%) 95 95 60 80 80 100 100 95 5 

aA: 0.1% acetic acid in water and B: 0.1% acetic acid in acetonitrile. 
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Table S2. Transitions and MS/MS Conditions for Each Analyte  

Analytes Parent 

(Q1) 

Daughter 

(Q3) 

Dwell 

time 

DP  EP  CEP CE CX

P MMP 179.0 107.0 50.0 -

30.0 

-

7.0 

-10.0 -

15.0 

0.0 

MMP-13C4 183.0 110.0 50.0 -33.0 -7.0 -17.7 -14.0 0.0 

MEP 193.0 121.0 50.0 -30.0 -7.0 -10.0 -16.0 0.0 

MEP-13C4 197.0 79.0 50.0 -33.0 -7.0 -18.3 -33.0 0.0 

MBP 221.0 77.0 50.0 -30.0 -7.0 -12.0 -20.0 0.0 

MBP-13C4 225.0 79.0 50.0 -35.0 -7.0 -19.5 -28.0 0.0 

MBzP 255.0 107.0 50.0 -30.0 -7.0 -15.0 -19.0 0.0 

MBzP-13C4 259.0 107.0 50.0 -35.0 -7.0 -20.0 -21.0 0.0 

MEHP 277.0 134.0 50.0 -30.0 -7.0 -15.0 -22.0 0.0 

MEHP-13C4 281.0 137.0 50.0 -45.0 -7.0 -21.8 -22.0 0.0 

MEOHP 291.0 121.0 50.0 -40.0 -4.0 -15.0 -35.0 0.0 

MEOHP-

13C4 

295.0 124.0 50.0 -36.0 -7.0 -22.4 -27.0 0.0 

MECPP 307.0 159.0 50.0 -40.0 -6.0 -16.0 -20.0 0.0 

MECPP-

13C4 

311.0 159.0 50.0 -40.0 -5.0 -20.0 -18.0 0.0 

MEEHP 293.0 145.0 50.0 -35.0 -7.5 -22.0 -28.0 0.0 

MEHHP-

13C4 

297.0 124.0 50.0 -40.0 -6.5 -16.0 -28.0 0.0 

DP: declustering potential [V]; EP: entrance potential [V]; CEP: cell entrance potential 

[V]; CE: collision energy [V]; CXP: cell exit potential [V]. 
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Table S3. The Phthalate Metabolite’s Absolute Recoveries in SPE Extraction Step. 

Metabolites 

10 ng/ml  50 ng/ml  

Mean Recovery 

（%） 
RSD (%) 

Mean Recovery 

（%） 
RSD (%) 

MMP 141 6.91 95.1  9.56 

MEP 120 149 95.7 6.90 

MBP 88.9 3.7 97.8 14.6 

MBzP 89.0 10.5 89.4 10.5 

MEHP 117 13.5 95.3 4.53 

MEOHP 112 12.3 108 0.8 

MECPP 90.9 7.0 91.5 4.9 

MEEHP 104.4 5.7 103.6 4.4 

 

Table S4. Standard Curve Regression Equation. 

Metabolites Range (µg/L) Regression R2 LOD (µg/L) 

MMP 0.2 ~ 200 Y = 0.0237X+0.0424 0.996 0.21 

MEP 0.2 ~ 200 Y = 0.0179X+0.0153 0.999 0.45 

MBP 0.2 ~ 200 Y = 0.0122X+0.0176 0.994 0.50 

MBzP 0.2 ~ 200 Y = 0.0735+0.0044 0.994 0.31 

MEHP 0.2 ~ 200 Y = 0.0172X+0.011 0.999 0.37 

MEOHP 0.2 ~ 200 Y = 0.0128X+0.0002 0.992 0.37 

MECPP 0.2 ~ 200 Y = 0.0087X+0.0025 0.997 0.37 

MEEHP 0.2 ~ 200 Y = 0.0174X+0.0028 0.998 0.37 
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Figure S1. Normal Q-Q plots of the data steroid hormones and phthalate metabolites. 

LNT, LNMMP, LNMEP, LNMBP and LNDEHP are the log-transformed 

testosterone, MMP, MEP, MBP and ΣDEHP, respectively.  
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Figure S2. Levels of urine steroid hormones grouped by tertiles of PAEs.  

Low = 1st tertile PAEs, medium = 2nd tertile PAEs, and high = 3rd tertile PAEs; the box-

and-whisker plot shows the median, 75th and 25th percentiles, and maximum and 

minimum values, respectively. All models are adjusted for BMI, age, plastic use, 

smoking and alcohol intake. Also shown are p-trends of steroid hormone across the 

tertile of PAEs. ∑DEHP was the mass sum of DEHP individual metabolites (MEHP, 

MEOHP, MECPP and MEHHP). ∑PAEs was the mass sum of PAEs individual 

metabolite (MMP, MEP, MBP, MEHP, MEOHP, MECPP and MEHHP). 
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Table S5. Multivariable-Adjusted Linear Regression of the PAEs’ Prediction to 

Steroid Androgen Variations 

  MMP MEP MBP ∑DEHP ∑PAEs 

Androstendione 

(ASD) 

Coefficient 0.33 0.28 0.35 0.55 0.44 

95% CI 0.07, 0.58 0.02, 0.55 0.11, 0.60 0.31, 0.79 0.19, 0.70 

P-value 0.01 0.04 0.006 < 0.001 0.001 

Testosterone 

Coefficient 0.13 0.17 0.22 0.46 0.21 

95% CI -0.15, 0.42 -0.13, 0.47 -0.06, 0.50 0.18, 0.74 -0.08, 0.51 

P-value 0.36 0.26 0.12 0.002 0.15 

All models are adjusted for age, BMI and lifestyle habit, including smoking, alcohol 

intake and plastic usage. Variable ln-transformed in statistical analysis. 
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SI-2: In vitro study showed environment relevant PAEs 

induced biphasic steroidogenesis effect in MLTC-1 

 

Introduction 

The concept of integrating human observations with laboratory tests comes from 

the facts both human study and laboratory test can address the metabolic phenotypes in 

blood and urine or in biotas of in vitro or in vivo. The hypothesis is environmental 

stimulation induced any effect will finally translate to metabolic layer change. 

Therefore, to march the metabolite alteration in human with the metabolic effect in 

toxicological model would improve the communication between the two disciplines 

(Figure S3) herein. 

 

Figure S3. Conceptual workflow towards integrating human observations with 

laboratory tests by matching the metabolic phenotypes.  

“+” = present; “-” = absent; MOA = mode of action. On the concept of coordinated 

metabolic trends, ASD and testosterone alterations in the MLTC-1 model would 

support the related observations in human. 
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Chemicals and Stock Solutions. The diester phthalate standards dimethyl phthalate 

(DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), di(2-ethylhexyl) phthalate 

(DEHP) and dibenzyl phthalate (DBzP) were purchased from TCI (TCI Europe, 

Belgium, Brussels); both target diester phthalates and monoester phthalates are shown 

in Table S6. Dimethyl sulfoxide (DMSO) was purchased from Sigma-Aldrich 

Chemical Co. (St. Louis, Mo. USA); human chorionic gonadotrophin (hCG) was 

obtained from PROSPECT (Ness-Ziona, Israel). Standards for monoester phthalate and 

androgen analysis have listed in SI-1 it together with Escherichia coli ß-

glucuronididase information. All other chemicals were analytical grade. 

Cell culture and MTT assay. The MLTC-1 cell line was obtained from the Cell Bank 

of the Chinese Academy of Sciences (Shanghai, China) and cultured in RPMI-1640 

medium (Gibco BRL, Grand Island, NY) supplemented with 100 unit/mL penicillin, 

100 unit/mL streptomycin and 10% (v/v) foetal bovine serum (Hyclone, USA). The 

cells were grown at 37oC with 5% CO2 in a humidified incubator (SANYO, Japan). 

MLTC-1 cells were incubated with serial concentrations of mixtures of or individual 

phthalates for 48 h. All experiments were performed in triplicate. Selected phthalates 

(Table S6) were dissolved in DMSO. Cell viability was evaluated by the MTT 

proliferation assay. In brief, cells were plated at a density of 1.5×104 per well in 96-

well plates. After 48-h incubation in the presence of different selected phthalates at a 

wide range of doses (i.e., 0-2000 μM), 50 μL MTT (5 mg/mL) was added to each well 

and then the cells were incubated for another 4 h at 37oC. Cell populations that were 

not treated with phthalates served as negative controls. After removing culture medium, 
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150 μL DMSO was added to each well and oscillation was performed for 10 min. 

Absorbance was determined at 490 nm and results presented as percentage of values 

relative to untreated controls. Only non-cytotoxic concentrations were used for the 

following experiments. 

MLTC-1 cell phthalate exposure. The first set of phthalate mixture exposure 

experiments were designed to verify the phthalate doses depend mode of actions and 

support the observed association of male population phthalate exposure with sex 

hormones. MLTC-1 Leydig cells were exposed to a combination of phthalates from 0.1 

to 100 μM. MLTC-1 cells were exposed to DMSO vehicle control, the four levels of 

equimolar diester phthalate mixtures (i.e., 0.1, 1, 10 or 100 μM of DMP, DEP, DBP, 

DBzP and DEHP in mixtures), the four levels of equimolar monoester phthalate 

mixtures (i.e., 0.1, 1, 10 or 100 μM of MMP, MEP, MBP, MBzP or MEHP in mixtures), 

and the one level of diester phthalate mixture (100 μM DMP, DEP, DBP, DBzP or 

DEHP in mixtures, respectively) plus carboxylic ester hydrolase of 15 units (Sigma-

Aldrich, USA) to facilitate PAEs hydrolysis. To distinguish phthalate species 

associated sexual hormone disruption, MLTC-1 cells were treated with both DMSO 

vehicle control and two concentrations (i.e., 10 or 100 μM) of individual diester 

phthalate congeners in the second set of individual exposure experiments. The 

individual phthalates were DMP, DEP, DBP, DBzP and DEHP, respectively. The third 

set of experiments were set to verify the dose-dependent effect of DBP. MLTC-1 cells 

were exposed to either DMSO vehicle control or DBP at 5, 10, 25, 50 or 100 μM. After 

48-h phthalate treatment, the culture medium was collected for phthalate metabolites 
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analysis, the cells were washed with PBS and serum-free medium. After these steps, 

the cells were further stimulated with hCG for 4 h in serum-free medium with 0.1% 

BSA, then this medium was collected for ASD and testosterone determination. 

PAE metabolites and steroid hormones measurements in cell culture medium 

Phthalate metabolites and steroid hormones in cell culture medium were detected 

using LC-ESI-MS/MS following the protocol like in urine sample, which have be 

described in SI-1. 
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Table S6. Detailed Information on ten Selected Phthalates 

CAS Abbreviation Purity (%) Molecular weight Structure 

131-11-3 DMP 99.5 194.2 

 

84-66-2 DEP 99.0 222.2 

 

84-74-2 DBP 98.4 278.3 

 

523-31-9 DBzP 99.9 318.3 

 

117-81-7 DEHP 99.5 390.6 

 

4376-18-5 MMP 97.0 180.2 

 

2306-33-4 MEP 98.7 194.2 

 

131-70-4 MBP 97.4 222.2 

 

2528-16-7 MBzP 99.8 295.3 

 

4376-20-9 MEHP 99.9 278.3 
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RESULTS  

PAEs exposure range and Leydig cell viability 

Cytotoxicity results limit the PAEs dosage setting. For monoester phthalates: 

MMP, MEP and MBP generated no significant effects on cell viability under the 

experimental conditions employed; MEHP at 1000 μM or 2000 μM reduced cell 

viability when compared to control (p <0.001) after 48-h treatment; and, MBzP 

decreased cell viability at 2000 μM (p <0.001) after 48-h treatment. For diester 

phthalates: DMP, DEP or DBzP generated no significant effect on cell viability under 

the experimental conditions employed; and, DBP or DEHP significantly inhibited cell 

viability at 1000 μM or 2000 μM (p <0.01) (Figure S4). To ensure cell viability, 

subsequent experiments used doses of 0.1 to 100 μM for each congener; even for the 

mixture treatment condition of the 100-μM group, good cell survival was ensured. 

 

Figure S4. The viability of MLTC-1 cells exposed to various concentrations of mixed 

monoester phthalate (A) and diester phthalate (B) for 48 h. The values are expressed as 

the means (±SEM) of survival (% of control cells). Data were analysed by one-way 

ANOVA with Tukey’s multiple comparisons test. Asterisks above columns indicate a 

significant difference in comparison to the control, *p ≤0.05, ** p ≤0.01. 
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Diester PAEs metabolism in Leydig cells 

Given PAEs’ ready human metabolism, understanding their biotransformation in 

the MLTC-1 model is also important for risk assessment. After 48-h diester PAEs 

treatment, MMP, MEP, MBP, MEHP and MBzP were quantified. As shown in Figure 

S5, at low-dose (0.1 - 10 μM) exposure, MLTC-1 cells can readily remove one of the 

alkyl chains from DMP, DEP or DBP and generate the corresponding monoesters of 

MMP, MEP or MBP, respectively. DEHP appears harder to hydrolyse into MEHP 

under these experimental conditions. Generally, the hydrolysis rates decrease when 

PAE (DMP, DEP, DBP or DEHP) concentrations are increased. To confirm the side 

chain-specific hydrolysis, exogenous snail-derived esterase was added together with 

100 μM diester PAEs. The results indicate that the esterase significantly facilitates the 

hydrolysis of short straight alkyl chain DMP, DEP or DBP (p <0.001), while the effects 

are not observed for the branched alkyl chain DEHP and aromatic alkyl chain DBzP 

(p >0.05) (Table S7). MLTC-1 cells hydrolyse PAEs in the following order: DMP > 

DEP ≥ DBP > DEHP, while DBzP cannot be hydrolysed into MBzP in MLTC-1 cells 

at any concentration. Although many oxidative metabolites of MEHP are observed in 

human urine1-3, major species like MEOHP, MECPP and MEHHP were not observed 

in MLTC-1 cell medium. The hydrolysis data also implies that diester PAEs-induced 

steroidogenic effects at high dose (i.e., 100 μM) are mostly mediated by their parent 

forms instead of their monoester metabolites. 
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Figure S5. The side chain structure-dependent diester phthalates hydrolyzation. 

Five selected equimolar PAEs (DMP, DEP, DBP, DEHP and DBzP) mixed exposure 

in MLTC-1 cells, the diester phthalates hydrolyzation metabolites found in medium 

after 48 exposure, as percent of administered concentration. The hydrolyzation rate was 

calculated by dividing the molar concentration of monoester phthalates by the diester 

phthalates exposure concentration, respectively. 
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Table S7. Different Side Chain Diester Phthalates Have Variant Responses to the 

Hydrolyzation Enzyme in MLTC-1 Cells with 100 μM Mixture Exposure 

Parent-Metabolite 
Percent of metabolite (%±SD) 

Negative esterase Positive esterase 

DMP-MMP  19.30±1.73 59.20±7.55** 

DEP-MEP 6.71±0.35 34.95±4.46** 

DBP-MBP 6.14±0.96 64.75±9.95** 

DEHP-MEHP 1.61±0.14 1.74±0.26 

DBzP-MBzP 0 0 

Asterisks (**) indicate the significant differences (p <0.001) between the present 

(positive) and absent (negative) of esterase in the culture medium.   

 

Biphasic steroidogenic effect profiles of PAEs in Leydig cells 

Because DBP may have more toxic characteristics than other PAEs4 , its 

steroidogenic effects on ASD and testosterone generation were initially profiled in 

detail from 5 to 100 μM (Figure S6 A, D). Low-dose DBP exhibited a stimulatory effect 

on ASD [fold-change comparison to the control (FC) =1.15 (p = 0.04) for 5 μM and FC 

= 1.41 (p <0.001) for 10 μM], and then a transition point occurred. DBP then generated 

a significant inhibition on ASD at least by 50 μM (FC = 0.80, p = 0.001) and at 100 μM 

DBP, significantly enforced its inhibition on ASD generation (FC = 0.68, p <0.001). 

DBP inhibited testosterone generation from 25 to 100 μM [FC = 0.82 (p = 0.03), FC = 

0.42 (p <0.001) and FC = 0.09 (p <0.001) for 25, 50 and 100 μM, respectively)], but 

low-dose stimulation was not observed. 

Towards the characterisation of the steroidogenic effects of other PAEs, two key 
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doses were set based on the outcomes of DBP experiments, i.e., 10 and 100 μM. When 

comparing the capacity of individual PAEs to variously stimulate ASD at 10 μM 

treatments, an increased order of DMP (FC = 1.00, p >0.05), DEP (FC = 1.23, p <0.001), 

DBP (FC = 1.41, p <0.001), DBzP (FC = 1.46, p <0.001) and DEHP (FC = 1.54, p 

<0.001) was observed (Figure S6 B, E). For ASD generation at 100-μM treatments, 

DMP or DEP retain their significant ability to stimulate ASD generation. Although 

DBzP and DEHP are dominated by their diester forms (Figure S5), their stimulatory 

effects at 100 μM were surprisingly retained despite being in their attenuation phases 

(Figure S6 B). In the 10-μM treatment groups, no effect on testosterone production is 

observed for all the investigated chemicals. This suggests that ASD regulation may be 

a more sensitive biomarker than testosterone in response to low-level treatment of PAEs. 

In the 100-μM groups, DEP acts as a stimulator of testosterone generation (FC = 1.19; 

p = 0.001), while DBzP significantly inhibits production of testosterone (FC = 0.64; p 

< 0.001) but to a lesser extent than DBP (FC = 0.09, p < 0.001); DEHP also markedly 

(not significant) inhibits testosterone production (FC = 0.90; p = 0.12) (Figure S6 B, E). 
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Figure S6. Effects of phthalate exposure for 48 h on hCG-activated steroid hormone 

secretion in MLTC-1 cells. (A) DBP vs androstenedione; (B) individual PAEs vs 

androstenedione; (C) mixed PAEs vs androstenedione; (D) DBP vs testosterone; (E) 

individual PAEs vs testosterone; and, (F) mixed phthalate vs testosterone. 

M indicates the treatment with mixture of MMP, MEP, MBP MBZP and MEHP; D 

indicates the mixture treatment of DMP, DEP, DBP DBZP and DEHP; and, D+ 

indicates exogenous esterase co-treated with diester phthalate mixture at 100 μM. 

The values are expressed as mean (±SEM) fold-changes of controls. Data were analysed 

by one-way ANOVA with Tukey’s multiple comparisons test. Asterisks above columns 

indicate a significant difference in comparison to the control, *p ≤ 0.05, ** p ≤ 0.01. 

 

Steroidogenic responses to PAE mixture exposures in Leydig cells 

Both monoester and diester PAEs mixture tests may simulate some scenarios of 

real-world human exposure. Firstly, exposed PAEs can rapidly undergo liver 

metabolism in humans and monoesters are the major functional forms. In relation to 
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ASD secretion, when compared with the control group, the entire monoester dose range 

(from 0.1 to 100 μM mixture) significantly stimulated ASD production, while 

testosterone stimulation only begins to be significant from the ≥10-μM mixture but 

begins to be attenuated at the 100-μM mixture (Figure S6 C and F). When the 

exogenous esterase was added in the diester mixture, the diester inhibitory effect is 

totally reversed for ASD and testosterone production (Figure S6 C and F). This further 

supports the notion that monoester residuals may have a very limited possibility to act 

as anti-androgens in real-world human exposure scenarios. 

Although each individual diester (except DBP) at 100 μM only exhibits 

androgenic effects, their mixtures may replicate an extremely high human exposure 

scenario, wherein both ASD and/or testosterone secretion are inhibited in MLTC-1 

model. However, the data from exogenous esterase addition may support the notion that 

human metabolism can mitigate or reverse anti-androgenic effects to androgenic. The 

low-dose (at least 10 μM) diester exposure suggests that some minimal PAEs exposure 

scenarios still generate androgenic effects. The data also suggests that generally, diester 

forms more readily act as anti-androgens than monoesters. Because of the much lower 

detection frequency of MBzP (BBzP can also be the hydrolysed to MBzP) in our 

participant urine implied a much lower-level DBzP exposure, the MLTC-1 cells results 

factually support the present observations that PAEs exposure can readily transition 

from androgenic to anti-androgenic mechanism of action. 
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