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Abstract The paper discusses Bayesian convergence when the truth is excluded

from the analysis by means of a simple coin-tossing example. In the fair-balance

paradox a fair coin is tossed repeatedly. A Bayesian agent, however, holds the a

priori view that the coin is either biased towards heads or towards tails. As a result

the truth (i.e., the coin is fair) is ignored by the agent. In this scenario the Bayesian

approach tends to confirm a false model as the data size goes to infinity. I argue that

the fair-balance paradox reveals an unattractive feature of the Bayesian approach to

scientific inference and explore a modification of the paradox.

1 Introduction

The problem of convergence to the truth in Bayesian inference has been widely

discussed in the philosophical literature (e.g., Hesse 1974; Glymour 1980; Earman

1992; Kelly 1996; Hawthorne 2011; Belot 2013). Convergence to the truth results

establish conditions under which the degrees of belief of Bayesian agents become

more and more tightly peaked around the true hypothesis as the data accumulate. A

general assumption of Bayesian convergence theorems is that the true hypothesis is

included in the set of candidate hypotheses. In the discrete probability spaces

containing a finite set of statistically simple hypotheses that are frequently

I would like to thank Mike Steel for his help with the proof in the ‘‘Appendix’’. I would also like to thank

Ken Binmore, Casey Helgeson, Jason Konek, Samir Okasha, Richard Pettigrew, Joel Velasco, Charlotte

Werndl and the anonymous referees of the journal for helpful comments on earlier versions of the

manuscript. An award from the British Academy Postdoctoral Fellowship Scheme is gratefully

acknowledged.

& Bengt Autzen

b.autzen@bristol.ac.uk

1 Department of Philosophy, University of Bristol, Cotham House, Bristol BS6 6JL, UK

123

Erkenn (2018) 83:253–263

https://doi.org/10.1007/s10670-017-9888-0

http://orcid.org/0000-0001-5487-4764
http://crossmark.crossref.org/dialog/?doi=10.1007/s10670-017-9888-0&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10670-017-9888-0&amp;domain=pdf
https://doi.org/10.1007/s10670-017-9888-0


considered in the philosophical literature this amounts to the requirement that the

true hypothesis gets assigned non-zero prior probability.1

In this paper I am interested in a different problem: what happens if the truth is

excluded in a Bayesian analysis? In particular, what happens if the true model is

excluded and the false candidate models are equidistant from the truth in Bayesian

model selection? The example I will explore looks fairly benign. Suppose a fair coin

is tossed repeatedly and a Bayesian agent holds, for whatever reason, the a priori

view that the coin is either biased towards heads or towards tails. As a result the

truth (i.e., the coin is fair) is ignored by the agent. The question that I will address is

what degrees of belief the agent will adopt in the long run as the number of coin

tosses goes to infinity.

In order to study the coin-tossing example in detail, its probabilistic assumptions

have to be specified and some terminology has to be introduced. It is assumed that the

coin tosses are independent and identically distributed with parameter p denoting the

probability of the coin landing ‘heads’ in a single coin toss. The number of ‘heads’ in

n tosses is then described by the Binomial distribution B(n, p). I will refer to a

‘model’ as a family of probability distributions. For instance, the family of Binomial

distributions B(n, p) described in terms of the parameters n and p qualifies as a

model. Every numerical choice of n and p specifies a particular probability

distribution describing the number of ‘heads’ in n coin tosses. For any fixed n, I will

consider three models: the fair-coin model MF containing only the Binomial

distribution with parameter p equal to 1
2
, the head-bias model MH containing all

Binomial distributions with p[ 1
2
and the tail-bias model MT containing all

Binomial distributions with p\ 1
2
.2 Since the agent is indifferent about whether the

coin is biased towards heads or towards tails, she assigns equal prior probability to

the two candidate models (i.e., PðMHÞ ¼ PðMTÞ ¼ 1
2
). As a result the true modelMF

is excluded, that is,MF has zero prior probability in the discrete model space.3 Given

the head-bias model MH , she is indifferent with regard to the precise numerical

probability p and assumes that p follows a uniform distribution on the interval ð1
2
; 1Þ,

denoted as Uð1
2
; 1Þ. Similarly, she assumes that parameter p follows a uniform

distribution on the interval ð0; 1
2
Þ given the tail-bias model MT .

Before assessing the limiting behaviour of the model posterior probabilities in the

coin-tossing example, some general comments on the approach of this paper are in

order. Considering the situation in which the prior degrees of belief of an agent are

1 In continuous probability spaces matters are more complicated. Here the requirement is relaxed to the

effect that each open subset containing the true hypothesis has non-zero prior probability. In general,

including the true hypothesis in the support of the prior is necessary but not sufficient for convergence to

the truth. Freedman (1963) shows that in the case of a chance process with a countable infinity of possible

outcomes, one can identify a prior with the true hypothesis in its support that can be expected to fail to

converge to the truth.
2 Note that while the truth (i.e., the coin is fair) can be represented either by the single parameter value

p ¼ 1
2
in the continuous parameter set [0, 1] or by means of the trivial model MF containing only the

single probability distribution Bðn; 1
2
Þ in the discrete set of models, the false hypothesis that the coin is

biased towards heads (tails) does not correspond to a point hypothesis in the parameter space of p.
3 I will call a model ‘true’ if and only if it contains the true probability distribution.
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not spread out over the space of possible models runs against the methodological

advice generally given by philosophers with Bayesian inclinations. Since the

posterior probability of a model with zero prior probability will always remain zero

by Bayesian updating, Bayesian philosophers generally take a ‘liberal’ stance when

it comes to the assignment of non-zero prior probabilities. However, even when

adopting such a liberal attitude the set of candidate models does not necessarily

contain the true model. Put more strongly, there are good reasons to believe that

identifying a true model before analysing data is too good to be true. Indeed,

Gelman and Shalizi (2013) adopt a critical stance towards the idea that in a

statistical analysis, a researcher is able to identify a priori a statistical model that

captures all the systematic influences among the variables of the system of interest

in their correct functional form. They (2013, p. 9) comment that ‘‘[t]his could

happen, but we have never seen it, and in social science we have never seen

anything that comes close’’. These worries are, however, not exclusive to the social

sciences. In climate science, for instance, it is often pointed out that all current

climate models are false (e.g., Parker 2009). These considerations naturally lead to

the question of what will happen in a Bayesian analysis if the true model is

excluded.

The paper is structured as follows. Section 2 introduces some plausible

convergence criteria for the case in which the truth is excluded in a Bayesian

analysis. Section 3 presents the fair-balance paradox. Section 4 discusses some

modifications of the paradox. Section 5 concludes.

2 Convergence Without Truth

Under the ideal scenario of an infinitely large data set an inference procedure should

show certain desirable features. For instance, in Bayesian parameter estimation a

reasonable requirement is that the posterior probability distribution becomes

increasingly peaked around the true parameter value for any non-pathological

sequence of data. Similarly, the model posterior probability distribution should

become peaked on the true model as data size goes to infinity in Bayesian model

selection. In our setting, however, the true model MF has zero prior probability and,

hence, the posterior probability of MF will remain zero by Bayesian updating. So,

what would be a reasonable requirement on an agent’s degrees of beliefs as the data

size goes to infinity? Lewis et al. (2005) propose that ideally the posterior

probability of MH should converge in probability to the constant value 1/2 when n

goes to infinity (and the same applies to model MT ).
4 That is, the sequence of model

posterior probabilities, constituting a sequence of random variables, is supposed to

converge in probability to the (trivial) random variable taking only the constant

value 1/2 as data accumulate.

Lewis et al.’s convergence criterion can be generalised to what might be referred

to as an ‘A Posteriori Indifference Principle’ (APIP). Rather than considering the

4 A sequence of random variables Xn is said to converge in probability to the random variable X if and

only if for all �[ 0 the probability PðjXn � Xj[ �Þ goes to 0 as n goes to infinity.
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head-bias and tail-bias models, I will phrase the principle in a slightly more general

framework for reasons that will become clear in the course of the paper. Let the

generalised head-bias model MGH contain all Binomial distributions B(n, p) with

parameter p that lies strictly between 1/2 ? c and 1 (i.e., p 2 ð1
2
þ c; 1Þ), where c is a

fixed value satisfying 0� c\ 1
2
. It is assumed that model MGH has prior probability

1/2 and assigns prior probabilities to parameter p based on the uniform probability

distribution on the interval ð1
2
þ c; 1Þ.5 The generalised tail-bias model then contains

all Binomial distributions B(n, p) with parameter p that lies strictly between 0 and
1
2
� c (i.e., p 2 ð0; 1

2
� cÞ). Similarly, it is assumed that model MGT has prior

probability 1/2 and assigns prior probabilities to parameter p based on the uniform

probability distribution Uð0; 1
2
� cÞ. Given these assumptions APIP reads as follows:

As the number of fair coin tosses n goes to infinity, the model posterior

probability distribution should converge to a probability distribution that is

indifferent among the false candidate models MGH and MGT .

Having introduced APIP, it is natural to ask how the principle can be motivated. A

natural answer invokes Bayesian confirmation theory. According to the ‘absolute

notion’ of Bayesian confirmation, data D confirm hypothesis H if and only if the

posterior probability P(H|D) is strictly larger than some threshold value k. Further,

data D disconfirm hypothesis H if and only if PðHjDÞ\k. The threshold value k is

typically set at 1/2 (e.g., Achinstein 2001, p. 46). The reason for this choice of k is

that it assures H having higher degree of belief than its negation :H after observing

D, if D confirms H. It is typically assumed that an adequate account of confirmation

should disconfirm false hypotheses and confirm true hypotheses as the data

accumulate (e.g., Hawthorne 2011, p. 336). Applying this dictum to the coin tossing

example would demand that both models MGH and MGT are to be disconfirmed as

the number of fair coin tosses goes to infinity. However, this requirement violates

the axioms of the probability calculus. The best one can expect is that each false

model is not to be confirmed as the data size increases. This intuition leads to the

requirement that the posterior probability of each model approaches 1/2 as the data

size goes to infinity and is captured by APIP.

In addition, the two false models MGH and MGT are equidistant from the truth

measured in terms of the Kullback-Leibler (KL) divergence. Following Dawid

(1999), the KL divergence between a model M and the true distribution P is then

understood as the infimum of the KL divergences between P and the probability

distributions inM. Given that the two false modelsMGH andMGT are equally distant

from the truth, it should become less probable for the evidence to prefer one model

to the other as the data accumulate. This requirement translates into to the condition

that the posterior probability of each model approaches 1/2 as the number of coin

tosses goes to infinity and is again captured in probabilistic terms by APIP.

Analogous results obtain when adopting the more prominent ‘relative notion’ of

Bayesian confirmation, according to which data D confirm hypothesis H if and only

5 Note that the head-bias model MH results from choosing c ¼ 0 in the specification of the generalised

head-bias MGH .
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if the posterior probability P(H|D) is strictly larger than the prior probability of the

hypothesis H, P(H). Further, data D disconfirm hypothesis H if and only if

PðHjDÞ\PðHÞ. Since the two candidate models MGH and MGT are assumed to have

equal prior probability of 1/2, the intuition that the probability of one model being

confirmed goes to zero as the number of coin tosses goes to infinity is again captured

by APIP.

The intuition underlying APIP reflects a kind of epistemic modesty by assigning

intermediate rather than extreme degrees of belief to the false candidate models in

the limit.6 One could argue, however, that the concern is not necessarily that the

model posterior probabilities differ from the precise numerical value 1/2 in the limit

but that the model posterior probabilities converge in probability to random

variables taking either very large or very small values. As such APIP is to be seen as

a stronger version of the following requirement, which might be called a ‘Bayesian

Modesty Principle’ (BMP):

As the number of fair coin tosses n goes to infinity, the probability that the

posterior probability of MGH is larger than, say, 0.9 should converge to 0. The

same applies to the posterior probability of model MGT .

Again, Bayesian confirmation theory helps to motivate this principle. Suppose we

assume the relative notion of confirmation. In contrast to APIP, BMP does not

demand that a false model, say, MGH is not confirmed as the data size goes to

infinity. As a result BMP cannot be motivated by focusing exclusively on qualitative

confirmation statements. In order to illustrate the intuition underlying BMP, we

have to consider a quantitative account of confirmation. Quantitative accounts of

confirmation involve the concept of a degree of confirmation, which indicates how

strongly data D confirm hypothesis H. Let us, for instance, consider the difference

measure made popular by Carnap (1962)7: dðD;HÞ ¼ PðHjDÞ � PðDÞ. Suppose D

confirms H. Then, the larger the value of d(D, H), the stronger the inductive support

for H provided by the data D. Now, if BMP holds, then the probability ofMGH being

strongly confirmed goes to zero as the data size goes to infinity (here, ‘strongly

confirmed’ means that the difference measure takes a value that is larger than the

arbitrary threshold value 0.4).

3 Fair-Balance Paradox

While the previous section provided some arguments for the desirability of APIP

and BMP, the question remains whether these principles are, in fact, satisfied. In

order to address the empirical validity of these principles, let us focus on the

behaviour of the model posterior probability of the head-bias model MH for the sake

of simplicity. Yang (2007) demonstrates that if the the truth is that the coin is fair,

the posterior probability of MH converges in probability to a random variable with

6 An alternative way of looking at APIP is to view this principle as a strengthening or extension of

statistical consistency.
7 More recent proponents of the difference measure include Eells (1982) and Jeffrey (1992).
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the uniform distribution U(0, 1) for n going to infinity. That is, the posterior

probability of the false model MH converges, but not to a constant value. Phrased

differently, the posterior probability of model MH is drawn ‘randomly’ from the

interval (0, 1) when the data sets become infinitely large based on tossing a fair

coin. These analytic results are in accordance with simulation studies showing that

for data sets of size n ¼ 106 the posterior probability distribution of MH mirrors the

uniform distribution U(0, 1) (Yang 2007). That is, if you simulate the fair-coin

experiment a million times, then the empirical distribution of the posterior

probability of MH approximates the uniform distribution on the interval (0, 1). The

phenomenon that the posterior probability of MH fails to converge to the single

numerical value 1/2 for n going to infinity has been labelled the ‘fair-balance

paradox’ in the biological literature.

The fair-balance paradox reveals an undesirable feature of the Bayesian approach

to scientific inference as it violates both APIP and BMP. Consider APIP first. Rather

than converging in probability to a random variable with the single value 1/2 as

required by APIP, the posterior probability of MH converges in probability to a

random variable with the uniform distribution U(0, 1) if the coin is fair. Hence, the

Bayesian approach tends to confirm one of the false candidate models as data

accumulate. Further, the model MH will be strongly confirmed with probability 0.1

in the limit. So, as the posterior probability of MH converges in probability to a

random variable with the uniform distribution U(0, 1), there exists, in violation of

BMP, a non-vanishing probability that this model posterior probability is larger than

0.9 in the limit.

It is important to stress that even though the true fair-coin model MF has zero

prior probability and, hence, the prior probability distribution on the discrete space

of models (including the fair-coin model, the head-bias model and the tail-bias

model) does not have full support, the entire prior probability distribution on

parameter p is of full support in the sense that it assigns positive probability to every

open neighbourhood of every point hypothesis regarding the probability of ‘heads’

of the coin. Phrased differently, in the model selection problem the truth is excluded

since the true model MF has zero prior probability in the discrete model space. In

contrast, the truth is in the support of the prior when focusing on the entire prior

probability distribution on parameter p in the continuous parameter space. An

alternative way of describing the relationship between the model prior and the prior

on parameter p is to state that while the prior on parameter p is indifferent over all

possible values of p, the model prior is not indifferent over the three possible models

MF;MH and MT .

Since the fair-balance paradox is based on a chance process (i.e., coin tossing)

with a finite number of possible outcomes, the prior on parameter p is consistent in

the statistical sense of the term (Freedman 1963).8 This becomes apparent when

mapping the posterior probability distribution of parameter p: as the data size

increases the posterior probability distribution of p becomes more and more

8 A prior probability distribution P0 is consistent at h 2 H if given hypothesis h the probability for

observing a sequence of outcomes that gives rise to a sequence of posterior probability distributions

ðP1;P2; :::Þ that does not become more and more tightly peaked around parameter value h is zero. A prior

probability distribution P0 is called consistent if it is consistent at every h 2 H.
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concentrated around the true parameter value p ¼ 1
2
(see figure 2 in Lewis et al.

(2005)). So, focusing exclusively on the posterior probabilities of the models MH

and MT in the fair-balance paradox does not provide a comprehensive picture of the

underlying chance process.

An agent who thinks that all information necessary for Bayesian model selection

is contained in the model posterior probabilities and that these posterior quantities

indicate the relative plausibilities of the candidate models is referred to as an

‘overconfident’ Bayesian by Morey et al. (2013). The fair-balance paradox

reinforces the view that an exclusive focus on model posterior probabilities does

not provide a satisfactory account of inference as the model posteriors fail to

adequately report the relative plausibilities of the two candidate models. In contrast,

Morey et al. refer to a ‘humble’ Bayesian as an agent who questions the models used

for inference and invokes a variety of Bayesian tools, including posterior

distributions, model odds and Bayes factors for model checking. In a simple

example such as the fair-balance paradox already using both the posterior

probability distribution on parameter p and the model posteriors suffices to indicate

problems with the initial choice of candidate models and, hence, serves the need of

the humble Bayesian.

4 Modifying the Paradox

One essential characteristic of the fair-balance paradox is its symmetry: the

candidate models are equidistant from the truth. Furthermore, the parameter p in the

false models MH and MT gets infinitely close to the true parameter value p ¼ 1=2.
While the second feature follows naturally from identifying the hypothesis ‘The

coin is biased towards heads’ with model MH (and, similarly, identifying the

hypothesis ‘The coin is biased towards tails’ with modelMT ) and does not affect the

example’s function to put APIP and BMP to the test, a natural question to ask is

what happens in cases where the false candidate models are still equidistant from

the truth but do not come arbitrarily close to the true parameter value. One might

suspect that the paradox disappears in such a setting.

In order to address this question, I will consider the following two models: the

strong head-bias model MSH contains all Binomial distributions B(n, p) with

parameter p located strictly between 1/2 ? c and 1 (i.e., p 2 ð1
2
þ c; 1Þ) with a fixed

value c satisfying 0\ c\ 1
2
. As a result the parameter denoting the probability of

‘heads’ of the candidate model MSH does not get infinitely close to the true

parameter value p ¼ 1
2
. Again, it is assumed that modelMSH has prior probability 1/2

and assigns prior probabilities to parameter p based on the uniform probability

distribution Uð1
2
þ c; 1Þ.9 The strong tail-bias model MST then contains all Binomial

distributions B(n, p) with parameter p located strictly between 0 and 1
2
� c (i.e.,

p 2 ð0; 1
2
� cÞ). Similarly, it is assumed that model MST has prior probability 1/2 and

9 Note that the strong head-bias model MSH results from the generalised head-bias model MGH by

excluding the choice of constant c being equal to 0.
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assigns prior probabilities to parameter p based on the uniform probability

distribution Uð0; 1
2
� cÞ.

In both the fair-balance paradox and the modified coin tossing example the true

model has zero prior probability. As a result the model prior is not indifferent over

all possible models in both examples. In contrast to the fair-balance paradox where

the prior on parameter p does have full support, the truth is not in the support of the

prior on parameter p in the modified coin tossing problem. Phrased differently,

while the prior on parameter p is indifferent over all possible values of p in the fair-

balance paradox, it is not indifferent in the modified coin tossing problem.

The posterior probability of MSH converges in probability to a random variable

that takes the value 0 with probability 1/2 and the value 1 with probability 1/2 as the

number of coin tosses goes to infinity (see Theorem 1, ‘‘Appendix’’).10 Given the

symmetry of the problem the same applies to the posterior probability of MST . It

follows that one of the two false models will, with probability 1, be strongly

confirmed in the limit. Even though the resulting limiting behaviour differs between

the head-bias model MH and the strong head-bias model MSH , the fair-balance

paradox persists since both APIP and BMP are again violated. There is a sense,

however, in which the move towards the models MSH and MST aggravates the

problem as the probability of a candidate model being strongly confirmed in the

limit increases significantly.

The discussion shows that two plausible constraints on Bayesian convergence,

referred to as APIP and BMP, do not hold. Both the original fair-balance paradox

involving the head-bias and the tail-bias models and the modified fair-balance

paradox involving the strong head-bias and the strong tail-bias models violate these

two principles. Indeed, the modified coin tossing problem increases the probability

of confirming a false model with a high degree of confirmation.

Before concluding a final comment is in order. Both the fair-balance paradox and

its modification consider false models with equal distance from the truth due to the

symmetry of the set-up. This approach differs from a situation in which the truth is

excluded from the set of candidate models but these models have different distances

from the truth. In the latter scenario Bayesian inference typically shows a much

more benign face. To illustrate, consider the following two candidate models: The

asymmetric head-bias model MAH contains all Binomial distributions B(n, p) with

parameter p that lies strictly between 1/2 ? c1 and 1 (i.e., p 2 ð1
2
þ c1; 1Þ) with a

fixed value c1 satisfying 0\c1\ 1
2
. The asymmetric tail-bias model MAT then

contains all Binomial distributions B(n, p) with parameter p that lies strictly

between 0 and 1
2
� c2 (i.e., p 2 ð0; 1

2
� c2Þ) with 0\c2\ 1

2
and c1 6¼ c2. Again, it is

assumed that the two modelsMAH andMAT have equal prior probability and assign a

uniform prior to parameter p over the relevant intervals. Suppose model MAH is

closer to the truth than model MAT (i.e., c1\c2). It follows from general results on

Bayesian convergence (Dawid 1999) that the posterior probability of the false

10 This result on the asymptotic behaviour of model posterior probabilities sits well with work on

Bayesian convergence under a misspecified model (Berk 1966). Generally speaking, if there is no

probability distribution that is uniquely closest to the truth, the posterior probability distribution will

alternate between concentrating around several minima.
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model with the closest distance to the truth (as measured by KL divergence)

converges in probability to 1 as the data size goes to infinity.

5 Conclusion

Good methods of scientific inference are expected to have desirable limiting

features as the data size goes to infinity. The fair-balance paradox and its

modification reveal an unattractive feature of the Bayesian approach to scientific

inference. When choosing between two false candidate models that are equidistant

from the truth, the Bayesian approach tends to confirm a false candidate model

when the data size grows infinitely. As such, Bayesian inference violates two

desirable principles, the A Posteriori Indifference Principle and the Bayesian

Modesty Principle, set out in this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

Appendix

Theorem 1 The posterior probability of MSH converges in probability to a random

variable that takes the value 0 with probability 1
2
and the value 1 with probability 1

2

as the number of coin tosses n goes to infinity. The same applies to the posterior

probability of MST .

Proof Let �p denote the proportion of heads in n fair coin tosses. Further, let a be a

real number that lies strictly between 0 and 0.5. Then, by the Berry-Esseen Theo-

rem, the probability of event E� that �p lies between 1
2
� n�0:5�a and 1

2
� c converges

to 1
2
as n ! 1. Similarly, the probability of the event Eþ that �p lies between

1
2
þ n�0:5�a and 1

2
þ c converges to 1

2
as n ! 1.

By definition we have

Pð�pjMSHÞ ¼
Z 1

1
2
þc

Pð�pjp ¼ xÞ 1
1
2
� c

dx:

Now consider what happens when E� occurs. In that case the following inequality

holds

Pð�pjMSHÞ�P �pjp ¼ 1

2
þ c

� �
:

The Central Limit Theorem yields
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P �pjp ¼ 1

2
þ c

� �
� 1

rn
ffiffiffiffiffiffi
2p

p exp
�
�
ð�p� ð1

2
þ cÞÞ2

2r2n

�
;

where r2n ¼
pð1�pÞ

n
¼ ð1

4
� c2Þ=n.

Conditional on E�, the quantity �p� ð1
2
þ cÞ lies between �2c and �c� n�0:5�a.

Hence, we have the following asymptotic inequality

Pð�pjMSHÞ�B1

ffiffiffi
n

p
exp

�
� Anðcþ n�0:5�aÞ2

�
; ð1Þ

with A ¼ 1
2ð1

4
�c2Þ and B1 ¼ 1ffiffiffiffi

2p
p 1ffiffiffiffiffiffiffi

1
4
�c2

p .

Let us now turn to model MST . By definition we have

Pð�pjMSTÞ ¼
Z 1

2
�c

0

Pð�pjp ¼ xÞ 1
1
2
� c

dx:

Again, consider what happens when E� occurs. In that case the following inequality

holds (when considering an interval of size 1
n2
to the left of 1

2
� c)

Pð�pjMSTÞ�
1

1
2
� c

� � 1

n2
P �pjp ¼ 1

2
� c� 1

n2

� �
:

The Central Limit Theorem tells us that

P �pjp ¼ 1

2
� c� 1

n2

� �
� 1

rn
ffiffiffiffiffiffi
2p

p exp
�
�
ð�p� ð1

2
� c� 1

n2
ÞÞ2

2r2n

�
:

Conditional on E�, the quantity �p� ð1
2
� c� 1

n2
Þ lies between 1

n2
and

c� n�0:5�a þ 1
n2
. Hence, we have the following asymptotic inequality

Pð�pjMSTÞ�B2

ffiffiffi
n

p
exp �An c� n�0:5�a þ n�2

� �2� � 1

n2
; ð2Þ

with B2 ¼ 1
1
2
�c

1ffiffiffiffi
2p

p 1ffiffiffiffiffiffiffi
1
4
�c2

p .

Then, conditional on E�, we get the following inequality by combining (1) and

(2)

Pð�pjMSHÞ
Pð�pjMSTÞ

�
B1

ffiffiffi
n

p
exp �An cþ n�0:5�a

� �2� �

B2

ffiffiffi
n

p
exp �An c� n�0:5�a þ n�2ð Þ2

� �
1
n2

:

The right hand side reduces to

B1

B2

n2 exp �A 4cn0:5�a þ 2cn�1 � 2n�1:5�a þ n�3
� �� �

;

which converges to 0 as n ! 1. As a result we have
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Pð�pjMSHÞ
Pð�pjMSTÞ

! 0

as n ! 1. In other words, conditional on E�, the likelihood ratio of MSH to MST

converges to 0. By a similar argument, conditional on Eþ, the likelihood ratio of

MST to MSH converges to 0.

By applying Bayes’s theorem we get the following expression for the posterior

probability of MST :

PðMST j�pÞ ¼
1

ð1þ RÞ ;

where

R ¼
1
2
Pð�pjMSHÞ

1
2
Pð�pjMSTÞ

:

And so if Pð�pjMSHÞ=Pð�pjMSTÞ converges to 0 as n ! 1, then so does PðMSH j�pÞ. In
summary, as n ! 1, PðMST j�pÞ converges to 0 with probability 0.5, and converges

to 1 with probability 0.5. h
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