
                          Rotoli, M., Russo, G., & Di Bernardo, M. (2018). Stabilizing quorum-
sensing networks via noise. IEEE Transactions on Circuits and Systems II:
Express Briefs, 65(5), 647-651. https://doi.org/10.1109/TCSII.2018.2820815

Peer reviewed version

Link to published version (if available):
10.1109/TCSII.2018.2820815

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://ieeexplore.ieee.org/document/8327879/. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Explore Bristol Research

https://core.ac.uk/display/156786878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TCSII.2018.2820815
https://doi.org/10.1109/TCSII.2018.2820815
https://research-information.bris.ac.uk/en/publications/stabilizing-quorumsensing-networks-via-noise(1ef99774-dbd0-432b-a3b5-969b600e080f).html
https://research-information.bris.ac.uk/en/publications/stabilizing-quorumsensing-networks-via-noise(1ef99774-dbd0-432b-a3b5-969b600e080f).html


Stabilizing quorum-sensing networks via noise
Marianna Rotoli∗, Giovanni Russo†, Mario di Bernardo∗

∗University of Naples Federico II, Department of Electrical Engineering and ICT
†IBM Research Ireland, Control and Optimization Group

Email: grusso@ie.ibm.com

Abstract—We investigate how a single node injecting noise in a
quorum-sensing network can dramatically affect its convergence
towards synchronization. We show that adding some white noise
of sufficiently high intensity on a single node can stabilize the
collective behavior of all nodes in the network towards the
origin. A sketch of the proof of the convergence result is given,
together with the outcome of some numerical experiments on the
challenging problem of stabilizing a network of bistable systems
onto a common unstable equilibrium point.

I. INTRODUCTION

Over the past few years, much research effort has been
devoted to the study of sychronization and synchronizability
in complex networks, see e.g., [1], [2], [3] and references
therein. This has been primarily motivated by the importance
of synchronization in many application fields, with biochemi-
cal systems [4] and power networks [5] being two notable,
practical, examples. Often, when studying synchronization
phenomena, it is assumed that: (i) nodes communicate via
exchanging information on a dedicated link connecting them-
selves and not others; (ii) the network is free from noise
and uncertainties. Unfortunately, in some applications, these
assumptions are not satisfied. For example, in biology, it
is often the case that agents in the network (e.g., bacteria)
communicate via a quorum-sensing mechanism [6], [7], i.e.,
via secreting an inducer molecule that diffuses through the
population. Quorum-sensing networks are characterized by
the fact that nodes communicate via a shared, environmental,
quantity. Also, in e.g., biochemical applications, nodes are
often subject to some noise [1], [8], which is due to model
and/or communication uncertainties. Motivated by this, we
study synchronization in quorum-sensing networks affected
by noise. In particular, we show, via a stochastic Lyapunov
stability argument, that the injection of noise into a single
network node can drive all the agents towards a common
asymptotic solution, where the state variables of all of its nodes
become equal to 0. A numerical investigation complements the
theoretical results.

A. Related Work

Research effort on quorum-sensing network is somehow
limited, see e.g., [9], [10] for a Literature review. This is
surprising as such networks, besides their pervasiveness in
Nature, could also be used in designing engineered network
systems with the goal of minimizing the number of node-to-
node links, while achieving some desired connectivity level
[11]. Recently, a large body of Literature is emerging on the

study of synchronization effects in the presence of noise, see
e.g., [12], [1]. In this context, an interesting phenomenon is
the so-called common-noise-induced synchronization, see e.g.,
[13], [14], where some environmental noise synchronizes a
network of interest. Recent results on this synchronization
phenomenon include [15], which is specific to the Pikovsky-
Rabinovich and Hindmarsh-Rose models, and [15], which is
based on the use of Lyapunov exponents.

II. MATHEMATICAL TOOLS

A. Notation

We denote by: (i) In the n × n identity matrix; (ii) 1n×m
the n × m matrix with unitary elements; (iii) ‖·‖F (|·|) the
vector/matrix Frobenius (Euclidean) norm; (iv) tr {A} the
trace of the square matrix A; (v) ⊗ the Kronecker product;
(vi) C the space of continuous functions and C2 the space of
continuously differentiable functions (for definitions see e.g.,
[16]).

B. Stochastic Differential Equations

Consider an n-dimensional stochastic differential equation
of the form

dx = f(t, x)dt+ g(t, x)dB, (1)

where: (i) x ∈ Rn is the state variable; (ii) f : R+×Rn → Rn
belongs to C2; (iii) g : R+ × Rn → Rn×d belongs to C; (iv)
B = [B1, . . . , Bd]

T is a d-dimensional Brownian motion. We
assume that: (i) a solution of (1) exists for any initial condition
x0 := x(0) [17]; (ii) f(t, 0) = g(t, 0) = 0, i.e., the trivial
solution, x(t) = 0, is a solution of (1). We make use of the
following definition from e.g., [18], [19], [16]

Definition 1. The trivial solution of (1) is said to be
almost surely exponentially stable if for all x ∈ Rn,
limt→+∞ sup 1

t log (|x(t)|) < 0, a.s. (almost surely).

Consider the function V (t, x) : R+ × Rn → R+,
V (t, x) ∈ C1×2, i.e., V (t, x) is twice differentiable with
respect to x and differentiable with respect to t. As in
[16], we let: (i) LV (t, x) = Vt(t, x) + Vx(t, x)f(t, x) +
1
2 tr
{
g(t, x)TVxx(t, x)g(t, x)

}
; (ii) Vx = [Vx1 , . . . , Vxn ]; (iii)

Vxx is the n × n dimensional matrix having as ij-th el-
ement Vxixj

(where Vxi
:= ∂V (t, x)/∂xi and Vxixj

:=
∂2V (t, x)/∂xj∂xi). The following result from [16] will be
used to devise our main result.

Theorem 1. Assume that there exists a non-negative function
V (t, x) ∈ C1×2 and constants p > 0, c1 > 0, c2 ∈ R, c3 ≥ 0,



such that ∀x 6= 0 and ∀t ∈ R+: (H1) c1 |x|p ≤ V (t, x); (H2)
LV (t, x) ≤ c2V (t, x); (H3) |Vx(t, x)g(t, x)|2 ≥ c3V (t, x)2.
Then: limt→+∞ sup 1

t log (|x(t)|) ≤ − c3−2c2
2p , a.s. In particu-

lar, if c3 > 2c2, then the trivial solution of (1) is almost surely
exponentially stable.

III. PROBLEM SET-UP

We consider networks of N > 1 nodes coupled via
a quorum-sensing mechanism. For the sake of brevity, we
consider the case where the dynamics of the shared variable
is sufficiently faster than the dynamics of the nodes in the
network. Then, as remarked in [7], [10], the quorum-sensing
network dynamics is given by

ẋi = f(t, xi)− σ̄xi +
σi(t)

N

N∑
j=1

xj , (2)

xi(0) = xi,0, i = 1, . . . , N , σ̄ > 0 and where: (i) xi ∈ Rn,
f(t, xi) : R+×Rn → Rn are the state variable and the intrinsic
dynamics for the i-th network node: (ii) σi(t) : R → R.
Note that each node perceives the aggregate states of all the
network nodes (via the term

∑N
j=1 xj). We assume here that

fi(t, 0) = 0, ∀i = 1, . . . , N and we consider the case where
the coupling strength for one network node, say node 1, is
equal to σ1(t) = σ̄ + σ∗w(t), with w(t) being 1-dimensonal
white noise and σ∗ being a constant that models its amplitude.
For the sake of brevity, in this note we only consider the
case where σi(t) = σ̄, ∀i = 2, . . . , N . However, our results
can be generalized to a setting with heterogeneous coupling
strengths, heterogeneous nodes and with the quorum-variable
being characterized by its own dynamics as will be discussed
elsewhere. Dynamics similar to (2) arise in opinion formation
networks with uncertain parameters and in networks with
noisy communication channels, [20], [21]. The dynamics (2)
can be recast as the following stochastic differential equation

dx1 =
[
f(t, x1) + σ̄

(
1
N

∑N
j=1 xj − x1

)]
dt+ σ∗

N

∑N
j=1 xjdb,

dxi =
[
f(t, xi) + σ̄

(
1
N

∑N
j=1 xj − xi

)]
dt,

(3)
i = 2, . . . , N , where b(t) ∈ R is the standard Brownian
process. We are interested in characterizing the behavior of
(3) in terms of the behavior of its noise-free version (σ∗ = 0):

dyi =

[
f(t, yi) + σ̄

(
1

N

∑N
j=1 yj − yi

)]
dt, (4)

i = 1, . . . , N and yi(0) = xi(0). In particular, our goal is
to study how a single node injecting noise in the network
can affect synchronization of (3). In order to do so, we first
formalize the notion of synchronization:

Definition 2. Let x̄(t) = 1
N

∑N
j=1 xj(t) and ȳ(t) =

1
N

∑N
j=1 yj(t). We say that:

• the noise free network achieves synchronization if
(i) sn(t) := 1N ⊗ ȳ(t) is a solution of (4); (ii)
limt→+∞

1
t log (|yi(t)− ȳ(t)|) < 0, ∀i = 1, . . . , N ;

• the noisy network (3) achieves stochastic synchroniza-
tion if: (i) s(t) := 1N ⊗ x̄(t) is a solution of (3);

(ii) limt→+∞ sup 1
t log (|xi(t)− x̄(t)|) < 0 a.s., ∀i =

1, . . . , N .

With our main result presented below we show that the noise
injected by a single node can drive a noise-free synchronized
network to a state where all of its nodes are equal to 0. That
is, it happens that limt→+∞ sup 1

t log (|x(t)|) < 0 a.s., i.e.,
x̄(t) = 0 in Definition 2.

IV. MAIN RESULT

We first introduce the following Lemma.

Lemma 1. Consider network (4) and assume that: (i) ∀x, y ∈
Rn and ∀t ∈ R+, there exists some Kf such that (x −
y)T [f(t, x)− f(t, y)] ≤ Kf (x− y)

T
(x− y); (ii) sn(t) is a

solution of the network. Then, the noise-free network achieves
synchronization if σ̄ > Kf .

Proof. The result can be proved by: (i) defining the error
between the state of the network and the synchronous solution;
(ii) proving, via the Lyapunov function V (e) = 1

2e
T e, that

e = 0 is exponentially stable for the error dynamics. The
complete proof is omitted here for the sake of brevity.

We are now ready to introduce our main result. For the
sake of brevity, in this brief we report the main technical steps
of the proof. The complete proof, which requires formalizing
the notion of stability in terms of two measures [22], will be
presented elsewhere.

Theorem 2. Consider network (3) and assume that:
H1 ∀x, y ∈ Rn and ∀t ∈ R+, there exists

some Kf such that (x − y)T [f(t, x)− f(t, y)] ≤
Kf (x− y)

T
(x− y);

H2 s(t) := 1N ⊗ x̄(t) is a solution of (3);
H3 σ̄ > Kf .

Then, limt→+∞ sup 1
t log (|xi(t)|) < 0 a.s., ∀i = 1, . . . , N if:(

σ∗√
2N

)2

> Kf . (5)

Sketch of the proof. In order to prove the result, we first note
that the dynamics for x̄ is given by

dx̄ =
1

N

N∑
j=1

f(t, xj)dt+
σ∗

N
x̄db. (6)

Let X := [xT1 , . . . , x
T
N ]T . From H2, s(t) is a solution of

the network and hence we define e := X − s = [(x1 −
x̄)T , . . . , (xN − x̄)T ]T as the error between the state of
network (3) and the synchronous solution x̄(t). We then have
de = dX − ds and hence, from (3) and (6) we get:

de1 =
[
f(t, e1 + x̄)− 1

N

∑N
j=1 f(t, ej + x̄)− σ̄e1

]
dt+

N−1
N σ∗x̄db

dei =
[
f(t, ei + x̄)− 1

N

∑N
j=1 f(t, ej + x̄)− σ̄ei

]
dt−

σ∗

N x̄db.
(7)



Now, we define the vector ẽ := [eT , x̄T ]T . Then, by means
of (7) and (6) we have

dẽ = F̃ (t, ẽ)dt+
σ∗

N
G̃ẽdb, (8)

where:
• G̃ := G⊗ In, where G is the (N + 1)× (N + 1) matrix

G =


0 . . . 0 N − 1
0 . . . 0 −1
...

...
...

...
0 . . . 0 1

 ;

• F̃ (t, ẽ) := [F (e)(t, ẽ)T , F̄ (t, ẽ)T ]T , with F (e)(t, ẽ) =

[f (e1)T (t, ẽ), . . . , f (eN )T (t, ẽ)]T , where f (ei)(t, ẽ) :=
f(t, ei + x̄)− 1

N

∑N
j=1 f(t, ej + x̄)− σ̄ei and F̄ (t, ẽ) :=

1
N

∑N
j=1 f(t, ej + x̄).

Note that the trivial solution ẽ(t) = 0 is a solution of (8).
In fact: (i) G̃ẽ is clearly equal to 0 if ẽ = 0; (ii) F̃ (t, 0) is
also equal to 0, ∀t ≥ 0 from the hypotheses. We now apply
Theorem 1 to study stability of the trivial solution ẽ(t) = 0 of
(8). We also remark here that stability of ẽ(t) = 0 corresponds
to the state of the network where x̄(t) = x1(t) = . . . =
xN (t) = 0. We prove our statement by first proving stability of
(8) with respect to the components [eT1 , . . . , e

T
N ]T . As shown in

[22] this can be done by considering the stochastic Lyapunov
function V (t, ẽ) = V (ẽ) = V (e)(e) + V (x̄)(x̄) := 1

2 ẽ
T ẽ =

1
2e
T e + 1

2 x̄
T x̄. In particular, the key idea behind the proof

consists in showing that: (i) independently on x̄(t), there exists
some c(e)2 < 0 such that LV (e)(e) ≤ c

(e)
2 V (e)(e). Following

Theorem 1, this implies that limt→+∞ sup 1
t log |e(t)| < 0,

a.s., thus implying that, ∀i = 1, . . . , N , |ei(t)| → 0 a.s. as
t→ +∞; (ii) for the dynamics (6) when |e| = 0 the solution
x̄(t) = 0 is almost surely exponentially stable. This is done
again by means of Theorem 1, this time by using V (x̄)(x̄) as
stochastic Lyapunov function.

It can be shown that LV (e)(e) = V
(e)
e F (e)(t, ẽ) =

eTF (e)(t, ẽ). Now, let Favg(t, x̄) := [f(t, x̄)T , . . . , f(t, x̄)T ]T ,
we have eTF (e)(t, ẽ) = eTF (e)(t, ẽ) −
eTFavg(t, x̄) + eTFavg(t, x̄) and, since eT ·(

1N ⊗
(
f(t, x̄)− 1

N

∑N
j=1 f(t, ej + x̄)

))
= 0, we

get eTF (e)(t, ẽ) = eT [fT (t, e1 + x̄) − fT (t, x̄) −
σ̄eT1 , . . . , f

T (t, eN + x̄) − fT (t, x̄) − σ̄eTN ]T . Hence,
from H1 we get eTF (e)(t, ẽ) ≤ (Kf − σ̄) eT e, which is
indeed independent on x̄(t). Hence, since by hypothesis H3
Kf − σ̄ < 0, then |ei(t)| → 0, a.s. as t → +∞, for all
i = 1, . . . , N and independently on x̄(t). Now, we prove
that, when |e(t)| = 0, the solution x̄(t) = 0 is almost surely
exponentially stable. To this aim, note that, from (6), when
|e(t)| = 0, we get:

• LV (x̄)(x̄) = x̄T
(

1
N

∑N
j=1 f(t, x̄)

)
+ 1

2

(
σ∗

N

)2

x̄T x̄.

This, by means of H1, leads to LV (x̄)(x̄) ≤(
2Kf +

(
σ∗

N

)2
)
V (x̄)(x̄);

•
∣∣∣V (x̄) σ∗

N x̄
∣∣∣2 = 4

(
σ∗

N

)2

V (x̄)2
(x̄).

Thus, x̄(t) = 0 is almost surely exponentially stable if

4
(
σ∗

N

)2

> 4Kf + 2
(
σ∗

N

)2

, which is true by means of (5),
completing the proof.

V. DISCUSSION

Theorem 2 implies that the presence of a single noisy
node in a quorum sensing network can have dramatic effects
on synchronization. In our result, nodes can be non-linear
given that they fulfil H1, which is better known as the vector
fields being QUAD in the Literature [23]. We note that, if
Lemma 1 is fulfilled, then the network synchronizes onto the
synchronous solution ȳ(t) which, in general, can be different
from 0. Now, if one network node becomes noisy as in (3),
with the noise intensity (σ∗) being sufficiently high, then
Theorem 2 implies that the states of all network nodes are
driven by noise to approach 0, which is the only solution s(t)
common to all nodes in the noisy case. This is particularly
important for certain complex networks from both Nature and
Technology. For example, in certain applications arising from
power networks [24] one would like to synchronize all the
network nodes onto a desired periodic orbit and deviations
from such a synchronous solution would result in electrical
losses. In this context, following Theorem 2, one may want to
mitigate the diffusion of noise through the network in order
to avoid deviations from the desired synchronous solution. In
other applications, instead, one may want to desynchronize a
network of interest [25], [26]. To this aim, Theorem 2 could
be used to properly inject noise in order to somehow reset the
network to a state where all nodes are stabilized at the origin.
This is the case, for example, of important applications such
as neural networks, where pathological synchronization among
bursting neurons might be related to the tremors observed in
patients affected by the Parkinson’s disease [27]. Interestingly,
the key idea behind Deep Brain Stimulation techniques is
indeed that of perturbing the synchronization of neurons via
noise, see e.g., [28]. We also remark here that Theorem 2
offers an insight on how the size of the network has an
impact on effects of noise diffusion. In fact, from (5) it is
straightforward to see that the higher the number of nodes ism
the higher the noise intensity σ∗ needs to be in order to drive
the state of all the network nodes to 0. In this sense, nodes
are cooperating to protect the network from noise and this is
similar in spirit to a recent result presented in [11]. Finally,
we discuss here some possible generalizations of the result
presented in this paper, which will be presented elsewhere:
(i) the quorum sensing dynamics studied in this paper has
been obtained under the assumption that the dynamics of the
shared variable is sufficiently fast. This assumption is not
realistic in certain applications. Our result, however, can be
extended to cover the case where the shared variable has its
own dynamics; (ii) the main result can be extended to consider
more general network topologies. Using techniques similar to
those presented in this work, it is possible to give a result
analogous to Theorem 2 for complex directed networks with
heterogeneous coupling strengths; (iii) Theorem 2 can be also



extended to consider heterogeneous systems. In particular, let
fi(t, xi) be the intrinsic dynamics of the i-th node and assume
that all the functions fi(·, ·) fulfill condition H1 of Theorem
2 with fi(t, 0) = 0, ∀i and ∀t > 0. Then, a result similar to
Theorem 2 can be proved.

VI. NUMERICAL VALIDATION

We now provide a numerical validation for Theorem 2
by considering collective decision processes [29], [30]. In
particular, we consider networks of the form (3) where each
node/individual needs to decide between two mutually exclud-
ing alternatives. In this case, the intrinsic dynamics of the i-th
node can be modeled as ẋi = f(xi) = rxi − x3

i where, as
in [31], [32], xi ∈ R is the attitude of the individual towards
one of the two alternatives, which are represented by the two
stable fixed points of the function f(·), i.e., ±r. Note, also,
that f(0) = 0 and, in particular, the fixed point 0 is an unstable
fixed point, representing a neutral (or absence of) opinion of
the node. As shown in [33], [20] the intrinsic dynamics fulfills
H1 of Theorem 2 with Kf = r. Hence, following Lemma 1,
the network is synchronized if σ̄ > r. In Figure 1 the network
behavior is shown when N = 5, r = 1 and σ̄ = 2. All the
simulations presented here have been obtained via the Euler-
Maruyama method [34] and the initial conditions were taken
from the normal distribution. In Figure 2 the behavior of the
same network is instead shown when σ∗ = 10 (note that,
with this value for σ∗, all the hypotheses of Theorem 2 are
fulfilled). In such a figure, it is clearly shown that the injection
of noise causes all the network nodes to converge to 0, which
is an unstable equilibrium point for each of the nodes when
they are uncoupled. That is, the network transitions from the
synchronous state of Figure 1 to a state where all the nodes
have neutral/no opinion. Finally, in order to provide a further
numerical characterization of Theorem 2 we plotted, in Figure
3 and Figure 4, the regime value of |x̄(t)|, say xf , as a function
of the number of nodes, N , and of the noise intensity, σ∗,
respectively. In such figures, xf := |x̄(t)| = 0 means that
all the nodes converge towards 0. That is, noise propagation
drives all the network trajectories to 0.

0 10 20 30 40 50

t

-1.5

-1

-0.5

0

0.5

1

x i(t
)

Fig. 1. Synchronization of the quorum sensing network when there is no
noise, i.e. σ∗ = 0. The nodes attain a common decision onto ȳ(t) = 1.

VII. CONCLUSIONS

We investigated how a single node injecting noise in a
quorum-sensing network can drive a synchronized network

0 10 20 30 40 50

t

-4

-2
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2

4

6

x i(t
)

Fig. 2. Time behavior of the quorum sensing network when σ∗ = 10. In
this case, all the nodes converge to 0.
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Fig. 3. The steady-state value of |x̄(t)|, i.e. xf , as a function of N . In the
simulations, σ∗ = 10.
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Fig. 4. The steady-state value of |x̄(t)|, i.e. xf , as a function of σ∗. In the
simulations, N = 5. In accordance to the theoretical predictions of Theorem
2 values of σ∗ larger than ≈ 7 drive the state variables of all the nodes to 0.

towards a state of inactivity, where the states of all its nodes
become equal to 0. In doing so, we presented a sufficient
condition for the stability of the trivial solution of the network,
which is based on the use of a stochastic Lyapunov argument.
This allowed us to consider networks with nonlinear nodes
and with the noise diffusion depending on the nodes’ state.
After discussing some implications of our result, we showed
the effectiveness of the sufficient condition by considering a
network of bistable nodes arising in the context of collective
decision dynamics.
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