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We investigate families of finite core vortex quartets in mutual equilibrium in a two-

layer quasi-geostrophic flow. The finite core solutions stem from known solutions

for discrete (singular) vortex quartets. Two vortices lie in the top layer and two

vortices lie in the bottom layer. Two vortices have a positive potential vorticity

anomaly while the two others have negative potential vorticity anomaly. The vortex

configurations are therefore related to the baroclinic dipoles known in the literature

as hetons. Two main branches of solutions exist depending on the arrangement of

the vortices: the translating zigzag-shaped hetonic quartets and the rotating zigzag-

shaped hetonic quartets. By addressing their linear stability, we show that while the

rotating quartets can be unstable over a large range of the parameter space, most

translating quartets are stable. This has implications on the longevity of such vortex

equilibria in the oceans.
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I. INTRODUCTION

The notion of heton was introduced by Hogg and Stommel1 to emphasise the ability

of a discrete baroclinic vortex pair to transfer heat. The word ‘heton’ is indeed derived

from word ‘heat’. When both the geostrophic and hydrostatic approximations are valid,

any vortex of the top (respectively bottom) layer, which has negative (respectively positive)

intensity, induces a downward local distortion of the interface between the layers. Such a

configuration is referred to as a ‘hot heton’. When the sign of the vorticity of each vortex

changes, the sign of the curvature of the interface changes as well, and the situation is

referred to as a ‘cold heton’.

Hetons exist and have been observed in the ocean: they are the association of a surface

(or subsurface) vortex and of a deeper vortex of opposite polarity. The first mention of an

observed heton dates from the early 1980’s from Gulf Stream ring observations2. Cold core

rings detaching south of the Gulf Stream can pair with subsurface anticyclones containing

Sargasso Sea water. More recently, hetons were observed in the Northeastern Atlantic Ocean,

near the Iberian Peninsula. Indeed, when the outflow of Mediterranean water, which follows

the Iberian Peninsula, becomes unstable, eddies detach from it as baroclinic dipoles (hetons).

In this case, the anticyclone lies slightly deeper than the cyclone, in the heton. Such hetons

can collide: then, two cyclones or two anticyclones can interact3; for instance, the two

anticyclones can merge while the cyclones remain in their periphery or are ejected away4.

Such an interaction can create a new heton which can be asymmetric (for instance, the

anticyclone is larger and stronger than the cyclone).

The equations of motion of a system of discrete vortices in a two-layer rotating fluid were

first obtained by Gryanik5 and then successfully used in numerous works1,6–15.

The notion of ‘hetonic quartet’ was introduced in the literature16 for four discrete vortices

lying in the same vertical plane, in a two-layer flow. Such a hetonic quartet moves at

a constant translation velocity in a direction perpendicular to the plane containing the

vortices. A structure consisting of four vortices (two hetons) belongs to the class of hetonic

quartets only if the distances between the vortices satisfy a special condition, an analog of

the dispersion relation in the wave theory. These quartets are referred to as zigzag-shaped

translating hetonic quartets15. Another form of coplanar configurations of four vortices in

equilibrium in a two-layer fluid consist of vortex quartets in solid-state rotation at a constant
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angular velocity and are referred to as zigzag-shaped rotating hetonic quartets15.

In this paper, we extend these results to finite core zigzag-shaped hetonic quartets. We

first determine numerically equilibrium states (or V-states) for both rotating and translating

vortex quartets. We next address their linear stability. For the sake of completeness, we

also address the linear stability of the equivalent discrete quartets. Studying configurations

of vortices in mutual equilibrium is essential as they are the only configurations which can

persist, if stable, for long times. We show that in the range of parameters investigated, most

of the translating quartets are stable, except when the two vortices, lying in different layers,

nearer the centre of the structure are almost aligned vertically. The instability is associated

with the displacement of the vortices and is captured in the linear stability analysis of both

finite core vortices and discrete vortices. On the other hand, the rotating quartets are

found unstable over a wider range of parameters. Again, the instability is related to the

displacement of the vortices and is captured in the linear stability analysis of both finite

core discrete quartets. Interestingly, contrarily to the translating quartets, the rotating

quartets are linearly stable if the central vortices are nearly aligned. We finally investigate

the nonlinear time evolution of the quartets on a few selected examples.

II. PROBLEM SETUP

A. Mathematical and numerical models

The oceans and the atmosphere are relatively shallow layers of stratified fluid where the

typical horizontal scales are much larger than the typical height of the fluid. These envi-

ronments can be conveniently represented by (shallow) horizontal layers of fluid of uniform

density each in hydrostatic balance. A flow in such a multi-layer system is governed by the

Saint-Venant or shallow water equations17. A two-layer system can be seen as the simplest

model to take into account the background stable density stratification at leading order.

Large scale oceanic flows are also strongly influenced by the background planetary rota-

tion. For simplicity, we assume a uniform background rotation quantified by the Coriolis

frequency f .

We consider here a system of two layers of fluid of equal height at rest h1 = h2 = h = H/2,

where H is the total fluid height. In all our expressions, the subscript 1 refers to a quantity
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defined in the top fluid layer while the subscript 2 refers to a quantity defined in the bottom

layer. We set H = 1 without loss of generality. The horizontal coordinates (x, y) are

normalised by a characteristic length scale L. In practice, L is set to the mean horizontal

radius of the finite core vortices, hence the finite core vortices have a non-dimensional radius

R = 1. We assume that the difference between the density ρ1 of layer 1 and ρ2 the density

of layer 2, ρ2 − ρ1 = ∆ρ � ρ1, ρ2. We assume that the relative vertical vorticity is small

compared to the Coriolis frequency, and that the height perturbation at the interface between

the two layers is small compared to the mean height of the layers. Under these assumptions,

the dynamics of the flow is well captured by the shallow-water quasi-geostrophic model. The

flow can be fully described in terms of potential vorticity (PV)17. The quasi-geostrophic PV

anomaly qj in layer j is defined by

qj = ∆ψj +
L

L2
D

(ψ3−j − ψj), j = 1, 2, (1)

where ψj is the streamfunction is layer j and LD =
√
g′h/f is the Rossby deformation radius.

Here, g′ = g∆ρ/ρ1 is the reduced gravity, and g is the gravitational acceleration. Equation

(1) shows that PV in layer j depends on the flow in the other layer 3 − j. The flows in

layers 1 and 2 are thus coupled. The velocity field uj = (uj, vj) in layer j derives from the

streamfunction ψj as

uj = −∂ψj
∂y

, vj =
∂ψj
∂x

(2)

We consider an adiabatic and inviscid flow. In this case, PV is materially conserved,

Dqj
Dt

= 0. (3)

The problem is conveniently decoupled by defining the barotropic streamfunction ψb

associated with the baroclinic PV qb and the baroclinic streamfunction ψb associated with

the barotropic PV qc:

ψb =
ψ1 + ψ2

2
, ψc =

ψ1 − ψ2

2
, (4)

with

qb = ∆ψb, qc = ∆ψc − γ2ψc (5)
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where γ =
√

2L/LD. These equations can be formally inverted using the appropriate Green’s

functions, namely:

Gb(x− x′) =
1

2π
ln |x− x′|, Gc(x− x′) = − 1

2π
K0(γ|x− x′|), (6)

where the subscript b refers to the barotropic mode and the subscript c to the baroclinic

one, and K0 is the zeroth order modified Bessel function of the second kind. The flow

in the layer j is simply recovered by projecting the barotropic and baroclinic modes back

into the layers, ψ1 = ψb + ψc, and ψ2 = ψb − ψc. By construction, the Green’s functions

provide the solution for point vortices. Differentiating the Green’s functions provides the

kernels to evaluate the velocity field while the second order derivatives provides the velocity

gradients which are used for the linear stability of the point vortices quartets. For finite core

vortices containing uniform PV defined by their bounding contours, inverting (6) results in

evaluating surface integrals. These surface integrals are transformed into contour integrals

using Green’s theorem18. Numerical simulations of the nonlinear time evolution of the

finite core quartets are performed using Contour Surgery19, which is an extension of the

method Contour Dynamics20,21 controlling the complexity of the calculation by performing

topological ‘surgery’ on the vortex bounding contours.

We determine numerically equilibrium solutions for finite core hetonic quartets. The nu-

merical methods are iterative and make the vortex bounding contours converge to stream-

lines, in the relevant rotating/translating reference frame. We have used two different meth-

ods to evaluate the determine the equilibrium states. The first one uses a partial linearisation

of the streamfunction and has been successfully applied in many previous works18,22–27. For

the translating hetonic quartets, the convergence of the method proved slow in practice. To

remedy this problem, a new numerical tool was developed in which the streamfunction is

fully linearised. The method is an extension of an existing method for two dimensional and

single-layer shallow water flows28–31 to the two-layer problem. Results stemming from the

two methods were compared, when available, and the results are identical to the accuracy

of the calculations. The linear stability analysis of the finite-core configuration is done by

analysing azimuthal modes of deformation of the vortices bounding contours18. The numer-

ical method also allows to analyse the global displacement of the contours, hence the mode

which physically represents a shift in the vortices relative positions.
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B. Position of the discrete vortices at equilibrium

Figure 1 provides a schematic representation of the four vortex configurations in a two-

layer fluid for both (a) the rotating zigzag-shaped hetonic and (b) the translating zigzag-

shaped hetonic quartets, for the finite-core (not discrete) vortices. We use the same notation

for the distances separating both discrete and finite-core vortices. We can see that if we

mentally draw a line connecting the centres of the vortices then we obtain a zigzag, hence

the name given to the quartets. In both cases, the horizontal distance between the inner

vortices is denoted d while the distance between the outer vortices is b. For convenience,

we define the non-dimensional distances D = γd and B = γb. The dispersion equations

F (D,B) = 0 for the discrete stationary solutions and the expressions for the corresponding

translational V and angular ω velocities are15

(D −B)2

2DB(D +B)
= 2K1(B +D) + K1(2D) + K1(2B), (7)

and

V =
κ

2π

[
D2 + 4DB −B2

2D(B2 −D2)
+ K1(D +B)−K1(B −D) + K1(2D)

]
(8)

for the translating zigzag-shaped hetonic quartet;

B2 +D2

2DB
= (B +D)K1(B +D) + (B −D)K1(B −D)+

+DK1(2B) +BK1(2D), (9)

and

ω =
κγ2

4πD

[
B2 + 3D2

2D(B2 −D2)
−K1(B +D)−K1(2D)−K1(B −D)

]
, (10)

for the rotating zigzag-shaped hetonic quartet. It should be noted that the dispersion

relations collapse to single curves for in variables B and D. This is, strictly speaking, no

longer true for finite core vortices as an additional length scale, namely the vortex mean

horizontal radius R, is introduced in the problem. This means that the same value of D for

two different values of γ leads to two different values of d/R, hence different values for the

relative distance between the vortices.
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FIG. 1. General geometry of the hetonic quartets. The panels show a vertical cross-section of

coplanar finite core vortices: (a) rotating zigzag-shaped hetonic quartets (cold and hot hetons), (b)

translating zigzag-shaped hetonic quartets (two cold hetons). Cyclones are in blue and anticyclones

in red. κ > 0 is the surface integrated PV.

The remaining of the paper focuses on the finite core equivalents to the discrete equilibria

described by the equations (7)–(10). A similar approach was used to determine families of

finite core tripolar vortices in a previous work.18

III. V-STATES AND THEIR LINEAR STABILITY

We seek families of zigzag-shaped hetonic quartets spanned by the distance between

their inner vortices d, and for four different values of γ = 0.3, 0.5, 0.7, 1.0. The vortices

have uniform PV. We could not determine numerically full branches of solutions for γ ≥ 1.2

due to numerical convergence limitations. Without loss of generality, the vortices have mean

horizontal radius R = 1, hence an area A = πR2 = π. Their PV is set to q = ±2π and

therefore their surface integrated PV is ±κ = ±qA = ±2π2. Figure 2 summarises the global

characteristics (d, b, ω) for the finite core rotating zigzag-shaped hetonic quartets, and figure

3 presents the characteristics (d, b, V ) for the finite core translating zigzag-shaped hetonic

quartets. In comparison, the results for the discrete zigzag-shaped hetonic quartets with

κ = 2π2 are shown in the same figures. We recover two asymptotes for b = f(d) in both
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FIG. 2. Left: b = f(d) for γ = 0.3 (black), 0.5 (red), 0.7 (blue), 1 (green). Solid line corresponds to

finite core vortices, dotted lines to point vortices. The dashed line indicates the asymptote b = d.

Right: Angular velocity Ω = g(d), same conventions.

cases. We see that b → ∞ as d → 0 and b → d as d → ∞. In other words, the limiting

cases are: (i) a single vortex spanning both layers at the centre of the domain (d→ 0) with

two opposite-signed vortices ejected to infinity (b → ∞), (ii) a cold heton and a hot heton

(b ∼ d) infinitely distant (d→∞) for the rotating quartets; and (i) a central heton (d→ 0)

with two satellites of different signs at infinity (b→∞), (ii) again, two cold hetons or two

hot hetons (d ∼ b) infinitely distant (d → ∞) for the translating quartets. The results

b = f(d) between the finite core and the discrete solutions are in good agreement. This is

to be expected a global quantity such the vortex centroid locations.

The discrepancy between the results obtained for finite core vortex equilibria and discrete

vortex equilibria is due to the facts that (a) the vortex charge κ is less localised in the finite

core problem as the vortices spread over some horizontal distance (their radius R), (b) in

particular finite core vortices in different layers may horizontally overlap while the discrete

vortices for the same value of (d, b) would still be clearly separated. This is in particular

true for the inner vortices when d is small. Recall that equations (7), (9) imply that the

characteristics of the discrete equilibria collapse to single curves. However, as mentioned

above, different values of γ for identical values of D,B implies different values for d/R, b/R

as R = 1 for all γ. This is made evident by looking at the exact arrangement and shape of the
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FIG. 3. Left: b = f(d) for γ = 0.3 (black), 0.5 (red), 0.7 (blue), 1 (green). Solid line corresponds

to finite core vortices, dashed lines to point vortices. The dot-dashed line indicates the asymptote

b = d. Right: Translation velocity V = l(d), same conventions.

FIG. 4. Rotating hetonic quartets: shape of the finite-core vortices at the turning point in the

curve b = f(d) for γ = 0.3 (first panel), 0.5 (second panel), 0.7 (third panel) and 1.0 (fourth panel)

in a window [−8, 8]× [−2, 2] .

9



FIG. 5. Translating hetonic quartets: shape of the finite-core vortices at the turning point in the

curve b = f(d) for γ = 0.3 (first panel), 0.5 (second panel), 0.7 (third panel) and 1.0 (fourth panel)

in a window [−12, 12]× [−2, 2].

finite core equilibria at the turning point (d∗, b∗) of the graph b = f(d), which corresponds

to a single point of the graph B vs D for the discrete vortices. The shape of the vortices are

shown in figure 4 for the finite core rotating zigzag-shaped hetonic quartets and in figure

5 for the finite core translating zigzag-shaped hetonic quartets. It is made clear that the

relative distances d/R, b/R are very different hence that the characteristics of the equilibria

cannot be expected to be the same. They cannot be exactly deduced from each other by

a simple scaling by γ. When the vortices are well separated horizontally, their boundary is

nearly circular as a result of the weak interactions. This is also the case when two vortices

laying in different layers align near the centre (d → 0) or at infinity (d ∼ b → ∞). This

is due to the fact that isolated axisymmetric aligned hetons or aligned antihetons are in

equilibrium. An antiheton is a pair of like-signed vortices lying in different layers. Only

when the four vortices are close together the shape of the vortices departs significantly from

a circular cross-section in response to both the horizontal and vertical shear the vortices

induce on each other.

Figure 2 also shows the angular velocity ω of the rotating zigzag-shaped hetonic quartets.

As expected, ω → 0 as d→ 0 and as d→∞. This is due to a combination of compensation

effect between the opposite sign vortices as the fact that b → ∞ (in both cases). The

results for the finite core rotating zigzag-shaped hetonic quartets and the discrete zigzag-

shaped hetonic quartets are in qualitative agreement despite showing a significant difference
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FIG. 6. Growth rate σ of the most unstable mode for rotating hetonic quartets versus the distance

d for γ = 0.3 (black), 0.5 (red), 0.7 (blue), 1 (green). Solid line corresponds to finite core vortices,

dotted lines to point vortices.

in magnitude for ω, in particular for d < 2. The difference in angular velocity ω can be

attributed to the partial overlapping of the inner vortices in the finite core case. Results for

the translation velocity V of the translating zigzag-shaped hetonic quartets are presented

in figure 3. Again, there is an overall qualitative agreement for the results obtained for the

finite core vortices and the discrete vortices. The translation velocity vanishes as d → ∞
and d→ 0 and reaches a maximum for a finite value of d which depends on γ. Recall that

equation (8) guarantees that the curves of V collapse however to a single curve in variables

(D,B) for the discrete vortices. We again see a discrepancy in the magnitude of the velocity.

The velocity of the discrete equilibria is higher than the velocity of the finite core equilibria;

this is attributed to the fact that all the PV is concentrated on singular charges in the

discrete approach rather than spread over finite areas.

We next turn our attention to the linear stability of the zigzag-shaped hetonic quartets.

The linear stability of the finite core quartets is examined by analysing the eigenmodes

(azimuthal normal modes) of deformation of the vortex bounding contours as done in a

previous work18. The contour deformation azimuthal normal modes are proportional to eσt,

where σ = σr + iσi is a complex number. The growth rates of a mode are therefore σr

while σi is its frequency. (One of the modes analysed corresponds to a global displacement
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FIG. 7. Growth rate σ of the most unstable mode for translating hetonic quartets versus the

distance d for 0.5 (red), 0.7 (blue), 1 (green). Solid line corresponds to finite core vortices, dashed

lines to point vortices.

of the individual vortices26. We also analyse the linear stability of the discrete equilibria.

To this purpose, we explicitly linearise the equations of motion of the discrete vortices

about the equilibrium, with respect to infinitesimal perturbations on the vortices coordinates

(xi, yi)i=1, 4. Again, the perturbations are taken as normal modes proportional to eσt. The

terms of the linearised equations can be formally expressed by taking second order partial

derivatives of the Green’s functions (6). The linearised system leads to a 8 × 8 algebraic

eigenvalue problem which is solved numerically.

Linear stability results for the rotating zigzag-shaped hetonic quartets are presented in

figure 6. Rotating zigzag-shaped hetonic quartets are (neutrally) stable for small values

of d as the largest growth rate is σr = 0. An unstable mode appears for d ≥ dc where

dc is a threshold depending on γ for both the discrete and finite-core vortices. We denote

dvc the stability threshold obtained for the discrete vortices and dfc the stability threshold

obtained for the finite-core quartets. The thresholds dvc corresponds in fact to a unique

non-dimensional value Dv
c = γdvc while the growth rate of the modes scales as γ2. The latter

scaling comes from the scaling of the velocity gradients. The mode of instability is observed

for both the discrete vortices and the finite core quartets and the values of the thresholds dvc

and dfv obtained for the two models are in remarkable agreement. We therefore deduce that
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the instability is physically related to a relative displacement of the vortices. The stability

threshold dfc for the finite core zigzag-shaped hetonic quartets also scales as γ−1, at least at

leading order. Recall however that the vortices for the same value of D = γd but different

values of γ have different shapes, see figure 4. As a consequence, one expects differences

in the details of the instability for the finite-core zigzag-shaped hetonic quartets between

cases with different γ. The growth rate of the instability reaches a maximum for a finite

value of d, and slowly decreases back to zero as d increases. The limit case of a central

single vortex occupying both layers (d→ 0) with two satellites ejected at infinity (b→∞)

is neutrally stable as one expects due to the lack of interaction. The discrepancy between

the values of σr is attributed to horizontal spreading and/or to overlapping of the finite-core

vortices, as mentioned above. Finally, we note that a similar instability has been observed

for three-dimensional quartets in a continuous stratification32.

The linear stability of the translating zigzag-shaped hetonic quartets is drastically dif-

ferent. The results are presented in figure 7. Using the same notations, the translating

zigzag-shaped hetonic quartets are all neutrally stable for d > dvc (discrete quartets) or

d > dfc (finite core quartets), where dvc is a lower stability threshold for the discrete trans-

lating zigzag-shaped hetonic quartets and dfc a lower stability threshold for the finite core

translating zigzag-shaped hetonic quartets. These thresholds, again, corresponds to a unique

non-dimensional value for the discrete translating zigzag-shaped hetonic quartets Dv
c = γdvc .

On the other hand, all translating zigzag-shaped hetonic quartets are unstable for d < dc.

The growth rate of the instability tends however to 0 as d → 0. This is true for both

the finite core and the discrete translating zigzag-shaped hetonic quartets, and the stability

results are qualitatively similar for both models. Again, this means that the instability is

related to a displacement of the vortices. The main difference between the two cases is that

the range of the distance d where the quartets are found unstable is narrower for the discrete

vortices for the finite core vortices. The stability threshold dvc for the discrete vortices, for a

given γ, is also smaller than dfc the stability threshold for finite core vortices. For the finite

core translating zigzag-shaped hetonic quartets, the instability occurs typically in a region

where d/R < 1. The overlapping of the inner vortices is thus likely to strongly affect the

instability. Results for the discrete vortices indicate that the instability only occurs when

some PV is found very close to the centre of the domain (d < dvc � 1). For finite core

vortices, some of the PV extends near the centre of the domain for even for d > dvc , and this
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may trigger the instability.

IV. NONLINEAR EVOLUTIONS

We next present the nonlinear evolution of the zigzag-shaped hetonic quartets on four

selected examples. In the first one we consider the evolution of a finite core rotating zigzag-

shaped hetonic quartet for γ = 1, d = 0.492 > dfc , b = 2.02 and ω = 0.419. Results are

presented in figure 8. The vortices are shown in a reference frame steadily rotating at the

equilibrium angular velocity ω, hence any motion observed in this frame corresponds to

a departure from the equilibrium. No explicit perturbation is superimposed to the initial

conditions. Small perturbations arise naturally from the numerical noise. The finite core

rotating zigzag-shaped hetonic quartet remains in near equilibrium for a long period of time,

up to t ∼ 25 ' 1.67Trot, where Trot = 2π/ω ' 15 is the rotation period of the quartet. Then

the four initially co-planar vortices start to drift apart and become misaligned. The vortices

start to deform as a result of their relative displacement. It should be noted however that the

vortices do not undergo strong deformations and that they remain compact patches of PV.

They are not destroyed nor broken down into smaller vortices and filaments by the shear and

strain they induce on each other. This is another indication that the instability primarily

affect the location of the vortex centroids rather than their shape. Pure deformation modes

often result in the breaking or merger of the vortices25,33.

The steady rotation of a stable finite core rotating zigzag-shaped hetonic quartet is illus-

trated in figure 9. In this example, γ = 1,d = 0.234 < dfc , b = 2.41, and ω = 0.332. The

vortices are shown in a fixed (non-rotating) to show the steady rotation of the quartet. The

simulation was run till t = 100 ' 5.3Trot, where Trot ' 18.9 is the rotation period of the

quartet. The quartet was still steadily rotating at that time.

We next turn to finite core translating zigzag-shaped hetonic quartets. In the first exam-

ple, γ = 1, dfc = 0.416 < dfc , b = 0.5.93, V = 0.163 and the quartet is unstable. Results are

presented in figure 10 in a reference frame translating at V . Comparing the typical order of

magnitude of the growth rates obtained for the rotating zigzag-shaped hetonic quartets and

the translating zigzag-shaped hetonic quartets, we see that the instability affecting the latter

is weaker than the instability affecting the former, with maximum growth rates almost an

order of magnitude smaller. The instability typically growths at a slower pace for the trans-
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FIG. 8. Top view on the vortex bounding contours for the unstable rotating hetonic quartet with

γ = 1, q = ±2π, A = π, d = 0.492, b = 2.02, ω = 0.419 at t = 0, 26, 28, and 30. Solid contours

represent vortices in the top layer while dashed contours represents vortices in the bottom layer.

The views are shown in the reference frame rotating at the equilibrium angular velocity ω.

lating zigzag-shaped hetonic quartets. Indeed in the present example, the vortices in the

quartet are only slightly deflected from their equilibrium position by t = 400 ' 12.4Ttrans,

where Ttrans = R/V is a translation time scale set to the time taken by the quartet to

move forward by a vortex radius. The vortex configuration becomes asymmetric with the

central heton moving to the right getting loser to the right-hand outermost vortex satellite.

Again, we observe a small variation in the shape of the vortices due to their relative displace-

ment (hence vortices are subjected to time dependent strain and shear). The interaction

is nonetheless not destructive and the four vortices conserve their initial volume. Such an

exchange of vortex partner is similar to the heton evolutions observed in the ocean.

We finally illustrate the steady translation of a stable finite core translating zigzag-shaped

hetonic quartets for γ = 1, d = 0.619 > dfc , b = 4.35 and V = 0.242. Here Ttrans ' 4.13.

The simulation was un up to t = 500 ' 120Ttrans where no sign of deviation was observed.

Results are presented in figure 11 in a fixed (non-translating) reference frame where the

uniform translation of the quartet is made evident.
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FIG. 9. Top view on the vortex bounding contours for the stable finite core rotating zigzag-shaped

hetonic quartet with γ = 1, q = ±2π, A = π, d = 0.234, b = 2.41, ω = 0.332. Top view on the

vortices at t = 0, 2, 4, 6, and 8. Solid contours represent vortices in the top layer while dashed

contours represents vortices in the bottom layer. The views are shown in the fixed (non-rotating)

frame to illustrate to steady rotation. The vortices remain in mutual equilibrium until the end of

the simulation at t = 100. The vortex centroids are indicated by small filled disks and they are

joined by a line to show the solid-state rotation.

−8−6−4−20 2 4 6 8
−2
0
2
4
6
8

−8−6−4−20 2 4 6 8
−2
0
2
4
6
8

−8−6−4−20 2 4 6 8
−2
0
2
4
6
8

−8−6−4−20 2 4 6 8
−2
0
2
4
6
8

FIG. 10. Top view on the vortex bounding contours for the unstable finite core translating zigzag-

shaped hetonic quartet with γ = 1, q = ±2π, A = π, d = 0.416, b = 5.93, V = 0.163 at

t = 0, 400, 425, and 430. Solid contours represent vortices in the top layer while dashed contours

represents vortices in the bottom layer. The views are shown in the reference frame translating at

the equilibrium velocity.
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FIG. 11. Stable translating hetonic quartet for γ = 1, q = ±2π, A = π, d = 0.619, b = 4.35,

V = 0.242. Top view on the vortices at t = 0, 10, 20, and 40. Solid contours represent vortices in

the top layer while dashed contours represents vortices in the bottom layer. The views are shown

in the fixed (non-rotating frame) to illustrate to steady rotation. The vortices remain in mutual

equilibrium until the end of the simulation at t = 500. The vortex centroids are indicated by small

filled disks and they are joined by a line to show the uniform translation.

V. CONCLUSION

We have numerically determined two new families of equilibrium states (V-states) for

finite core rotating and translating zigzag-shaped hetonic quartets. These states stem from

the existence of equilibrium solutions for configurations of four co-planar discrete vortices.

The families are characterised by the value of γ which is the inverse Burger number, and

are spanned by the distance d separating the two innermost vortices of the quartets. We

have found that rotating zigzag-shaped hetonic quartets are unstable for d > dc, where dc

is a γ-dependent threshold. For discrete rotating, the value of dvc corresponds to a unique

non-dimensional of Dv
c = γdcv. This is also true at leading order for the finite core rotating

zigzag-shaped hetonic quartets. The growth rate of the instability reaches a maximum for

a finite value of d and vanishes as d→∞. The situation is reversed for translating zigzag-

shaped hetonic quartets. Indeed such quartets are neutrally stable for d > dc, and only

quartets with d < dc are found unstable. The instability is typically weaker than for the
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translating rotating zigzag-shaped hetonic quartets as the growth rate of the instability for

the translating quartets is typically an order of magnitude smaller than the growth rate

of the instability for the rotating quartets. The mode of instability is recovered (at least

qualitatively) when modelling the quartets by discrete vortices. This confirms that the

instability is related to a displacement of the vortex centroids.

We conclude that while rotating zigzag-shaped hetonic quartets are unstable for a large

range of the parameter d, most of the translating zigzag-shaped hetonic quartets are neutrally

stable as the instability only occurs for a small range 0 < d < ddc < 1, from our results. It

should also be noted that the growth rates of the instability grows as γ grows which is when

the baroclinic effects increases (a two-dimensional barotropic equlvalent flow is recovered for

γ → 0).

The new family of stationary states obtained in this paper supplements the class of

known stationary solutions in a two-layer rotating fluid18,34–39. Finally we note that rotating

quartets exist in the ocean as an intermediate stage in the interaction of two hetons3,4. This

was observed in the Gulf of Cadiz in the eastern part of the Atlantic Ocean.
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