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SUMMARY 22 

1. The migration of humpback whales to and from their breeding grounds results in a 23 

short, critical time period during which neonatal calves must acquire sufficient energy 24 

via suckling from their fasting mothers to survive the long return journey. 25 

2. Understanding neonate suckling behaviour is critical for understanding the energetics 26 

and evolution of humpback whale migratory behaviour and for informing conservation 27 

efforts, but despite its importance, very little is known about the details, rate and 28 

behavioural context of this critical energy-transfer. 29 

3. To address this pertinent data gap on calf suckling behaviour we deployed multi-sensor 30 

Dtags on eight humpback whale calves and two mothers allowing us to analyse detailed 31 

suckling and acoustic behaviour for a total of 68.8 hours.  32 

4. Suckling dives were performed 20.7±7% of the total tagging time with the mothers 33 

either resting at the surface or at depth with the calves hanging motionless with roll and 34 

pitch angles close to zero. 35 

5. Vocalisations between mother and calf, which included very weak tonal and grunting 36 

sounds, were produced more frequently during active dives than suckling dives, 37 

suggesting that mechanical stimuli rather than acoustic cues are used to initiate nursing 38 

6. Use of mechanical cues for initiating suckling and low level vocalisations with an active 39 

space of less than 100 meters indicate a strong selection pressure for acoustic crypsis. 40 

7. Such inconspicuous behaviour likely reduces the risk of exposure to eavesdropping 41 

predators and male humpback whale escorts that may disrupt the high proportion of 42 

time spent nursing and resting, and hence ultimately compromise calf fitness. 43 
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8. The small active space of the weak calls between mother and calf is very sensitive to 44 

increases in ambient noise from human encroachment thereby increasing the risk of 45 

mother-calf separation.  46 

 47 

Key-words Humpback whale, nursing, suckling, neonate, migration, bio-energetics 48 

 49 

INTRODUCTION 50 

 51 

Cetaceans are fully adapted to an aquatic environment, and yet they must still breathe air and 52 

suckle their young as terrestrial mammals. The lack of physical maternal support to calves for 53 

transport and nursing means that neonate cetaceans must have sufficient motor skills to 54 

suckle, swim and breath-hold immediately after birth (McBride & Kritzler 1951; 55 

Wahrenbrock et al. 1974; Peddemors 1990; Peddemors, Fothergill & Cockcroft 1992). To 56 

facilitate the critical transfer of energy during nursing, cetaceans have evolved milk with a 57 

higher fat content compared to that of terrestrial mammals (Chittleborough 1958; Slijper 58 

1966; Harrison 1969), active nursing where milk is ejected into the mouth of the calf 59 

(McBride & Kritzler 1951; Slijper 1966; Drinnan & Sadlier 1981; Ridgway et al. 1995), and 60 

rapidly improving breath-holding capabilities, thereby enabling neonates to suckle for longer 61 

durations within hours of birth (Asper, Young & Walsh 1988; Peddemors 1990; Cartwright & 62 

Sullivan 2009a).  63 

Several species of large baleen whales undertake long annual migrations 64 

between high latitude feeding grounds and low latitude breeding grounds. It is likely they 65 

embark on this migration to reduce predation pressure and seek sheltered, warm and calm 66 

waters for the neonates. While travelling long distances might not pose large energetic costs 67 
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for mothers (Corkeron & Connor 1999), the cessation of foraging while lactating does impose 68 

a large energetic challenge for them, resulting in a significant decline in body condition 69 

(Chittleborough 1958; Lockyer 2007; Christiansen et al. 2016). This creates a short critical 70 

time window on the breeding grounds (Dawbin 1966; Herman & Antinoja 1977; Clapham & 71 

Mayo 1987; Clapham 1996, 2000) to transfer sufficient energy to the calf for it to grow and 72 

survive the long migration back to the foraging grounds. Indeed, the growth rate of humpback 73 

whale calves is remarkably fast; studies have found a growth rate of 0.5-1m/month in length 74 

(Glockner & Venus 1983; Christiansen et al. 2016) suggesting a need for substantial time 75 

investment in suckling.  76 

 An increase in size gives the calf not only an energetic advantage during the 77 

subsequent migration, but it also increases its probability of surviving predation attempts. 78 

Rapid weight gain is optimised by having frequent access to the mother for nursing and by 79 

minimising energy expended in travelling and diving. Humpback whale (Megaptera 80 

novaeangliae) mothers modify their dive durations on foraging grounds corresponding to the 81 

dive capability of the calf, presumably to allow the calf to stay in close contact (Szabo & 82 

Duffus 2008; Tyson et al. 2012). By maintaining close proximity to its mother, the calf gains 83 

access to maternal provisioning and protection, while reducing the risk of separation. Close 84 

proximity also allows for hydrodynamic advantages by slipstreaming, thereby conserving 85 

energy during swimming (Noren & Biedenbach 2008; Tyson et al. 2012). The use of acoustic 86 

cues between mother and calf could help maintain this close contact and facilitate the 87 

coordination of behavioural transitions such as initiating suckling.  88 

Acoustic signals from mother-calf pairs have been reported previously for 89 

humpback whales (Silber 1986; Dunlop, Cato & Noad 2008; Zoidis et al. 2008). These may 90 

serve not only as a vehicle of communication between mother and calf but may also have 91 
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unwanted consequences such as attracting potential eavesdropping predators or male 92 

humpback whale escorts (Tyack 1983; Deecke, Ford & Slater 2005). Predation poses a risk to 93 

both mothers and calves (Pitman et al. 2014), whereas male escorts may be a mixed blessing 94 

to the mothers; they may disrupt energy transfer to the calves, but in turn also represent 95 

potential fathers for their next calf (Cartwright & Sullivan 2009b). For the calves, male 96 

escorts may primarily be a source of disturbance that make the mothers move and hence cause 97 

higher calf energy expenditure and fewer suckling opportunities. As such, we hypothesise that 98 

calves seek to signal in a way that maintains critical contact, protection and nursing 99 

opportunities from the mother, while minimising the risk of eavesdropping by predators and 100 

escorts.  101 

A detailed understanding of mother-calf behaviours is important not only from a 102 

biological standpoint, but is also needed to guide conservation efforts and manage human 103 

activities such as whale watching in breeding grounds. Despite the importance of these 104 

behaviours, our knowledge of suckling in neonate baleen whales is sparse being based largely 105 

on limited surface and underwater observations (Glockner-Ferrari & Ferrari 1984; Clapham & 106 

Mayo 1987; Cartwright & Sullivan 2009b). Both approaches carry the risk of disrupting 107 

natural behaviour of study subjects (Constantine 2001), potentially leading to biased 108 

interpretations. To obtain fine-scale data on nursing behaviour while minimising vessel 109 

proximity, we deployed multi-sensor tags, Dtags, on neonate humpback whales and their 110 

mothers in Exmouth Gulf in Western Australia. Specifically, we aimed to: i) quantify where 111 

and how often young calves suckle to better understand their resilience to disturbance, and ii) 112 

investigate how mother-calf pairs solve the need for maintaining contact in a low visibility 113 

environment while keeping risks of detection by predators and male humpback escorts low.  114 

 115 
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MATERIALS AND METHODS 116 

Field site, study animals and tagging 117 

Field work was conducted in Exmouth Gulf, Western Australia (22.16° S, 118 

114.30° E) during August and September 2014. Exmouth Gulf is a known breeding and 119 

resting ground for the Stock D humpback whale population (Bejder et al. 2015) during their 120 

southbound migration (Chittleborough 1953; Jenner, Jenner & McCabe 2001). Calves are 121 

usually less than three months of age when they reach Exmouth Gulf and have a body length 122 

of about 4-7 meters (Chittleborough 1958; Christiansen et al. 2016). Exmouth Gulf is shallow 123 

compared to the waters outside the gulf with depths less than 25m. 124 

We approached and tagged mother-calf pairs that were logging or travelling 125 

slowly. We conducted an hour of behavioural focal follow (Altmann 1974) on the mother-calf 126 

pair before and after tagging, during which we maintained a distance of >200m with the 127 

engine of the observation platform turned off. This allowed for noting the overall behaviour of 128 

the tagged animal and its mother, and more specifically to identify visually when calves 129 

performed peduncle dives which served as a proxy for suckling dives (Gordon et al. 1998; 130 

Gero & Whitehead 2007). Travelling bouts, during which both calf and mother were 131 

swimming actively, were classified as active dives.  132 

During tagging attempts, the logging mother-calf pair was approached slowly 133 

(<2 knots) with a 5.5m aluminium-hulled boat powered by an 80 HP Yamaha four-stroke 134 

engine in forward idle. All of the study animals were tagged with non-invasive, digital 135 

archival Dtags (Johnson & Tyack 2003) using a 9m carbon fibre pole. On the two occasions 136 

where we tagged both mother and calf, the calf was always tagged first. We then conducted a 137 

2hr focal follow before tagging the mother. Version 3 Dtags were attached between the 138 

blowhole and the dorsal fin with four 50 mm diameter soft silicone suction cups (Fig 1a). 139 
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These tags have a frontal cross-sectional area of 20 cm
2
 and a net buoyancy in water of 10g 140 

and so are unlikely to add drag that could have an energetic impact on the calves. Tags were 141 

programmed to release after a pre-programmed period of 22h using a timed galvanic release 142 

which vented the cups, but some detached prematurely due to whales rubbing (Johnson & 143 

Tyack 2003). The tags were retrieved the following day using radio tracking of the 220 MHz 144 

VHF beacon in the tag. The Dtags sampled three-axes accelerometers, magnetometers and a 145 

pressure sensor at 200Hz with 16-bit resolution, and stereo sound at 240kHz also with 16-bit 146 

resolution. Sound was treated with a 6-pole anti-alias filter at 70kHz and a 1-pole high pass 147 

filter at 150Hz prior to conversion and was then decimated to a sampling rate of 120kHz 148 

before storing in memory giving flat (±2 dB) frequency response from 0.15 to 50kHz. The 149 

gentle slope of the 1-pole high-pass filter de-emphasizes flow noise while allowing for 150 

detection and quantification of sounds down to at least 40 Hz.  151 

 152 

Data analysis 153 

Behavioural classification 154 

Data analyses were performed using custom scripts in Matlab 8.4 2014b. Sensor 155 

data were decimated to a sampling rate of 25 Hz using identical symmetric finite impulse 156 

response low-pass filters on each channel. Accelerometer and magnetometer data were then 157 

calibrated and rotated to account for the orientation of the tag on the animal using the 158 

intervals of logging at the surface as an orientation reference (Johnson & Tyack 2003). 159 

Behavioural observations recorded during focal follows of mother-calf pairs were used to 160 

identify suckling and active dives in the Dtag data. Movement effort of tagged animals during 161 

suckling and non-suckling dives was measured using the minimum specific acceleration 162 

(MSA). The MSA provides a measure of how much the total acceleration deviates from the 163 
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gravity acceleration and is an under-bound on the specific acceleration generated by the 164 

animal (Simon, Johnson & Madsen 2012). MSA is calculated by taking the absolute value of 165 

the norm of the tri-axial acceleration minus the gravitational force of earth (9.81 m/s
2
). Jerk 166 

peaks in contrast to MSA are used for locating sudden movement changes made by the animal 167 

and is calculated by taking the differential to the acceleration (Ydesen et al. 2014).   168 

The median dive MSA recorded from calves during suckling dives, as identified 169 

during focal follows, was calculated from the start to end time of each dive as determined 170 

from the tag pressure measurements. The grand median MSA for each whale during these 171 

suckling dives was used to normalise the MSA for each tagged whale to account for overall 172 

differences in the acceleration between animals due to tag placements on different parts of the 173 

body. Focal follow suckling dives were characterised by a much lower MSA distribution 174 

(median normalised MSA=1.04) compared to active dives (median normalised MSA=4.36) 175 

(Wilcoxon rank-sum test, Z=-228.2, p < 0.01) (Fig 1 b,e,f,i). We therefore used the median 176 

normalised MSA recorded in active and suckling dives as classified from the focal follows to 177 

establish thresholds for classifying the remaining dives of each tag out. To avoid the 178 

confounding effects of a few very strong acceleration peaks from water splashes or contact 179 

with the mother in both suckling and active dives, we used the receiver operating 180 

characteristic (ROC) curve approach (Fawcett 2006) to identify an upper trimming level for 181 

MSA data in identified focal follow suckling dives (n=43) and focal follow active dives 182 

(n=231) that minimised classification errors. For a given trimming level, all instantaneous 183 

MSA values above the trimming level were excluded before calculating the median MSA of 184 

each trimmed dive. A set of ROC curves was then formed from the trimmed median MSAs 185 

with each curve having a different trimming level (expressed as a percentile of the normalised 186 

MSA). This was done for each percentile in the range from 70 to 99, and the area under curve 187 
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(AUC) was calculated for each resulting ROC curve as an indicator of the potential 188 

classification performance. The AUC was found to be largest (0.98) for a 91% trimming level, 189 

thus this was chosen to calculate median MSAs for classification of suckling dives in the tag 190 

data outside of focal follow periods. To find an appropriate detection threshold, we then used 191 

a maximum likelihood criterion on the empirical probability density distributions of the 192 

trimmed median MSAs for the visually observed dives. The threshold giving the fewest total 193 

errors was found as the MSA value at the intersection point of the two distributions. This 194 

yielded a threshold of 1.5, giving proportions of true positives and false positives of 0.86 and 195 

0.004, respectively. The threshold was then used to distinguish between active (i.e., those with 196 

a median trimmed and normalised MSA > 1.5) and suckling dives (i.e., those with a median 197 

trimmed and normalised MSA < 1.5).  198 

All dives were located for each tag out and suckling and active dives were 199 

distinguished according to the determined MSA criteria. Additionally, a depth threshold for 200 

dives was set to avoid misclassifying occasional short and shallow dives. Suckling dives were 201 

only scored if the maximum dive depth was >1.5m corresponding roughly to the ventral-202 

rostral body width of the mother, and the dive duration was >1min. In comparison, focal 203 

follow suckling dives had a mean maximum depth of (±s.d.) 3.8±2.6m and a mean duration of 204 

(±s.d.) 2.4±0.2min. The same depth threshold was imposed on active dives but no minimum 205 

duration was set, to include short energetic dives. Dives were divided into descent, bottom 206 

and ascent phases based on the vertical velocity (i.e., the differential of depth taken from the 207 

pressure sensor). Bottom phases were located by taking the differential of depth, the first and 208 

last periods of the dive with a depth difference larger than zero were classified as descent and 209 

ascent respectively. Orientation of the calves was only calculated during the bottom phase of 210 
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dives. In dives classified as suckling, the bottom phase duration was interpreted as time spent 211 

on suckling or attempts thereof.  212 

 213 

Sound analysis 214 

Sound data (68.8h from 10 whales) was examined acoustically and visually in 215 

successive 15s segments using a spectrogram display (Hamming window, nfft: 4096 and 90% 216 

overlap). We identified and marked start time and duration of sonic events such as 217 

vocalisations, rubbing and breaching. Vocalisations were classified as either grunting or tonal 218 

sounds following established definitions (Zoidis et al. 2008). Sound cues were only noted 219 

during dives: surface breathing and logging bouts were not included in the analysis because of 220 

the high probability of missing sounds when the tag was out of the water or splashed. Given 221 

the close proximity between mother and calf it is not possible to reliably identify which is 222 

vocalising; therefore, our call rates represent the total vocal output of mother-calf pairs. A 223 

large proportion of the sound data from the tag outs on the two mother humpback whales was 224 

unavailable for meaningful acoustic analysis, due to the high proportion of time spent logging 225 

at the surface, during which the tag was out of the water.   226 

Only vocalisations with a signal to noise ratio (SNR) greater than 10dB were 227 

retained for further analysis. To estimate the signal to noise ratio, the RMS ambient noise 228 

level of a 1s segment starting 2s before each vocalisation was calculated and compared to the 229 

RMS sound level in a 0.125s window covering the strongest section of the call. Ambient noise 230 

and calls were low-pass filtered at 5 kHz using a 4
th

 order Butterworth bandpass filter before 231 

RMS calculations. The centroid frequency and RMS bandwidth of calls were calculated as per 232 

established definitions (Au 1993; Madsen & Wahlberg 2007).  233 

Page 10 of 39

Functional Ecology: Confidential Review copy

Functional Ecology: Confidential Review copy



11  

To get an estimate of the ambient noise level in Exmouth Gulf, a SoundTrap 234 

(Ocean Instruments Ltd) was deployed for seven days. The SoundTrap was deployed at 8m 235 

depth and set to record continuously at a sampling rate of 288kHz for the entire deployment.  236 

To test the hypothesis that an acoustic signal functions as a cue for i) initiating 237 

suckling or ii) keeping contact we examined the quantity of vocalisations and rubbing sounds 238 

during suckling (n=404) and active dives (n=2095). Generalised linear mixed models 239 

(GLMM) were used to compare the number of vocalisations and rubbing sounds between 240 

suckling and active dives. Specifically, we modelled the number of vocalisations or rubbing 241 

sounds per dive as a function of dive type and duration using the Automatic Differentiation 242 

Model Builder (glmmADMB) package in R software version 3.3.1, which accounts for over-243 

dispersed data (Bolker et al. 2009). The error distribution was Poisson with a log link 244 

function. Dive type (i.e., active or suckling dive), and duration of dive were included in the 245 

model as fixed effects and calf ID was included in both models as a random effect.  246 

 247 

RESULTS 248 

Ten humpback whales were tagged in Exmouth Gulf, WA, between August 26
th

 249 

and September 3
rd

 2014 (Table 1). Eight of the ten humpback whales were young calves, 250 

while the remainder were mothers accompanying two of the tagged calves. Tags were all 251 

placed between the blowhole and the dorsal fin of the whale and stayed attached for a mean 252 

(±s.d.) of 7.5±6.4 h. All calves were accompanied by their mothers and two mother-calf pairs 253 

(mn242a, mn247b) were also associated with an escort during tagging and the behavioural 254 

focal follow. In the two instances the mother-calf pairs were joined by one or more escorts 255 

their overall activity level increased significantly. Besides those two instances no other 256 

conspecifics were observed near the mother-calf pairs during the focal follows.  257 
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All calves and mothers had a mild reaction to the tagging process. Typical 258 

reactions included a couple of slow dives away from the tagging boat after which the whales 259 

resumed their pre-tagging logging behaviour (normally within 15min). 260 

 261 

Suckling dives 262 

 An example of suckling dives and active dives recorded from a mother-calf pair 263 

(mn239a, mn239b) is shown in Fig. 1. A typical suckling dive begins with the calf making 264 

three to four fluke strokes to dive some 1.6m below the dorsal surface of the stationary mother 265 

(Fig 1b-e). The calf then initiates suckling which continues for approximately 2min during 266 

which both the mother and calf are stationary and horizontally orientated (Fig 1b-e). When 267 

suckling is complete the calf slowly ascends and returns to the surface to breathe. Suckling 268 

was performed at a wide range of mean depths (1.1-19.2m) (Fig 2) and over half of suckling 269 

dives for each animal (65±44%) occurred at a depth greater than 2.5m i.e. when the mother 270 

was submerged (Fig 2). However, suckling dive depth varied widely by individual with some 271 

calves only suckling near the surface while other calves only suckled at depth during the 272 

intervals that the tags were attached.  273 

Eight tagged calves performed 2499 dives deeper than 1.5m (Fig 5). Of those 274 

dives 404 were classified as suckling dives giving an overall mean proportion of time spent in 275 

suckling position of 20.7±7 % (n=8) (Table 1). Independent of dive depth, the vertical depth 276 

offset between mother and calf during suckling dives (Fig 1) was 1.7±0.6m (n=21) for 277 

mn238a and mn238b and 1.6±0.4m (n=11) for mn239a and mn239b. The overall mean calf 278 

depth in suckling dives in which the mother was submerged (i.e., with calf depths greater than 279 

2.5m, ensuring the mother is at least a half body width beneath the surface) was 8.3±2.3m. 280 

Calves adopted a consistently horizontal posture during suckling dives with overall mean 281 
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(±s.d.) roll and pitch angles during the bottom phase of 8.4±6.1 and 9.1±5.9 degrees 282 

respectively. As indicated by the low MSA, calves make little movement during suckling (Fig 283 

1e) and in effect remain stationary beneath their mother. The vertical speed during ascent and 284 

descent in suckling dives (grand mean vertical speed of 0.6±0.1 m s
-1

) is in accordance with 285 

previous dive data of young humpback whale calves on breeding grounds (Stimpert et al. 286 

2012). Suckling dives had a grand mean duration of 2.1±0.9 min of which 47-88% (Table 1) 287 

of the total dive duration was spent in suckling position on average.  288 

 289 

 290 

Vocalisations 291 

Vocalisations recorded by the tags were classified as either grunting sounds 292 

(Zoidis et al. 2008) or tonal sounds (Table 2). Tonal sounds were longer in duration and had a 293 

distinctive sinusoidal wave shape compared to the grunting sounds (Fig 4 b, c). Mean centroid 294 

frequencies of tonal and grunting sounds were 910±580Hz and 500±310Hz, respectively. The 295 

mean RMS bandwidth for tonal sounds was 1350±800Hz and for grunting sounds 296 

730±390Hz. The two call types differed little in received levels on the tag with a mean of 297 

141±1 dB re 1µPa RMS for tonal sounds and 136±4 dB re 1µPa RMS for grunting sounds. 298 

Given the consistent received levels on the calves, it is very likely that most calls were 299 

produced by the calves (Table. 2). To estimate the masking noise from the environment, the 300 

mean noise spectral density from a week of recordings from a deployed SoundTrap was 301 

calculated over the approximate 1000 Hz RMS bandwidth of the two call types giving an 302 

estimated masking noise level (Nmasking) of 109 dB re 1µPa RMS.  303 

Dive type had a significant influence on number of vocalisations per dive 304 

(GLMM, p = 0.0079, Table 3), with ~4 times more calls during active dives (Fig. 3a). 305 
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However, there was no relationship between dive duration and number of vocalisations. To 306 

account for individual variance among animals we included ID as a random effect in the 307 

model, which explained 41% of the variance in number of calls.  308 

Vocalisations were produced throughout the tag deployment (Fig 6) with a 309 

tendency for call rate to increase with activity level during active dives (as measured by 310 

MSA) as seen in Fig. 4a, where vocal output as a function of time and depth for one calf 311 

(mn247a) is shown. However, when considering all eight calves that trend was not 312 

statistically significant (Fig. 5). Three tags stayed on the calves after sundown, indicated by 313 

the grey patched areas. No particular diurnal trend was evident amongst these three animals in 314 

either call rates or suckling dive rates but the sample size is too small to be conclusive.  315 

In contrast to the vocalisations, rubbing sounds per dive were produced 1.3 316 

times more frequently during suckling dives than active dives (GLMM, p < 0.01, Table 3) 317 

(Fig 3b). Additionally, there was a positive relationship between dive duration and number of 318 

rubbing sounds per dive (GLMM, p < 0.01, Table 3). 69% of the variance in rubbing sounds 319 

was explained by individual. The presence of jerk peaks (indicating a sudden change in 320 

motion) in association with rubbing sounds indicated that the rubbing sounds are good proxies 321 

for physical contact between mother and calf (Fig. 6).  322 

 323 

DISCUSSION 324 

Observing suckling in an aquatic medium is challenging, since surface and 325 

underwater observations are potentially biased by the presence of nearby observers 326 

(Constantine 2001; Best et al. 2015). Here we sought to overcome these limitations by 327 

deploying suction-cup attached multi-sensor tags on humpback whale neonates, enabling a 328 

detailed analysis of their behaviour (Johnson, Aguilar de Soto & Madsen 2009). Although 329 
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tagging young animals must be undertaken with great care, the mild reactions in this study 330 

suggest that tagging offers a low disturbance approach to detailed studies of natural calf 331 

behaviour. Most importantly, the use of tags allowed us to remain >200m away from calves 332 

during visual follows and to track suckling behaviour at night-time. A drawback of this 333 

protocol is that not all of the suckling dives recorded by the tags can be verified by direct 334 

observation. Here we used tag-recorded movement signatures during a subset of verified dives 335 

to distinguish active and suckling dives in the remainder of the data. Although effective, this 336 

technique inevitably leads to a small percentage of dives being miss-classified but this will 337 

likely have little impact on the conclusions drawn here. 338 

Time spent at low latitudes is critical for the growth of humpback whale calves 339 

to sustain the upcoming migration (Brodie 1975) from the calm temperate waters of the 340 

breeding grounds to rougher, colder and more predator dense environments (Corkeron & 341 

Connor 1999; Clapham 2000). Previously, Herman & Antinoja (1977) reported that mother-342 

calf pairs spent a large percentage (26%) of their time on breeding grounds resting, but they 343 

could not distinguish how much of that time was spent nursing. Here we show that tagged 344 

neonate humpback whales are in suckling position, and so potentially suckling, on average 345 

20% of the time (Table 1). This large time investment in suckling is consistent with the short 346 

time window for energy transfer before humpback whales migrate back to high latitude 347 

feeding grounds (Dawbin 1966). Distinguishing between actual suckling i.e., on-teat time 348 

where milk is transferred as opposed to suckling attempts is difficult, since there were no 349 

distinct signals in the accelerometer data indicating a successful transfer of milk from mother 350 

to calf. Moreover, time spent suckling does not translate directly into milk intake as milk 351 

transfer within a suckling bout is affected by maternal quality and age/size of the offspring 352 

(Trillmich 1986; Cameron 1998). Thus our results are likely an upper bound on the actual 353 
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suckling time; nevertheless, our estimate of 20% time investment in suckling  is consistent 354 

with findings for other marine mammals, despite differences in nursing strategies (Oftedal, 355 

Boness & Tedman 1987).  356 

The overall suckling and diving behaviour documented here is in line with 357 

previous visual observations of neonate humpback whales (Glockner & Venus 1983; 358 

Glockner-Ferrari & Ferrari 1984). The calf dives slowly beneath the mother where it 359 

maintains a horizontal, motionless position for a duration of 2.5±0.5min before slowly 360 

returning to the surface to breathe (Table 1, Fig 1). Taber & Thomas (1984) found a similar 361 

pattern in suckling neonate southern right whales, where they observed the mother logging at 362 

the surface, while the calf performed successive suckling dives with modal durations of 1.5-363 

4.5 min depending on the age of the calves. This stationary suckling behaviour is in contrast 364 

with the suckling behaviour of small toothed whales, where mothers nurse their young while 365 

swimming or gliding (McBride & Kritzler 1951; Asper et al. 1988; Peddemors et al. 1992; 366 

Miles & Herzing 2003). Stationary suckling is energetically advantageous for both the mother 367 

and the calf, allowing the mother, who is solely dependent on stored body reserves, to 368 

conserve energy, and permitting the calf to allocate energy to growth rather than movement 369 

(Harrison 1969; Herman & Tavolga 1980). This stationary behaviour may be facilitated by 370 

calm waters, potentially explaining why mother-calf pairs seek out sheltered areas such as 371 

Exmouth Gulf. 372 

However, suckling does occur not only in our data when mothers are logging at 373 

the surface: more than fifty percent of the inferred suckling dives of the tagged calves took 374 

place with the mother submerged at depths greater than 2.5m (Table 1). Suckling at depth was 375 

performed by six of eight calves in this study and was the dominant suckling mode in five of 376 

these. This large component of deep-water suckling would be missed in studies relying only 377 
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on visual observations of logging mothers. The consistent offset in dive depth between 378 

mothers and calves of around 1.6 m (Fig 1) implies that the mother is resting at depth while 379 

the calf dives down beneath her to suckle. Although diving to these depths only requires a few 380 

fluke strokes, the large percentage of suckling occurring at depth is surprising, since both the 381 

mother and the calf should have an interest in conserving energy. Deeper dives may make it 382 

easier to maintain suckling position for the calf via the more compressed lungs that at a mean 383 

depth of 7.3 meters will be some 40% less buoyant than at 1.5 m depth due to hydrostatic 384 

compression of air in the lungs, assuming that calves dive on inspiration. This reduced 385 

buoyancy could result in calves spending less energy on maintaining position during suckling, 386 

compared to near-surface suckling dives. Alternatively, buoyant calves may simply support 387 

themselves on the ventral surface of the mother while suckling to minimise effort. 388 

Another possible explanation for suckling at depth relates to the 389 

thermoregulation of mothers. Given their dark skin colour, logging at the surface for long 390 

periods during warm daylight hours in the tropics may lead to overheating (Scholander & 391 

Schevill 1955). The slightly cooler deeper waters and absence of direct insolation may 392 

provide some relief. However, this would imply that deep-water suckling dives should be 393 

absent at night. Our limited night data show some deep-water suckling dives in the dark (Fig 394 

5), leading us to question this explanation. The deeper suckling depths could also be driven by 395 

wind and sea state conditions; in rougher seas it may be easier to maintain position at depth 396 

than near the surface, but we do not have detailed sea state data to test that hypothesis. A final 397 

possibility is that suckling at depth could give an acoustic advantage since surface related 398 

noise is significantly lowered, resulting in an improvement of acoustic vigilance.  399 

Irrespective of the depth at which it is performed, suckling under water requires 400 

mother-calf coordination to ensure that milk is ejected successfully into the mouth of the calf, 401 
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likely calling for cues to initiate this behaviour (Triossi et al. 1998). We hypothesised that 402 

acoustic cues could aid such coordination, but found that few calls and grunts were produced 403 

by mother and calf during suckling dives and that these were not more prevalent immediately 404 

before suckling was inferred to commence. Thus, even though humpback whales are normally 405 

highly vocal (Payne & McVay 1971; Winn & Winn 1978; Dunlop et al. 2007) these findings 406 

suggest that suckling is not initiated by acoustic communication. Rather, frequent rubbing 407 

sounds closely related with acceleration transients suggest that mechanical stimulation is used 408 

by the calf to initiate lactation by its mother (Fig 6). Tactile cues to initiate lactation are also 409 

used by other cetacean species including bottlenose dolphins (Tursiops truncatus) (McBride 410 

& Kritzler 1951; Drinnan & Sadlier 1981; Peddemors et al. 1992), Atlantic spotted dolphins 411 

(Stenella frontalis) (Miles & Herzing 2003), killer whales (Orcinus orca) (Asper et al. 1988) 412 

and southern right whales (Eubalaena australis) (Taber & Thomas 1984). In southern right 413 

whales, calves have been observed to head-butt their mothers if their suckling attempts are 414 

rejected (Taber & Thomas 1984). Such mammary bumps are common across all mammals as 415 

one of several cues to initiate lactation (Lent 1974; Appleby, Weary & Chua 2001), but unlike 416 

some terrestrial mammals (Sèbe et al. 2008), humpback whales seemingly do not also use 417 

acoustic cues in this process. Acoustic signals may provide inadvertent information to 418 

eavesdropping male humpback whale escorts or predators. Killer whales especially have been 419 

reported to have a high success rate in predating on neonatal humpback whale calves in the 420 

area (Pitman et al. 2014). In comparison, mechanical stimulation is an inconspicuous way of 421 

communicating, allowing the calf to covertly signal its mother of its readiness to suckle. 422 

Therefore we hypothesise that silence in mother-calf pairs serves to reduce the risk of 423 

predation or dangerous escort attention (Aguilar de Soto et al. 2012).  424 
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Although the low call rates during suckling dives support the notion that silence 425 

is maintained to avoid detection, mother-calf pairs do in fact vocalise occasionally, albeit in a 426 

different behavioural context (Fig 3a,4,5). Vocalisations are mainly associated with active 427 

dives, where they likely function as cohesive calls between mother and calf to maintain 428 

contact as also reported for other cetacean species (McBride & Kritzler 1951; Janik & Slater 429 

1998). The disadvantage of such vocalisations is that they may serve as homing cues for 430 

predators and other eavesdroppers with negative consequences for calf fitness. However, in 431 

low visibility waters, such as Exmouth Gulf, the calf and mother are unlikely to see each other 432 

beyond a few body lengths of the mother, and separation would also have severe fitness 433 

consequences, requiring a means of maintaining contact. When resting, such a need is limited 434 

(Fig 4), but when moving there is likely an increased impetus for cohesion calls explaining 435 

why calls were more frequent during active dives. Increased vocalisation rates among mother-436 

calf pairs have been reported when pairs are with one or multiple escorts suggesting that an 437 

increase in distraction level results in an increased vocal rate to maintain contact (Tyack & 438 

Whitehead 1983; Baker & Herman 1984; Dunlop et al. 2008; Cartwright & Sullivan 2009b).  439 

Another way to reduce detection of acoustic signals by distant listeners is to 440 

produce them at low source levels (Nakano et al. 2009; Dunlop 2016). Assuming that the 441 

received levels recorded by the tags, placed approximately 1 m behind the blow hole, serve as 442 

reasonable proxies for source levels, the vocalisations, irrespective of whether produced by 443 

the calf or mother, are very weak. RLs were some 40 dB lower than sounds recorded with a 444 

similar tag on a singing humpback male in the same area (unpublished data), and also much 445 

weaker (20-70 dB) than the social sounds reported for adult humpback whales (Thompson, 446 

Cummings & Kennison 1977; Thompson, Cummings & Ha 1986; Dunlop et al. 2008). 447 

Assuming that the quiet vocalisations can be detected by other animals at an SNR of 0 dB the 448 
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low source levels translate into an active space of some 30m for the measured ambient noise 449 

level, assuming spherical spreading, and negligible absorption over these short ranges. Thus, 450 

low level vocalisations may serve to keep contact without attracting unwanted attention, at the 451 

expense of a very small communication range between mother-calf pairs meaning that 452 

mothers and calves must keep close. Supporting this, we and others have observed that 453 

humpback whale calves rarely separate from their mother by more than a few tens of meters. 454 

(Glockner & Venus 1983; Zoidis et al. 2014). Other humpback whale calls are produced at 455 

levels appropriate to the intended audience: a long communication range is favoured for songs 456 

to reach a large audience while the quieter social sounds are intended for the immediate group 457 

(Dunlop et al. 2013). Additionally, groups of humpback whales amplitude modulate their 458 

social calls presumably to avoid unwanted attention from potential singers nearby (Dunlop 459 

2016).  460 

The broader implications of this behaviour are that an increase in the 461 

disturbance level from noise-generating human activities, such as whale watching, shipping 462 

and fishing, may increase the risk of mother-calf pair separation, reducing the time available 463 

for suckling, or require that louder contact calls are made which, in turn increases the 464 

possibility of detection. In either case, increased ambient noise could have negative 465 

consequences for calf fitness (Cartwright & Sullivan 2009b; Craig et al. 2014).  466 

 467 

Conclusion 468 

A massive energy transfer occurs between mother and calf humpback whales 469 

during the few months between birth and migration, as demonstrated by significant body loss 470 

of the mother in synchrony with calf growth. Here we show that humpback whale calves are 471 

in a position to suckle on average 20% of their time. The high proportion of time spent on 472 
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suckling emphasises that humpback mother-calf pairs are vulnerable to disturbance that may 473 

increase energy expenditure and reduce energy transfer from mother to calf. Calves suckle by 474 

positioning themselves nearly motionlessly beneath their resting mothers. This low effort 475 

suckling behaviour may only be supported in calm waters possibly explaining why humpback 476 

whales often seek sheltered waters for nursing their calves, highlighting the conservation 477 

importance of such areas. Although suckling depths varied between calves, some 50% of 478 

suckling took place when the mother was submerged; a behaviour that may relate to 479 

thermoregulation, buoyancy, a reduction of wave action to facilitate suckling, or that 480 

submerged mothers may be in a better listening position for detecting singing escort males 481 

and predatory killer whales. However, this shallow diving behaviour also makes them more 482 

vulnerable to collisions with deep-draft vessels, as they are not visible from moving vessels.  483 

Vocalisations were detected between mother-calf pairs but we found no support 484 

for the hypothesis that suckling is initiated by sound cues. Rather, calves appeared to use 485 

mechanical stimulation, presumably head bumps of the mammae area, as has been 486 

documented in other mammals. Sounds in the form of grunts and tonal calls were, however, 487 

predominantly produced when the mother and calf were moving suggesting that they are used 488 

as contact calls. These weak calls have an estimated active space of much less than 100 489 

meters reducing the risk of attracting eavesdropping male escorts and killer whales. A 490 

problem of such weak calls is that even moderate increases in ambient noise will create a very 491 

small active space that may increase the risk of the calf being separated from the mother. 492 
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 724 
 725 
 726 
 727 
 728 
 729 
 730 
 731 
 732 
 733 
 734 
 735 
 736 
 737 
 738 
 739 
 740 
 741 

Figure Legends 742 

 743 

Fig. 1. (a) Overall dive profiles of a tagged mother (mn239b, red line) and calf (mn239a, blue line) 744 

pair (b-e) Enlargement showing two suckling dives during which the mother is logging at the 745 

surface. (f-i) Enlargement showing two active dives in which both mother and calf are diving. In 746 

each 4-panel frame, plot (b) and (f) show the dive profiles of the two animals, (c) and (g) show the 747 

roll angles (degrees), (d) and (h) show the pitch angles (degrees), and (e) and (i) show the MSA 748 

(m/s
2
). The inset photo shows the tagged mother and calf logging at the surface 749 

Fig. 2. Histograms of mean maximum depth of inferred suckling dives by calves (N=8). Calf ID and 750 

sample size per animal are given on each histogram. 751 

Fig. 3. Boxplot of acoustic cues per minute for all calves during suckling dives and active dives. (a) 752 

grunting and tonal sounds (b) rubbing sounds.   753 

Fig. 4. (a) Dive profile of mn247a, depth in meters from surface (blue), MSA (m/s
2
) (grey), 754 

grunting sounds (red) and tonal sounds (dark blue) plotted on top of dive profile (b, c) spectrograms 755 

(Hamming window, nfft: 4096, 90% overlap) of a grunting sound (b) and a tonal sound (c). For 756 

both, the power spectrum is shown to the right and the waveform beneath. 757 

 758 

Fig. 5. Subplot of dive profiles for eight tagged calves (n=8), MSA (grey), grey areas indicate sun 759 

down, tonal sounds (dark blue) and grunting sounds marked (red). To the right a histogram of depth 760 

distribution for each calf 761 
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Fig. 6. (a) Segment of the dive profile of mn241a with occurrence of rubbing sounds indicated in 762 

red. (b) spectrogram (Hamming window, nfft: 4096, 90% overlap) of a rubbing sound (c) Norm jerk 763 

(i.e., magnitude of the tri-axial differential of acceleration, m s
-3

) recorded by the tag at the same 764 

time as the rubbing sound in (d) Mean normalised jerk for all calves during rubbing sounds. The 765 

jerk from 1 second before to 4 seconds after the start of each rub sound was extracted and the mean 766 

of these jerk segments was calculated for each animal. The red solid line is the average jerk for all 767 

calves. 768 

 769 

 770 

Table 1. Summary of tagging and suckling details for each tagged whale. 771 

 772 

Suckling dives: inferred suckling dives (see Methods).  773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 

Tag ID Animal Tag Tagging # of Suckling dive % time in % time in suckling

duration coordinates suckling dives  depth (m) suckling position position during suckling dive

(h) median (IQR) mean ± std

mn238a Calf 5.3 22.27'S 114.19'E 30 2.3 (1.5-7.1) 25.6 79.3±7.7

mn238b Adult 2.9 22.25'S 114.19'E - - - -

mn239a Calf 4.1 22.14'S 114.14'E 25 1.7 (1.5-1.9) 19.9 81.5±8.7

mn239b Adult 3.6 22.15'S 114.14'E - - - -

mn241a Calf 3 22.37'S 114.23'E 10 2.1 (2.0-2.2) 14.3 87.7±4.6

mn242a Calf 6.2 22.30'S 114.26'E 15 10.2 (9.7-12.2) 12.2 63.1±12.5

mn243a Calf 7.6 22.34'S 114.26'E 41 7.9 (7.3-8.3) 24.9 69±14.5

mn246b Calf 24 22.31'S 114.24'E 149 10.5 (8.2-13.9) 15.8 47±16.6

mn247a Calf 6.3 22.20'S 114.25'E 25 7.5 (5.6-9.5) 19.5 74.1±13.2

mn247b Calf 12.1 22.22'S 114.25'E 109 4.7 (3.4-7) 33.1 74±14.7
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 792 

 793 

 794 

 795 

 796 

 797 

 798 

 799 

 800 

 801 

 802 

 803 

 804 

 805 

Table 2. Summary of acoustic parameters of the two types of vocalisations: tonal and 806 

grunting sounds.  807 

 808 
* The tag used on mn247b had a faulty hydrophone connection and sound cues were 809 

therefore excluded from acoustic analysis for this individual.  810 

 811 

  812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

Tag ID Grunting Tonal Grunting Tonal Received level Received level Centroid freq. Centroid freq. RMS Bandwidth RMS Bandwidth

Sounds Sounds Sounds Sounds grunting sounds tonal sounds grunting sounds tonal sounds grunting sounds tonal sounds

Total Total pr. hour pr. hour dB re 1µPa dB re 1µPa (Hz) mean±s.d. (Hz) mean±s.d. (Hz) mean±s.d. (Hz) mean±s.d.

mn238a 113 0 21.5 0 131±0 - 233±0 - 304±0 -

mn239a 65 0 15.7 0 131±0 - 451±0 - 724±0 -

mn241a 159 5 52 1.6 142±7 142±0 241±126 300±0 447±190 455±0

mn242a 346 34 55.3 5.4 141±5 141±6 384±359 536±330 618±397 840±405

mn243a 179 4 23.5 0.5 138±5 142±0 992±566 1463±0 1263±580 2170±0

mn246b 555 87 23 3.6 136±4 139±5 879±585 1592±473 1273±778 2225±552

mn247a 591 156 92.9 24.5 135±4 140±5 306±359 646±548 512±438 1060±828

mn247b* 277 16 22.8 1.3 - - - - - -
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 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

Table 3. Results of the generalised linear mixed models exploring the relationship of 842 

vocalisations and rubbing sounds between active and suckling dives.  843 

 844 

 845 

 846 

Factor Response

Vocalisations Rubbing sounds

Estimate SE p Estimate SE p

Intercept -0.257 0.229 0.26 -2.482 0.302 <0.01*

Dive type -0.274 0.103 0.0079* 1.339 0.0829 <0.01*

Length of dive -0.0319 0.035 0.357 0.754 0.0316 <0.01*
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Tag ID Animal Tag Tagging # of Suckling dive % time in % time in suckling
duration coordinates suckling dives  depth (m) suckling position position during suckling dive
(h) median (IQR) mean ± std

mn238a Calf 5.3 22.27'S 114.19'E 30 2.3 (1.5-7.1) 25.6 79.3±7.7
mn238b Adult 2.9 22.25'S 114.19'E - - - -
mn239a Calf 4.1 22.14'S 114.14'E 25 1.7 (1.5-1.9) 19.9 81.5±8.7
mn239b Adult 3.6 22.15'S 114.14'E - - - -
mn241a Calf 3 22.37'S 114.23'E 10 2.1 (2.0-2.2) 14.3 87.7±4.6
mn242a Calf 6.2 22.30'S 114.26'E 15 10.2 (9.7-12.2) 12.2 63.1±12.5
mn243a Calf 7.6 22.34'S 114.26'E 41 7.9 (7.3-8.3) 24.9 69±14.5
mn246b Calf 24 22.31'S 114.24'E 149 10.5 (8.2-13.9) 15.8 47±16.6
mn247a Calf 6.3 22.20'S 114.25'E 25 7.5 (5.6-9.5) 19.5 74.1±13.2
mn247b Calf 12.1 22.22'S 114.25'E 109 4.7 (3.4-7) 33.1 74±14.7
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Tag ID Grunting Tonal Grunting Tonal Received level Received level Centroid freq. Centroid freq. RMS Bandwidth RMS Bandwidth
Sounds Sounds Sounds Sounds grunting sounds tonal sounds grunting sounds tonal sounds grunting sounds tonal sounds
Total Total pr. hour pr. hour dB re 1µPa dB re 1µPa (Hz) mean±s.d. (Hz) mean±s.d. (Hz) mean±s.d. (Hz) mean±s.d.

mn238a 113 0 21.5 0 131±0 - 233±0 - 304±0 -
mn239a 65 0 15.7 0 131±0 - 451±0 - 724±0 -
mn241a 159 5 52 1.6 142±7 142±0 241±126 300±0 447±190 455±0
mn242a 346 34 55.3 5.4 141±5 141±6 384±359 536±330 618±397 840±405
mn243a 179 4 23.5 0.5 138±5 142±0 992±566 1463±0 1263±580 2170±0
mn246b 555 87 23 3.6 136±4 139±5 879±585 1592±473 1273±778 2225±552
mn247a 591 156 92.9 24.5 135±4 140±5 306±359 646±548 512±438 1060±828
mn247b* 277 16 22.8 1.3 - - - - - -
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Factor Response
Vocalisations Rubbing sounds

Estimate SE p Estimate SE p

Intercept -0.257 0.229 0.26 -2.482 0.302 <0.01*
Dive type -0.274 0.103 0.0079* 1.339 0.0829 <0.01*
Length of dive -0.0319 0.035 0.357 0.754 0.0316 <0.01*
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