
A SPECK Based 3G Authentication Algorithm for Download ontoIoT Security Modules

Keith Mayes

Information Security Group
Royal Holloway, University of London

Egham, UK
keith.mayes@rhul.ac.uk

Steve Babbage

Vodafone Group R&D
Vodafone Group Services Ltd.

Newbury, UK
steve.babbage@vodafone.com

Abstract—3G/4G mobile standards benefit from an authentication
algorithm called MILENAGE that supports mutual authentica -
tion, protection against replay attack and generates session keys
to protect confidentiality and integrity. Its usefulness attracts
interest beyond the original usage, such as in securing diverse
wireless and wired bearers used in Machine-to-Machine and
Internet of Things (IoT) systems. The long-term reliance on
one algorithm is a risk, and recently an alternative algorithm,
called TUAK, was standardised as a safe-guard, should the
Advanced Encryption Standard (AES) core of MILENAGE ever
be found vulnerable. Previous performance evaluation of TUAK
on Subscriber Identity Modules (SIM), found that it needed to
be implemented in low level native code to satisfy system timing
requirements; indeed this is usually the case for MILENAGE.
However, deployed security modules, anticipated for the Internet
of Things (IoT), generally provide access at an applicationlayer,
abstracted from the underlying hardware. Application layer
implementation of TUAK was shown to be too slow to comply with
standardised requirements and so an alternative faster algorithm
was sought that could be downloaded and run in a compliant
manner from the application level. The National Institute of
Standards and Technology (NIST) has standardised a lightweight
block-cipher called SPECK, and this paper describes work to
create a SPECK alternative to MILENAGE and compares its
performance with earlier results from TUAK.

Keywords–3GPP; GSM; Keccak; SPECK; TUAK.

I. I NTRODUCTION

This text describes follow-on work from an earlier study
which evaluated the performance of the TUAK algorithm on
multiple smart card platforms [1][2]. In this latest work, we
sought an alternative algorithm that had credible security, yet
was fast enough to be executed at a smart card application layer
(rather than native code) and meet standardised performance
requirements. We will start by recapping on the MILENAGE
and TUAK 3G algorithms.

The Third Generation Partnership Project (3GPP) [3] has
standardised an algorithm framework that permits Mobile Net-
work Operators (MNO) to select/design their own particular
cryptographic algorithms for subscriber authentication and
session key generation. However, in practice, most MNOs have
adopted the MILENAGE algorithm [4] that is based on AES
[5]. MILENAGE is an openly evaluated and peer-reviewed
example algorithm, originally designed and published by the
European Telecommunications Standards Institute (ETSI) [6],
Security Algorithms Group of Experts (SAGE). The security
of MILENAGE is well respected, which in part accounts for
its widespread use; although the use of a common approach

becomes a necessity (rather than a choice) for Machine-to-
machine (M2M) applications, where the particular MNO may
need to change during the life of the product. Ubiquitous use
of a single algorithm in equipment that may be used for many
years carries a security risk, and so SAGE has standardised
an alternative algorithm, called TUAK [7], which has a very
different structure to MILENAGE, being built around the
Keccak [8] sponge function used in the SHA3 algorithm [9].

As well as running in a system Authentication Centre
(AuC), the 3G authentication algorithms must be capable of
running on Subscriber Identity Modules (SIM), which are
essentially smart card platforms with very restricted resources,
both in terms of processor speed and available memory. It is
possible to have smart cards with crypto-coprocessors, which
greatly accelerate common algorithms, however these are nor-
mally not used in SIMs due to cost constraints. Therefore,
SIM platforms that may offer application layer programming,
typically have algorithms implemented in native code, for
speed and efficiency, which are accessible via an Application
Programming Interface (API). Previous work has shown that
the native code approach would allow a TUAK implementation
to meet the standardised performance requirements, however,
application layer implementation would not. This is fine in
a traditional MNO Issuer model as the native code can be
defined, but it is a problem if we have to host algorithms
on pre-existing general purpose SIM modules, where we only
have access at the application layer.

This latter situation is increasingly likely if we now con-
sider a future where our M2M solutions are provided in the
much wider and general-purpose context of the Internet of
Things (IoT). The resulting research question, is whether we
can find an alternative to MILENAGE and TUAK, which meets
best-practice security, yet is fast enough to be implemented
at a SIM application layer and still meet the standardised
performance requirements.

In Section II, an overview of MILENAGE and TUAK is
provided, before introducing the SPECK algorithm in Section
III. Implementation of the SPECK cipher on MULTOS is
discussed in Section IV, along with some initial results. Section
V describes the use of SPECK within 3G authentication, and
presents the experimental results. Conclusions and suggestions
for future work are offered in Section VI.

II. MILENAGE AND TUAK

In this section, we will briefly consider MILENAGE and
TUAK, before suggesting how SPECK might be introduced,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/156786715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1. MILENAGE

to offer a third option for providing the mobile communication
authentication and key agreement functions, specified by 3GPP
for UMTS (3G) and the Long Term Evolution (LTE 4G) in
[10].

A. MILENAGE

The 3G authentication solution follows a challenge-
response approach similar to the earlier GSM solution, except
that the challenge and responses are expanded for improved
security. The structure of MILENAGE is shown in Figure
1. The challenge is 256 bits long and made up of a 128-
bit random number (RAND), a 64-bit Message Authentication
Code (MAC), a 48-bit sequence number (SQN) and a 16-bit
management field (AMF). The MAC is recomputed on the
SIM (f1 in the diagram), to ensure that the challenge was
created by the genuine AuC, and the SQN is used to check
that the challenge is fresh and not re-played. The result from
the authentication (XRES), which is returned to the challenger,
is 32-128 bits long. The algorithm generates two session keys
for local storage/use, a 128-bit cipher key (CK) and a 128-
bit integrity key (IK). The 48-bit anonymity key (AK) can
be used during the authentication process to conceal the true
value of SQN. AMF permits some home operator control of
the authentication process, but is not relevant to this discussion.
Within Figure 1, the repeated use of a block cipher (EK) can
be seen, which in MILENAGE is based on AES [5]. The OPc
value is computed from an operator customisation value OP,
however it is normal to store the pre-computed OPc within the
SIM.

B. the TUAK Algorithm

The structure at the core of TUAK, as can be seen in Figure
2, is nothing like MILENAGE, as it is based on the Keccak [8]
“cryptographic sponge function” [11]. This function has a good
security pedigree as it is used in the SHA-3 hash function [9]
and its security design properties have been investigated [12].
The authentication function is implemented by absorbing the
challenge related data into the sponge, running the algorithm
and then squeezing out the result and keys as shown in Figure
3. TOPc is analogous to OPc and also pre-computed and stored
in the SIM; so Keccak only needs to be run twice during an
authentication. TUAK uses Keccak with permutation sizen
= 1600, capacityc = 512 and rater = 1088, so that only

Figure 2. A Cryptographic Sponge Function

Figure 3. The TUAK Algorithm Functions

a single iteration of the permutationf is required at each
stage. The feasibility of low-level native code implementation
of TUAK on real secured smart card chips was first proven
in [1], although this result did not extend to application level
processing. To achieve the latter, requires a significantlyfaster
core function. There are numerous candidates for such a
function, however, the private research project on which this
publication is based, was to specifically consider “SPECK”
[13] as an alternative to the AES-based MILENAGE.

III. SPECK

SPECK is a family of block ciphers designed by a group
of researchers from the NSA. SPECK, together with its sister
cipher SIMON, was first published in 2013 [13], and some
additional design notes were released more recently [14].
Both algorithms are designed with constrained devices in
mind: SPECK is designed to have a very small footprint in
software, while SIMON is designed for hardware. SPECK is
a lightweight block cipher specification intended specifically
for efficient implementation on resource limited chips and
its performance has already been studied for use in IoT
[15]. However, that performance evaluation assumed that the



TABLE I. SPECK VARIANTS

Block Key Word Key Rot Rot Rounds
size 2n size mn size n words m α β T

32 64 16 4 7 2 22
48 72 24 3 8 3 22

96 4 23
64 96 32 3 8 3 26

128 4 27
96 96 48 2 8 3 28

144 3 29
128 128 64 2 8 3 32

192 3 33
256 4 34

Figure 4. SPECK Overview [16]

algorithm would be native coded onto the chip, whereas here
we are considering the post-issue loading of the algorithm onto
a secure platform, which is abstracted from the underlying
hardware and only accessible via controlled APIs.

SPECK is a family of multi-round ciphers with associated
key schedules; the exact variant being defined by a number
of design parameters as illustrated in Table I, which can be
generally visualised in Figure 4 [16]. Note that this work found
and reported an error in an earlier version of this reference
diagram; which showed the K1 XOR sequence, starting with
’1’ rather than ’0’.

Referring back to Figure 1, the inputs and outputs to EK
are 128 bits and the minimum acceptable keysize is also 128
bits. Returning to Table I, we see that the 32 round SPECK
(128/128) variant provides an ideal EK candidate, with the 33
and 34 round being similar to the higher security modes offered
in TUAK. The SPECK designers estimate that the (128/128)
variant can be implemented in less than half the memory
of 128-bit AES, with throughput some 70% higher. When
implementing SPECK authentication, we used the same r and
c parameters from the MILENAGE specification, and followed
the common-practice of pre-computing OPc and storing in
smart card memory

SIMON and SPECK have attracted a fair amount of at-
tention from cryptographers, and several cryptanalysis papers
have been published, attacking reduced round versions of the

ciphers. Early differential cryptanalysis by Abed et al [17]
and Dinur [18] performed better than simplistic exhaustivekey
search (albeit with a very large number of chosen plaintexts)
for up to 17 rounds of SPECK; later work by Fu et al [19]
extended this to 22 rounds, and then Song et al [20] to
23 rounds. Differential attacks on reduced-round versionsof
other members of the SPECK family have also been found
by Biryukov et al [21]. Linear cryptanalysis has also been
attempted, by Liu et al [22], but with less success than
the differential attacks. There is thus a significant security
margin between the number of rounds attacked (23) and the
full number of rounds (32) in our selected variant, justifying
confidence in the cipher. However, the NSA origins of SPECK
and SIMON worry some cryptographers, who fear that NSA
are only promoting the ciphers because they know how to
break them. Notably, attempts to have SIMON and SPECK
standardised by ISO have been repeatedly defeated [23]. It is
not possible to determine if these suspicions have any basisin
fact, so we will consider our proposal justified, based on the
existing body of published security research work.

IV. I MPLEMENTING THE SPECK CIPHER ONMULTOS

Performance studies on smart cards and microcontrollers
often make an assumption that an application has low-level
direct access to the CPU. This is typically not the case
in secure implementations, especially when the platform is
intended to be strongly attack resistant. The access/interface
is often via secured operating systems and virtual machines
that intentionally abstract an application from the underlying
hardware. MULTOS [24] cards/chips are good examples of
secured platforms that work this way and results are avail-
able from the TUAK study. The SPECK MULTOS results
will provide an interesting comparison to the native coded
implementation in the later stage of the study. It is also worth
noting that MULTOS has been proposed for use in IoT due to
its capability for secure application loading/management(PKI
based) in the field. The implementation approach for MULTOS
is to initially develop the SPECK code on a simulator and
then load onto a real card for performance measurement. We
will start with a naive implementation based on published
pseudo code to first check compliance with the associated
test vectors. We will then refine/optimise the implementation
as we progress through the study. We know from previous
work that MULTOS performance struggles when a variable
parameter is used to control the extent of block shifts/rotates,
and so it is suspected that the naive implementation of SPECK
will be slow, as it follows the pseudo code and specifies
the shift amounts as variables. Once we have confidence in
the core SPECK implementation we will fit it within the 3G
authentication framework for the comparative (with TUAK)
performance tests.

A. Initial Results/Observations

Considering the simplicity of the SPECK cipher there
were some unexpected difficulties in creating a version which
produced the correct test vector result. Firstly, the ‘C’ code
examples for the 128/128 mode use 64-bit unsigned integers
(uint64 t) that are not universally supported by ‘C’ compilers,
especially for legacy and specialist secured microcontrollers.
This meant that the pseudo code could not be used unmodified
as the starting point. Of course as the target CPU is 16-bit, the



TABLE II. INITIAL MULTOS FUNCTIONAL TEST RESULTS

Test Type Execution Comment
Time (ms)

Null 43 Command handling and 16 bytes of data
in message response, with no actual
function performed. This has already
been subtracted from other results

SPECK 253 Full cipher 128/128 functionally correct
and producing correct test vector result
[No MULTOS primitives]

SPECK 157 Uses pre-computed key-schedule (256 bytes)
[No MULTOS primitives]

Rotate Right 8 places 1.01 [No MULTOS primitives]
Rotate Left 3 places 1.84 [No MULTOS primitives]
Add 64 bit results 1.25 [No MULTOS primitives]

compiler would just have to mimic the manually coded creation
of the 64-bit types. For convenience and efficiency, a union
type was created so that the 64-bit storage could be accessed
as constituent 32, 16 and 8 bit unsigned integers. In order to
obtain intermediate round and key-schedule reference results it
was decided to first implement the example code using the lcc
compiler on a Windows PC and dump intermediate results to
a log file, for later use in verifying the MULTOS implementa-
tion. Once the reference test version was working and the test
results produced, the equivalent functionality was coded for the
MULTOS platform. The initial style was reasonably efficient,
avoiding unnecessary loops, function calls and stack-based
parameter passing; and speed critical variables were created in
reserved session RAM. The latter is important as non-volatile
storage on the target microcontrollers is significantly slower
than RAM. However, at this stage we did not use any MULTOS
primitives so all the functionality was coded at the application
layer. We did however provide an option to use a pre-computed
key schedule as discussed below.

1) Key-schedule Pre-computation:In smart card devices it
is quite normal to store a few kilobytes of sensitive account
specific data (e.g., certificates, keys, photos, account details,
IDs, PINs etc.) during the personalisation process. This data
is stored in the non-volatile memory (characterised by fast
reads and slower writes) that is shared with the code. For
the SPECK cipher mode under consideration (128/128), we
must at least store a 128bit (16 byte) long-term secret key
‘K’ . The key-schedule requires a 64 bit (8 byte) key for
each round that is generated from ‘K’. For a non-optimised
solution the round function for round key generation is the
same as for the data processing, so no significant extra code
space would be required. An optimised version (avoiding
parameter passing) would likely need some additional code
space. Pre-computation of the key schedule would require
32x8 = 256 bytes of non-volatile memory which is by no
means prohibitive, even in old smart cards. As Round is called
almost as many times for round key generation as for the data
processing, there is potential for significant speed improvement
by using pre-computation.

Once the MULTOS code was functional it was loaded onto
an ML3-80K-R1 MULTOS test card, which is based on the
same Infineon SLE78 chip [25] that we used in the TUAK
performance study. Commands were then sent to the card using
the MULTOS scripting utility (MUTIL) and response times
recorded. Table II, gives a summary of the first functional test
results.

Often encoding an algorithm at the MULTOS application
layer results in an implementation that is too slow to be

TABLE III. RESULTS WITH AND WITHOUT PRIMITIVES

Test Type No Primitives Primitives
Execution Execution
Time (ms) Time (ms)

Null 43 43
SPECK (precomputed key-schedule) 154.57 84.34
Rotate 64 bits Right by 8 places 1.01 0.63
Rotate 64 bits Left by 3 places 1.84 0.83
Add 64 bit inputs 1.25 0.54
XOR 64 bit inputs 0.56 0.53

practical; as was the case with TUAK. Although 253ms is not
fast for running a block cipher, it is not necessarily unusable
and there is still the potential for speed-up by exploiting
suitable MULTOS primitives. Furthermore, pre-computation
and personalisation of long-term round keys is quite practical
and so the 157ms execution time is considered the benchmark
performance at this stage. We will explore the use of primitives
in the next stage of the study when we will see if SPECK
could satisfy the SAGE/GSMA performance requirements on
a MULTOS platform.

V. I MPLEMENTING 3G SPECK AUTHENTICATION ON
MULTOS

The results so far have shown better performance than had
been anticipated on the MULTOS platform, however they did
not make use of standard primitives offered by the platform.
Use of such primitives is advisable for performance, but also
for security reasons as their implementation is likely to have
been defensively coded and evaluated against attack

A. 4.1 Conversion to MULTOS Primitives

The SLE78 is an innovative security controller intended
for high security applications. Instead of relying mainly on
shields and sensors it uses “Integrity Guard”, which exploits
dual CPUs working in tandem. The supported primitives of
main interest included:

• multosBlockShiftRight()

• multosBlockShiftLeft()

• multosBlockAdd()

• multosBlockXor()

Note that MULTOS does not offer block rotates, however
these are simple to implement using the shift primitives. Prior
to converting the initial code to make use of primitives and
adding support for 3G authentication processing, some test
commands were created to practically determine performance
impact. The set of results are presented in Table III, for thecase
of a pre-computed key-schedule. Note that all the primitivetest
utilities also made use of multosBlockCopy().

Considering Table III, with the exception of XOR, all
the basic functions roughly doubled in speed when using
platform primitives; notably SPECK execution time reduced
from 154.57ms to 84.34ms. XOR is a very simple function
at the application layer and so little improvement (0.56ms to
0.53ms) was anticipated. The notable effect is that using the
available primitives nearly doubles the overall speed of the
SPECK block cipher. This is an interesting result for the 3G
authentication comparison, as following the 3G MILENAGE
structure, requires the block cipher to be called multiple times.



TABLE IV. MILENAGE FUNCTION MAPPING

Function Mapping
f1 MAC-A 64 bits
f1* MAC-S (alternative used in re-synch)
f2 RES 64 bits
f3 CK 128 bits (ciphering key)
f4 IK 128 bits (integrity key)
f5 AK 48 bits (anonymity key)
f5* Alternative AK used in re-synch

Figure 5. Implementation split of f1()and f2345()

B. Implementation of 3G Authentication

Referring back to Figure 3, we will adopt the same imple-
mentation approach as used for the earlier TUAK work so the
results can be as closely comparable as possible. This requires
development of two functions making use of the SPECK block
cipher within the MILENAGE structure. The functions are
separated in this way as they have different input values.

• SPECK f1() computes f1 (and f1*)

• SPECK f2345 computes f2, f3, f4, f5

The output of f5* is not part of a regular authentication
vector (it is only used when resynchronisation of the sequence
number SQN is needed), and so will not be included in our
measurement. For clarity we present the mapping of these
functions to the protocol, within Table IV.

We have reproduced the MILENAGE structure in Figure
5; showing the practical split of the f1 and f2345 functions.

When testing, it is assumed the f1() is run first so that
the value TEMP can be re-used in f2345(), avoiding an extra
encryption. Within f2345(), TEMP only needs to be XORed
once with the (pre-computed) OPc. Considering the operations
in addition to ciphering, we can see rotates and XORs using
standardised values. Fortunately the rotates are easy when
using the standard r values; r1 = 64, r2 = 0, r3 = 32, r4
= 64 (and r5 = 96). The integers are all multiples of 8 bits
and so rotates can be performed simply with byte copies. The
XORs with the c constants are also very simple as the values
only affect the least significant byte, so byte, rather than block
XORs are needed. The functions were coded using MULTOS
primitives and the initial results are presented in Table V.

It can be seen from Table V, that the function times are
dominated by the SPECK block cipher execution times. The
total time (433.8ms) is very interesting as it fits within the

TABLE V. AUTHENTICATION FUNCTION EXECUTION TIMES (ms)

Function Execution Block
Time (ms) Encryptions

f1() 173.16 2
f2345() 260.64 3
Total 433.80 5

TABLE VI. MULTOS TUAK AND SPECK AUTHENTICATION
COMPARISON

Function TUAK SPECK
Authentication (ms) Authentication (ms)

f1() 1529 173.16
f2345() 1575 260.64
Total 3104 433.80

revised performance specification proposed to SAGE during
the TUAK study [26].

...“The functions f1-f5 and f1* shall be designed so that
they can be implemented on a mid-range microprocessor IC
card (typically 16-bit CPU), occupying no more than 8 kbytes
non-volatile-memory (NVM), reserving no more than 300 bytes
of RAM and producing AK, XMAC-A, RES, CK and IK in less
than 500 ms total execution time.”...

Although the test implementation has no added high-level
measures for defensive coding, the application is running on a
MULTOS platform, which is marketed for its evaluated high-
security capabilities. It would be expected that the platform’s
chip and native code would have defensive measures to counter
fault and side-channel attacks. The fact that a platform level
implementation can satisfy performance constraints suggests
that the functionality could be added to stock or issued devices.
This is a major operational advantage that was not available
for the TUAK implementation. Although Java Card [27] is out
of scope for this study, it is not unreasonable to consider that
performance might also be adequate on that platform type;
although it is possible that added defensive measures mightbe
needed at the application layer.

C. MULTOS Comparison of SPECK with TUAK Authentica-
tion

A main purpose of this study was to see whether TUAK
could be used as an alternative to SPECK in Internet of Things
(IoT) type applications, where the processors have limitations
similar to those of traditional smart cards. To measure this,
the SPECK authentication functionality has been implemented
in the same manner and on the same platforms as in the
earlier TUAK study, so results are directly comparable. It
may be recalled that TUAK did not suit MULTOS application
implementation using existing primitives, as the comparison
in Table VI shows. In fact, the TUAK authentication takes
roughly 7x as long as SPECK.

MULTOS chips are being proposed for use in IoT applica-
tions and the results suggest that they could support SPECK
on existing/standard platforms, whereas a custom primitive is
essential for TUAK.

D. Native mode Comparison of SPECK with TUAK Authenti-
cation

Although this study was primarily focussed on download-
ing and running an authentication algorithm on a platform
application layer, a native mode implementation was also
created for the Samsung S3CCE9E4/8 chip (more detail in



TABLE VII. NATIVE MODE TUAK AND SPECK AUTHENTICATION
COMPARISON

Function TUAK SPECK
Authentication (ms) Authentication (ms)

f1() 77.88 3.35
f2345() 78.18 5.13
Total 156.06 8.48

[2]), which is a 16-bit secured smart card chip also used in the
earlier TUAK performance study. For interest, the comparative
results are presented in Table VII.

Clearly the native SPECK implementation is very fast
(8.48ms) even on an old chip, but the result should be viewed
with caution as there are no defensive coding measures in
place, which could easily add an order of magnitude to the
execution time.

VI. CONCLUSIONS ANDFUTURE WORK

The experiments conducted during this project have shown
that the SPECK cipher is significantly faster than Keccak
(TUAK core) when implemented on the MULTOS platform (or
indeed in native mode). The results from the MILENAGE style
authentication using SPECK, were significant as they showed
that a MULTOS application layer implementation could satisfy
the 3GPP timing constraints; something that was not possible
with TUAK. There would even be headroom to add a few extra
rounds to the SPECK function to increase its security margin,
if preferred. This means that the algorithm could be loaded
and configured post-issue, which has relevance for M2M and
general IoT devices. In fact, MULTOS has begun to position
itself in IoT because apart from its secure design, it also
has an application loading mechanism based on PKI. This
means devices can be configured offline, outside of secure
environments, and without the need to distribute shared secret
keys. 3GPP does not specify a standard algorithm, but rathera
framework with MILENAGE and TUAK presented as example
implementations; and so the SPECK version could be used
within the standard. For the future, it would be interestingto
implement the SPECK-based 3G authentication on a Java Card
and compare the results with the MULTOS platform results.

ACKNOWLEDGMENT

The authors would like to thank the UK National Cyber
Security Centre (NCSC) for its support of this work.

REFERENCES

[1] K. Mayes, S. Babbage, and A. Maximov, “Performance Evalua-
tion of the new TUAK Mobile Authentication Algorithm”, in Proc.
ICONS/EMBEDDED, pp. 38-44, 2016.

[2] K. Mayes and S, Babbage, “A Multi-Platform Performance Evaluation
of the TUAK Mobile Authentication Algorithm”, International Journal
on Advances in Security, vol 9, no. 3&4, pp. 158-168, 2016.

[3] (2017, Oct.) The Third Generation Partnership Project website, [Online].
Available: http://www.3gpp.org/, [retrieved: March, 2018].

[4] 3GPP TS 35.206: 3G Security; Specification of the MILENAGE algo-
rithm set: An example algorithm set for the 3GPP authentication and
key generation functions f1, f1*, f2, f3, f4, f5 and f5*; Document 2:
Algorithm specification (2014).

[5] Federal Information processing Standards, Advanced Encryption Stan-
dard (AES), FIPS publication 197 (2001).

[6] (2017, Oct.) The European Telecommunications Standards Institute web-
site, [Online]. Available: http://www.etsi.org/, [retrieved: March, 2018].

[7] 3GPP, TS 35.231: 3G Security; Specification of the TUAK algorithm
set: A second example algorithm set for the 3GPP authentication and
key generation functions f1, f1*, f2, f3, f4, f5 and f5*; Document 1:
Algorithm specification (2014).

[8] G. Bertoni, J. Daemen, M. Peeters, and G. van Aasche, “Thekeccak
Reference”, version 3.0, 14 (2011).

[9] NIST, Announcing Draft Federal Information ProcessingStandard (FIPS)
202, SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions, and Draft Revision of the Applicability Clause of FIPS 180-4,
Secure Hash Standard, and Request for Comments, (2004).

[10] 3GPP, TS 33.102: UMTS 3G Security; Security Architecture, V11.5.1
(2013).

[11] G. Bertoni, J. Daemen, M. Peeters, and G. van Aasche, “Cryptographic
Sponge Functions”, version 0.1, (2011).

[12] G. Gong, K. Mandal, Y. Tan, and T.Wu, “Security
Assessment of TUAK Algorithm Set”, [Online]. Available:
http://www.3gpp.org/ftp/Specs/archive/35series/35.935/SAGEreport/
Secassesment.zip (2014), [retrieved: March, 2018].

[13] R. Beaulieu, et al, The SIMON and SPECK Families of Lightweight
Block Ciphers, Cryptology ePrint Archive, Report 2013/404, 2013, [On-
line]. Available: http://eprint.iacr.org/2013/404, [retrieved: March, 2018].

[14] R. Beaulieu, et al, Notes on the design and analysis of SIMON and
SPECK, Cryptology ePrint Archive: Report 2017/560, 2017, [Online].
Available: http://eprint.iacr.org/2017/560, [retrieved: March, 2018].

[15] R. Beaulieu, et al, Simon and Speck: Block Ciphers for the Internet of
Things, National Security Agency, (2015).

[16] (2017 Oct.) Wikipedia, Speck (cipher), [Online]. Available:
https://en.wikipedia.org/wiki/Speck(cipher), [retrieved: March, 2018].

[17] F. Abed, E. List, S. Lucks, and J. Wenzel, Cryptanalysisof the
speck family of block ciphers, Cryptology ePrint Archive, Report
2013/568, 2013, [Online]. Available: http://eprint.iacr.org/2013/568, [re-
trieved: March, 2018].

[18] I.Dinur, Improved Differential Cryptanalysis of Round-Reduced Speck,
Cryptology ePrint Archive: Report 2014/320, [Online]. Available:
http://eprint.iacr.org/2014/320, [retrieved: March, 2018].

[19] K.Fu; et al, MILP-Based Automatic Search Algorithms for Differential
and Linear Trails for Speck, Cryptology ePrint Archive: Report 2016/407,
[Online]. Available: http://eprint.iacr.org/2016/407,[retrieved: March,
2018].

[20] L.Song, Z.Huang, and Q.Yang, Automatic Differential Analysis
of ARX Block Ciphers with Application to SPECK and LEA,
Cryptology ePrint Archive: Report 2016/209, [Online]. Available:
http://eprint.iacr.org/2016/209, [retrieved: March, 2018].

[21] A.Biryukov, A.Roy, and V.Velichkov, Differential Analysis of Block Ci-
phers SIMON and SPECK, Cryptology ePrint Archive: Report 2014/922,
[Online]. Available: http://eprint.iacr.org/2014/922,[retrieved: March,
2018].

[22] Y.Liu, et al, Linear cryptanalysis of reducedround SPECK, Information
Processing Letters Volume 116, Issue 3, March 2016.

[23] CNBC News, Distrustful US allies force spy agency to back
down in encryption row, September 2017, [Online]. Available:
https://www.cnbc.com/2017/09/21/distrustfulusalliesforcensatoback-
downinencryptionrow.html, [retrieved: March, 2018].

[24] (2017, Oct.) MULTOS website, [Online]. Available:
http://www.multos.com/, [retrieved: March, 2018].

[25] (2017, Oct.) Infineon, SLE 78 family of 16-bit security controllers,
[Online]. Available: https://www.infineon.com/cms/en/product/security
-and-smart-card-solutions/security-controllers/sle78/channel.html?
channel=5546d462503812bb015066c2d8e91745, [retrieved: March,
2018].

[26] (2017, Oct.) K. Mayes, ”Performance Evaluation of the
TUAK algorithm in support of the ETSI Sage stan-
dardisation group”, 3GPP, 2014, [Online]. Available: at
http://www.3gpp.org/ftp/Specs/archive/35series/35.936/
SAGE report/Perfevaluation.zip, [retrieved: March, 2018].

[27] Oracle, Java Card Platform Specifications V3.04, (2011).


