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Abstract 9 

The application of photocatalytic and self-cleaning nanomaterials in the field of architectural 10 

heritage is an encouraging strategy for stone conservation and particularly for marble architectural 11 

elements. In the present research, self-cleaning nanocomposites were set-up by mixing water 12 

dispersions of TiO2 nanoparticles in commercial protective treatments based on organosiloxanes, 13 

fluoropolyethers and functionalized SiO2. The pure anatase phase nanoparticles used for their 14 

preparation are photoactive under solar light, in addition to UV radiation, due to their benzyl 15 

surface capping resulting in an increase of their efficiency in the degradation of pollutants. The 16 

nanomaterials applied on Carrara marble specimens show better performance in terms of surface 17 

colour compatibility and water repellency compared to traditional protective products. Actually, 18 
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the introduction of nano-TiO2 plays a role in the increase of the surface roughness, with a 19 

consequent reduction of the surface wettability. The promising results obtained so far in the lab 20 

have also been confirmed on-site on real surfaces of the marble façade of a renaissance cathedral. 21 

Keywords: Stone protection, Self-cleaning, Photocatalytic, Hydrophobic, TiO2-nanocomposites, 22 

Marble 23 

1. Introduction  24 

Two main classes of protective treatments have been used in the field of stone conservation aiming 25 

at reducing the impact of pollution on the rapid degradation of limestones and marbles since the 26 

mid-20th century. The first wide class is the one of  synthetic polymeric materials (acrylic, partially 27 

fluorinated and perfluoropolymers, alkyl silicon products) which are able to turn the partial 28 

hydrophilic properties of the stone into water-repellent surfaces and the second one includes low 29 

molecular weight inorganic products (silica sols and ammonium oxalate) [1-3]. Many studies 30 

proved that an “all-purpose” protective product suitable for all lithotypes does not exist as far as 31 

different factors influence the performance of a water repellent treatment: the chemical nature and 32 

formulation of the product (composition, solvent, concentration, water-emulsion, additives, 33 

catalyst, etc.), the mineralogical features, morphology, open porosity and state of conservation of 34 

the stone substrate, the application method (by brush, by spray, by absorption) and therefore the 35 

penetration depth of the treatment [1]. To find an effective strategy for the protection of low 36 

porosity stones, such as marbles, is particularly difficult, due to the poor penetration of the 37 

treatments into the substrate, which prevents the good coverage and adhesion of the products to 38 

the crystal grains, compromising their effectiveness. In addition, the accumulation of the product 39 

on the surface makes it more prone to chemical, thermal, photochemical and mechanical stress, 40 

with consequent faster deterioration [2].  41 

Therefore, in the last decade, the scientific research has been devoted to developing innovative 42 

surface treatments for the protection of exterior stone surfaces of historic buildings. A diffused 43 

strategy is the introduction of nanoparticles inside a polymeric matrix, in order to increase the 44 

surface roughness without changing the main characteristics of the material, such as permeability 45 

and transparency, and the substrate morphology. When the treated surfaces are exposed to rainfall 46 

and humidity, water spherical droplets can easily absorb dust and dirt and roll away, giving rise to 47 

the so called “self-cleaning” behaviour [4]. The increase of the water-repellency of the surface is 48 

due to the formation of micro-nano binary structures which enhance the surface roughness and 49 

reduce the real contact between the liquid water and the stone material. As a result, hydrophobic 50 
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or super-hydrophobic (static contact angle with water > 150°) surfaces are obtained. Polymeric 51 

water dispersions have been modified by adding different nanoparticles (SiO2, SnO2, Al2O3, TiO2) 52 

with the aim of developing surface coatings for natural stones [5-9].  53 

Since 1990s titania nanoparticles have been used, thanks to their photocatalytic properties, in 54 

addition to traditional building materials such as concrete, cement mortar, ceramic tiles, paints, 55 

glass and PVC fabric [10-12]. In recent years, nano-TiO2 has been also tested in the field of cultural 56 

heritage conservation, in particular for the development of photocatalytic and antifouling 57 

treatments for stone substrates [13]. When irradiated with photons having energy higher than their 58 

band-gap, titania nanoparticles are able to oxidize and decompose organic and inorganic 59 

compounds in contact with their surface, generating non-harmful products that can also be easily 60 

removed by rainfall [10, 14]. In addition to the photocatalytic activity, some nano-TiO2 treatments 61 

show antifouling properties and are able to prevent biological growth [15-17]. Titania 62 

nanoparticles have been used in forms of water or solvent dispersions and applied by brush or by 63 

spray directly on the surface of different natural stones (limestones, marble, calcarenite, 64 

travertine), making them hydrophilic or superhydrophilic [18-20]. The main limit of these 65 

dispersions is that nanoparticles show poor adhesion to stone surfaces and are easily removed by 66 

rainfall, or they penetrate into the stone porosity, significantly compromising their photocatalytic 67 

activity [21]. A strategy to overcome this issue and avoid the release of nanoparticles in the 68 

environment is their introduction in either organic or inorganic matrix [16, 21-23]. Different types 69 

of TiO2 nanoparticles have been mixed with polymeric matrix used for the protection of stone 70 

surfaces such as alkyl silicon products [8, 21, 24-28], fluorinated or partially fluorinated [29, 30] 71 

or acrylic [15, 30, 31] polymers. 72 

A critical issue in the development of nano-TiO2 based treatments is their poor photoactivity under 73 

solar light irradiation, since TiO2 based nanomaterials present wide band-gaps, mainly adsorbing 74 

ultraviolet photons while solar light only contains a small fraction of ultraviolet photons (about 75 

5%). For this reason, the scientific research aims at improving the photocatalytic efficiency of 76 

TiO2 under solar light irradiation, by means of morphological modifications such as the increase 77 

of surface area and porosity, or chemical modifications with incorporation of dopants in the TiO2 78 

structure to reduce the band-gap and extend the spectral sensitivity from UV to visible light [11, 79 

32]. 80 

In the present research, the set-up of different organic nanocomposites is proposed, starting from 81 

commercial stone protective treatments which were improved by the addition of innovative TiO2 82 

nanoparticles. The latter are characterized by a surface capping of benzyl alcohol molecules 83 

anchored on their surfaces, which make the nanoparticles photoactive even if exposed to solar 84 



4 
 

irradiation, increasing their photoefficiency [33]. In addition, as previously reported, the proposed 85 

nanocrystals allow to obtain highly stable dispersions in aqueous systems, without affecting the 86 

surface colour of the stone substrate [34]. The laboratory experimental work allowed to assess the 87 

effectiveness of nanocomposites as protective and self-cleaning treatments for a low porosity stone 88 

substrate such as Carrara marble. This stone is mainly composed of regular small size calcite 89 

grains, with an average open porosity ranging from 0.5 to 1.0 % and it is, therefore, quite difficult 90 

to protect. The pores are arising from the reduced intergranular space, which can be enhanced near 91 

the surface by deterioration phenomena [35] and are permeable to aggressive gaseous pollutants 92 

and corrosive water solutions, but difficult to cover with water repellent treatments. This study 93 

accounts for the challenge to address the critical issues for marble protection. 94 

A thorough comparison between the behaviour of the different treatments before and after the 95 

addition of nano-TiO2, has been carried out and discussed. 96 

 97 

2. Materials and Methods 98 

2.1 Preparation of TiO2-based nanocomposites and their application on marble specimens 99 

Nanocomposites were set-up by adding water dispersion of nano-TiO2 to commercial protective 100 

treatments used in the conservation field for stone protection. In particular, transparent water 101 

dispersion of TiO2 nanoparticles (3% by weight, nanoparticles size around 40 nm), synthesized 102 

according to the non-aqueous route [36], as reported in previous papers [34, 37], were used for the 103 

preparation of the nanocomposites. The nanoparticles show photoactivity in the visible spectral 104 

range in addition to UV, due to the residual presence of benzyl alcohol group on the surface of the 105 

nanoparticles, deriving from the synthesis. 106 

The selected commercial products for stone materials are: an aqueous dispersion of 107 

organosiloxanes (10% by weight) (Silo 112, CTS srl, labelled as S), an aqueous dispersion of 108 

fluoropolyethers (10% by weight) (Fluoline PE, CTS srl, labelled as F) and a solution of SiO2 109 

functionalized by silicon alcoxides in isopropyl alcohol (20 % by weight) (SIOX-5 S, Siltea srl, 110 

labelled as FS).  S and F [29, 38] have been chosen as they are products widely used in the field 111 

of stone conservation; FS is a promising inorganic protective treatment obtained by sol-gel process 112 

from an Italian spin-off company (Siltea srl, Italy). 113 

Nanocomposites were prepared by adding, upon stirring, different amount of water dispersion of 114 

nanoparticles to the commercial products as sold, without any further dilution. The obtained 115 

composites are reported in Table 1. In particular, adding the nanoparticle (n) dispersion to the 116 

polysiloxane-based treatment (Silo 112, S), three different emulsions were obtained, labelled Sn16, 117 
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Sn28 and Sn44, showing the following concentrations of nanoparticles in the polymer by weight: 118 

16%, 28% and 44%, respectively.  119 

For both fluoropolyethers-based (Fluoline PE) and functionalized SiO2-based treatments (SIOX-5 120 

S), only one composite was obtained, with a 16% by weight nanoparticle concentration (labelled 121 

Fn16 and FSn16, respectively), since the addition of higher amount of nanoparticles did not grant 122 

the preparation of stable composites.  123 

Before the application of the treatments, 50x50x10 mm and 50x50x20 mm specimens of fresh 124 

Carrara marble were prepared by smoothing their surface with abrasive carborundum paper (Nr. 125 

180), washing with deionized water and drying for 48 h at room temperature until constant weight 126 

was achieved. They were finally stored in silica gel desiccator at 55% UR. 127 

The nanocomposites were, then, applied following one single brush application, wetting 128 

completely the marble surface (about 25 cm2) with the product. The amount of adsorbed dry matter 129 

was measured after drying and the values are reported in Table 1. The variations in the values of 130 

average amount of dry matter can be ascribed to differences in the density of the products, and in 131 

their ability to homogenously cover the stone surfaces. Untreated stone specimens (labelled NT) 132 

were also tested for comparison. 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 
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Table 1. Values of average dry matter (g) of products applied by brush on stone specimens with a 147 

surface area of about 25 cm2.  148 

Treatment Description Amount of product (g) 

S 
Commercial polysiloxane 

Silo 112 0.06±0.01 

Sn16 
nanocomposite based on 

polysiloxane Silo 112 with 
nano-TiO2 (16 wt%) 

0.12±0.01 

Sn28 
nanocomposite based on 

polysiloxane Silo 112 with 
nano-TiO2 (28 wt%) 

0.14±0.01 

Sn44 
nanocomposite based on 

polysiloxane Silo 112 with 
nano-TiO2 (44 wt%) 

0.14±0.01 

F 
Commercial fluoropolyethers 

Fluoline PE 0.08±0.01 

Fn16 
nanocomposite based on 

fluoropolyethers Fluoline PE 
with nano-TiO2 (16 wt%) 

0.10±0.01 

FS 
Commercial functionalized 

SiO2 SIOX-5 S 0.02±0.01 

FSn16 
nanocomposite based on 

functionalized SiO2 SIOX-5 S 
with nano-TiO2 (16 wt%) 

0.09±0.01 

 149 

2.2  Characterization of TiO2-based nanocomposites and evaluation of their effectiveness 150 

applied on stone 151 

To evaluate the morphology of nanoparticles and their distribution in the blends, the 152 

nanocomposites were analysed using Transmission Electron Microscopy (TEM, Philips CM200-153 

FEG) operated at 200 kV. The samples for TEM analyses were prepared by depositing 1 drop of 154 

the nanoparticles dispersions onto a carbon coated copper grid of 200 mesh. 155 

The nanocomposites were chemically characterized by micro-Fourier Transform Infrared 156 

Spectroscopy (µ-FTIR), using a Nicolet 6700 spectrophotometer coupled with Nicolet Continuum 157 

FTIR microscope equipped with an MCT detector (acquired between 4000 and 600 cm-1 with 128 158 

acquisitions and 4 cm-1 resolution), using a micro compression diamond cell accessory. The spectra 159 

were baseline corrected using Omnic software. Then, they were normalized on the intensity of the 160 
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Si-O stretching peak, at 1100 cm-1 for polysiloxane-based treatments and at 1050 cm-1 for SiO2-161 

based ones and of the F-C stretching peak at 1200 cm-1 for fluoropolymer-based ones. 162 

The morphology of the stone surfaces before and after the application of the treatments was 163 

analyzed by Environmental Scanning Electron Microscopy (ESEM) and EDX analyses (Zeiss EVO 164 

50 EP ESEM, equipped with an Oxford INCA 200 - Pentafet LZ4 spectrometer). 165 

Moreover, Carrara marble specimens either untreated or treated were studied by Atomic Force 166 

Microscopy (AFM, Solver Pro, NT-MDT), using a silicon cantilever with a tip (NSG10, NT-167 

MDT) with height 14-16 µm, tip curvature radius 10 nm and resonant frequency 140 – 390 KHz 168 

to evaluate their morphology and to assess the roughness of the stone surfaces. Measurements were 169 

performed in tapping mode, with 2 scans of the surface (1 µm X 1 µm and 0.5 µm X 0.5 µm), at 170 

0.6 Hz scan rate. The acquired images were elaborated with the Nova SPM software (NT-MDT), 171 

which provided also the root mean square roughness (nm) values.  172 

The evaluation of the surface colour compatibility of the treatments with the stone was carried out 173 

by VIS spectrophotometric measurements, with a Konica Minolta CM-600D instrument with a 174 

D65 illuminant at 8°, wavelength range between 360 nm and 740 nm. Measurements were 175 

elaborated according to the CIE L*a*b* standard colour system. 25 measurements were performed 176 

on each area and the average results of L*a*b* were used to calculate the colour difference ΔΕ* 177 

between treated and untreated areas (ΔΕ* = [(L*
2-L*

1)2 +(a*
2-a*

1)2+(b*
2-b*

1)2]1/2). 178 

Static contact angle and capillary water absorption tests were performed in room conditions, 179 

without exposing the samples to solar lamps or UV light, in order to monitor the wettability changes 180 

and water absorption of the stone surfaces after application of the treaments. Static contact angle 181 

test was performed on 15 points for each sample, according to UNI standard [39], using an OCA 182 

(Optical Contact Angle) 20 PLUS (DataPhysics, Germany), with a drop volume of 5 µl, after 10 183 

seconds. Moreover, the capillary water absorption of the stone samples was performed according 184 

to UNI standard [40] on 50x50x20 mm samples of Carrara marble before and after the application 185 

of the treatments (three samples per treatment). The capillary water absorption value per unit area 186 

(Qi, expressed in mg/cm2) is defined with the expression: 𝑄𝑄𝑖𝑖 = (𝑚𝑚1 −𝑚𝑚0)/𝐴𝐴 ∗ 1000, where mi is 187 

the mass (g) of the wet sample at time ti, m0 is the mass (g) of the dried sample, A is the surface 188 

area (cm2) in contact with the water. The samples were weighed at the following time intervals: 10 189 

min, 20 min, 30 min, 60 min, 4 h, 6 h, 24 h, 48 h, 72 h and 96 h. The capillary index (CI) was 190 

calculated with the equation: CI=∫ (𝑄𝑄𝑖𝑖)𝑑𝑑𝑑𝑑
𝑡𝑡𝑡𝑡
𝑡𝑡0 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓� , where ∫ (𝑄𝑄𝑖𝑖)𝑑𝑑𝑑𝑑

𝑡𝑡𝑡𝑡
𝑡𝑡0  is the area under the 191 

absorption curve, 𝑄𝑄𝑡𝑡𝑡𝑡 is the amount of absorbed water per surface unit at the final time 𝑡𝑡𝑓𝑓. The 192 

relative capillary index (CIrel) was calculated with the equation: 193 
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CIrel=∫ 𝑓𝑓(𝑄𝑄𝑖𝑖)𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑
𝑡𝑡𝑡𝑡
𝑡𝑡0 ∫ 𝑓𝑓(𝑄𝑄𝑖𝑖)𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑

𝑡𝑡𝑡𝑡
𝑡𝑡0� , where ∫ 𝑓𝑓(𝑄𝑄𝑖𝑖)𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑

𝑡𝑡𝑡𝑡
𝑡𝑡0  is the area under the absorption curve 194 

of the treated specimen (tr) and ∫ 𝑓𝑓(𝑄𝑄𝑖𝑖)𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑
𝑡𝑡𝑡𝑡
𝑡𝑡0  is the area under the absorption curve of the 195 

untreated specimen (ntr). Finally, the absorption coefficient (AC, expressed in mg/(cm2 s1/2)), 196 

which is the slope of the straight part of the absorption curve, was calculated from the expression: 197 

AC=(𝑄𝑄30 − 𝑄𝑄0) �𝑡𝑡30⁄  , where 𝑄𝑄30 is the value of the absorbed water per surface unit at 30 min 198 

and 𝑄𝑄0 is the intercept of the line in the straight part of the curve.  199 

The photocatalytic activity of the nanocomposites was assessed by means of the decomposition of 200 

an organic colorant (rhodamine B, rB) test after indoor exposition of the treated samples in a solar 201 

irradiation chamber with a xenon arc lamp source and a cut off filter for wavelengths below 290 202 

nm (Suntest CPS+, URAI S.p.A). The rhodamine B water solution (0.05 g/l ± 0.005 g/l) was 203 

applied, by using a pipette, on the surface of both untreated and treated samples (1 ml per 204 

specimen) then, after drying in room conditions, colorimetric measurements were carried out using 205 

the reflectance VIS spectrophotometer (Konica Minolta CM-600D instrument, as described 206 

above). The degradation of the applied organic dye was monitored on specimens exposed in a solar 207 

irradiation chamber where the irradiance was 765 W/m2 at the same distance (20 cm) for all the 208 

specimens and the temperature was kept at about 45°C. The colorimetric measurements were 209 

carried out after 15, 30, 60, 90 and 150 minutes of irradiation. Only the chromatic coordinate a* 210 

was used to evaluate the photocatalytic discoloration of stain over time D*, by the equation: D* = 211 

(|a*(t) – a*(rB)|/|a*(rB) – a*(0)|*100, where a*(0) and a*(rB) are the average values of chromatic 212 

coordinate a* before and after the application of the stained solution and a*(t) is the a* value after 213 

t hours of light exposure.  214 

 215 

3. Results and discussion 216 

3.1 Characterization of TiO2-based nanocomposites 217 

In Figure 1 TEM images of the nanocomposites obtained by mixing water dispersion of nano-TiO2 218 

with commercial products (Sn16, Sn28, Sn44, Fn16 and FSn16) are reported. From the images it 219 

is possible to notice the presence of nanoparticles as elongated structures whose longest axis 220 

measures about 40 nm. No aggregation of nanoparticles occurs in polysiloxanes (Fig.1a, b, c) and 221 

functionalized SiO2-based treatments (Fig. 1e), even for higher concentrations (Sn28 and Sn44), 222 

confirming the results obtained from water dispersion of nano-TiO2 [34]. TiO2 nanoparticles tend 223 

to aggregate, instead, in fluoropolymer-based nanocomposite (Fn16), due to the low affinity 224 

between nanoparticles and the water dispersion of fluoropolyethers (Figure 1d).  225 
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 226 

Figure 1. TEM images of the nanocomposites based on polysiloxane: a) Sn16, b) Sn28 and c) 227 

Sn44; on fluoropolyethers: d) Fn16; on functionalized SiO2: e) FSn16. 228 

 229 

The FTIR spectra collected from the polysiloxane-based treatments (S, Sn16, Sn28 and Sn44) are 230 

characterized by the typical absorption bands at 1020 and 1100 cm-1 related to Si-O-Si stretching, 231 

at 1260 cm-1 (Si-CH3 bending), at 850 cm-1 (Si-CH3 rocking) and at about 2950-2850 cm-1 (C-H 232 

stretching) (Figure 2a) [16, 41]. By introducing TiO2 nanoparticles in the nanocomposites the 233 

following changes in the spectra occur: an increase of the OH stretching band between 3000-3400 234 

cm-1 and OH bending band at about 1630 cm-1 due to emisorbed hydroxyls groups bonded to TiO2 235 

and the appearance of the absorption band starting below 700 cm-1 related to Ti-O stretching [34]. 236 

The FTIR spectrum of fluoropolyether-based nanocomposite (Fn16) exhibits no relevant 237 

difference compared to that of the commercial product (F) and they are both characterized by peaks 238 

at about 1200 and 1150 cm-1, arising from CF2 symmetric stretching and at 970 cm-1, related to C-239 

O-C symmetric stretching (Figure 2b) [42, 43]. Despite less significant compared to Sn16 and 240 

FSn16, a slight increase in the absorption band starting from 700 cm-1 related to TiO2 nanoparticles 241 

can be detected in FSn16. The lower intensity of this absorption in Fn16 compared to the other 242 

nanocomposites can be probably ascribed to the less homogenous distribution of the nanoparticles 243 

in the nanocomposite. 244 

As reported in Figure 2c, the spectra from the functionalized-SiO2 treatments (FS and FSn16) show 245 

the absorption bands at 1070 and 795 cm-1 assigned to Si-O-Si asymmetric stretching and Si-O-Si 246 

symmetric stretching, respectively, which can be ascribed to the silica matrix [16, 42, 43]. 247 

Moreover, they have peaks at about 2955-2850 cm-1, related to C-H stretching, a broad band at 248 

about 3390 cm-1 and a peak at 1634 cm-1, which are assigned to OH stretching and bending 249 

vibrations, attributed to Si-OH groups or water absorbed on nano-TiO2 [44]. In addition, the slight 250 

broadening of the peak at about 950 cm-1, attributed to Si-OH vibrations, in the nanocomposite 251 

spectrum can be ascribed to the formation of Si-O-Ti interactions between the silica matrix and 252 

the nanoparticles [16, 44, 45]. 253 
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 254 

Figure 2. µ-FTIR spectra of: a) water dispersion of nano-TiO2 (3 wt%), polysiloxane commercial 255 

product (S) and polysiloxane-based nanocomposites (Sn16, Sn28, Sn44); b) fluoropolyether 256 

commercial product (F) and fluoropolyether-based nanocomposite (Fn16); c) functionalized SiO2 257 

commercial product (FS) and functionalized SiO2-based nanocomposite (FSn16). 258 

 259 

 260 

 261 
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3.2 Evaluation of the morphology of TiO2-based nanocomposites 262 

To study the morphology of the protective treatments, ESEM-EDX analyses were carried out on 263 

Carrara marble specimens before and after the application of treatments. In the ESEM images, in 264 

backscattered electrons, the darker areas on the surface are those where the treatment accumulates, 265 

as silicon of the matrix is lighter than calcium of the stone substrate. 266 

Both pure polysiloxane polymer (S, Fig.3b) and polysiloxane-based nanocomposites (Sn16, Sn28 267 

and Sn44, Fig.3e-g, Fig.4a-d) homogenously cover the marble surface with a rather thick layer of 268 

product, without creating micro-cracks, which enhances the surface roughness. In particular, the 269 

high content of nanoparticles in Sn44 leads to the formation of a porous and sponge-like surface 270 

morphology that covers the crystals (Fig.4c-d). In addition, TiO2 nanoparticles do not aggregate 271 

in the polysiloxane-based nanocomposites (Sn16, Sn28 and Sn44) and are distributed on the 272 

surface in association with the silicon matrix, as shown by the simultaneous presence of Si and Ti 273 

signals in the same areas in the elemental maps (Fig.3e-g).  274 

Regarding the fluoropolyethers-based products, both the reference polymer (F, Fig.3h) and the 275 

nanocomposite (Fn16, Fig.3i) are not homogeneously spread on the stone surface, but they 276 

concentrate in micrometric clusters. This behaviour is particularly evident for Fn16, as the blend 277 

does not show a good affinity with the calcite surface and it rather forms aggregated structures 278 

(Fig.3h, Fig.4e) where the polymer and Ti atoms are concentrated. This is due to the poor ability 279 

of the fluoropolymer coatings to adhere to the stone substrate [3].  280 

Finally, a rather good coverage of the marble surface is also achieved by functionalized SiO2-281 

based treatments (FS and FSn16), as reported in Figure 3d and i. This material, in any case, appears 282 

different from the linear homogeneous distribution of polysiloxane, forming some small silica 283 

aggregates where Si and Ti are predominant (Fig.4e). TiO2 nanoparticles are well distributed on 284 

the surface as well, as confirmed by EDX map (Fig.3i). 285 

 286 

 287 

 288 

 289 
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 290 

Figure 3. ESEM-EDX images of untreated Carrara marble (a); marble treated with polysiloxane 291 

(b), fluoropolyether (c) and functionalized SiO2 (d) commercial products. Marble treated with: 292 

Sn18 (e), Sn28 (f) and Sn44 nanocomposite (g) and Ca, Si and Ti maps of distribution; Fn16 293 

nanocomposite (h) and Ca, F and Ti maps of distribution; FSn16 nanocomposite (i) and Ca, Si and 294 

Ti maps of distribution. 295 

 296 

 297 
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 298 

Figure 4. ESEM-EDX images of Carrara marble treated with Sn16 (a), Sn28 (b), Sn44 with a 299 

sponge-like morphology (c, d), Fn16 (e) and FSn16 (f) nanocomposites. 300 

 301 

AFM investigations were carried out on Carrara marble specimens both untreated (NT) and treated 302 

with the commercial products (F, S and FS) and the nanocomposites (Sn16, Sn28, Sn44, Fn16 and 303 

FSn16), in order to study the changes induced to the marble surface topography by the addition of 304 

nanoparticles [46]. As reported in Figure 5, compared to both the untreated specimen (NT) and 305 

those treated with the pristine polymers (S, F, FS), the nanocomposites are characterized by the 306 

presence of new structures that arise from the surface, as shown by the AFM 2D and 3D “height 307 

trace” images of the surfaces. 308 



14 
 

Compared to the untreated specimen (NT), the application of polysiloxane (S) and fluoropolyether 309 

(F) products makes the surface smoother (Figure 4), whereas functionalized SiO2 (FS) does not 310 

lead to relevant changes of the morphology, probably due to differences in the crystal coverage, 311 

as already noted by ESEM analysis. These results are reported in Table 2 where the measured root 312 

mean square values of roughness are indicated. Indeed, the values of nanometric roughness 313 

obtained from the untreated specimen (NT) are higher than those obtained by S and F, whereas 314 

they are very similar to those of FS. 315 

An increase of the mean values of nano-roughness is particularly evident for the specimens treated 316 

with Sn16, Sn28, Sn44 and Fn16 nanocomposites (Table 2). On the contrary, for those specimens 317 

treated with FSn16, some aggregates are formed, showing roughness values which are similar to 318 

those obtained from the reference coating (FS) (Figure 5).  319 

Moreover, as shown in the AFM 3D and 2D images and in Table 2, by increasing the concentration 320 

of TiO2 nanoparticles in the siloxane nanocomposites, a proportional increase of the surface nano-321 

roughness occurs. This is a positive result, since it significantly influences the wettability of the 322 

stone surfaces, as it will be described later. 323 
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 324 

Figure 5. From the top to the bottom: AFM 3D and 2D “height trace” image of untreated Carrara 325 

marble and treated with the polysiloxane product (S), Sn16, Sn28 and Sn44 nanocomposites, the 326 

perfluoropolyether product (F), Fn16 nanocomposite, the functionalized SiO2 product (FS) and 327 

FSn16 nanocomposite. 328 
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Table 2. Values of root mean square roughness (nm) and static contact angle (°) of both untreated 329 

Carrara marble specimens (NT) and treated with the commercial products (S, F and FS) and the 330 

nanocomposites (Sn16, Sn28, Sn44, Fn16, FS16). 331 

 
Root mean square 

roughness (nm) 
Static contact 

angle (°) 
NT 11.94±1.19 48±4 
S  3.52±0.35 95±6 

Sn16 18.01±1.80 129±5 
Sn28 31.39±3.14 138±2 
Sn44 37.62±3.76 149±4 

F 0.70±0.07 106±2 
Fn16 24.43±2.44 136±5 
FS 10.21±1.02 60±2 

FSn16 11.80±1.18 34±3 
 332 

3.3 Evaluation of the surface colour compatibility of TiO2-based nanocomposites 333 

In order to verify the fulfilment of the important requirement of surface colour compatibility of 334 

the products, spectrophotometric measurements were performed on the specimens before and after 335 

the application of the treatments. Table 3 summarizes the values of ΔL*, Δa*, Δb* and ΔE* of the 336 

fluoropolymer (F), polysiloxane (S), functionalized SiO2 (FS) and the nanocomposites (Sn16, 337 

Sn28, Sn44, Fn16, FS16). The values of ΔE* are lower than 4 for each treatment, indicating that 338 

they show good colour compatibility with the substrate, as they do not overcome the threshold 339 

value of 5 [47]. The application of nanocoatings leads to lower ΔE* values compared to the 340 

commercial products (S, F and FS). It is worth noting that, among surfaces treated with 341 

polysiloxane-based nanocoatings, ΔE* values decrease with the increase of the nano-TiO2 342 

concentration, since they exhibit lower differences of L* and b* compared to the surface before 343 

the application of the treatments. This is due to the whitening effect of nano-TiO2 on the external 344 

surface which can balance the slight yellow colour of the polymer, as confirmed also by other 345 

researchers [29]. The very low ΔE* value obtained by specimen treated with Fn16 could be related 346 

to the fact that the product is not well distributed on the surface but it aggregates in small cluster, 347 

as shown by ESEM-EDX analysis and previously discussed (Fig.3h). ΔE* values lower than 1 348 

were measured from surfaces treated with both the functionalized SiO2-based treatments (FS and 349 

FSn16), proving their excellent color compatibility.  350 

 351 

 352 
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Table 3. ΔL*, Δa*, Δb* and ΔE* values measured on the specimens before and after the application of 353 

the treatments. 354 

 ΔL* Δa* Δb* ΔE* 
S  -3.69 -0.12 0.99 3.82 

Sn16 -2.56 -0.10 0.72 2.66 
Sn28 -1.90 -0.01 0.58 1.99 
Sn44 -1.61 -0.07 0.67 1.75 

F -1.78 -0.17 2.14 2.79 
Fn16 -0.23 0.00 0.12 0.26 
FS -0.80 -0.04 0.07 0.80 

FSn16 -0.56 -0.05 -0.02 0.56 
 355 

3.4 Evaluation of the wettability and water absorption properties  356 

As reported in Table 2, the specimens treated with the fluoropolymer and polysiloxane coatings 357 

(F and S) show significantly higher contact angle θ values compared to the untreated ones, since 358 

the polymeric treatments reduce the wettability of the marble surface. Besides that, the specimens 359 

treated with the nanocomposites Sn16, Sn28, Sn44 and Fn16 show higher contact angle values 360 

than those with the pristine polymers F and S. This evidence is assigned to the introduction of 361 

nanoparticles in the treatments which are able to enhance the surface nano-roughness (Table 2), 362 

with the reduction of the surface free energy, as defined by the Cassie equation [48] and reported 363 

by other Authors [6, 7, 24, 49]. Different factors influence the wettability of inorganic materials 364 

treated with organic compounds (surface substrate morphology, interactions between surface and 365 

treatment, distribution and orientation of the hydrophobic alkyl chains of the polymer). Among 366 

them, the original morphology of the substrate plays a crucial role, since the presence of micro- 367 

and nano-roughness significantly affect the surface wettability [50, 51]. The results obtained from 368 

the addition of TiO2 nanoparticles to F and S are in good agreement with the values of nano-369 

roughness measured by AFM investigations (Table 2). In addition, by increasing the nanoparticles 370 

concentration in the composites, as in Sn16, Sn28 and Sn44, higher values of contact angles are 371 

measured, according to the proportional increase of nano-roughness evidenced by AFM analysis 372 

(Table 2). The agreement between these parameters indicates a good correlation between surface 373 

wettability and roughness (Figure 6). In particular, the specimen treated with Sn44 shows 374 

superhydrophobic features, since it reaches a mean contact angle value of about 150°, surely 375 

connected with the surface sponge like nanostructure observed by ESEM (Figure 4).  376 

The specimens treated with functionalized SiO2 (FS) and functionalized SiO2-based 377 

nanocomposite (FSn16) show a different behaviour, as they display values of contact angle similar 378 

to those obtained by the untreated specimen. This result can be once again correlated to the 379 
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comparable roughness values measured with AFM on specimens either untreated or treated with 380 

FS and FSn16 (Fig.6). FS is an inorganic product, with no water repellent properties and it does 381 

not affect the hydrophilic properties of the stone. Besides that, the addition of nanoparticles to the 382 

nanocomposite provides hydrophilic properties to the surface, since the related specimens show 383 

lower contact angle values compared to those treated with FS. This should be ascribed to the 384 

behaviour of TiO2 nanoparticles which confer hydrophilic properties when applied as water or 385 

solvent dispersions [34] or in the presence of a hydrophilic matrix or binder [48]. 386 

It is well known that the capillary water absorption of fresh Carrara marble is rather low and that 387 

the protection of such substrate from water income is rather difficult. The efficacy of a treatment 388 

is affected by different factors: mineralogical composition and intrinsic wettability of the substrate; 389 

finishing and natural roughness; total open porosity and pore size distribution, the penetration 390 

depth of the treatment and its ability to cover and adhere to the pore walls [52]. Table 4 reports the 391 

values of the parameters that can be obtained by the water absorption by capillarity test, after a 392 

prolonged contact of the untreated and treated marble surfaces with water.  393 

The values of capillary index (CI) and absorption coefficient (AC) decrease after the application 394 

of all treatments, indicating that a reduction of the water absorption occurs but, as it happens for 395 

this kind of compact natural stones, it is a rather modest reduction. The best results and lowest 396 

values of relative capillary index (CIrel) are obtained from specimens treated with the 397 

nanocomposites, proving the beneficial effect of the addition of nano-TiO2 in the formulation. This 398 

behaviour is particularly evident for polysiloxane-based nanocomposites (Sn16, Sn28 and Sn44).  399 

Both FS and FSn16 show a rather good protection efficacy and reduce the water absorption by 400 

capillarity of about 50%, although they show a low or negligible water repellency (Table 2 and 401 

Figure 6). This result can be probably associated to the fact that both FS and FSn16 are suitable to 402 

penetrate inside the few and narrow pores of the marble and cover the crystal grains filling the 403 

pores, as observed by ESEM-EDX investigations (Fig.3d and i). In particular, in the specimens 404 

treated with FSn16, the CIrel value is slightly lower than that obtained from FS, indicating that for 405 

this treatment the addition of nanoparticles in the product does not further reduce the water 406 

absorption.  407 
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 408 

Figure 6. Correlation between values of static contact angle and root mean square roughness (nm) 409 

of the untreated and treated marble specimens. 410 

 411 

Table 4. Values of maximal water absorption (Qi) (mg/cm2), capillary index (CI), relative capillary 412 

index (CIrel) and absorption coefficient (AC) (mg/cm2 s-1/2) for untreated (nt) and treated (t) Carrara 413 

marble specimens. 414 

Treatment  Qi CI CIrel AC 

S  
nt. 7.12±1.55 0.90±0.08 

0.78±0.05 
0.11±0.04 

t. 5.45±1.11 0.92±0.08 0.03±0.02 

Sn16 
nt. 6.46±1.24 0.92±0.09 

0.55±0.03 
0.08±0.04 

t. 4.37±0.83 0.71±0.06 0.02±0.01 

Sn28 
nt. 7.96±1.67 0.88±0.08 

0.44±0.07 
0.08±0.04 

t. 4.76±0.86 0.65±0.07 0.02±0.01 

Sn44 
nt. 5.46±0.92 0.89±0.06 

0.48±0.03 
0.05±0.03 

t. 3.26±0.58 0.72±0.05 0.02±0.01 

F  
nt. 7.99±1.62 0.92±0.09 

0.77±0.08 
0.12±0.06 

t. 7.4±1.58 0.76±0.08 0.01±0.01 

Fn16 
nt. 5.93±1.13 0.88±0.09 

0.73±0.09 
0.06±0.02 

t. 4.25±1.09 0.9±0.07 0.04±0.02 

FS 
nt. 6.18±1.32 0.88±0.05 

0.55±0.04 
0.07±0.03 

t. 4.11±0.98 0.73±0.05 0.01±0.01 

FSn16 
nt. 5.7±0.89 0.9±0.08 

0.51±0.06 
0.07±0.02 

t. 3.51±0.83 0.74±0.07 0.01±0.01 
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3.5 Evaluation of the photocatalytic activity of TiO2-based nanocomposites 415 

Figure 7 reports the trend of rhodamine B discoloration (D*%) after pre-fixed intervals of 416 

exposition to xenon lamp irradiation of Carrara marble specimens both untreated (NT) and treated 417 

with the commercial products (S, F and FS) and the nanocomposites (Sn16, Sn28, Sn44, Fn16, 418 

FSn16).  419 

The specimens both untreated and treated with the pristine products (S, F and FS) exhibit stain 420 

discoloration due to the photolytic and thermal degradation of rhodamine exposed to xenon 421 

irradiation. As expected, the specimens treated with the nanocomposites show higher values of 422 

stain discoloration, i.e. higher photocatalytic activity, compared to the untreated ones and the 423 

commercial products, due to the presence of nano-TiO2, which accelerate the oxidative 424 

degradation of the colorant. Among the treatments, the best results in terms of photoactivity are 425 

obtained by the siloxane based nanocomposites - Sn16, Sn28 and Sn44 - which reach the maximum 426 

value of 90%, whereas fluoropolymer-based treatment obtains 55% and functionalized SiO2-based 427 

one reaches 70% of stain discoloration. In addition, the polysiloxane-based nanoproducts display 428 

a faster stain discoloration rate within the first 15 minutes compared to the other nanocomposites. 429 

By comparing nanocomposites with the same nano-TiO2 concentration (Sn16, Fn16 and FSn16), 430 

it is evident that Sn16 is more photoactive, most probably due to the availability of nanoparticles 431 

well distributed on the marble surface and to the formation of sponge-like surface nanostructure. 432 

The poor performance in photoactivity of Fn16 can be ascribed to the scarce surface coverage of 433 

the treatment with aggregation of nanoparticles, as reported in ESEM-EDX images and elemental 434 

maps (Fig.3h). The poorer effectiveness of FSn16 compared to Sn16 can be attributed to 435 

nanoparticles aggregation or to a shield effect of SiO2 matrix surrounding nano-TiO2. 436 

As reported in Figure 7 and Table 5, at increasing values of nano-TiO2 concentration in the 437 

polysiloxane-based nanocomposites, a better colorant discoloration is achieved, especially at the 438 

beginning of the test. Evidently, in these nanocomposites the highest nanoparticles concentration 439 

corresponds to the highest photoactive specific surface.  440 

 441 

 442 

 443 
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 444 

Figure 7. Stain discoloration values D* (%) as a function of irradiation time (min.) for Carrara 445 

marble either untreated (NT) or treated (S, Sn16, Sn28, Sn44, F, Fn16, FS, FSn16). 446 

 447 

Table 5. Ratio between the values of stain discoloration D* of Carrara marble samples treated 448 

with the commercial products (D*S, D*F and D*FS) and the nanocomposites (D*Sn16, D*Sn28, 449 

D*Sn44, D*Fn16, D*FSn16) and the untreated sample (D*NT). 450 

 451 

Time 

(min.) 

D*S/ 

D*NT 

D*Sn16/

D*NT 

D*Sn28/

D*NT 

D*Sn44/

D*NT 

D*F/ 

D*NT 

D*Fn16/

D*NT 

D*FS/ 

D*NT 

D*FSn16

/D*NT 

15 0.85 10.73 17.42 16.06 0.37 4.19 0.69 6.17 

30 2.20 9.02 11.78 12.70 0.63 4.87 1.56 5.29 

60 1.71 5.56 5.95 6.59 0.61 3.38 1.44 3.46 

90 3.14 5.96 6.38 6.83 2.05 3.75 1.78 4.32 

150 1.34 2.31 2.45 2.53 1.36 1.59 0.94 2.04 
 452 
 453 

4. Conclusions 454 

The introduction of innovative nano-TiO2 into commercial protective treatments having different 455 

chemical features (organosiloxanes, fluoropolyethers and functionalized SiO2) significantly 456 

influences their effectiveness once applied on low porosity stone such as Carrara marble, leading 457 

to different results depending on the matrix.  458 

Compared to the pristine product, relevant enhancement in the protective action results from the 459 

polysiloxane-based nanocomposites (Sn16, Sn28 and Sn44). In particular, by increasing the 460 

content of TiO2 nanoparticles in the blend, a sponge-like nanostructure has been formed. This 461 
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morphology grants a better colour compatibility and the prevention of the water uptake by 462 

capillarity, increases the water-repellency of the surface due to the enhancement in the nano-463 

roughness and imparts excellent photocatalytic properties. In the case of fluoropolyether, the 464 

nanocomposite (Fn16) is not homogenously distributed on the marble surface, leading to poor 465 

results in terms of water absorption reduction and photoactivity. By adding nano-TiO2 in the 466 

inorganic functionalized SiO2 product, the surface hydrophilic nature of marble is enhanced and 467 

FSn16 imparts good reduction of water uptake and photocatalytic properties.  468 

An important parameter to be considered for the optimization of the formulation of polymeric 469 

nanocomposites is the chemical stability after ageing, as TiO2 nanoparticles can catalyse the 470 

degradation of the polymeric matrix. Accelerated ageing tests will be carried out in order to 471 

evaluate how a simulated solar irradiation affects the effectiveness of nanocomposites applied on 472 

marble specimens.  473 

The encouraging results so far obtained in lab allowed to test the most promising nanocomposites 474 

(Sn44 and FSn16) on-site for the protection of Crevoladossola and Candoglia marbles employed 475 

in the façade of the Cathedral of Monza (Italy) [53]. The results of the 1-year on-site monitoring 476 

confirmed the good effectiveness of the innovative treatments in terms of aesthetic and protection 477 

properties compared to commercial reference products. 478 

 479 
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