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Abbreviations 

VeDBA: Vectorial Dynamic Body Acceleration; VeDBAs: Smoothed Vectorial Dynamic Body 

Acceleration; PSD: Power spectrum Density; StX, StY, StZ: Static acceleration on the X, Y, and Z 

axes; DyX, DyY, DyZ: Dynamic acceleration on the X, Y and Z axes; TP: True Positives; TN: True 

Negatives; FP: False Postives; FN: False Negatives 
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Abstract 23 

Livestock emissions account for 74 % of nitrous oxide contributions to greenhouse gases in the UK. 24 

However, it remains uncertain how much is directly attributable to localised sheep urination events, 25 

which could generate nitrous oxide emission ‘hot spots’. Currently, IPCC emission factors are mainly 26 

extrapolated from lowland grazing systems and do not incorporate temporal or spatial factors related 27 

to sheep behaviour and movement. Being able to gather data that reliably measures when, where, and 28 

how much sheep urinate is necessary for accurate calculations and, to inform best management 29 

practices for reducing greenhouse gas emissions and minimizing emission-based climate change.   30 

Animal-attached movement sensors have been shown to be effective in classifying different 31 

behaviours, albeit with varying classification accuracy depending on behaviour types. Previous 32 

studies have used accelerometers on cattle and sheep to assess active and non-active behaviours to 33 

help with grazing management, although no study has yet attempted to identify sheep urination events 34 

using this method.  35 

We attached tri-axial accelerometer sensor tags to thirty Welsh Mountain ewes for thirty days to 36 

assess if we could identify urination events. We used random forest models using different sliding 37 

mean windows to classify behaviours. Urination had a distinctive pattern and could be identified from 38 

accelerometer data, with a 5 s window providing the best recall and a 10 s window giving the best 39 

precision. ‘State’ behaviours considered (foraging, walking, running, standing and lying down) were 40 

also identified with high recall and precision. This demonstrates the extent to which the identification 41 

of discrete ‘event’ behaviours may be sensitive to the window size used to calculate the summary 42 

statistics. The method shows promise for identifying urination in sheep and other livestock, being 43 

minimally invasive compared to other methods, and has clear potential to inform agricultural 44 

management practices and policies.  45 

 46 

Keywords 47 

Biologging, Climate change, Discrete behaviour, Greenhouse gas emissions, Sheep, Urination   48 
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1. Introduction 49 

Agriculture contributes to 10 % of the total greenhouse gas emissions in the UK, with 74 % arising 50 

from nitrous oxide (N2O) and 51 % from methane emissions (DEFRA, 2016). The latter is largely due 51 

to enteric fermentation by cattle and sheep (DEFRA, 2016), but N2O is principally generated in the 52 

soil via nitrification and subsequent denitrification. Urine from livestock contains high concentrations 53 

of urea which can be hydrolysed in the soil to ammonium and subsequently nitrified. This means that 54 

urine patches can act as ‘hot spots’ for N2O emissions (Hoogendoorn et al., 2016; Marsden, Jones & 55 

Chadwick, 2016). There are uncertainties regarding the estimates of direct N2O emission levels from 56 

urine and dung deposited by livestock, particularly from sheep and extensively grazed systems. 57 

Emission factors are currently extrapolated from cattle studies conducted in intensively managed 58 

systems (UNFCCC, 2016). The uncertainties surrounding N2O emissions are also higher because 59 

precise measurements that incorporate spatial and temporal factors, along with animal behaviour and 60 

movement, are lacking (DEFRA, 2016). Being able to monitor when livestock urinate and understand 61 

any behavioural patterns that elucidate where and how often they urinate would help to reduce this 62 

uncertainty. Combining such data with other experimental studies to measure direct N2O emissions 63 

released from soil due to urination in relation to edaphic factors, would enable more accurate 64 

calculations and better understanding of its contribution to climate change.  65 

 66 

Previous studies have utilised thermistors in conjunction with GPS to determine the spatial 67 

distribution of urination events (Betteridge et al., 2010). These have been modified to include a 68 

measure of urine volume and nitrogen content via refractive index (Betteridge et al., 2013; 69 

Misselbrook et al., 2016; Shepherd et al., 2016). Flow meters in combination with data loggers have 70 

also been used to record cattle urine frequency and volume (Ravera et al., 2015), but all these 71 

methods are quite invasive. The use of tri-axial accelerometers attached to a range of animals has 72 

proven to be a powerful method for determining animal behaviour (Shepard et al., 2008; Nathan et 73 

al., 2012; McClune et al., 2014), although they have not yet been used to specifically detect urination 74 

events.  75 
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Methods used for analysing accelerometer data vary in terms of variables used to classify behaviours 76 

and the precise way the data are processed. Approaches used include template-matching (Walker et 77 

al., 2015) and various clustering approaches (Sakamoto et al., 2009; Nathan et al., 2012), with 78 

accuracy depending on circumstance. In many clustering methods, the size of window used to 79 

summarise the data plays an important role in the accuracy with which the data can be classified 80 

(Gjoreski, Gams & Chorbev, 2010; McClune et al., 2014). For example, Lush et al. (2015) used a 5 s 81 

window to classify brown hare (Lepus europaeus) behaviour resulting in high levels of classification 82 

accuracy for running, feeding and vigilance behaviours (> 90 %), but less than 50 % accuracy for 83 

resting, scratching and grooming. Similarly, McClune et al. (2014) used a 2 s window to analyse 84 

badger (Meles meles) behaviour and classified resting with nearly 100 % accuracy, but trotting, 85 

walking and snuffling was between 75 – 80 % accuracy, while Wang et al. (2015) also used a 2 s 86 

window to classify puma (Puma concolor) behaviour and achieved greater than 90 % classification 87 

accuracy for resting, walking, running and trotting, whilst feeding was 64 % and grooming was 0 %.  88 

 89 

The variation in classification accuracies stem, in part, from the length of time over which a behaviour 90 

is expected to occur (Robert et al., 2009). Behaviours, such as running, walking, feeding and resting 91 

that tend to occur over extended periods of minutes or longer and regarded as ‘state’ behaviours 92 

(Martin & Bateson, 1993), which facilitates their classification. In contrast, the short duration of many 93 

‘event’ behaviours (Martin & Bateson, 1993), such as urination, makes them particularly sensitive to 94 

the window length used in the analysis (Robert et al., 2009; Alvarenga et al., 2015). 95 

 96 

In this study, we used tri-axial accelerometers on Welsh Mountain ewes and then employed random 97 

forest models on the data using different sliding mean windows to assess if we could identify 98 

urination events. Accelerometers have been used previously on cattle and sheep to define active and 99 

non-active behaviours such as standing, lying down, feeding, walking and running using 3, 5, and 10 s 100 

windows (Martiskainen et al., 2009; Robert et al., 2009; Marais et al., 2014; Alvarenga et al., 2015). 101 
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However, this is the first study to attempt to use this approach to determine sheep urination events. 102 

Ewes exhibit a characteristic squat when they urinate, hence we hypothesised that a rear-mounted tri-103 

axial accelerometer could reliably identify this behaviour. If successful it would provide a 104 

methodology that could improve the accuracy of N2O emission estimates and help to define how 105 

much sheep contribute to greenhouse gas emissions. 106 

 107 

2. Material and methods 108 

The study was carried out in a semi-improved enclosed 11.5 ha upland pasture at Bangor University’s 109 

Henfaes Research Centre, Abergwyngregyn, North Wales (53o13’13.75” N, 4o0’34.88” W).  We 110 

attached a ‘Daily Diary’ tag (Wildbyte Technologies Ltd, UK) to each of 30 barren Welsh Mountain 111 

ewes for 30 d from 12th May – 16th June, 2016. Rear-mounted accelerometers were used since 112 

accelerometers mounted on a collar were not able to detect urination events. Average sheep weight 113 

was 36.8 kg (SD = 6.87 kg) and average age was 4.2 y (SD = 1.2). The work and methods used were 114 

approved by Swansea University’s Animal Welfare and Ethical Review Group (Reference IP-1516-5) 115 

and by Bangor University’s College of Natural Sciences Ethics Committee (Ethics approval code 116 

CNS2016DC01). 117 

 118 

2.1 Daily Diary tags 119 

The Daily Diaries’ recorded accelerometer data at 40 Hz on each of the three orthogonal axes; X 120 

(surge), Y (sway), and Z (heave).  The tags were powered by an A cell battery that was enclosed in a 121 

vacuform plastic housing and sealed using Poly Cement (Humbrol, Hornby Hobbies, UK) (Fig. 1). A 122 

small patch of wool was sheared from the rump of the sheep above their hips and the tags attached to 123 

the remaining shorter wool using a solvent free epoxy adhesive (Fig. 1). Positioning the tag at the rear 124 

of the sheep maximised the possibility of detecting the change in posture that occurs when sheep 125 

urinate.  The tags weighed 50 g which was less than 0.002 % of their body weight, and therefore was 126 

likely to have minimal or no impact on sheep behaviour (Hobbs-Chell et al., 2012).  127 
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  128 

Fig. 1: Rear tag consisting of a Daily Diary and an A cell battery and a tag in position on the rear of 129 

the sheep. 130 

 131 

2.2 Behavioural measurements 132 

Twenty of the tagged sheep were filmed using a Panasonic HC-W570 full HD camcorder (Panasonic 133 

UK & Ireland) over four separate filming sessions to record the different types of sheep behaviour. 134 

Not all thirty sheep were filmed due to difficulties of observing all of them within the field.  Sheep (n 135 

= 20) were filmed for 5 min at a time unless they moved out of view. A total of 335 min of behaviour 136 

from the video footage was logged, representing 15.9 ± 11.7 mins per sheep. Using the timestamp, the 137 

logged behaviours were synchronised to the accelerometer data to create a labelled behaviour file. An 138 

ethogram was produced of the main behaviours (Table 1). Six main behaviours were used to label the 139 

accelerometer data and in subsequent analysis. Infrequently observed behaviours were omitted. 140 

Urination events created a distinctive pattern within the acceleration trace that was identified using the 141 

observed dataset (Fig. 2). Filmed urination events had an average duration of 7 s (SD = 4.9 seconds).  142 

  143 
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 144 

Behaviour Description Sample 

(seconds) 

Foraging Feeding with head down, small movements of head side 

to side and small steps forward 

7595 

Walking Moving at slow pace 2170 

Running Moving at fast pace 126 

Standing Stationary with head raised 1653 

Lying Lying down with head raised or lowered 8345 

Urinating Rear of sheep lowers in a squatting position 127 

Scratching Using the back leg to scratch body or head 64 

Grooming Bending head to lick leg 8 

Interaction Physical interaction between two sheep such as head 

butting  

8 

 145 

Table 1: Ethogram of sheep behaviour and number of seconds of observed behaviour logged (335 146 

min) from video footage of 20 sheep. Behaviours in bold are those used for further analysis. 147 

 148 

 149 

 150 

 151 

 152 

 153 

 154 

  155 
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Fig. 2: Example time series of raw acceleration of the X, Y and Z axes from 40 Hz sampling rate 156 

showing a single urination event of (a) 11 s duration, and (b) 5 s identified from the observed 157 

behaviour (bounded in black box). The shaded rectangle represents a 3 s window. Urination is 158 

associated with a sharp increase in the acceleration of the X axis combined with a decrease in 159 

acceleration along the Z axis, and the Y axis generally remaining low, unless the sheep turns its head.  160 

 161 

2.3 Random Forest model 162 

Random Forests are machine learning models that test large numbers of regression or classification 163 

trees on a training dataset to identify the best ensemble model. R (version 3.2.5), RandomForest 164 

package (Liaw & Wiener, 2002) and RATTLE (R Analytical Tool To Learn Easily, Williams 2007) 165 

were used for analysis. Previous studies have shown the merits of using random forest as a robust 166 

method to classify behaviour from accelerometer data that also allows classification accuracy to be 167 

measured for individual behaviours (Nathan et al., 2012; Lush et al., 2015; Fehlmann et al., 2017).  168 

 169 

A series of descriptive statistics were calculated using a 3, 5 and 10 s sliding windows on the 170 

accelerometer data for the labelled behaviour dataset. These window sizes were chosen to allow 171 

comparison with other behaviours and other studies that used the same window sizes. The variables 172 

calculated were the static and dynamic acceleration (for each axis), the pitch, sway, Vectorial 173 

Dynamic Body Acceleration (VeDBA), smoothed VeDBA with the mean, standard deviation, 174 

minimum and maximum for all variables calculated. In addition, the maximum Power spectrum 175 

Density (PSD) and associated frequency and second maximum PSD and frequency for each axis 176 

(Wang et al., 2015; Pagano et al., 2017) were also calculated (Table 2, see Fehlmann et al., (2017) for 177 

example R code). This gave 52 variables to be used in the initial model. 75 % of the labelled dataset 178 

was used as the training data to create the random forest model, with the remaining 25 % used to 179 

validate the model’s accuracy (how well the model classified the behaviours). 500 trees were grown 180 

with 5 splits at each node. The mean decrease in accuracy was used to improve the model (Cutler et 181 
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al., 2007) and resulted in VeDBA, dynamic acceleration, and frequency variables being removed, 182 

reducing the number of variables used in the final models to 30 (Table 2). A random forest model was 183 

created for each of the time windows to assess how window size affected the accuracy with which 184 

each of the main behaviours could be classified. We were particularly interested in how well the 185 

model could classify urination events.  186 

 187 

Variable Label Definition 

Raw acceleration Raw X, Y, Z Raw output of each acceleration channel 

Static acceleration* StX, StY, StZ 

𝑆𝑡𝑋 =  
1

𝑛
  ∑ 𝑅𝑎𝑤𝑋 − 𝑖

𝑛−1

𝑖=0

 

Dynamic acceleration DyX, DyY, DyZ DyX = StX - RawX 

Vectorial Dynamic Body 

Acceleration  

VeDBA √𝐷𝑦𝑋2 + 𝐷𝑦𝑌2 + 𝐷𝑦𝑍2 

Smoothed VeDBA* VeDBAs VeDBA calculated over sliding mean of 3, 5 or 10 s 

Pitch* Pitch Asin(StZ) 

Sway* Sway Asin(StY) 

Power Spectrum Density* 

(PSD) and Frequency 

PSD1X, PSD1Y, 

PSD1Z, PSD2X, 

PSD2Y, PSD2Z,  

Fast Fourier analysis to calculate dominant frequencies, 

and respective strengths for windows of 3, 5 or 10 s for 

DyX, DyY and DyZ. Values used were the maximum and 

second maximum PSD and associated frequency 

calculated for each axis. 

 188 

Table 2: Calculated variables from the raw X, Y, and Z acceleration axes used in the models. * 189 

indicates those variables used in the final models. 190 

 191 

 192 

 193 
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2.4 Comparisons between models 194 

To assess model performance for classifying the six behaviours, a confusion matrix was created based 195 

on the number of true positives (TP), which was the number of events correctly classified, the true 196 

negative (TN), which was those events correctly identified as being a different behaviour, the false 197 

positive (FP), where behaviours were incorrectly classified as the behaviour, and false negative (FN), 198 

where the behaviour was incorrectly classified as another behaviour (Martiskainen et al., 2009; 199 

Alvarenga et al., 2015). This allowed us to calculate the precision (TP / (TP+FP)) and recall/sensitivity 200 

(TP / (TP+FN)) for each time window generated from the validation data. 201 

The Kappa statistic (Kappa = (observed accuracy – expected accuracy) / (1 – expected accuracy)), was 202 

also calculated to compare models and evaluate the classifiers by comparing the observed accuracy with 203 

the expected accuracy against random chance (Cutler et al., 2007; Martiskainen et al., 2009; Alvarenga 204 

et al., 2015).   205 

 206 

3 Results 207 

3.1 Model fitting 208 

The mean static acceleration of the Z axis was the most useful variable for classifying behaviours from 209 

our acceleration data across all three different time windows (3, 5 and 10 s models; Fig. 3). Static 210 

acceleration (Z and Y axis), pitch and smoothed VeDBA were also important for distinguishing among 211 

behaviours performed by the sheep for each of our models, but the mean smoothed VeDBA, minimum 212 

static acceleration of the Y axis (Min stY) and standard deviation of the static acceleration of the X axis 213 

(SD stX) had higher importance in the 10 s model compared to both the 3 and 5 s models.  214 

 215 

 216 



11 
 

 217 

Fig. 3: Variable importance for the 3, 5 and 10 s window models. For terms see Table 2. 218 

 219 

The 3 s window model classified most behaviours with the lowest error rate, for both the training 220 

(Table 3) and the validation data (Table 4). Foraging was an exception to this, being classified with 221 

lower error on the 10 s window for the training data (2.6 %), as was urination, which was classified 222 

with lower error on the 5 s window validation data (28.0 %), although the training data error was 223 

much higher (54.3 %).  224 

 225 

 226 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

SD Sway

PSD2Y

PSD2Z

PSD1Y

PSD2X

PSD1Z

PSD1X

SD stZ

SD stY

Mean Sway

SD stX

Max stY

SD Pitch

Mean stY

Min Sway

Min stY

Max Sway

SD VeDBAs

Max stX

Mean stX

Min stX

Max VeDBAs

Mean VeDBAs

Min Pitch

Min VeDBAs

Min stZ

Max Pitch

Max stZ

Mean Pitch

Mean stZ

Mean Decrease Gini 

3 sec

5 sec

10 sec



12 
 

 227 

Behaviour Class Error (%) 

3 s window 5 s window 10 s window 

Foraging 3.1 3.1 2.6 

Walking 9.9 13.4 19.0 

Running 16.6 18.8 27.9 

Standing 21.5 23.5 23.0 

Lying 0.2 0.3 0.4 

Urinating 31.5 54.3 67.4 

OOB estimate of 

error rate (%) 

4.38 5.22 5.88 

 228 

Table 3: Class errors (amount of classification error) for each behaviour using the training data to 229 

create the Random Forest model for each time window. 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 
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Observed 

behaviour (%) 

Predicted behaviour (%) 

Foraging Walking Running Standing Lying Urinating Class Error 

3 s window Overall error = 4 %, average class error = 13 % 

Foraging 97.7 2.2 0.1 0.06 0.0 0.0 2.0 

Walking 7.7 91.3 0.2 0.2 0.6 0.0 9.0 

Running 10 0.0 90.0 0.0 0.0 0.0 10.0 

Standing 17.5 1.3 0.0 80.5 0.3 0.5 20.0 

Lying 0.0 0.0 0.0 0.0 100 0.0 0.0 

Urinating 16.0 8.0 0.0 4.0 8.0 64 36.0 

Performance Kappa = 0.945     Mean % 

Precision 93.9 90.3 90.0 99.1 99.7 88.9 93.7 

Recall/Sensitivity 97.7 91.3 90.0 80.5 99.9 64.0 87.2 

5 s window Overall error = 5 %, average class error = 15 % Class Error 

Foraging 97.0 2.8 0.1 0.1 0.0 0.1 3.0 

Walking 12.3 86.5 0.4 0.5 0.4 0.0 14.0 

Running 10.0 8.3 81.7 0.0 0.0 0.0 18.0 

Standing 19.0 4.9 0.0 73.6 0.0 0.3 24.0 

Lying 0.0 0.0 0.1 0.0 99.9 0.0 0.0 

Urinating 16.7 0.0 0.0 0.0 11.1 72.2 28.0 

Performance Kappa = 0.927     Mean % 

Precision 92.6 86.6 92.5 98.2 99.8 81.3 91.8 

Recall/Sensitivity 97.0 86.5 81.7 75.7 99.9 72.2 85.5 

10 s window Overall error = 5 %, average class error = 20 % Class Error 

Foraging 97.4 1.9 0.1 0.7 0.0 0.0 3.0 

Walking 15.2 84.4 0.0 0.2 0.2 0.0 16.0 

Running 13.2 13.2 71.7 0.0 1.9 0.0 28.0 

Standing 19.5 1.9 0.0 78.1 0.3 0.3 22.0 

Lying 0.1 0.0 0.0 0.0 99.9 0.0 0.0 

Urinating 5.6 0.0 0.0 27.8 16.7 50.0 50.0 

Performance Kappa = 0.926     Mean % 

Precision 92.1 90.0 97.4 93.8 99.7 90.0 93.8 

Recall/Sensitivity 97.4 84.4 71.7 78.1 99.9 50.0 80.3 

Mean precision 92.9 89.0 93.3 97.0 99.7 86.7  

Mean recall 97.3 87.4 81.1 78.1 99.9 62.1  

 242 

Table 4: Confusion matrix of the validation datasets and the performance of the Random Forest model 243 

in classifying six sheep behaviours using three different mean sliding time windows (3, 5 and 10 s). The 244 

numbers in bold are the correct classifications. (Values are percentages) 245 
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3.2 Model accuracy and performance 246 

Overall, the 3 s window model performed the best for most of the behaviours, with the highest kappa 247 

statistic (Table 4). In fact, the kappa statistic was very high across all three models and, according to 248 

Landis and Koch's (1977) criteria, was almost perfect (0.81 – 1.00). Running was predicted with the 249 

highest precision in the 10 s window model, whereas, urination had the highest precision in the 10 s 250 

window and the highest recall in the 5 s window. 251 

The 3 s model had the highest mean recall across all six behaviours (Table 4). All behaviours except 252 

urination had high mean precision and recall (> 75 %) across all models. Urination had high mean 253 

precision (86.7 %) but the mean recall was lower at 62.1 %.  254 

  255 

4. Discussion 256 

4.1 Behaviour identification in sheep 257 

Overall, the random forest approach identified the behaviours well, with the 3 s window model 258 

performing the best for classifying ‘state’ behaviour (e.g. foraging, walking and lying) and relatively 259 

well for the ‘event’ behaviour we were interested in; that is, urination, for both precision and recall. 260 

Unsurprisingly, our ability to detect state behaviours were little affected by the size of window used, 261 

because the duration of the window was great enough to incorporate multiples of any repetitive 262 

frequency within the behaviour, while only being a small fraction of the likely length of any bout of 263 

the behaviour.  However, longer time windows have been found to perform less well, as found in a 264 

study on cattle behaviour (Robert et al. 2009).  265 

 266 

Conversely, urination, a discrete event behaviour, was the least well classified out of all the 267 

behaviours, with the degree of success depending greatly on window size. In fact, although the 5 s 268 

window model classified urination with the highest classification accuracy on the validation data the 269 

classification accuracy for the training model was only 54 %. High training data error and low 270 
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validation error is indicative of a poorly fitting model (Sujatha, Prabhakar & Devi, 2013). Ideally, the 271 

validation error should be low, and the training error marginally higher. Therefore, the 3 s model, with 272 

a training error of 31.5 % and validation error of 36 %, indicates a better model fit.  Model precision 273 

for urination was relatively high across all models. However, it was the recall, critical for showing 274 

how good a classification model is at correctly identifying the behaviour, which varied greatly. This 275 

could be because the window may miss either the start and/or the end of urination events, which are 276 

defined by the change in pitch (and the value of smoothed acceleration X and Z) as the sheep squats 277 

and returns to standing (Fig. 2), interspaced with lower VeDBA, because sheep remain stationary 278 

whilst urinating. Therefore, the interplay between window size and the duration of the urination event 279 

may modulate the classification error overall. In addition, the sample size of urination events was one 280 

of the lowest of our selected behaviours, as it was difficult to film, resulting in a reduced training 281 

dataset to inform the model.  282 

 283 

Urination had a visually very distinctive pattern within the raw acceleration data (Fig. 2), which arises 284 

from the time-separated ‘squat’, ‘hold’ and ‘return-to-standing’ sequence.  Such readily identifiable 285 

patterns in the accelerometer trace may be better dealt with by an algorithm that accurately defines the 286 

time-based order of important variables in sequence, as done by template matching (Walker et al., 287 

2015), for example. The immediate difficulty here, is coping with variable durations within such event 288 

behaviours. It may also be more difficult for identifying behaviours that occur simultaneously within 289 

state behaviours.  290 

 291 

Despite the issues associated with identifying infrequent and transient behaviours like urination, this 292 

study has nonetheless identified urination events from accelerometer data. This approach, therefore, 293 

provides valuable information about urination frequency and duration. When combined with high-294 

resolution GPS data (e.g. Haddadi et al., 2011) it can provide spatial and temporal information on 295 

urine emissions (Fig. A1). This method of using rear-mounted tags to identify urination events would 296 
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not be suitable to detect urination events of rams, as they do not exhibit the characteristic squat 297 

movement that is used for ewes. However, the number of rams grazing compared to breeding ewes 298 

would be negligible and therefore would not have as much impact on greenhouse gas emissions. 299 

Given that sheep movement is not random (Harris & O’Connor, 1980) their patterns of urination are 300 

not expected to be either. In fact previous work over a six-day trial estimated that sheep deposit about 301 

30 % of their urine over only 7.5 % of the pasture area used for grazing (Betteridge et al. 2010). This 302 

heterogeneity of urine deposition to pasture soils could create highly concentrated ‘hot spot’ areas that 303 

potentially release N2O through nitrification and subsequent denitrification. By combining 304 

information on where and when sheep urinate with data on N2O emissions from urine patches on 305 

different soil types and under different environmental conditions, could improve greenhouse gas 306 

estimates from grazed pastures.  307 

 308 

4.2 Conclusions 309 

We suggest that our method of using a rear-mounted tri-axial accelerometer may provide a non-310 

invasive method to record urination events in sheep and other livestock to estimate urination patterns 311 

(frequency and duration). This would provide important information to measure livestock urination 312 

contributions to greenhouse gas emissions and to inform better agricultural management practices and 313 

policies.  314 

 315 

 316 

 317 

 318 

 319 

 320 
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Appendix 417 

 418 

 419 

Fig. A1: Movement of 1 sheep over the duration of a day plotted on the study site. Red dots are 420 

urination events. 421 


