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Abstract Given a knowledge base in Conjunctive Normal Form for use by an
intelligent agent, with probabilities assigned to the conjuncts, the probability
of any new query sentence can be determined by solving the Probabilistic
Satisfiability Problem (PSAT). This involves finding a consistent probability
distribution over the atoms (if they are independent) or complete conjunction
set of the atoms. We show how this problem can be expressed and solved as
a set of nonlinear equations derived from the knowledge base sentences and
standard probability of logical sentences. Evidence is given that numerical
gradient descent algorithms can be used more effectively then other current
methods to find PSAT solutions.
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1 Introduction

Given a logical knowledge base of m sentences over n atoms in Conjunctive
Normal Form (CNF), and a probability associated with each sentence (con-
junction), the probabilisitic satisfiability problem is to determine whether or
not a probability distribution exists which assigns consistent probabilities to
the complete conjunction basis set of the n atoms in the sentences. This means
that for each basis element, ωk, k = 0 . . . 2n − 1, 0 ≤ ωk ≤ 1 and

∑
k ωk = 1,

and, in addition, the sentence probabilities follow from the complete conjunc-
tion probabilities. Solutions for this problem were proposed by Boole (1854)
and again by Nilsson (1986); they set up a linear system relating the sen-
tence probabilities to the models of the sentences. The major drawback is that
this system is exponential in the number of sentences. Georgakopoulos (1988)
showed this problem is NP-complete and exponential in n.

We have proposed that the individual conjuncts in the CNF be converted
into a system of nonlinear equations, that is, since each conjunct is a dis-
junction, it can be re-written in terms of the probabilities of the atoms and
conditional probabilities of a smaller number of terms Henderson 2017 and
Henderson 2017a. [Note: although this expression itself is exponential in the
number of literals in the disjunction, the CNF can always be converted to
3CNF form in polynomial time, and thus, limit the complexity to O(8).] Let
the KB have m sentences, and let the kth disjunction, L1 ∨ R, have proba-
bility, p, where L1 is the first literal in the disjunction, and R represents the
remaining literals in the sentence, then the corresponding equation is:

F (k) = −p+ P (L1) + P (R)− P (L1 | R)P (R)

If R has more than one literal, then any P (R) term will be recursively defined
until there are only single literal probabilities, whereas the conditional prob-
abilities will be left as is. Once these equations are developed, each unique
probability expression will be replaced with an independent variable. At this
point, there is a set of m equations with n + c unknowns, where c is the
number of unique conditional probabilities. A scalar error function can then
be defined as the norm of the vector F defined above. It is now possible to
apply nonlinear solvers to this problem and determine variable assignments
that are constrained to be in [0, 1], and which result in the assigned sentence
probabilities.

We describe here detailed results of experiments comparing the use of (1)
Newton’s method, and (2) gradient descent using the Jacobian of the error
function. We show that excellent results can be achieved using these methods,
and provide a statistical framework for medium-sized KBs (this is to allow the
computation of the complete conjunction set probabilities in order to know
ground truth), as well some results on a large KB (e.g., 80 variables and over
400 sentences). Although the answer found by the method described here is not
guaranteed to be a PSAT solution, it does provide an approximate solution,
and in some cases can be determined not to be a solution.
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2 Related Work

Stated more technically, consider a logical knowledge base expressed in CNF
with m conjuncts over n logical variables: CNF ≡ C1 ∧ C2 ∧ . . . ∧ Cm. Each
conjunct is a disjunction of literals: Ck = Lk,1 ∨ Lk,2 ∨ . . . ∨ Lk,nk

and has
an associated probability, pk. Let p̄ be the m-vector of sentence probabilities.
Define the complete conjunction set (all combinations of atom truth value
assignments): ωk = L1 ∧ L2 ∧ . . . ∧ Ln, k = 0 : 2n − 1, where the literal
assignments correspond to the bit assignments in the n-digit binary number
representing k; Ω is the set of all ωk. The Probabilistic Satisfiability Problem
is to determine if there exists a probability distribution π : Ω → [0, 1] such
that 0 ≤ π(ωk) ≤ 1 and

∑
k P (ωk) = 1, and

pk =
∑

ωj⊢Ck

P (ωk)

We also let π̄ represent the vector of probability assignments to the complete
conjunctions.

Nilsson described a solution to this problem by creating a linear system
based on the CNF sentences and a query sentence (Boole 1854 first proposed a
very similar method). The semantic tree (see Kowalski 1983) over the sentence
truth assignments is determined and the valid sentence truth assignments are
used to form an m × 2m − 1 matrix, A. I.e., A(i, j) = 1 if ωj satisfies Ci.
Then he solves p̄ = Aπ̄ for π̄. For more detailed discussion of this approach,
including the geometric approach, see Henderson 2017. The problem with this
method is the exponential size of the matrix A. For broader discussions of this
problem and approach (see Adams 1998, Hailperin 1996, and Hunter 2013).

Others have explored inconsistencies in probabilistic knowledge bases (see
Thimm 2009 and Thimm 2012). Another important approach is Markov Logic
Networks ( see Biba 2009, Domingos 2009 and Gogate 2016). All these methods
suffer from exponential cost (e.g., Markov Logic Networks in the number of
maximal cliques), or resort to sampling methods to estimate the solution while
not guaranteeing the result solves PSAT.

3 Method

The method proposed here, called Nonlinear Probabilistic Logic (NLPL) in-
volves conversion of the probabilstic CNF to a set of equations and the use of
numerical solvers. First, consider the case when the variables are independent,
i.e., P (A ∧B) = P (A)P (B). For this, the basic formula is:

P (A ∨B) = P (A) + P (B)− P (A)P (B)

where this is applied recursively if B is not a single literal. Consider Nilsson’s
example problem (modus ponens):

[p1 = 0.7]C1 : P
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[p2 = 0.7]C2 : ¬P ∨Q

with query: P (Q)?. This gives rise to the equations:

F (1) = −0.7 + P (P )

F (2) = −0.7 + P (¬P ) + P (Q)− P (¬P )P (Q)

This requires no search (is not exponential) and can be solved:

P (P ) = 0.7

P (Q) =
0.7− 0.3

0.7
= 0.571

P (Q) is in the solution range [0.4, 0.7] and we provide an answer in this in-
terval (note that MLNs produce a single answer as well: the maximal entropy
solution).

A first question is: Does NLPL solve PSAT? Suppose that NLPL finds a
probability assignment for the atoms that results in the sentence probabilities
(using the nonlinear equations), where each atom probability is in the interval
[0, 1]; i.e., the atom probability vector is in the unit hypercube in n-space. We
need to show that the complete conjunction probabilities generated satisfy the
properties described above.

Theorem: Given a set of atom probabilities, ak, k = 1 : n, with 0 ≤ ak ≤
1, then each complete conjunction probability is in the range [0, 1] and the∑

k ωk = 1.

Proof: First, note that since the variables are independent, the complete con-
junction probabilities are the product of n numbers each between 0 and 1;
thus their product is between 0 and 1. Next, we will show that the sum of
the complete conjunction probabilities is 1. Each ω ∈ Ω is the product of n
distinct literals. Given variable independence, then:

P (ωk) = P (L1 ∧ L2 ∧ . . . ∧ Ln)

= P (L1)P (L2) . . . P (Ln)

where each P (Li) is either P (ai) or 1 − P (ai). We show the theorem by in-
duction on n.

Case n = 1: Then there are 2 complete conjunctions: A and ¬A; the sum of
their probabilities is: P (A) + (1− P (A)) = 1.

Case n: Suppose the theorem holds for n − 1. For n variables, there are 2n

summands which can be paired as follows:

P (L1)P (L2) . . . ∧ P (Lk) ∧ . . . ∧ P (Ln)

P (L1)P (L2) . . . ∧ P (¬Lk) ∧ . . . ∧ P (Ln)

When these are summed, the result is:

(P (Lk) + (1− P (Lk)))(P (L1) . . . ∧ P (Lk−1)
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∧P (Lk+1) ∧ . . . ∧ P (Ln))

which reduces to an expression in n− 1 variables. Applying this to all appro-
priate pairs results in a sum of elements of length n− 1. QED

Call n-modus ponens the problem with conjunctsA1,¬A1∨A2, . . . ,¬An−1∨
An. Then the standard approach needs 2n models (as does MLNs), whereas
we solve it in linear time.

3.1 When Variables are Not Independent

Suppose the independence of variables is not assumed. Then:

P (A ∨B) = P (A) + P (B)− P (A | B)P (B)

This equation is developed recursively for any non-singleton variable probabil-
ity, but conditional probabilities are considered as unique unknowns. Solving
the nonlinear system provides a set of atom and conditional probabilities.
However, this may not be part of a PSAT solution; i.e., the space of solutions
for this system contains the solutions (if they exist) for independent variables.
In general, we propose to use the solution found by gradient descent.

Although we cannot guarantee that the result of the algorithm is a PSAT
solution, there is a check to determine some cases when it is not. Given a
conditional probability over two variables (i.e., one of P (A | B), P (¬A | B),
P (A | ¬B), or P (¬A | ¬B)) the other three can be determined from it. If any
of these is not in the range [0,1], then the result is not a PSAT solution. This
same check can be applied to conditionals over three variables as well.

4 Experiments and Results

4.1 Independent Variables

We have tested this approach on sets of randomly generated knowledge bases.
This involves selecting a number of variables (n), specifying a maximum num-
ber of sentences to generate, as well as the maximal length of any one sentence.
A set of sentences is generated which satisfies these constraints, and then a
set of probabilities are produced for the compete conjunction set, and from
these the sentence probablities are computed. This ensures that there is a so-
lution, although it does not preclude the existence of other solutions (generally
a non-zero measure subset of the unit hypercube).

A set of 100 KB’s was generated this way, with n = 5, mmax = 30, and
lenmax = 5. Figure 1 shows the number of iterations required by Newton’s
method to solve PSAT; the blue trace shows when initial points are far from
the known solution, and red when they are near (within 0.5 vector norm). The
mean number of iterations is 4.26 when starting near, and 12.63 when starting
far. The method fails on 6 of the 100 KB’s. As for gradient descent, Figure 2
shows the number of required iterations. Although a few KB’s require over
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1000 iterations, the mean number of iterations required when starting near
a solution is 21.19, and when starting far is 171.58. Note that the search is
terminated when a sentence error of less than 0.01 is reached.
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Fig. 1 Newton’s Method Results for 100 KB’s.

4.2 Non-Independent Variables

The equations must include variables for whatever conditional probabilities
arise from the sentences, and are thus a bit more complicated. Figure 3 shows
the number of iterations required for Newton’s method on 100 random general
KB’s with the same parameters as above. In this case, solutions were found for
75 of the 100 KB’s, and the mean number of iterations was 3.91 when starting
near the known solution, and 10.27 when starting far from it. Figure 4 shows
the results for gradient descent (which found solutions for all the KB’s) and
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Fig. 2 Gradient Descent Results for 100 KB’s.

had mean number of iterations 662.17 for far starting points and mean number
of iterations 638.61 for near points.

What these results indicate is that Newton’s method should be tried first
given the low iteration cost, and then gradient descent used if Newton’s Method
fails. Also, note that even though in the case of failure (i.e., local minimum
found), the methods were allowed to re-start at new random initial locations.
Gradient descent only re-started this way twice and then only tried 2 alter-
nate points. When Newton’s Method finds a solution is does so with the initial
guess; when it failed, it did so for both near and far initial starting points.

Finally, Figure 5 shows the maximal individual atom probability error com-
paring the atom probabilities from the actual 100 general KBs to the atom
probabilities found by the numerical solver. The mean of the max atom proba-
bility error for near starting points is 0.09, while for far starting points is 0.10.
This is very promising in that the discovered solutions are near the actual
underlying solution for most KBs.
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Fig. 3 Newton’s Method Results for 100 KB’s.

4.3 Trajectory Visualization and Finding Good Initial Guesses

As pointed out above, if the initial guess is too far from a solution, these
methods may not converge. Thus, it would help to be able to identify good
starting points. In order to get insight into the convergence sequence, we have
developed a visualization method which maps n-D points to 2-D points. Given
a point, ā, in n-D, define the corresponding 2-D coordinates as follows:

x =

n∑

i=1

(aicos(
(i− 1)π

n
) (1)

y =

n∑

i=1

(aisin(
(i− 1)π

n
) (2)

Figure 6 shows the convergence trajectories for four different initial points.
The q-convergence of the method can be estimated by determining the ck’s in
the following equation:

| x̄k+1 − x̄∗ |≤ ck | x̄k − x̄∗ | (3)

Figure 7 shows these values for the 100 tracks for gradient descent on the
general KB’s. The plots indicate that the method is q-superlinear/quadratic.
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Fig. 4 Gradient Descent Results for 100 KB’s.

Another interesting aspect of this visualization method is its use to find
good starting points. Given fixed x and y in the plane, we have have developed
a method to obtain a unique point in the pre-image of Eqns (1) and (2).
Each equation defines a hyperplane in n-space; taken together they represent
a hyperplane of dimension n − 2. One way to understand the map defined
by Eqns (1) and (2) is as an n-joint prismatic manipulator, where joint k

translates in the direction θ = (k−1)π
n

. The manipulator’s workspace is a 2n-
gon (as shown in Figure 6). By uniformly sampling this workspace, and then
finding pre-image points in n-D, the sentence error can be found, and then the
lowest such value used to pick the initial point. Of course, since there is an
infinite number of potential pre-image points for each x and y location, other
methods can be used to sample that subspace to find better starting points.

5 Conclusions and Future Work

We propose a novel approach to approximately solve PSAT (or at least as
much of it as is useful) which avoids the computational complexity of previous
methods as well as the error introduced using MC-SAT methods. Instead we
solve a system of nolinear equations derived directly from the meaning of the
probability of the logical sentences. The experiments reported here show that
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solving these systems is possible and not overly complex (evidence shows q-
superlinear/quadratic convergence). The number of variables and sentences
used in these experiments are modest as is required so that the ground truth
can be ascertained (i.e., that there is a solution!); however, in previous work
we have demonstrated that the method can solve problems with 80 variables
and over 400 sentences (Henderson 2017).

It is also possible to convert SAT instances into the form of PSAT by
assigning every clause the probability of 1, and then apply numerical solvers
to this problem. In particular, if we limit our input to 3-SAT instances, we
can recursively expand the equation for a CNF equation to:

P (A ∨B ∨ C) = P (A) + P (B) + P (C)− P (A ∧B)

−P (A ∧ C)− P (B ∧ C) + P (A ∧B ∧ C)

where we can treat each distinct probability as a separate variable. Note that
we restrict input to 3-SAT instances because this recursive expansion is expo-
nential in the number of variables in the clause. We can also force consistency
constraints given, for any literals Li, Lj , Lk:

P (Li) = P (Li ∧ Lj) + P (Li ∧ ¬Lj)

P (Li ∧ Lj) = P (Li ∧ Lj ∧ Lk) + P (Li ∧ Lj ∧ ¬Lk)

There are O(n3) such constraints. The system of equations that this creates is
far too large to be a practical SAT solver, but it is nevertheless a polynomial
number of linear equations, which can be solved in polynomial time. If some π
can be found that satisfies the new sentences, every wk such that π(wk) ≥ 0 is
a solution to the original SAT equation. Every sentence has probability 1, and
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since the sum of all π(wk) must be equal to 1, only atom truth assignments
that satisfy every clause may hold probability. As such, if it can be shown that
nonindependent solutions can be used to construct valid probabilities for the
complete conjunction set, then P = NP .

Other future work includes the investigation of:

1. The problem encountered with Newton’s Method. It is possible that the
Hessian as computed does not remain positive definite which can cause
failure. It may be possible to address this with SVD methods.

2. The discovery of good initial starting points. For this, the trajectory visu-
alization method will be studied; i.e., the inverse kinematics of the planar
n-joint prismatic manipulator.

3. The exploitation of the method to support a knowledge base providing
probabilistic logic and in the future, argumentation. such a capability will
provide decision makers and analysts a robust estimate of the confidence
of a statement or the consequences of an action. The current application
domain for this is geospatial knowledge bases (see Henderson2017b).
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5.1 Numerical Solutions

Given a set of nonlinear equations resulting from a CNF KB and the associated
sentence probabilities, it is necessary to create the sentence error function,
find an intitial guess at a solution, and then apply Newton’s method or some
other technique. We have applied two methods: (1) Newton’s method, and (2)
gradient descent using the Jacobian.

5.1.1 Newton’s Method

Given the vector function F defined above (a vector function of m elements),
Newton’s method iterates the following until within tolerance of a solution:

1. Produce next step vector
HF (x̄k)s̄ = ∇F

2. Move toward solution
x̄k+1 = s̄+ x̄k
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where HF is the Hessian matrix for F , s̄ is the step vectorm and x̄k is the kth
solution estimate. The development of the Hessian is done symbollically then
solved numerically in Matlab. This imposes constraints of the application of
this method to larger problems. However, we give results below for moderate
size KB’s.

5.1.2 Gradient Descent using the Jacobian

Gradient descent using the Jacobian should have q-quadratic convergence
when starting not too far from a solution, but may hit a local (non-solution)
minimum otherwise. The method iterates until within tolerance of a solution
as follows:

1. Determine the Jacobian
J = ∇F

2. Move toward lower sentence error
x̄k+1 = α ∗ J(x̄k) + x̄k

where α is the step size.
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