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Pricing Assets in a Perpetual Youth Model

By Roger E.A. Farmer∗

This paper constructs a general equilibrium model where asset
price fluctuations are caused by random shocks to beliefs about
the future price level that reallocate consumption across genera-
tions. In this model, asset prices are volatile, and price-earnings
ratios are persistent, even though there is no fundamental uncer-
tainty and financial markets are sequentially complete. I show that
the model can explain a substantial risk premium while generating
smooth time series for consumption. In my model, asset price fluc-
tuations are Pareto inefficient and there is a role for treasury or
central bank intervention to stabilize asset price volatility.

A large literature in finance seeks to reconcile features of financial data with
features of aggregate time series (Gabaix, 2012). Typically, these explanations
combine some version of the rare disasters hypothesis of Rietz (1988) and Barro
(2006) with the variable long-run risk model of Bansal and Yaron (2004). To
successfully explain financial data in an equilibrium model, the theorist must
explain why the price of risk is highly volatile, while consumption data are smooth.

Most equilibrium explanations of financial data are based on the assumption
that all shocks to the economy are fundamental. For example, in the long-run
risk model of Bansal and Yaron (2004), consumption growth is exogenous and has
a small highly persistent component. In the rare disaster model of Rietz (1988)
and Barro (2006) there is, occasionally, a large negative shock to the aggregate
endowment.

This paper explores an alternative approach. I build on the work of David Cass
and Karl Shell (1983), by constructing a model where asset price fluctuations are
caused by non-fundamental shocks to people’s beliefs. Cass and Shell presented
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this idea in a two-period real model. I show that a calibrated version of their
model can explain real world data.

I construct a general equilibrium model where asset price fluctuations are caused
by random shocks to beliefs about the future price level that reallocate consump-
tion across generations. In this model, asset prices are volatile and price-earnings
ratios are persistent even though there is no fundamental uncertainty and finan-
cial markets are sequentially complete. Because I am interested in the ability of
non-fundamental shocks to explain asset prices, my model has no fundamental
uncertainty of any kind.

I refer to the random variable that drives asset prices in equilibrium as a belief
shock and I refer to the mapping from belief shocks to realizations of the price
level as a belief function (Farmer, 1993). I treat belief shocks and the belief
function as new fundamentals that select one of the many possible equilibria of
the underlying monetary model.

My work differs in three ways from standard asset pricing models. First, I
allow for birth and death by exploiting Blanchard’s (1985) concept of perpetual
youth. Second, my model contains an asset, government debt, denominated in
dollars. Third, there are two types of people that differ in the rate at which
they discount the future. The perpetual youth assumption and the existence
of a nominal asset are essential to generate volatile asset prices in the presence
of sequentially complete asset markets. The assumption of two types of people
allows me to construct equilibria where there are active trades in the financial
markets by people of different types.

I model a government with two branches; a central bank and a treasury. The
central bank operates an interest rate peg and the treasury adjusts the tax rate
periodically to ensure the government remains solvent. Because debt is denomi-
nated in dollars, this policy leads to indeterminacy of the initial equilibrium price
level. For every initial price in a certain set, there is a different allocation of the
present value of taxes between current and future generations. For each alloca-
tion of taxes, there is a different non-stationary perfect foresight equilibrium price
sequence. Each of these sequences converges to the same steady-state equilibrium.

I exploit the indeterminacy of the set of perfect foresight equilibria to construct
a rational expectations equilibrium in which non-fundamental shocks cause asset
price fluctuations. The people in my model believe the future price level is a
random variable, driven by a belief shock, and they write financial contracts
contingent on its realization. In equilibrium, their beliefs turn out to be correct.
Because the unborn cannot buy or sell contracts traded before they are born,
belief shocks have real effects that reallocate resources between people of different
generations.

I am pursuing an alternative explanation for asset price fluctuations because
I am ultimately interested in a normative question. Should the treasury and
or the central bank intervene in asset markets to reduce volatility? If all asset
market fluctuations are caused by the responses of a representative agent to un-
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avoidable endowment shocks, the government should not seek to intervene. If
instead, a large component of asset price fluctuations is due to Pareto inefficient
re-allocations of consumption goods between people of different generations, there
is a potential role for an active financial policy, of the kind discussed in Farmer
and Zabczyk (2016), to stabilize those fluctuations.

I. Antecedents

An active body of scholars seek to explain asset price data using the represen-
tative agent model. Some of the modifications to this model that have been tried
include richer utility specifications (Abel, 1990; Constantinides, 1990; Campbell
and Cochrane, 1999; Bansal and Yaron, 2004) adding technology shocks with
exogenous time-varying volatility (Bansal and Yaron, 2004), and assuming that
technology is occasionally hit by rare disasters (Rietz, 1988; Barro, 2005, 2006;
Wachter, 2013; Gourio, 2012; Gabaix, 2012).

Here, I take an alternative approach. I build on the idea that non-fundamental
shocks can have real effects when there is incomplete participation in asset mar-
kets. David Cass and Karl Shell (1983) refer to non-fundamental shocks as
‘sunspots’ and Costas Azariadis (1981) and Roger Farmer and Michael Wood-
ford (1997) call them ‘self-fulfilling prophecies’. Although the term ‘sunspot’ is
widely understood by economic theorists, I have found that it represents a source
of confusion when explaining the idea to a lay audience and I use the term ‘belief
shock’ in this paper to mean non-fundamental uncertainty that may have real
effects.

My work is closely related to four working papers, Farmer (2002a,b, 2014) and
Farmer et al. (2012). Farmer (2002b) develops a version of Blanchard’s (1985)
perpetual youth model with capital and aggregate uncertainty, Farmer (2002a)
adds nominal government debt to explain asset price volatility and Farmer et al.
(2012) construct a model with multiple types.1 The current paper relies on all
three of these pieces; perpetual youth, nominal debt and multiple types.2

The idea of constructing stationary stochastic rational expectations equilibria
by randomizing over multiple steady states is due to Azariadis (1981). The first
paper to exploit randomizations across indeterminate perfect foresight paths in
a monetary model is by Farmer and Woodford (1997). Farmer et al. (2015)
show how to solve models with indeterminacy using standard solution methods
by redefining a belief shocks to be a new fundamental and I draw on a non-linear
extension of their technique in this paper. In the Farmer-Woodford paper there

1Farmer et al. (2012) claim to generate equilibria, driven by non-fundamental shocks. That claim is
incorrect as their model fails to equate the marginal rates of substitution of each type of agent in every
state and consequently, the paper does not fulfill its claim to generate sunspot equilibria. I am grateful
to Markus Brunnermeir and Valentin Haddad for discussions on this point.

2Two earlier versions of the current paper appeared, one with title “Global Sunspots and Asset Prices
in a Monetary Economy” (Farmer, 2015) and one with the title “Pricing Assets in an Economy with Two
Types of People” (Farmer, 2016). The current version is different, in a number of important ways from
both of these versions and for that reason I have changed the title.
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is a single type of person in each generation. As a consequence, there is no active
trade in the asset markets which serve simply to determine prices at which people
choose not to trade. In contrast, I construct a model with two types in which
there are active asset market trades between patient and impatient people.

This is not the only paper to explore heterogeneous-agent models to understand
asset pricing data. Challe (2004) generates return predictability in an overlap-
ping generations model and Guvenen (2009) constructs a production economy
that he solves computationally. Constantinides and Duffie (1996) exploit cross-
section heterogeneity of the income process to show that uninsurable income risk
across consumers can potentially explain any observed process for asset prices
and Kubler and Schmedders (2011) construct a heterogeneous-agent overlapping
generations model with sequentially complete markets. By dropping the rational
expectations assumption, they are able to generate substantial asset price volatil-
ity. In a related paper, Feng and Hoelle (2014) generate large welfare distortions
from sunspot fluctuations.

There is also a sizable literature on excess volatility in asset markets as a con-
sequence of bubbles. Jianjun Miao and Pengfei Wang (2017) provide a theory
of rational bubbles in an economy with credit constraints and Miao, Wang and
Zhiwei Xu (2015) estimate a related model using Bayesian methods. Gârleanu
et al. (2012) build a two-agent life-cycle model where the agents have recursive
preferences but a common discount factor and they show that this model gener-
ates inter-generational shifts in consumption patterns that they call ‘displacement
risk’. In a related paper Gârleanu and Panageas (2015) study asset pricing in a
continuous time stochastic overlapping generations model. These papers focus on
fundamental equilibria and they adopt the common assumption of Epstein-Zin
preferences (Epstein and Zin, 1989, 1991).

II. Structure and Assumptions

I describe an endowment economy with no fundamental uncertainty in which
there are complete financial markets and where money is used as a unit of ac-
count. I show that this model has a continuum of non-stationary perfect foresight
equilibria in which asset prices are described by a persistent difference equation
that converges slowly to a steady state. I construct a set of stationary rational
expectations equilibria by randomizing across these equilibria.

A. Structure

Time proceeds in a sequence of periods indexed by t = 1, 2, . . .∞. There
are two types of people and a measure 1 of each type. People survive into the
subsequent period with age-independent probability, π, that is the same for each
type. A person of type i ∈ {1, 2} receives an endowment of µi units of a unique
consumption good in every period in which he is alive. I refer to the consumption
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good as an apple and I assume that

µ1 + µ2 = 1.

This assumption implies the aggregate endowment of apples of the people born
at date t, summed over types, is equal to 1.

Every period a measure 1 − π of type i people from each generation dies and
is replaced by a measure 1− π of new people of the same type. This assumption
implies there is a measure 1 of each type alive in every period and the social
endowment of apples is constant and equal to 1.

The claim to a person’s endowment can be traded in the financial markets. It is
a random sequence of payments that I refer to as a tree. The earnings of a single
tree is a stochastic process because its owner may die. The earnings of a unit
measure of trees is a deterministic variable, equal to the fraction, π, of people.

People maximize the present discounted sum of expected future utility, where
utility is represented by a homogeneous Von-Neumann Morgenstern utility func-
tion, ui, discounted by a factor, βi. I assume that type 1 people are more patient
than type 2 people; that is,

0 < β2 < β1 < 1.

The assumptions that survival probabilities are age independent and utility
functions are homogeneous allows me to summarize the consumption of each type
of person by a linear function of their aggregate wealth. The assumption that
people have different discount factors allows me to construct an equilibrium with
active trade in the financial markets in every period between people of different
types. In a model with only one type, it would still be possible to generate belief
driven asset price fluctuations, but a model with one type would not capture the
significant quantity of private borrowing and lending that we see in the real world.

B. Financial Intermediaries, Annuities, and Life Insurance

In a model with birth and death one must make an assumption about the dis-
persion of a person’s assets when he dies. I follow Blanchard (1985), by assuming
the existence of a perfect annuities market.

Although the endowment is constant, the present value of tax liabilities is a
random variable. People alive at date t trade a complete set of financial securities,
mediated by a set of financial intermediaries. The assets of financial intermediaries
consist of a portfolio of state-contingent one-period consumption loans to type 2
people. Their liabilities consist of state-contingent one-period consumption loans
from type 1 people.

In a rational expectations equilibrium, a newly born type 1 person becomes
a lender and a newly born type 2 person becomes a borrower. A young type 1
person starts out life by consuming less than his endowment. If he has a long
life, a type 1 person eventually consumes more than his endowment as he earns
additional income from his accumulated assets. A young type 2 person starts out
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life by consuming more than his endowment. If he has a long life, a type 2 person
eventually consumes less than his endowment as he repays his accumulated debts.

In addition to acting as intermediaries between buyers and sellers of financial
assets, financial intermediaries provide life insurance to cohorts. The size of the
endowment owned by any given cohort shrinks geometrically by a factor π ∈ (0, 1)
as the members of the cohort die. The present value of the endowment owned
by any individual in the cohort is a random variable. Financial intermediaries
provide perfect insurance against idiosyncratic shocks to the length of life.

To implement the efficient insurance contract, financial intermediaries offer an-
nuities contracts to savers and life-insurance contracts to borrowers. A saver
receives a discount in state ε when he buys a state-contingent claim to one apple
in state ε′. That claim costs him πQ(ε, ε′), where Q(ε, ε′) is the price of the claim
and π is the price of an annuity that pays 1 apple to the financial institution in
the event that the person dies and 0 apples if he lives.

On the other side of this market there is a borrower. A borrower receives a
loan of πQ(ε, ε′) in state ε in return for a promise to repay one apple in state ε′.
The amount he can borrow against a promise to repay 1 apple is reduced by a
fraction, π. The fraction π represents the price of a life-insurance contract that
pays the debt of the borrower in the event of his death. Because there are complete
markets for aggregate shocks, and because I assume free entry to the financial
services industry, financial intermediaries make zero profits in equilibrium.

C. Financial Markets and Tax Liabilities

In this subsection I explain the source of uncertainty and I discuss the market
structure that allows people to insure against shocks. All shocks in the model arise
from non-fundamental shifts in beliefs. In a rational expectations equilibrium,
belief shocks are reflected in different realizations of the dollar price of apples
that are anticipated by participants in the financial markets. Importantly, new-
born people of both types are unable to participate in the financial markets that
open before they are born.

Each period, the price level is a function of a publicly observable random vari-
able, ε, drawn from a time-invariant distribution χ with support Ω. The variable
ε might represent the opinions of the editors of an influential newspaper or the
views of a financial journalist. The mapping from ε to p is common knowledge.

At date t, type 1 and type 2 people are aware that prices will fluctuate in
period t+ 1 and they trade a complete set of Arrow securities where security ε′ is
a promise to pay one apple in period t+ 1 if and only if state ε′ occurs. I denote
the price, at date t in state ε for delivery of an apple at date t+ 1 in state ε′ by

Q(ε, ε′). I refer to the function Q̃(ε, ε′) ≡ Q(ε,ε′)
χ(ε′) as the pricing kernel.

The definition of Q̃(ε, ε′) allows me to replace terms of the form∑
ε′

Q(ε, ε′)a(ε′),
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where a(ε′) is an Arrow security that delivers one apple in state ε, and Q(ε, ε′) is
the price of that security, with conditional expectations,

E
[
Q̃(ε, ε′)a(ε′)

]
,

where Q̃(ε, ε′) is the pricing kernel.

A price level shock has real effects because it changes the net present value of tax
liabilities. A person born into a state with a low price p, relative to nominal debt,
BN , will be born with a high tax liability. Once born, he is perfectly insured
against all future fluctuations in p. But he cannot insure against the state of
the world he is born into. Price fluctuations result in wealth transfers between
generations which are translated in equilibrium into persistent fluctuations in the
stochastic discount factor.

D. Government

There is a government with two branches; a central bank and a treasury. The
central bank operates an interest rate peg by standing ready to buy or sell one-
period dollar-denominated pure-discount bonds for price Q̄N .3 QN is the dollar
price of a treasury bond that pays one dollar next period and a policy of fixing
QN is equivalent to setting the money interest rate, i, at i = 1

Q̄N
− 1.

The treasury begins the period with debt of B(ε) = BN

p(ε) , where BN is debt

denominated in dollars and p(ε) is the dollar price of an apple. It operates the
tax-transfer policy,

(1) T (ε) = p(ε)τ + (1− δ)BN ,

where τ is a real valued tax or transfer levied on, or distributed equally to, all
persons alive at that date. A positive value of τ denotes a tax and a negative
value denotes a transfer. The dollar value of this tax-transfer is equal to p(ε)τ ,
where p(ε) is the dollar price of an apple.

The treasury levies an additional tax of (1−δ)BN , where BN is the outstanding
value of government liabilities and δ ∈ [0, 1]. This feature of tax policy represents
adjustments to the tax rate made to prevent government debt from becoming too
large as a fraction of GDP.4

3Although I model monetary policy, my model is one where no one actually holds money as a means
of exchange. Michael Woodford has popularized the idea of modeling what he calls the “cashless limit”,
Woodford (2003). I adopt that strategy here. Although bonds are denominated in dollars, the dollar
serves only as a unit of account.

4An example of a policy of this kind in the real world is the Omnibus Budget Reconciliation Act
of 1993, which raised top US marginal tax rates and helped to stabilize the debt to GDP ratio. Before
the passage of the Act, the top individual tax rate of 31% applied to all income over $51,900. The Act
created a new bracket of 36% for income above $115,000, and 39.6% for income above $250,000.
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The real value of government debt follows the equation

E
[
Q̃′(ε, ε′)B(ε′)

]
= B(ε)− τ − (1− δ)B(ε).

Period t+1 debt is a random variable, conditional on date t information, because
the price level in period t+ 1 is a function of ε′.

In summary, the model I construct has a continuum of perfect foresight equi-
libria because the interest rate rule of the central bank is passive and because
the treasury actively adjusts the tax rate to prevent the real value of debt from
exploding.

E. Individual Choice Problems

A person of type i solves the problem,

PROBLEM 1:

vi[a
s
i (ε)] = max

{asi (ε′)}ε′∈Ω

{
ui[c

s
i (ε)] + βiπE

[
vi(a

s
i (ε
′)
]}
,

πE
[
Q̃(ε, ε′)asi (ε

′)
]

+ csi (ε) ≤ µi[1− T (ε)] + asi (ε),

asi (εs) = 0.

Here, the symbol vi is the value function, T (ε) ≡ τ + (1− δ)B(ε) is a tax on the
endowment and ui, given by the expression,

ui(x) =

{
x1−ρi
1−ρi if ρi > 0 , ρi 6= 1,

log(x) if ρi = 1,

is a Von-Neumann Morgenstern utility function.

The symbol asi (ε) is the value of financial assets, held as Arrow securities, by
a person of type i born at date s at the beginning of period t. In addition to
his financial assets, this person receives an after-tax income of µi[1 − T (ε)] and
he may borrow against future after-tax income which has a net-present value of
µiH(ε).

During the period, each person may allocate his wealth to consumption, csi (ε),
or to the accumulation of a portfolio of Arrow securities, asi (ε

′), ε′ ∈ Ω, where
security ε′ costs πQ(ε, ε′).

I show in Appendix (A) that, when people solve this problem, their consump-
tions in consecutive states satisfy the Euler equation,

(2) Q̃(ε, ε′) = βi

(
csi (ε)

csi (ε
′)

)ρi
,
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and optimal consumption is a linear function of wealth,

(3) Xi(ε)c
s
i (ε) = asi (ε) + µiH(ε),

where, H(ε) is the after-tax price of a tree, asi (ε) is financial wealth and Xi(ε) is
the inverse propensity to save. Xi(ε) is defined by the recursion,

(4) Xi(ε) = 1 + πβ
1
ρi
i E

[
Q̃(ε, ε′)

ρi−1

ρi Xi(ε
′)

]
.

The absence of arbitrage opportunities implies the after-tax price of a tree
is related to the pricing kernel and the future price of a tree by the valuation
equation,

H(ε) = 1− [τ + (1− δ)B(ε)] + πE
[
Q̃(ε, ε′)H(ε′)

]
,

where T (ε) ≡ [τ+(1−δ)B(ε)], is the real value of the primary government budget
surplus. Since GDP is identically 1, the primary budget surplus is also equal to
the tax rate. It is computed by dividing Equation (1) by p(ε).

III. Rational Expectations Equilibrium

In this section I define a rational expectations equilibrium and I show that it
can be characterized by seven stochastic difference equations in seven aggregate
variables.

A. Definition of Equilibrium

A government policy is a triple {QN , τ, δ}. A rational expectations equilibrium
is a government policy, a stochastic process for {p,Q}, and a consumption alloca-
tion for each person at each date such that; 1) people of all generations and at all
dates choose consumption and assets to solve Problem (1): 2) The sum of finan-
cial assets over all people alive at every date t equals government debt: 3) The
consumption of all people alive at every date t is equal to the social endowment:
4) The real value of government debt follows a stationary stochastic process: and
5) The value of debt is less than the value of after-tax human wealth at every
date.

An equilibrium is a complicated object that involves a wealth distribution across
types and cohorts that evolves through time. Because preferences are homoge-
neous and because life-expectancy is independent of age, the evolution of aggre-
gate variables is independent of this distribution. In the remainder of the paper,
I exploit this independence to describe the properties of aggregate variables in
equilibrium. I generate artificial data, driven by belief shocks, and I show these
data mimic the properties of the post-war US data.
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B. Definition of Aggregate Variables

I will characterize the behavior of the variables Ci(ε), Ai(ε), Xi(ε), B(ε), H(ε)
and Q(ε, ε′). Ci(ε) is the consumption of all type i people at date t in state ε.
Ai(ε) is the sum of the value of the ε Arrow securities owned by all type i people
at the beginning of period t. Xi(ε) is the inverse propensity to save out of wealth
of type i people. B(ε) is the real value of government debt. H(ε) is the after-tax
price of a tree and Q(ε, ε′) is the price of an Arrow security at date t in state ε
for delivery of an apple at date t+ 1 in state ε′.

Consumptions of types 1 and 2 are linked by the goods market clearing equation

C1(ε) + C2(ε) = 1,

and the Arrow security holdings of types 1 and 2 are related to the outstanding
value of government debt by the asset market clearing equation,

A1(ε) +A2(ε) = B(ε).

In my description of equilibrium I define

C(ε) ≡ C1(ε), and A(ε) ≡ A1(ε),

and I do not explicitly model C2(ε) or A2(ε). These variables are implicitly
defined by goods and asset market clearing.

C. Seven Equations that Characterize Equilibrium

Using the facts that consumption is linear in wealth and that the newborn
cohort does not own financial assets, one may derive the following expression
which connects the aggregate consumptions and financial assets of each type in
consecutive states,5

Q̃(ε, ε′) =

 Ci(ε)πβ
1
ρ i
i

πCi(ε′) + (1− π)Xi(ε)−1Ai(ε′)

ρi

.

I call this the modified Euler equation.
Using the goods and asset market clearing equations, and the definitions, of

C(ε) and A(ε), the modified Euler equations for each type are given by equations

(5) Q̃(ε, ε′) =

 C(ε)πβ
1
ρ 1
1

πC(ε′) + (1− π)X1(ε)−1A(ε′)

ρ1

,

5For the derivation of this result, see Appendix (B), which draws on the results of Farmer et al.
(2011).
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and

(6) Q̃(ε, ε′) =

 [1− C(ε)]πβ
1
ρ 2
2

π[1− C(ε′)] + (1− π)X2(ε)−1[B(ε′)−A(ε′)]

ρ2

.

In addition to equations (5) and (6), we may add up the policy function, Equa-
tion (3), over all type 1 people to give,

(7) X1(ε)C(ε) = A(ε) + µ1H(ε).

We also know, from the no-arbitrage pricing of assets, that the price of a tree
is related to its own future price, and to the stochastic discount factor, Q̃(ε, ε′),
by the equation,

(8) H(ε) = 1− [τ + (1− δ)B(ε)] + πE
[
Q̃(ε, ε′)H(ε′)

]
,

and government debt is related to its own future values by the budget equation,

(9) B(ε) = [τ + (1− δ)B(ε)] + E
[
Q̃(ε, ε′)B(ε′)

]
.

To complete the dynamic equations of the model, the inverse savings propensi-
ties are described by the equations,

(10) X1(ε) = 1 + πβ
1
ρ1
1 E

[
Q̃(ε, ε′)

ρ1−1
ρ1 X1(ε′)

]
,

and

(11) X2(ε) = 1 + πβ
1
ρ2
2 E

[
Q̃(ε, ε′)

ρ2−1
ρ2 X2(ε′)

]
.

Equations (5), (6), (7), (8), (9), (10) and (11) constitute a system of seven
equations in the seven unknown variables C, A, B, H, X1, X2 and Q′. These
equations are also associated with three boundary conditions that I turn to next.

D. Boundary Conditions, Indeterminacy and Belief Shocks as Fundamentals

The model has three boundary conditions. One of these is a terminal condition;
the other two are initial conditions.

The terminal condition asserts that the variablesH andB must remain bounded.
This rules out paths that remain consistent with equations (5) – (11) for a finite
number of periods but that eventually become unbounded. An unbounded path
for H is inconsistent with market clearing because it leads to an infinite demand
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for commodities and an unbounded path for B would mean that either the gov-
ernment or the private sector has become insolvent. Neither variable can become
unbounded in equilibrium.

The first of the two initial conditions is given by the expression,

(12) A1 = ā,

where ā is the net financial assets owned by type 1 people in the first period of
the model. This initial value may be positive or negative.

The second initial condition is given by the equation,

(13) B1 =
BN

1

p1
.

This equation asserts that the initial value of government debt, measured in units
of apples, depends on the period 1 price level. In models where the central bank
sets an interest rate peg, there is an open set of possible values for p1, all of which
are consistent with the existence of a non-stationary perfect foresight equilibrium
and all of which converge to the same steady state (Sargent and Wallace, 1975).

How should we deal with the existence of multiple equilibria? I believe it is a
mistake to think of the price level as an initial condition. A better way to think of
price level determination is that the price in period t+ 1, call this p′, is different
from the date t belief of what p′ will be; call this pE

′
. The date t price, p, is

connected to the belief about the date t+ 1 price, pE
′
, by the Fisher equation,

p =
pE
′
Q̄N

Q′
.

This way of formulating the ‘problem’ of multiple equilibria identifies clearly
why the economist is unable to make a clear prediction: He has failed to explain
how beliefs are determined. In a model with multiple equilibria, it is not enough
to assert that people have perfect foresight. The economist must write down an
equation to determine beliefs. The perfect foresight assumption is a consistency
requirement which asserts that beliefs should be correct in the steady state of
a perfect foresight model. It is not a substitute for a formal description of how
beliefs are formed.

This argument can be extended to a world where there are shocks, either to
preferences and endowments, or simply to beliefs. In a model where there are
multiple perfect foresight equilibria, there is no reason for people to hold point
expectations. In this paper I assume instead that pE

′
is a random variable and

people trading in the financial markets have common knowledge of its distribution.

The real value of debt today in state ε is 1
p(ε) and thus the real cost of buying

public debt that pays one dollar in the next period is Q̄N

p(ε) . The real price today
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of a riskless security that pays one dollar in the next period is E
[
Q̃(ε,ε′)
p(ε′)

]
. It

follows from the absence of riskless arbitrage that the price of an apple today is
determined by the equation,

p(ε) =
Q̄N

E
[
Q̃(ε,ε′)
pE(ε′)

] .
Building on the research agenda laid out in Farmer (1993), I propose to resolve

the indeterminacy of equilibrium by introducing a random variable, ε′, and a
function pE(ε′) where ε′ is a random variable with probability distribution χ and
support Ω and pE(ε′) is the price that people believe will occur if ε′ is realized.
The variable ε′ and the function pE(ε′) are new fundamentals that have the same
methodological status as preferences or endowments.6

I have not yet said anything about whether the belief that ε′ will be drawn from
χ will be validated in equilibrium. That requires an additional assumption and I
propose to assume that the belief about the distribution of future prices has the
same distribution as the realized distribution of future prices. The people in my
model have rational expectations.

IV. Simplifying the Model

In this section I simplify the model by finding two variables that summarize the
behavior of the other five. I call the variables that summarize the dynamics, the
state variables and I call the remaining variables, the auxiliary variables. Because
of the functional dependencies among the seven variables, there is no unique way
of choosing state variables.

The behavior of people at date t in state ε depends on two factors. The first, is
their belief about future prices. This is coded into their willingness to pay more
or less for a claim to the future endowment and is summarized by the value of
the variable H. The second is the value of the Arrow securities held by type 1
people which depends on the consumption of type 1 and type 2 people in period
t − 1. The easiest way to code that behavior into the model is to introduce the
period t− 1 value of consumption, I call this CL, as an additional state variable.
It is defined by the equation,

C(ε) = C ′L(ε).

A. Three Auxiliary Functions

To characterize equilibria I will reduce the dimension of the problem still further
by finding three functions, fA, fQ and fB, that explain A, Q, and B as functions

6For other work that uses the belief function to resolve indeterminacy in both a theoretical and
empirical context see Farmer (2012b); Farmer and Nicolò (2018); Farmer and Platonov (2016).
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of CL, H,X1 and X2. This reduces the model to system of equations with a 2× 1
vector of state variables, x, where x ≡ {H,CL} and a 3 × 1 vector of auxiliary
variables, y, where y ≡ {X1, X2, C}.

Using Equation (7), the function fA is defined as

(14) A = fA(C,H,X1) ≡ X1C − µ1H.

Replacing A by fA(C,H,X1) in Equation (5), lagged one period, gives the func-
tion, fQ : [0, 1]2 × R2

+ → R+,

(15) Q̃ = fQ(CL, C,H,X1) ≡

 CLπβ
1
ρ1
1

πC + (1− π)X1
−1fA(C,H)

ρ1

.

Finally, the function fB : [0, 1]2×R3
+ → R, is implicitly defined by the expression,

(16)

 πβ
1
ρ1
1 CL

πC + (1− π)X1
−1fA(C,H,X1)

ρ1

=

 πβ
1
ρ2
2 (1− CL)

π(1− C) + (1− π)X2
−1[fB(CL, C,H,X1, X2)− fA(C,H,X1)]

ρ2

.

For given values of CL, C, H, X1 and X2, B ≡ fB(CL, C,H,X1, X2), is the real
value of government debt that equates the marginal rates of substitution of types
1 and 2.

It is important to note that Equation (16) holds for all pairs of states {ε, ε′}.
The fact that B′ is a function of ε′ is recognized in advance by type 1 and type
2 people in period t who equate their marginal rates of substitution by trading a
complete set of Arrow securities.

B. Solving the Model

Let S ≡ R+ × [0, 1] be the state space and let Y ≡ R2
+ × [0, 1] be the control

space. Using the functions fA, fQ, and fB, together with equations (8) – (11), I
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define a function S2 × Y2 → R5,

F̃ (CL, H,C,X1, X2, C
′
L, H

′, C ′, X ′1, X
′
2)

≡

H − 1 + τ + (1− δ)fB(CL, C,H,X1, X2)− πfQ(C,C ′, H ′, X ′1)H ′

fQ(C,C ′, H ′, X ′1)fB(C,C ′, H ′, X ′1, X
′
2)− fB(CL, C,H,X1, X2)

+τ + (1− δ)fB(CL, C,H,X1, X2)

X1 − 1− πβ
1
ρ1
1 fQ(C,C ′, H ′, X ′1)

ρ1−1
ρ1 X ′1

X2 − 1− πβ
1
ρ2
2 fQ(C,C ′, H ′, X ′1)

ρ2−1
ρ2 X ′2

C − C ′L


More compactly,

F (x, y, x′, y′) ≡ F̃ (CL, H,C,X1, X2, C
′
L, H

′, C ′, X ′1, X
′
2).

A rational expectations equilibrium is characterized by functions f : S×Ω→ S
and g : S → Y that satisfy the functional equation,

(17) E{F (x, g(x), f(x, ε′), g[f(x, ε′])} = 0.

I now turn to the problem of solving this functional equation numerically using
a local approximation.

C. Approximating the Rational Expectations Equilibrium with Perturbation Methods

Define a steady state to be a state vector x̄ and a control vector ȳ that satisfies
the equation

F (x̄, ȳ, x̄, ȳ),

and let J̄1 and J̄2 be the Jacobian matrices of F with respect to [x, y] and [x′, y′]
evaluated at {x̄, ȳ}.

Local uniqueness of a solution to Equation (17) requires that two of the gener-
alized eigenvalues of the matrix pencil {J̄1, J̄2} are inside the unit circle.7 That
condition guarantees that there is a two-dimensional stable manifold g(x) with
the property that for any x1 ∈ N (x̄) all initial conditions y1 = g(x1) that begin
on the stable manifold, converge asymptotically to the steady state {x̄, ȳ}.

7The matrix pencil of the matrices {J̄1, J̄2} is the matrix valued function L(λ) = J̄1−λJ̄2, for λ ∈ C.
The generalized eigenvalues of {J̄1, J̄2} are solutions to the polynomial equation |J̄1 − λJ̄2| = 0, and the
generalized eigenvectors, v, are solutions to the equation J̄1v = λJ̄2v, where v is a vector and λ is a scalar
(Gantmacher, 2000, Chapter XII). Both v and λ may take complex values. The generalized eigenvalue
problem is used to solve linearized systems where J̄1 and or J̄2, or both, are singular. It is widely applied
to the solution of linear rational expectations models. See Sims (2001) for a description of the method.
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To a first approximation, g coincides with the linear subspace spanned by the
two eigenvectors associated with the two stable eigenvalues and f coincides with
the linearized dynamics of x on the stable manifold. When F is differentiable,
higher order approximations may be obtained by extending the solution along the
stable manifold using second, third and higher order derivatives.

To study the properties of rational expectations equilibria, in the next section I
provide numerical values for the model parameters and I approximate the solution
using perturbation methods around a steady-state equilibrium.

V. The Properties of a Calibrated Model

A. Two Different Calibrations

To study the properties of the model, I calibrated it in two different ways. In
both calibrations I chose common values for π, µ1, τ and δ. These values are
reported in Table 1. The values are not chosen systematically to match first and
second moments of US data. They are designed to show that a model, with the
features I have built into it, has promise as a theoretical vehicle to replicate data
if one were to conduct a more serious econometric exercise.

Concept Symbol Calibrated Values

Life expectancy 1
1−π 50 years

Survival probability π 0.98
Fraction of type 1 people µ1 0.5
Tax (−ve value denotes Transfer) τ -0.01
Debt Repayment Parameter δ 0.94
Nominal Discount Factor Q̄N 0.95

Table 1—Common Parameter Values for Two Calibrations of the Model

In the common parameter calibrations I chose π to be 0.98. That value implies
that an average person has an age-independent life expectancy of 50 years. I
experimented with different values for µ1 and found that the qualitative features
of the model are similar for calibrations in the range 0.25 to 0.75. The results I
report are for µ1 = 0.5.

I chose Q̄N = 0.95 for the monetary policy parameter which implies the central
bank targets a nominal interest rate of 5% which is in accord with US data in
which the average three month treasury bill rate in the post-war period was 4.7%.
The only steady-state variable influenced by Q̄N , is the level of the inflation factor
which is scaled up or down by changes in Q̄N . For fiscal policy, I chose a value of
τ = −0.01, which means that the treasury sets a state-independent real transfer
of 1% of GDP and I set δ = 0.94, which implies that the treasury adjusts the tax
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rate each period to repay 6% of outstanding debt.8

In the calibrations that differ across simulations I chose coefficients of risk
aversion of 1 and 6. For the logarithmic calibration, ρ1 = ρ2 = 1, I chose discount
factors for type 1 people of 0.9765 and for type 2 people of 0.9465. For the CRRA
calibration I set ρ1 = ρ2 = 6 and I chose discount factors for type 1 people of 1
and for type 2 people of 0.97.

Concept Symbol Calibrated Values

Calibration 1
Risk Aversion of Type 1 ρ1 1
Discount factor of type 1 people β1 0.9765
Risk Aversion of Type 2 ρ2 1
Discount factor of type 2 people β2 0.9465
Calibration 2
Risk Aversion of Type 1 ρ1 6
Discount factor of type 1 people β1 1
Risk Aversion of Type 2 ρ2 6
Discount factor of type 2 people β2 0.97

Table 2—Parameter Values that Differ Across Calibrations

I chose these numbers by experimenting with empirical simulations to match a
safe return of 3.5% in both calibrations.9 For both calibrations I maintained a
difference in discount rates of 3%. The gap between the discount rates of the two
types determines the volume of trade between private agents and it allows me to
construct a model in which a fraction of the private sector are net debtors.

B. The Steady States of the Two Calibrations

In Table 3 I report some statistics associated with my two calibrations. In
the first row I report the stable generalized eigenvalues of {J̄1, J̄2}. For both
calibrations there are two eigenvalues inside the unit circle and in each calibration,
both roots are close to 1. This fact accounts for the ability of the model to explain
persistent movements in PE ratios.

In rows 2 and 3 of the table I report steady state values of the real interest
rate 100( 1

Q̄
− 1) and the inflation rate 100(Π − 1) for the non-stochastic steady

state. For the logarithmic calibration, the steady state real interest rate is 3.2%

8For existence of equilibrium, it is not necessary that the tax rate be adjusted every period. It simply
needs to be adjusted occasionally to prevent debt from exploding.

9This number is higher than the mean safe real return in US data, which is 1.37%, but it was the
lowest safe return that I could generate for the CRRA calibration without giving Type 1 people a negative
discount rate. There is nothing that prevents a negative discount rate because agents discount the future
not only because of a pure rate of time preference that is measured by β1 and β2, but also because of
the probability of survival that is measured by the parameter π.
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Variable Symbol ρ = 1 ρ = 6
Stable Generalized Eigenvalues λ1, λ2 0.965,0.97 0.954,0.979

Real Interest Rate 100( 1
Q̄
− 1) 3.2% 1.42%

Inflation Rate 100(Π̄− 1) 1.78% 3.5%
Nominal Interest Rate 100( 1

Q̄N
− 1) 5% 5%

Table 3—Steady Values of the Interest Rate for Two Different Calibrations of Risk Aver-

sion

and the steady-state inflation rate is 1.78%. For the CRRA calibration the real
interest rate is 1.42% and the steady-state inflation rate is 3.5%. In both cases,
the inflation rate is found by subtracting the real rate from the targeted nominal
interest rate which I set at 5%.

It is important to stress that the real interest rate in the non-stochastic steady
state is not the same as the median real return in stochastic simulations of the
model where higher order terms can generate a sizable risk premium. I will show
in Section V.D that, for a model that replicates the volatility of asset prices in
the data, the median safe return for both calibrations is approximately 3.5%. For
the CRRA calibration the median return on a risky asset is 5.4% and for the
logarithmic calibration it is 3.17%.

C. Two Stochastic Simulations Using the Same Draw for the Shocks

I simulated 90 years of data for the inflation rate, the stochastic discount factor,
the real safe rate of return and the real risky rate of return and I discarded the
first 30 observations to remove the influence of initial conditions. The results
of this simulation are reported in Figure 1. On all four panels, the solid curves
represent a simulation for logarithmic preferences and the dashed curves represent
a simulation for CRRA preferences with ρ = 6. For both simulations I used the
same sequence of stochastic shocks.

I simulated data using the function

x′ = f̂(x) + ηε′,

where f̂ is a second order approximation to the policy function computed using
the code from Levintal (2017) and η is a 2 × 1 vector that allocates shocks to
state variables.10 To ensure that H does not become negative, I defined the state
variable to be log(H) rather than H.

I chose the vector η = [σ, 0]T and I used a normal distribution for ε′ with

10Levintal’s code is based on Schmitt-Grohé and Uribe (2004). It allows for approximations up to
fifth order and it is faster and more efficient than the Schmitt-Grohé-Uribe code. I found no noticeable
difference in simulations using second and higher order approximations and, because the second-order
approximation is faster, I used it in my simulations.
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a standard deviation of σ = 0.15. A zero appears in the second element of η
to reflect the fact that CL is predetermined. The parameter σ is the standard
deviation of a belief shock that causes people to revise their view of the current
price of a tree. The implied belief about the price shock, p(ε), can be recovered
from the definition

p(ε) =
BN

B
.

I chose a standard deviation of 0.15 for the belief shock to make the Sharpe
ratio as large as possible and to simultaneously to get as close as possible to
the realized volatility of stock market returns. I show in Section V.D, that this
calibration leads to a standard deviation of the risky rate of 17 in the CRRA
calibration which compares with 14 in data.

The top left panel of Figure 1 reports the inflation rate, measured in percent
per year, and the top right panel is the stochastic discount factor which is a pure
number. These series are identical up to a scale normalization, because, when the
central bank pegs the nominal interest rate, fluctuations in the realized stochastic
discount factor are caused by fluctuations in the realized inflation rate.

The bottom left panel of Figure 1 is the safe interest rate, defined by the
expression

rs = 100

 1

E
[
Q̃(ε, ε′)

] − 1

 .

I computed this statistic by adding an addition auxiliary variable, Rs ≡ 1 + rs,
and an additional auxiliary equation

1

Rs
− E

[
fQ(C,C ′, H ′, X ′1)

]
= 0,

to the model.
The bottom right panel is the realized after-tax one-period holding return for

buying a measure 1 of trees in period t and selling it in period t+ 1. It is defined
by the expression

rr = 100

(
πH(ε′)

H(ε)− [1− T (ε)]
− 1

)
.

The safe return, rs, and the risky return, rr, are identical in a non-stochastic
steady state. They are very different in the stochastic steady state.

In US data, the average yield from holding the stock market is approximately
6% higher than the average return from holding government bonds. Because it
is possible to increase the risky return by assuming more risk, it is common to
report the Sharpe ratio which is a measure of excess return normalized by risk.
The Sharpe ratio, S, is defined as,

S ≡ mean(rr − rs)
std(rr)

.
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Figure 1. Inflation and Interest Rates for Two Different Calibrations

In US data, the Sharpe ratio is somewhere between 0.25 and 0.5 and it is sensitive
to the definition of the risky asset and the time period over which the statistic is
computed (Cochrane, 2001). In Table 4 I report the Sharpe ratio and the means
of the safe and risky returns for the simulations from Figure 1.

The numbers reported in this table refer to a single draw of shocks. When
people have logarithmic preferences, this draw led to an average safe interest rate
in 60 years of data of 4.23% and an average risky rate of 3.03%. The Sharpe ratio
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Variable Symbol ρ = 1 ρ = 6
Mean of Safe Rate in One Simulation r̄s 4.23% 5.51%
Mean of Risky Rate in One Simulation r̄r 3.03% 10.96%
Sharpe Ratio in One Simulation S −0.069 0.26

Table 4—Mean Safe and Risky Rates for a Single Simulation

for this draw, for the case of logarithmic preferences, is −0.069.
When people have CRRA preferences, with risk aversion parameter ρ = 6, this

same sequence of stochastic shocks led to a mean safe return of 5.51% and a mean
risky return of 10.96%. The equity premium for this calibration is 5.45% and the
Sharpe ratio is 0.26. The mean returns are different from the steady-state values
reported in Table 1, because the model has an eigenvalue close to 1 and mean
reversion is extremely slow. The average risky return in 60 years of data is a
random variable with a high variance that becomes very large as the largest root
of the system approaches 1.

D. The Distributions of Average Returns in 100, 000 Simulations

To check whether a relatively high Sharpe ratio was a freak draw from a par-
ticular realization of the shocks, I simulated 100,000 time series, each of length
60 years, and for each series I computed the Sharpe ratio and the means of the
safe and risky interest rates. The results are reported in Figure 2 for two different
calibrations of the model and the medians, fifth and ninety-fifth percentiles for
these simulations are reported in Table 5.11 For both calibrations, I used the
same sequence of random shocks for every simulation.

The top left panel of Figure 2 compares the densities of the average safe returns.
This panel shows that the distribution of safe rates has a higher variance in the
CRRA case. However, the median safe return is 3.6% in the logarithmic case and
3.5% for CRRA preferences with a coefficient of risk aversion of 6. This similarity
is deliberate and is one of the moments I targeted in my calibrations by adjusting
the discount factors of the people in the two cases.

The top right panel of Figure 2 plots the empirical distribution of 60-year aver-
ages of risky rates. The economy with higher risk aversion leads to a distribution
of risky rates that is shifted right with a higher median of 5.44% for the CRRA
calibration as opposed to 3.17% for the logarithmic calibration. The CRRA cali-
bration also has a longer right tail with a 95’th percentile of 13.43% compared to
5.83% for the logarithmic economy.

11For the column headed “US data”, the raw data for inflation and the safe interest rate are from
the Bureau of Economic Analysis. Data for the risky rate and the PE ratio are from Shiller (2014). All
statistics are averages of annual series from 1948 through 2008. Inflation is the average twelve month
percentage increase in the CPI. The safe rate is the three month treasury bill rate minus realized inflation.
The risky rate and its standard deviation are computed from the one year holding return on the S&P 500
adjusted for CPI inflation. The PE ratio is Robert Shiller’s Cyclically Adjusted Price Earnings Ratio.
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Figure 2. Empirical Frequency of Interest Rates and Sharpe Ratios in 100,000 Simulations

The middle left panel of Figure 2 plots the densities of Sharpe ratios for the two
calibrations in 100, 000 replications and the middle right panel shows the densities
of the average stochastic discount factors. It is clear from the left panel that in
the logarithmic calibration the distribution of Sharpe ratios is approximately
symmetric and centered around zero. In contrast, for the CRRA calibration
almost all of the probability mass is greater than zero and there is a significant
probability of observing a Sharpe ratio of 0.3 or higher.

Turning to the middle right panel of Figure 2, we see that the distribution of
the stochastic discount factor is shifted to the right for the CRRA calibration
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Concept 5’th percentile Median 95’th percentile US data

Log. calibration ρ = 1
Safe rate 1.77% 3.63% 4.49% 1.14%
Risky rate −0.78% 3.17% 5.83% 7.74%
Sharpe ratio −0.36 −0.024 0.23 0.46
Stochastic discount factor 0.96 0.97 0.98 NA
Inflation 0.8% 1.53% 5.83% 3.7%
St. dev. of risky rate 12.9 15.4 18.1 14.4
PE ratio 7.45 15.45 30.89 18.33
Nominal interest rate 5% 5% 5% 5% 4.7%

CRRA calibration ρ = 6
Safe rate 0.73% 3.51% 6.60% 1.14%
Risky rate 2.37% 5.44% 13.43% 7.74%
Sharpe ratio 0.02 0.14 0.33 0.46
Stochastic discount factor 0.97 0.98 0.99 NA
Inflation 2.62% 3.11% 13.43% 3.7%
St. dev. of risky rate 14.1 17.0 21.8 14.4
PE ratio 9.88 17.91 28.30 18.33
Nominal interest rate 5% 5% 5% 5% 4.7%

Table 5—Percentiles of 60-year averages in 100, 000 simulations

relative to the case of logarithmic preferences. This reflects the fact that the time
preference rates of the two types were chosen to be 1 and 0.97 when risk aversion
is 6 and 0.9765 and 0.9465 for the logarithmic case. The lower left panel of Figure
2 reports the densities of average 60-year inflation rates and the lower right panel
plots the distribution of the 60-year average standard deviations of risky rates.

With the exception of the safe interest rate and the Sharpe ratio, the CRRA
calibration does a reasonable job of matching the US data and I infer, from these
simulations, that this model is a good candidate for helping understand the equity
premium puzzle (Mehra and Prescott, 1985).

E. Consumption, Asset Holdings and Government Debt

In Table 6 I report the distribution of simulated quantity data for my 100, 000
simulations and I compare these statistics with some back of the envelope esti-
mates of US data. Debt to GDP ratios for both the private sector and the public
sector have been growing over the past couple of decades and averaging these
data over time will not lead to a sensible estimate of sustainable long-run aver-
ages. The numbers reported under the heading US Data are representative of the
kinds of numbers that have characterized US data in the post-war period. The
reported figure of −3% for the US primary surplus hides a couple of significant
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fiscal reforms that we capture in the model as a time-invariant fraction of debt
to be paid back every year.

The reported figure of Type 1 assets of 150% of US GDP reflects the fact that
over the past decade, government debt has averaged 80% of GDP and private
debt has averaged 70%. Adding these figures together, there is implicitly, a group
of private wealth holders who are lending both to the government and to private
borrowers and I report their wealth in US data as 150% of US GDP under the
heading of ‘Type 1 Assets’. These estimates ignore the existence of public and
private capital which are not a part of my stylized model.12

Concept 5’th percentile Median 95’th percentile US Data

Log. calibration ρ = 1 Percentage of GDP
Type 1 consumption 58 70 80 NA
Type 1 assets −175 859 1, 481 150
Government debt −1, 216 505 1, 455 70
Primary budget surplus −74 29 86 −3

CRRA calibration ρ = 6 Percentage of GDP
Type 1 consumption 53 54 55 NA
Type 1 assets 61 145 174 150
Government debt −83 67 127 70
Primary budget surplus −6.1 3.1 6.7 −3

Table 6—Percentiles of 60-year averages in 100, 000 simulations

The consumption of type 1 people fluctuates between 58% and 80% of GDP
for the logarithmic calibration and their asset holdings fluctuate between −175%
and 1, 481% of GDP. These massive asset fluctuations are reflected in even larger
swings in government debt which at the fifth percentile, is equal to −1, 216% of
GDP and at the ninety-fifth percentile, is equal to 1, 455% of GDP. Recall that
these are 60-year averages of simulated data and they are very far from anything
we have observed in data. They imply, for example, that there is a five percent
chance that we would observe a sixty-year run of data in which the US government
owns assets equal to 1, 216 times GDP and a further five percent chance that we
would see the government holding debt equal to 1, 455 times GDP. Further, this
calibration implies we could expect to see a primary budget surplus that fluctuates
between −74% and +86% of GDP. The median value of government debt, for this
calibration, is 505% of GDP.

The CRRA calibration is em much more promising as a description of data.
Here, the consumption of type 1 people fluctuates between 53% and 55% of GDP

12Although some of these wealth holders may reside outside of the US, the US has fluctuated over the
past few decades between being a net foreign creditor and a net foreign debtor so the assumption that
all wealth is held domestically may not be too misleading.
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and their asset holdings fluctuate between 61% and 174% of GDP. Accompanying
these swings in private asset holdings of patient people, government debt swings
between −83% of GDP at the fifth percentile and 127% at the ninety-fifth per-
centile. The median value of government debt is 67% which is not far from US
experience in which government debt has fluctuated between 30% and 120% of
GDP in the post-WWII period. The primary surpluses we would expect to see
in this calibration fluctuate between plus and minus 6% of GDP which are also
not unreasonable relative to recent experience.

F. A Discussion of the Results

In the introduction, I claimed that the paper relies on three features. First,
there must be birth and death. Second, there must be nominally denominated
government debt and third there must be two types of people. Here, I discuss
why each of these features is important and I speculate on the ability of a model
in this class to provide a vehicle for more formal empirical work.

Consider first, the assumption of perpetual youth consumers which is a simple
way of capturing features of the overlapping generations model while preserving
the ability to fit annual time-series data. If we set the parameter π to 1, the model
collapses to an economy with two infinitely lived representative agents with dif-
ferent discount factors. The more patient of the two agents will eventually own
all of the wealth and, asymptotically, the model behaves like a one person repre-
sentative agent economy in which equilibrium is unique. Assuming a single type
of agent does not help since, in this case, the model starts out as a representative
agent model and, once again, equilibrium is unique. It follows that we need the
perpetual youth assumption to generate asset price fluctuations caused by belief
shocks.13

Suppose we were to construct a perpetual youth model with no nominal asset.
This model would have a unique locally determinate equilibrium and it would
therefore be unable to generate equilibria driven by belief shocks. Introducing
fiat money does not help. The perpetual youth model with fiat money, like the
two-period overlapping generations model, has a steady state equilibrium where
money has value but this steady state is determinate and there is a unique initial
price level for every initial distribution of nominal assets. To generate the results
of the paper it is critical that we interpret the nominal asset as government debt
and, importantly, the government must follow a passive fiscal policy in which it
balances its intertemporal budget for all possible price paths.

The assumptions of perpetual youth and passive monetary and fiscal polices are
essential to the mechanism of my model. They allow me to construct a locally
indeterminate steady-state equilibrium where money has value. In contrast to
these two assumptions, the role of two types of people is less important. In the

13See Kehoe and Levine (1985) for a discussion of the properties of the infinite horizon model in which
agents live for ever and have different discount rates.
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model with only one type of person there will still be asset price fluctuations
but there will be no asset market trade between types. By adding patient and
impatient people, I am able to construct an equilibrium in which there is active
trade in Arrow securities and where a price shock sets off a persistent mean
reverting movement in asset portfolios.

But although the assumption of two types of people is not essential to the mech-
anism of the model, it is important to the quantitative calibration. In the past
decade, private debt in the United States was approximately 80% of GDP which
accords well with the calibration in Table 6 for the case of CRRA preferences.
I am matching this statistic by assuming that debt is accumulated by Type 2
people and that Type 1 people lend 70% of GDP to the government and 80% to
Type 2 people. If the model had only one type, it would be impossible to match
this figure for private debt accumulation and government debt would need to be
more volatile over the business cycle to match the asset price data.

It is well known that dynamic monetary models with an interest-rate peg lead
to indeterminacy of equilibrium but most existing work in monetary economics
has argued that this case is not empirically relevant. Alas, that is not the case.
Jordi Gaĺı and Mark Gertler (2000) have shown that, in the period before 1979,
the US Federal Reserve operated a passive monetary policy that is predicted, in
New Keynesian models, to lead to indeterminacy of the price level.14

One solution to the ‘problem’ of multiple equilibria in models with passive
monetary policy is to appeal to the fiscal theory of the price level (FTPL). This
theory claims that government debt will remain bounded even in the case when
the government makes no active attempt to remain solvent and it is used to select
a unique equilibrium in monetary models in which the price level is otherwise
indeterminate.

I find the arguments that have been presented for the FTPL to be unpersua-
sive. If the FTPL held in practice, I do not believe that legislatures would be
as concerned with budget balance as they have proven to be in the real world.
In my view, we should deal with the existence of multiple equilibria by mod-
elling the way people form beliefs. We must introduce a belief function as a new
fundamental as I first argued in Farmer (1993) and as I have done in this paper.

One might argue that, although monetary policy has been passive for significant
periods of US history, it has not always been passive. In the period from 1983
to 2008 estimates of monetary policy rules suggest that central banks responded
aggressively to inflation by raising interest rates more than one-for-one in response
to inflation. If an active rule like that were inserted into the model of this paper,
it would lead to explosive behavior of inflation and asset prices if people continued
to use the belief function that I used to resolve indeterminacy of equilibrium.

I am not concerned with this critique of my approach because I do not believe

14A passive monetary policy is an interest rate rule in which the central bank responds to inflation by
raising or lowering the interest rate by less than one-for-one (Leeper, 1991). An active monetary policy
is one where it responds to inflation by raising or lowering the interest rate by more than one-for-one.
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the New Keynesian model is the right lens through which to interpret these data.
In a recent theoretical paper, Konstantin Platonov and I (Farmer and Platonov,
2016) introduce an alternative theory of the connection between output and infla-
tion in which the belief function determines equilibrium even if monetary policy
is active. Giovanni Nicolò and I (Farmer and Nicolò, 2018) have shown that this
theory outperforms the New-Keynesian model in post-WWII US data.

The papers with Platonov and Nicoló build on Farmer (2012a) which constructs
a theory where the steady-state of the model is indeterminate as a consequence
of incomplete labor markets. What I have shown in the current paper is that
models with indeterminacy can explain asset pricing data. I remain eclectic as to
exactly how to model indeterminacy in practice and I suspect that a combination
of incomplete participation that characterizes overlapping generations models and
incomplete labor markets that characterizes my work on unemployment will both
be needed to understand US data.

There is one other feature of my explanation for the equity premium that is
worth drawing attention to. The model generates a smooth risk-free rate even
when the risky rate is very volatile. This is in marked contrast to explanations
of the risk premium such as Abel et al. (1989) or Campbell and Cochrane (1999)
that are based on habit-formation preferences.15

In my model, the generations who participate in the asset markets are willing
and able to reallocate assets intertemporally. To a first approximation, the safe
rate is equal to the slope of an indifference curve of a person with CRRA pref-
erences and big swings in the safe rate would cause these people to reallocate
consumption through time. It is the ability of these people to trade with each
other that prevents excessive volatility of the safe rate of return.

Why then is the risky rate so volatile? Although I assume that there is a
complete set of Arrow securities, the unborn generations are unable to participate
in the asset markets that open before they are born. The inability of the unborn to
insure opens the possibility that self-fulling belief shocks will generate substantial
movements in the after-tax wealth of the unborn that are reflected in big swings
in the stochastic discount factor. These swings cause long-dated assets to undergo
substantial revaluations that result in large gains or losses on long-dated assets.

I conclude that models with indeterminate equilibria are promising vehicles to
explain features of the real economy and that by adding a belief function, as I
have done here, we may make considerable progress in combining macroeconomics
and finance.

VI. Conclusion

In this paper, I have presented a theory that explains asset pricing data in a new
way. In contrast to much of the existing literature in both macroeconomics and
finance, my work is based on the idea that most asset price fluctuations are caused

15I thank an anonymous referee for drawing my attention to this point.
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by non-fundamental shocks to beliefs. My model produces data that display
volatile asset prices and a sizable risk premium. If one accepts the argument that
a simpler explanation is a better one, the fact that I am able to reproduce these
empirical facts in a model with CRRA preferences and no fundamental shocks
suggests that the model is on the right track.

My model is rich in its implications. It provides a simple theory of the pricing
kernel that can be used to price other assets. The model is open to more rigorous
econometric testing and its parameters can be estimated, rather than calibrated,
using non-linear methods. It provides a theory of the term structure of interest
rates that can be tested against observed bond yields. By adding a richer theory,
in which output fluctuates as a consequence of movements in labor supply or be-
cause of movements in the unemployment rate, the theory can be estimated using
data from both bond prices and equity markets. I view all of these extensions
as grist for the mill of future research. Conducting these extensions is important
because my model is not just a positive theory of asset prices; it is ripe with
normative implications.

In my baseline calibration, I chose parameters to match key features of the
data and I generated simulated data series that closely mimic observed interest
rates and asset prices in the real world. In these simulations, asset price fluctua-
tions cause Pareto inefficient re-allocations of wealth between current and future
generations and these re-allocations lead to substantial fluctuations in welfare.
If my model is correct, and these fluctuations are the main reason why asset
prices move in the real world, stabilizing asset prices through monetary and fiscal
interventions will be unambiguously welfare improving.
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Appendix A

In an optimum, the budget constraint must hold with equality,

(A1) csi (ε) = µi[1− T (ε)] + asi (ε)− πE
[
Q̃(ε, ε′)asi (ε

′)
]
.

From the envelope condition we have that

(A2)
∂vi

∂asi (ε)
=

∂ui
∂csi (ε)

∂csi (ε)

∂asi (ε)
≡ ∂ui
∂csi (ε)

,

where I have used the fact that, from (A1), csi (ε) is a linear function of asi (ε).
From the Euler equation, using the definition of usi ,

(A3)
∂ui
∂csi (ε)

∂csi (ε)

∂asi (ε
′)

= πβiχ(ε)
∂vi

∂asi (ε
′)
.

Using (A1) and (A2) in (A3) and the functional form for utility,

(A4) πQ̃(ε, ε′)csi (ε)
−ρi = πβic

s
i (ε
′)
−ρi .

Rearranging this equation gives

(A5) Q̃(ε, ε′) = βi

(
csi (ε)

csi (ε
′)

)ρi
,

which is Equation 2 from the solution to Problem 1.
Now conjecture that the policy function takes the form,

(A6) Xi(ε)c
s
i (ε) = µiH(ε) + asi (ε)

where

(A7) Xi(ε) = 1 + πβ
1
ρi
i E

[
Q̃(ε, ε′)

ρi−1

ρi Xi(ε
′)

]
.

and

(A8) H(ε) = 1− [τ + (1− δ)B(ε)] + πE
[
Q̃(ε, ε′)H(ε′)

]
,

From Equation (A6),

(A9) Xi(ε
′)csi (ε

′) = µiH(ε′) + asi (ε
′).

Multiplying Equation (A9) by πQ̃(ε, ε′), taking expectations and using equations
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(A1) and (A8),

(A10) πE
[
Q̃(ε, ε′)Xi(ε

′)csi (ε
′)
]

=

πE
[
Q̃(ε, ε′)µiH(ε′)

]
+ πE

[
Q̃(ε, ε′)asi (ε

′)
]
.

Next, replace csi (ε
′) by csi (ε)β

1
ρi
i Q̃(ε, ε′)

−1
ρi from (A5) and use (A1) and (A8) to

give

(A11) πcsi (ε)E
[
β

1
ρi
i Q̃(ε, ε′)

ρi−1

ρi Xi(ε
′)csi (ε

′)

]
= πE

[
Q̃(ε, ε′)µiH(ε′)

]
+ πE

[
Q̃(ε, ε′)asi (ε

′)
]

= µiH(ε) + asi (ε)− csi (ε) = [Xi(ε)− 1]csi (ε),

where the final equality uses the policy function, Equation (A5).

Cancelling csi (ε) from both sides of (A11) and rearranging terms gives

(A12) Xi(ε) = 1 + πE
[
β

1
ρi
i Q̃(ε, ε′)

ρi−1

ρi Xi(ε
′)csi (ε

′)

]
,

which establishes that the conjectured policy function, (A5) solves Problem 1
when Xi(ε) is given by Equation (A12).

Appendix B

Let coi (ε) be the consumption at date t in state ε of a representative type i person
who was alive at date t− 1 and let cyi (ε) be the consumption of a representative
newborn person of type i. Adding up over all people of type i, gives

(B1) Ci(ε) = πcoi (ε) + (1− π)cyi (ε).

A person who is alive in two consecutive periods obeys the Euler equation,

(B2) ci(ε)β
1
ρi
i = coi (ε

′)Q̃(ε, ε′)
1
ρi

Newborn people consume

(B3) cyi (ε
′) = µiXi(ε

′)−1H(ε′),
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Aggregating Equation (B2), using (B1).

(B4) Q̃(ε, ε′)
1
ρi =

Ci(ε)πβ
1
ρi
i

Ci(ε′)− (1− π)X−1
i µiH(ε′)

,

Using the fact that,
µiX

−1
i H(ε′) = Ci(ε

′)−Ai(ε′),
leads to,

(B5) Q̃(ε, ε′) =

 Ci(ε)πβ
1
ρi
i

πCi(ε′) + (1− π)Xi(ε′)−1Ai(ε′)

ρi

,

which is the modified Euler equation.


