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Exact solutions to stochastic, capacitated, multi-commodity,
multi-stage production/inventory models are in general computationally
intractable. The practical application of such models is therefore
inhibited. In this thesis a general stochastic, capacitated, multi-
commodity, multi-stage production/inventory model with linear cost
structure is proposed. Under convexity conditions it is a stochastic
linear program. A good computationally efficient approximate solution
technique is developed and some numerical results reported.

It is important to assess the merit of approximate techniques
and this is done statistically by replicative simulation. But the
accuracy of this method improves only as the square root of the number
of simulation trials made, so it is important to eliminate any unnecessary
variability in each trial. It is proposed that this be done by the
use of control statistics. Several novel control statistics are developed,
the most powerful being a martingale control statistic constructed
independently for each trial from information provided by the approx-

imate technique being tested.

Results are reported of testing the approximate solution
technique developed for the general model, ordinary linear programming
ignoring all the stochastic elements in the problem, and two other
approximate techniques, by replicative simulation. These suggest that
the penalty incurred by ignoring the stochastic nature of the problem
is significant, but that first order deviations from optimal decisions
may lead only to second order penalties. This is a desirable feature
of the stochastic models, for it indicates that approximate solution
techniques to stochastic programs may be more reliable than would be
supposed from the approximations made.



1. MEDIUM TERM PRODUCTION PLANNING

This thesis develops and studies a dynamic stochastic model
for use in medium term production and inventory planning. In this
context 'medium term' planning is intended to mean decisions about
such aspects of the production system as production levels of individual
finished products and manpower levels for different categories of
employee. Short term scheduling problems which involve a detailed
analysis of the day to day running of the production system and which
examine, for example, which components can be produced in which order
on what machine, are very specific to the industry and plant being
studied and are excluded. Also excluded are long term strategic
problems which, for example, arise in decisions to expand or con-
tract production facilities, to produce a new product line or to
enter new markets.

The problems addressed herein are essentially of a tactical
nature and typically concern the setting of monthly or quarterly
production targets, workforce levels and buffer stocks over a planning
horizon of a year. Sore authors refer to this as production smoothing.
There are two principal aspects of this problem that require further
discussion.

Firstly» there is a trade off between holding large quantities
of products in stock and frequent changes of production and manpower
levels. Fluctuating demand might be handled by continually varying
the production rate and hiring or laying off sections of the workforce,

but keeping stocks of finished items low. However these changes are



often expensive so it might be more profitable to keep the production
rates and manpower levels constant whilst meeting fluctuations in
demand from high stock levels. In general the best decision will lie
between these two extremes. Determination of precisely what the best
decisions are involves quantification of the costs involved and study
of the appropriate mathematical model of the system.

Secondly, the demand requirements themselves are rarely known
exactly in the medium term for they depend on future decisions made
by customers who are outside the control of the production system.
These demand requirements may only be knomn probabilistically. There
is an obvious trade off between producing only as much as can definitely
be sold, which keeps stock levels low but takes little advantage of
the likely demand, and producing so much that demand can always be
satisfied which risks carrying inordinately large stocks. Determin-
ation of the best production tactics in the face of this problem
involves the decision maker's attitude toward risk, quantification of
the uncertainty in demand and the study of the appropriate probabilistic
mathematical model.

The problem is usually further complicated by constraints on
permissible production rates and items that can be held in stock. These
may require the production of items to stock in order to take most
advantage of the peak in cyclical or seasonal demand.

Of the two aspects discussed above the former is easier both
from the point of view of acquiring sufficient cost data and in the

necessary analysis of the mathematical models. The latter problem is



much more difficult from both points of view. The quantification of
the uncertainty in future demand is a difficult task and stochastic
models present formidable problems both in their theoretical and
computational aspects. However.it is in a sense more general for
models designed to handle the latter problem can easily be extended

to handle the former problem but not vice-versa. The model developed

in this thesis although motivated by the uncertainty problem is designed
to handle both. It is presented in Chapter 5. In order to explain

the structure of the work some problems associated with stochastic

models need to be discussed. This is now done.



2. STOCHASTIC PROGRAMMNG

Models used for the analysis of the problems outlined above
fall naturally into the ambit of stochastic programming. This is
the study of certain models (stochastic programs) which explicitly
incorporate random variables into their formulation and which reduce
to deterministic mathematical programmes as the variability in the
random variables tends to zero. The formulation of such models
has not only been motivated by production planning problems but also
by the need to control water resources and to tackle problems arising
from economic and financial planning. Each source of "real world"
problems has generated differentclasses of stochastic programs.

But there is much conmmon ground between them and theoretical study

has led to their being classified on the basis of their more abstract
properties. In consequence most classes of stochastic programmes

have something to offer in the modelling of production systems. A
brief review of stochastic programming from this viewpoint is there-
fore given in Chapter 2. However, for the medium term production/
inventory problems described above, one class of stochastic programs
is more natural to use than any other. This is the class of active
multistage programs. Each stage can be identified with time periods
in the "real world" problem, typically months or quarters, and decisions
which must be made at each stage are only allowed to depend on the
realisations of random variables in previous (and possibly the present)

stages and the distributions of the random variables in later time

periods conditional on these realisations. Thus production decisions
are only allowed to depend on the demand in previous time periods and

not that in future ones.



Unfortunately, in general, exactly optimal solutions to multi-
stage stochastic programs reduce at best to dynamic programming
methods and these become computationally intractable as the number
of commodities being modelled increases. This is shown in Chapter 4
which develops some dynamic programming models. Approximate solution
methods are therefore of interest. This thesis contains a general-
isation and development of one of the most promising approximate
methods due to Beale, Forrest and Taylor [4 ]. Their method is
described in Chapter 3 and the development of it is presented in
Chapter 6.

It is important to assess the merit of approximate solution

techniques. The way in which this is done is now reviewed.



3. THE EVALUATION OF APPROXIMATE SOLUTION TECHNIQUES

The optimal utility returned by the objective function of,and
the optimal decision given by,an approximate solution method to a
stochastic model may be in error. This can be tested on sufficiently
simple examples by comparisons with those obtained by a method known
to be exact. However, this comparison may be misleading if it is
used to assess the suboptimality of the decisions recommended by
the approximate method. Firstly, the utility gained by actually
using an approximate solution technique may be very different from
that returned by the model's objective function. Secondly,deviations
from the optimal decisions are not in themselves important. What is
important is the drop in utility consequent upon them and this may
be hard to gauge.

The method suggested in this thesis for handling these problems
is that of statistical simulation. The environment within which the
stochastic program operates is modelled on a computer. The random
variables in the problem are simulated by pseudo-random numbers. Under
the influence of these,and the control of the approximate method being
tested, the stochastic process then evolves from the first time period
in the problem to the time horizon. This is known as a simulation
trial. It is repeated a large number of times in order to assess the
performance of the approximate solution method statistically.

Unfortunately statistical estimates of attributes of interest
in the process maede in this way are unacceptably inaccurate. This

problem is overcome by the use of control statistics. These are



described and developed in Chapter 7, but the application of them
requires the derivation of formulae specific to the process being
simulated and the algorithm tested. These formulae are derived in
Chapter 8 for the approximate solution algorithm developed in Chapter

6. However the formulae are not restricted to this algorithm. This

is shown in Chapter 9 which reports the results of simulation experiments
in which four approximate algorithms were tested on two simple

examples. The results of these experiments suggest that first order
deviations in the decisions made by approximate algorithms from their
truly optimal values produce only second order deviations in the

utility realised by using algorithm from its optimal value. This

is a very desirable feature of the process for it indicates that the
suboptimality of approximate solution methods may be very much smaller
than the approximations made by it might suggest. The thesis ends with

a brief summary and conclusions in Chapter 10, in which suggestions

are made for further research.



4. THESIS PLAN

This thesis is devoted to the study and development of stochastic
models for medium term production planning. It divides into three parts.
Part | reviews established models and solution techniques. Chapter 2
surveys stochastic programming and Chapter 3 presents an exposition
of the methods of Beale, Forrest and Taylor [ 4 ]. Part Il deals with
novel contributions to modelling production/inventory problems. Chapter
4 describes some dynamic programming techniques, suggests an efficient
algorithm for the single-commodity case, and reports some computational
experience with it. Chapter 5 presents a fairly general production/
inventory model and describes an application of it to a production/
manpower/inventory planning problem. In Chapter 6 an approximate
solution technique to it is developed, and some numerical results are
given. The work contained in both Chapters 5 and 6 is a generalisation
and extension of that of Beale et al. [4], It is important to assess the
merit of approximate techniques and this is done in Part Ill. Chapter
7 describes the techniques of replicative simulation and control
statistics. It develops some novel ways of constructing control
statistics. Sonme of these are based upon the derivation of a martingale
for each simulation trial from information about the process provided
by the algorithm being tested. Detailed formulae for the computation
of these are derived in Chapter 8. Chapter 9 describes simulation
experiments which test both approximate algorithms and the efficacy
of the control statistics. The results are reported and conclusions
drawn from them. This thesis is concluded with a brief summary in

Chapter 10.



CHAPTER 2

A REVIEW OF STOCHASTIC PROGRAMMING TECHNIQUES

FOR MEDIUM TERM PRODUCTION PLANNING



1. INTRODUCTION

The principal difficulty of studying production/inventory
problems is that decisions have to be made in the face of uncertainty,
not just of unreliable data, but also that in future decisions made by
others, for example customers, over whom the decision maker has no
control. Analysis of the consequent uncertainty in the system is
essential in the determination of the best production strategy and
other salient aspects of the production/inventory system,particularly
safety stocks. These have traditionally been studied by statistical
methods in isolation from the rest of the system. See, for example,
Whitin [6 1], Nador [42] and Chapter four of Hadley and Whitin [26 ].
Properly, however, they ought to be studied in the context of the whole
production process by appropriate modelling.

Stochastic programs form the natural choice of models to use
in this context. Much attention has been devoted to them, although
it has been more directed to a study of their abstract properties
than computationally effective methods of solution. This chapter
presents a brief review of the principal forms of stochastic programs.
The different forms that have been proposed are surveyed in Section
2. These divide into two categories : the passive and the active
forms. The former, in which decisions are nmede after the outcome
of the random variables in the problem becomes knownmay be of importance
in stregic planning where the decision maker may want to assess the
impact of a new production facility on the probability distribution
of his total revenue. Since the concern of this thesis is with

tactical or medium term planning problems, these models are only of



passing interest here. However, a brief description of them has been
included for the sake of completeness.

The active stochastic programs require decisions to be made
before the outcomes of some or all of the random variables in the
problem are known, and themselves divide into two types: the single
or two-period problems and the more general multi-stage problems. The
former are, of course, simpler and the theory behind them better
developed than for the latter. However production/inventory problems
are better modelled by multi-stage active programs, each stage
representing a unit of time, say a month or quarter, so it is these
that are of most interest here. A discussion of single and two stage
programs is given below in order to present a clearer picture of
the complexities that arise in their multi-stage generalisations, and
also because some of the techniques used to handle them can be extended
to the multi-period case. A review of the approaches that have been
adopted for the solution of active stochastic programs is given in

Section 3 and the chapter is concluded with a summary in Section 4.
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2. THE MODELS STUDIED
2.1. The Basic Structure of Stochastic Models

Nearly all stochastic models whose formulation has been motivated
by the need to tackle production planning problems divide naturally
into a finite number of discrete time periods. Key attributes of the
system being modelled are considered to be fixed during each period,
but may, of course, vary between time periods. The models are then
formulated in terms of these key attributes, some of which may be
random variables. It is assumed that the decision maker wishes to
maximise or minimise some function of these attributes subject to the
constraints imposed upon them by the system.

One of the most established classes of models used for determ-
inistic production planning is that of linear programs. These have
the merit of being straightforward to formulate and solution methods
for them are well-advanced. Developments of the simplex algorithm
have enabled computer programs to be written which solve very large
linear programs indeed. Thus linear programs have formed the natural
starting point for the development of stochastic models. The concern

of this chapter will be with these stochastic linear programs
"max" ¢ Tx over x subject to "Ax =b" (€8]

where b,c and x are column vectors and A is a matrix, and (A,b,c) are
random variables. There are two different interpretations to this

problem. In the passive approach the decision x is made after the
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random variables (A,b,c) are realised and the objective function
and constraints are well defined. In the active approach some or
all of the x's must be chosen before all the random variables are
realised and so both the objective function and the constraints have
to be more carefully specified. The former approach is discussed

first.

2.2. The Passive Approach

In this approach otherwise called the "wait and see" problem
by Madanasky [39] or "distribution" problem by Vajda [54 ], the
decisions x are taken after the random variables (A,b,c) are realised

in the program
max z =cTx over X subject to Ax =b. (2)

So it is desired to construct an optimal mep or decision rule from
the outcome space of the random variables to the decision space.

It can be shown theoretically (See Dempster [ 17]) that the
outcome space can be partitioned into a finite set of decision regions
such that the optimal decision, x°, is constant in each decision
region. Furthermore, each decision region can be identified with
a basis of (2) and the decision regions form a cellular structure
whose faces have Lebesgue measure zero.

Having found the set of decision regions and the optimal

decision rule
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x° a x°(A,b,c) (3)
the problem is then to compute the distribution function of
z =CT x°(A,b,c).

The characterisation of this distribution function in terms
of general random (A,b,c) has not yet been obtained, but special
cases in which A and c (dually A and b) are fixed have been studied.
For example, Bereanu [6 ] has treated the case where there is only
a single random variable in the problem and later extended his work
[ 7] to the case where A is stochastic but imposing restrictions
on the random variables.

In general, the alternative active approach is a more natural
one for the modelling of production planning problems and it is this

to which attention is now directed.

2.3. The Active Approach

In this approach, also known as the "here and now' approach, some
or all of the decision variables must be chosen before the outcome of
all the random variables in the problem is known. When the process is
explicitly periodic and the decision variables and random variables
pertain to individual time periods, it is common to make the decision
variables in each period a function of the random variables realised

up to (and perhaps including) that period.
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Care must be exercised over the definitions of the objective
function and constraints. The objective function is designed to
model the decision maker's preference about how the system should
behave. There are three such models commonly treated in the liter-
ature. These are
(@) E-models, in which it is assumed that the decision maker has
a neutral attitude towards risk and so wishes to maximise (minimise)
his expected profit (cost) ,

(b) P-models, in which it is assumed that the decision maker wishes
to maximise (minimise) the probability of his profit (cost) being
greater (less than) some target value, and

(c) V-models, in which it is assumed that the decision maker wishes

to minimise the total variability of his profit or cost.

See, for example Charnes and Cooper [ 9] for a further discussion
of such models with reference to chance constrained programming. The
majority of work published in this area deals with E-models. In
what follows reference will only be made to these. However, P and V
model analogues should be readily apparent.

There are two alternative interpretations of the constraints
Ax =b. They can be regarded as holding almost surely (a.s.) i.e.
with probability one, or with some prescribed high probability. The
latter approach is known as chance constrained programming.

The remainder of this sub-section will be devoted to one or two
stage models. Their generalisation to many stages leads to an even

greater variety of interpretations and is discussed in Section 2.4

below.



-15-

The two-stage model in which the constraints hold almost surely

is now addressed. Explicitly stated it is

Max E {cTx - min d"y} (5)
X

y
subject to Rx

AXx +By =b a.s. (6)

and x 20,y 20, a.s.

AB and R are matrices and b.c.d.r.x and y are vectors. Formally

this is called the two stage stochastic linear program with recourse.
The initial decision, x, must be made before the random variables
(A,B,b,c,d) are realised; the realised constraint discrepancy b - Ax
yields a loss by the second stage which is to choose a recourse decision

y to
Minimise dTy subject to By = b-Ax, y 2 0. (7)

The problem is considerably simplified if the recourse matrix, B,

is fixed and equal to (1,-1) where | is the identity matrix. Dempster
[17] refers to the problem thus obtained as that with simple recourse.
Beale [ 3 ] and Wets [58 ] refer to it as the complete problem.

The single stage chance constrained problem may be written

(8)
over x and subject to
P{Ax s b} 2 a (9)

and P(x*0y28B (10
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where Ab and c are random variables, a and 3 lie between 0 and 1,
and the decision x must be chosen before the random variables are
realised. There are a variety of ways in which the constraints may
be regarded. The two principal ones are

(@) Total chance constraints, where (9) may be written

P {(A&)i sb., Vil}ia (@h))
and

(b) Joint chance constraints where (9) may be written
P{(Ax)1 s bj} * cy Vi. (12)

Usually 6 is taken to be 1, so (10) holds almost surely, but Charnes
and Kirby [12 ] allow 3 to be less than one.

The study of such models for general random A,b, and ¢ is very
complex. Usually authors restrict their attention to the case where
only b is random. See, for example, Miller and Wagner [41 ] and
Charnes, Kirby and Raike [13 ]. However, Ishii, Shiode, Nitshida
and Iguchi [34 ] study a model in which one row of the technology
matrix is random.

Under certain conditions the two-stage stochastic linear program
with recourse is equivalent to the single stage chance constrained
problem. Gartska [23 ] reviews results dealing with this equivalence.

Just as the active approach provides a more natural setting for
the modelling of production planning problems, so multi-stage versions

of it are more appropriate than single or two stage programs. These

are summarised below.
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2.4. Multi-stage Versions of the Active Problem.

In multi-stage problems, the process being modelled divides
naturally into time periods. Each decision variable and random
variable can be associated with a particular time period. It will
be expedient to review those models in which the constraints hold
almost surely first. Four principal variants have received attention.

The most general is discussed first.

(a) The General Lower Triangular Model

Explicitly stated it is

Mx E T cnlxt (13)
t=0
t
subject to Il Vu=hb a-s*
u=0 for t = 0. T (14)
and xt* 0 a.s.

where the A”™'s are matrices, the bt's, ct's and xt‘s are vectors.
A;u, bt and c{ are random variables for all til, and are supposed
realised at period t. Let all the random variables realised in period
t be a function of a more general random variable Then the

decisions xt are restricted to be functions of
i,e. xt =x (a5)

When all the A”™'s are identically zero for us t-2 the

following problem is obtained



(b) The Staircase Model

Max E (16)
t=0
subject to AX =b
oo o]
Bop + AN =by as. a7

and xt a O.

Again, the t tir*stage decision is restricted to be a function
of the random variables realised up to and including that period.
The special case when only the b's are random has received attention

from Dantzig [15 ], Wets [57 ] and Birge [ 8].

(c) The Control Theoretic Formulation

This is a special case of the staircase problem in which only
the b's are random. |f the decision variables xt are partitioned
into (yl, ulJ)T where y. is a state variable and u. a control variable,

and if the system matrices At and Bt can be correspondingly partitioned

A

and Bt

and if the random vector bt is partitioned correspondingly into

(0,57)T then the constraints become
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Ft*t + GtUt =*t+|

and V t + Dtut s et

Gaalman [ 20] studies a special case of this where (18) 1s

*t+| =V t + Btut +Ct 5t <19)

and the process evolves over the infinite horizon. Using modern
control theoretic techniques and making assumptions about the
distribution of the random variables and stability of the process,
Gaalman derives the optimal decision rules ut as a function of the state
variable y”_j. However, the non-negativity constraints on ut and

yt have been dropped and his model cannot handle capacitated production/

inventory systems that are of interest here.
(d) The Multi-Stage Recourse Problem

This is a natural multi-stage generalisation of the two-stage

stochastic program with recourse. Dempster [ 17] writes it as

Mex {E | ‘A -min d?y } (20)
X t=i y
subject to
AL X1 =Py
AL XL -» 1 =bas. (21)
= bt a.s

and i 0 a.s.
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In general Atu> Bt> ttf and ct are random for til. If these
t th stage random variables are regarded as functions of a more general
random variable, ?t, then the decisions xt are restricted to be
functions of ~and the recourse decisions yt are restricted
to be functions of

It can be shown that the multi-stage general triangular problem
(a) is equivalent to the multi-stage recourse problem (d), for each
can be regarded as a special case of the other.

To see this let the superscript a or d denote an attribute
pertaining to problem (a) or (d) respectively. Then to show that
problem (a) is a special case of problem (d) set yd =xd+l and

xt “ xt+I* Then xt is a function and furthermore »
Aat is defined to be -Bd and Aau to be Adu-1 then

k - V ad yd Rd vd
bt " * Atu "u “ Bt xt
= |

u*

Also defining to be cd+l - dd for 1 st js T-I, ca to be C'i and

cd and ca to be -dd it is seen that

Max E I cd xd-min dd yd=MxE £ o® x*

xd  t-i yd xa =0

To show that problem (d) is a special case of problem (a),

partition xt according to
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and corresponding partition c“:

c?z n ») for 1st <T-I
a _ and c.
co =
-d:
it is seen that x“ is a function of ™ ...... 1 and
T J . T T . J .
Mx E Jclx? =Mx E{ 7 ¢c? xi. - mnd y"}
hoiad t-0 *d fl ,d

Also if A is correspondingly partitioned into (A”u+l1»0) for

0Os us t-I and (0,-Bb) for u =1t, then

bt I At <
u=0

b d d nd d

Il \u *u - BtV
u=1

so problem (d) is a special case of problem (a) and therefore the

problems are equivalent.



Hence the staircase problem (b) and the control theoretic
problem (c) can be regarded as special cases of the multi-stage

recourse problem (d).

(e) Multi-stage Chance Constrained Problems

The single stage chance-constrained problem generalises easily
to the multi-stage case, although there is a greater variety of
possible interpretations of the constraints. As in the multi-stage
recourse problem the technology matrix has a lower triangular block
structure. In general terms the model may be stated

T T
Max E 1 ctx[ (21)

t=1

over x and subject to

PLMIXI 5 bk *al
P{AIX1+A22x2< 12) * a2

t
Pi I Atuxu 5 bt} 2°t (22)

uU=1
and (P xt 20} 2 (23)

the Atu's are matrices, the bt's, ct's and xt's are vectors and
AN b}(( and ¢, are in Sgeneral random variables for til. If
tu t

Atu’ bt and Ct are re9arclecl as bein9 functions of a more general

t th stage random variable, Et> then the decisions xft are restricted
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to be functions of Most authors restrict their attention
to the case of fixed technology matrices Atu when in certain cases
the problem is equivalent to the multi-stage recourse problem (d),
Gartska [23 ]. The further restriction that the matrices At should
all be of dimension (1 x I) is also made in most of the literature.
The different ways in which the probability of the constraints (22)
and (23) can be interpreted needs further discussion.

If the probabilities in (22) and (23) are computed using the
joint distribution of all the random variables in the problem then
Charnes and Kirby [11] term the problem one of "total chance
constraints”. It was this approach that Charnes, Cooper and Symonds
[10 1 used in their original formulation of a chance-constrained
problem to model the production of heating oil.

If the probabilities in (22) and (23) are computed using the
distribution of conditional on the realised values of ~,...,5 1
then the problem is termed one of "conditional chance constraints”
by Charnes and Kihby  [11 ].

Eisner, Kaplan and Soden [18] also considered another inter-
pretation which they called the "conditional-go" approach. At stage
t the u th stage constraint (where u > t) is regarded as not actually
being revealed until the u th stage. So the probabilities in (22)
are computed with the marginal distribution of given j

i.e. the u th stage constraint becomes
u

PI I AM#GI. .. S5.11sbulEl ... (24>
V=1

where t < u.

Other variants of the problem arise out of different choices of

admissible decision rules. This is discussed in Section 3 on solution

methods below.



3. METHODS OF SOLUTION

In this section some solution techniques that have been proposed
for the stochastic programs presented above will be briefly discussed.
Since production planning problems are more naturally modelled by the
active or "here and now' stochastic programs than the "passive" or
"wait and see" variety it is the solution of the former which is of
interest here; lines of attack on the latter have already been briefly
mentioned.

The two or single-stage active stochastic programs are easier
to solve than their multi-stage counterparts. Exact computationally
effective methods of solution have been devised for the former, but
not for the latter when there are many constraints per stage, and
these are necessary for the explicit modelling of many commodities.
The only effective approximate method that has been proposed is that
of Beale, Forrest and Taylor [ 4 ] which solves a simple production/

inventory model.

3.1. Two Stage Stochastic Programs with Recourse

As with the other stochastic programs, solution of the general
case of (5) and (6) in which A,B,b,c and d are all random is very
difficult both theoretically and computationally. Attention has usually
been restricted to the special case in which only b is random, although
Evers[19 ] tackles a random A matrix by Monte Carlo methods and
El-Agizy [ 1 ] has shown that if c is random then it can without loss of
generality be replaced by its expected value and the correlation between

its components ignored.
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Dantzig [15 ] tackled the problem with simple recourse 1n which
only b is random. He showed that the stochastic program is equivalent
to the deterministic program

| (x-b)dE(b) +d'T [ (b-x)dF(b)}
'bsx 'bzx

subject to

Rx
AX +y+-y" =D
X,y+,¥' 20 .

Here the recourse matrix B has been partitioned into (1,-1) and the

vectors d and y have been correspondingly partitioned into
(™~-) and (™-) respectively, and

F is the distribution function of b. This program can be shown to be
convex if (d++d') z O.

Solutions to the above program can be approximated by assuming
a discrete distribution for the random vector b, in which case a different
recourse decision, y, must be associated with each point of the discrete
distribution. Dantzig and Madanasky [16 ] adopt this approach and use
decomposition methods to exploit the program's structure. Strazicky
[52 ] takes this approach further by using basis decomposition and reports
some numerical results.

Wets [60 ] has investigated the derivation of deterministic
equivalents for problems with general fixed recourse.

Other approaches have been proposed by, for example, Van Slyke

and Wets [ 51] who use gradient methods and Garkska and Rutenberg [24 ]

who use lattice points.
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Of most interest in modelling stochastic production planning
problems are multi-period models. It 1s to the solution of these that

attention is now directed.

3.2. Multi-Stage Stochastic Programs with Almost Sure Constraints
These are stochastic programs in which the constraints hold
almost surely (i.e. with probability one). As with the two-stage case,
the solution of the general multi-stage recourse problem is very
difficult, although Wets [59 ] shows theoretically that any solution
algorithm for the two stage case can be extended to the multi-stage
case.
Dantzig [15 ] was the first to study the special case of programs
with staircase structure in which only the right hand side vector, b,
is random. Again he suggested discretizing the distribution of b to
derive an equivalent deterministic program. Birge [ 8 ] does the same
and extends Dantzig's methods of exploiting the structure to the problem
thus generated by using large scale decomposition, partitioning and
basis factorization. He presents a number of ways of doing this one
of which uses the interesting result due to Wets [57] that the stair-
case problem thus discretized is equivalent to a deterministic convex
program of the form

Max cTx + Q(X)
X

subject to Ax 3 b
x eD

where Q is a concave function and D is a convex polyhedron.
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Birge [8 ] goes on to show that his techniques are really
methods of dynamic programming, differing only 1n the way in which

decisions are approximated as functions of the state variables.

3.3. Chance Constrained Problems

In discussing solution methods for these, the general multi-stage
chance constrained problem will be addressed. Apart from Ishii et al.
[34 ] who only deal with a single stage model, solution methods have
only been proposed for the case in which the technology matrices are
fixed, i.e. just b and c are random. As in the models in which the
constraints hold almost surely, solution techniques proceed by the
derivation of an equivalent deterministic program. The ease with which
these deterministic programs can be solved depends upon their convexity
properties. The work of Prekopa [43 ], [44 ] and [45 ] on logarithmically
concave measures has shed much light on this.

Usually authors restrict their attention to searching for optimal
first order decision rules in which the decision xt mede at stage t
is restricted to be a linear function of the random variables already
realised, ... bf 1’ ct-1* Charnes* Cooper and Symonds [ 10] adopted
this technique in modelling the production of heating oil. The model
which they studied had total chance-constraints and only the b's were
random. Moreover, there was only one constraint per stage in their
model. They were able to calculate the optimal linear decision rules by
dynamic programming starting at the time horizon and working backwards.

In fact, piecewise linear decision rules are optimal for such a problem



as was shown by Charnes and Kirby [11 ], even when there 1s more than
one constraint per stage. Kortonek and Soden [36 ] give another proof
of this result and also consider the case where the cost vector ¢ 1s
random. Later, Charnes and Kirby [12 ] proved that piecewise linear
rules are optimal under conditional chance constraints, although there
they restricted their attention to only one constraint per stage. This
enabled them to derive computationally efficient solution techniques,
involving in some instances a series of simple one variable non-linear
optimisation problems.
This completes the discussion of solution techniques for the

stochastic models described in Section 2.
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4. CONCLUSIONS

In this chapter 1t has been proposed that production/inventory
problems be modelled by stochastic programs. A review has been provided
of those most frequently studied in the literature and the lines of
approach that have been suggested for their solution. The stochastic
programs divide into two classes, the passive and the active. The
active ones then divide into separate classes according to whether the
constraints hold only with some prescribed high probability (chance
constrained programs) or almost surely (l.e. with probability one),
and according to whether one, two or many time periods or stages are
modelled. Further details may be found in Sengupta and Tintner [48 ]
who review stochastic linear programming and Kirby [ 35] who surveys
chance constrained programming.

The most useful class of stochastic programs from the point of
view of medium term production planning is that of multi-stage active
programs in which the constraints hold almost surely. Unfortunately
in general this 1s the hardest class to solve. Approaches to the solution
generally involve the discretization of the random variables involved
and the use of advanced large scale programming techniques to take
advantage of the structure of the problem thus generated. These can be
shown to be equivalent to dynamic programming techniques, the other
candidate for handling multi-stage active stochastic programs. These
methods are unsuitable for tackling multi-commodity problems because
of their computational complexity. See Chapter 4 for a discussion of

dynamic programming techniques, their merits and limitations.



In view of the difficulty of solving multi-stage active problems
exactly even if the random variables are assumed to be discrete,
approximate techniques deserve serious consideration. A promising
method is that of Beale, Forrest and Taylor [4 ] who study a simple
multi-commodity production/inventory model which has an upper bound
on the total production in any period. Their approach has provided
one of the foundations of the research described in this thesis,
notably the development of a more general production/inventory model
which is described in Chapter 5 and an approximate solution technique
described in Chapter 6. Accordingly an exposition of their work is

appropriate. This is given in the next chapter.



CHAPTER 3

AN EXPOSITION OF "MULTI-TIME PERIOD STOCHASTIC SCHEDULING"

BY BEALE FORREST AND TAYLOR.
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1. INTRODUCTION

Beale, Forrest and Taylor [4] aim to provide a suite of computer
programs that would enable production planners to obtain good reliable
medium term production strategies in the face of uncertainty in the
demand for their products. The authors do this by studying a simple
stochastic multi-product production/inventory model and proposing a
computationally tractable approximate solution technique. This technique
is numerically feasible in the sense that the size of problem that can
be reasonably tackled (measured by the number of product lines that
can be treated individually) is of the same order as the size of
problem that could be handled if the demand requirements were known
with certainty.

Their paper has provided much of the Impetus for the research
described in Part Il and so an exposition of their work together with
a discussion of its merits and limitations is appropriate here. In
an effort to overcome the limitations inherent in their technique, a
much more general production/inventory model was formulated in Chapter
5 and studied in Chapter 6.

The production/inventory model which they study is given in Section
2. They approximate it by a non-linear program and the method by which
they do this is described in Section 3. Some coefficients in it are,
however, still unknown. They estimate these iteratively by a process
described in Section 4. The chapter ends with a brief summary and

conclusions in Section 5.
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2. THE PRODUCTION/INVENTORY MODEL

Production, sales and inventory levels are to be planned for each
of T time periods. Demand requirements for each time period are
characterised by probability distributions. Production rates are con-
sidered to be fixed during each time period but may vary between time
periods. At the start of any time period production levels are decided.
During that period the demand is realised and at the end of it sales
are made and stock levels become apparent. All the costs are considered
to be linear in the production decisions made at the start of, sales 1n,
and stock levels realised at the end of.each time period. There is an
upper bound on the total production in each period. It is assumed that
the decision maker has a neutral attitude towards risk and so desires
to maximise his total expected profit.

Let the column vectors pt, at> st and dt denote the production in,
sales in, stock at the end of, and demand in time period t. Identify
the i th component of each vector with the i th product.

Let Cpt, Pt and CSt be column vectors of unit production costs,
sale prices and stockholding costs. Let TCApt be the maximum total
production permitted 1n each period and let 1 be a vector of I's.

Then the model which Beale, Forrest and Taylor study may be

explicitly stated:

Maximise E j pt at " CPt pt " (1)
t-1

over at, pt and st subject to
(2)

(3)
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t-i+pratst” 0 and (4)
at,pt and SjiO
for t m1, 2 t * Ols the Initial or starting state so sQ for

example, are the Initial stocks and are thus part of the model's
Input data.

Notice that all that is actually required from a solution to the
above model 1s the first time period production decisions. In sub-
sequent periods the model would be re-run with new starting stocks
and more accurate data.

The authors propose that the standard deviation of each component
of the demand in each time period should be directly proportional to
its mean, which in turn is a linear function of the sales in the
previous time period.

If vt 1s a vector pertaining to the tth time period, let vit be

its i th component. Then explicitly stated their demand model is

dit * dvit”l + Clt nt + R1t elt) (6)
dM1t* Blot + E Bijt ajt-I (7)
j
where nt and are independent real Gaussian random variables, and

Biot’ 8ijt* Cit Rit are known ™ xed constants. The term nt is intended

to model the global variability of all products in each time period
and is intended to model the variability in demand between individual

products in each time period.
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Notice that apart from the initial production levels p” all
the variables in the model are actually random variables. This is
because decisions made 1n future time periods are allowed to be
functions of the demand realised up to that period.

The authors claim that although their model is simple, it can
easily be extended by the addition of extra constraints to cover
the more complicated problems that are likely to be met in practice,
without altering its fundamental structure and approximate solution
algorithm. This is only partly true. The production constraint (2)
can be replaced by a more realistic set of technological constraints
without altering their solution procedure. But their model cannot
accommodate bounds on storage capacities or the cost of changes in
production level. Neither can a more comprehensive demand model, for
example one in which the mean demand is modelled as a linear function
of a moving average of past sales, be used with their solution

procedure.
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3. THE FORMULATION OF A NON-LINEAR PROGRAM

The authors identify the crucial quantity of Interest in their
model to be the excess of supply over demand, and they are particularly
interested in its variability. They call the excess of supply over

demand in the t th time period e” where it is defined by

8

2
and let the variance of its 1 th component be o”. The constraint (3)
can then be replaced by a constraint which restricts sales to be less

than both the stock available for sale and demand
i-e- at s min (s”™ + Pt.dt)
which can be equivalently written

9)

at * st-1 +pt * max (et’°)’
Substitution for dt given by (6) and (7) in (8) shows that the i th

component of et is

j
The authors now take expected values in the problem defined by

rows (1), (2), (4), (9) and (10) to yield the problem

Maximise I PtT5t + CptT pt + C$t $t (12)
t=I

over at, pt, and jt subject to
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S TCAPt (13)
5t - 5t-1 - Pt “« pt (14)
at - - pt+E{max(et,0)) = © (15)
st+l + Pt " at ’ st =0 and (16)
at’ st* Pt 0 (17)

for t m1,2,....T.

The initial production decision, plt has been treated for con-
venience as a random variable equal to its expected value with prob-
ability one. at,pt,it and et denote the expected values of at, pt> st
and et respectively. bt is a vector whose 1 th component is B-ot and

Bt is a matrix whose (1,j)th component is
Thus the original problem has been approximated by one which
would be a deterministic linear program except for the term
E{max(et,0)} (18)

They tackle this by supposing that eit can be treated as though it
has a normal distribution N(eit,c”~t), whence the i th component of

(18) is

°1t fl(ilt/01lt) {19)
where f1l is a function: F %»F defined by

fAx) mE  (2+x)d*(0 .

$ being the Gaussian distribution function. Thus fj(x) is the mean of a

random variable whose distribution is that of a Gaussian random variable
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with mode x but truncated at zero such that the probability of its
being non-positive is concentrated 1n a point mass at zero.

If the o's were known, (19) could be substituted into (15) to
yield a deterministic non-linear program. However, the a's are not
known and have to be estimated. They derive a recursive procedure
for this which is described below.

Moreover, they assume that is directly proportional to the

i th component of the mean demand so they could set

ait =T1t ait

for some constant Tit. But this would lead to paradoxical consequences.
If it is not desired to sell a particular product, say the k th, then
skt 1 + pkt must be POSIt Ve order to satisfy (15) and (19).
The cause of this paradox is the assumption that the demand is normally
distributed so there is always a positive probability that it will be

negative. The authors avoid this by instead setting

°1t ET1t ait and {20)

xit"° 1 t/dMit (21)

where oit denotes an estimate of alt. Thus they enable safety stocks
to be reduced considerably if it is not desired to meet demand in
full. However, this changes the structure of the problem. For if
it is not desired to meet demand in full and a~d”~” is small, then
the variability in the problem represented by oit is treated as being

greatly reduced, whereas it should not be.
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Substltuting for E{max(et,0)} by (19) and (20) the 1 th

component of constraint (15) can be written

ait"slt-1"Pit + Tltaitfl(eit/(Titait™ * O n

The problem defined by (12), (13), (14), (22), (16) and (17) is
the non-linear program which they solve by the introduction of
separable variables to derive good first time period production
decisions. Their procedure for estimating and hence Tn is an
iterative one. t is initially set to its minimum value (i.e. the
value obtained by ignoring the stochastic variability in everything

except demand), which is

/(C~ +RA) (23)

and then re-estimated. The procedure by which they do this deserves

further discussion which is given below.



4. RE-ESTIMATION OF THE STOCHASTIC VARIABILITY

In this section the method whereby the authors re-estimate
Tit briefly described. They implicitly assume, but do not
explicitly state that, at any stage the state of the production/
inventory process which they model can be characterised by a

state vector £t, which they define by

«1 - («I» *?> (24)

So at the end of time period t, given the input data, the process is

completely described by the stock levels, st and sales just made, a™
Therefore, the production decision mede at the start of time

period t will be a function of the previous time period state vector
Beale et al. assume that this function can be approximated

by a linear one:

(25)

where p° is a constant vector and A~ and a|, are constant matrices.
Only A~ and A~ need be estimated and the way 1n which they do
this is described below.

is, of course, simply the i th diagonal entry of the dispersion
matrix of the excess of supply over demand, et, and is SO
the authors desire to estimate the dispersion matrix of et. This they
do by using the above approximation to derive an expression for it in
terms of the dispersion matrices of the previous time period state vector,

£t_~, and demand d™



They then seek to derive an expression for the dispersion matrix
of In terms of those of ~t_1 and dfc But to facilitate tlielr

analysis they make one further approximation. They approximate

sit " (elf wil) (26)

where wit are the slacks associated with (15) by

slt " SCit + SVit elt i27)

Hence Scit and Svit are constants, the latter being defined by

SV1t “ f27eit"witNe1tn

f2 being a function: K #F + such that
[F20)]2 =*(x) + [1-1()]* (x)x2-[I-2*(x)]*(x)-[<Mx)] 2

where $, * are the Gaussian probability density function and distri-
bution function respectively. It 1s not necessary to estimate S .

The merit of this value of Syit is that If et were normally
distributed then sit given by (26) has the same variance as if It were
given by (27). Unfortunately this does not preserve the covariances
between the sit,c for given t. So the variance of the total number of
items in stock 1ls not preserved either.

So, having made the two approximations above, an expression for
x.JE in terms of the dispersion matrices of the previous time period
state vector, ™t |, and demand,dt>Is derived as Is an expression for

the dispersion matrix of in terms of those of and d™



Regarding the dispersion matrix of the initial position on the state
space to be Identically zero they can then proceed forwards recursively
estimating the ¢t 's.

However, the procedure is limited by the need to estimate the
expected value of the et's and the matrices of linear coefficients
of the production approximation (25). They can do the latter estimation
only by an analysis of the final tableau to the solution of their non-
linear program and then only for the first production decision 1n terms
of the initial stocks and sales (i.e. sales in the time period immediately
preceeding the first). They suggest the following way around this
problem.

They first solve the non-linear program with minimal estimates of
the tit's, namely those given by (23). This generates approximate
values for at, st»Pt and et. Then starting at the beginning of the
last time period from a position given by sT 1 and a™ ” they run their
variance estimation procedure for the last time period only and re-solve
the non-linear program, again for the last time period only. This
generates a new value for e and enables the coefficient matrices

and AN to be estimated. Their recursive variance estimation
procedure can then be run forwards from the start of time period T-I
to the end of time period T, assuming the dispersion matrix of to
be identically zero, and the t”™ 's re-evaluated. With these new values
of the non linear program is re-run for the last two time periods
only .starting at jT 2 and jT_2> This enables Apj and A~ j to be
estimated and the recursive t estimation procedure run forwards for
the last three time periods, and so on, until finally the non linear

program is re-solved for all the time periods in the model.
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5. CONCLUSIONS

The paper by Beale, Forrest and Taylor presents a radical new
way in which to handle a multi-commodity stochastic production/inventory
problem by approximate techniques. Since their work provided a basis
for the development of a more general stochastic model and approximate
solution procedure in Chapters 5 and 6 an exposition of it has been
presented here. This chapter has provided a summary and discussion
of their work which explains the crucial steps that they took without
detailing the technical calculations. Essentially,they derive a
deterministic non-linear program from the original stochastic problem
involving only the expected values of the random variables, but without
ignoring their variability. This is considered to be encapsulated in
a random variable representing the excess of supply over demand.
Estimation of the variability of this random variable is done iteratively
by solving a sequence of non-linear programs. The first is solved with
minimal estimates of its variability. This provides the first approximate
solution, which the authors term their "first pass"”, and it enables
their procedure which estimates the variability of supply over demand
to be run over the last time period and a non-linear program modelling
the last time period only to be formulated and solved. This provides
information about the process enabling better estimates of the variability
of supply over demand in the last time period to be made. These revised
estimates are used in the formulation of a non-linear program modelling
the last two time periods, and so on until a non-linear program modelling
all the time periods in the model is solved again. This the authors term

their "full method".



They test their approach on four simple examples. The first
two are sufficiently simple to allow a dynamic programming solution
to be obtained. This they do by restricting the demand distribution
to discrete values. They demonstrate that the solution thus obtained
agrees well with that yielded by their approximate methods. They also
used the examples to demonstrate the sensitivity of the initial
production decisions to the valuation of the closing inventory.

Their method has been further tested statistically along with
other algorithms by replicative simulation. To obtain sufficient
accuracy by this method for a reasonable size of experiment control
statistics were used. The theory behind them is developed in Chapters
7 and 8, and the results of the experiment are given in Chapter 9.
These results show that their method performs well in practice for
the simple examples and yields an expected revenue very close to that
given by uie dynamic programing solution. There was little difference
in the performance of their "first pass" and "full" methods, but the
examples had only four time periods in order to keep the computer time
requirements of the simulation experiments reasonable. |f there were
more time periods in the model, their "full" method would out-perform
their "first pass" method. However, from the similarity between the
expected revenues accrued from using algorithms giving slightly different
production decisions and the dynamic programming method it may be inferred
that first order deviations from the optimal production rates produce
only second order changes to the objective function. This shows that
answers to stochastic problems obtained by approximate methods may be

reliable in practice.



CHAPTER 4

DYNAMIC PROGRAVMING APPROACHES TO PRODUCTION

PLANNING
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1. INTRODUCTION

1.1. The Structure of Production Planning Models.

Production planning or smoothing problems are generally tackled
by formulating a mathematical model of the production and commercial
environment. This has been discussed in Chapter 2, but the essential
points are worth reiterating here.

The production environment is usually modelled over some fixed
time interval, perhaps a year, which is subdivided into time periods
of, say, a month or quarter. Key attributes of the production/inventory/
workforce system, for example, production levels, sales and stocks are
then considered to change from one time period to the next and variation
within each time period is ignored. The model is then manipulated and
"solved" so as to provide the best initial decisions (for example,
first time period production levels), which optimise some attribute
of interest, for example, expected profit.

The attention of this chapter is primarily directed towards
dynamic programming solutions to models in which the stochastic elements
are important i.e. those models which directly involve uncertainty in
some future attributes of the process. In this case attention is
restricted to the maximisation of expected profit. Minimisation of
expected loss or cost can be handled in exactly the same way: just

consider maximising minus the expected cost.



1.2. The Basic Elements of Dynamic Prograimring

The form of dynamic programming applied here will be that
relevant to finite time horizon models as opposed to "steady state"
models where discounted expected profit or average expected profit
per time period is maximised over an infinite horizon. The optimisation
problem is subdivided into subproblems pertaining to each time period.
Each subproblem is concerned with the maximisation of expected
revenue from the time period in question to the time horizon. The
optimisation must be performed for each possible state of the system
at the start of the time period, and the subproblems are solved back-
wards in the sense that the first subproblem is that of maximising the
expected last time period profit, the second subproblem is that of
maximising the expected profit in the last two time periods and so
on, until the last subproblem which is that of maximising the total
expected profit accrued in all time periods. At each stage use is
made of the results of the previous stage. The optimisation in the
final subproblem is, of course, only performed for the initial state
of the system. This provides the optimal solution to such models where

decisions have to be implemented over time.

1.3. Advantages and Disadvantages of Dynamic Programming

Although dynamic programming techniques theoretically provide
reliably optimal solutions, computationally they suffer from the "curse
of dimensionality”. This is now explained. The state of the system at

the start of any time period is knom as the state space. This is usually
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characterised by an m-dimensional vector, l.e. a point in Fm (m-
dimenslonal Euclidean space). The optimisation for each subproblem
(except the last) must be performed for each possible value of the
state variable at the start of the first time period of the subproblem.
In practice, in dynamic programming approaches, the domain of possible
state variable values is covered by a grid and optimisation performed
for each vertex of the grid. |If Ngrid points are taken for each

state space dimension then the subproblem involves some Nmoptimisations.
Thus the computational complexity of the dynamic programming approach
explodes exponentially with the number of state space dimensions. This
is a severe limitation of the method which usually restricts its
application to models with four or less state space dimensions. An
approximate approach, which is feasible if the number of state space
dimensions is small, is to assume some parameterized functional form
for the meximum expected future revenue as a function of the present
state variable value and to perform the optimisation over the parameters
of the function.

Thus dynamic programming is unable to handle the general multi-
commodity production smoothing problem. Multiple commodities must be
aggregated to be amenable to this approach. However if the number of
state space dimensions is small, dynamic programming may be efficient.
When the state space has only one dimension it may, indeed, be more
efficient than any other method. Moreover its computational complexity
expands only linearly with the number of time periods in the model. This
compares favourably with other approaches, for example, linear programming,
where the computational complexity would expand approximately as the cube

of the number of time periods.



1.4. The Contents of the Chapter

The principle of dynamic programming is treated more formally
in Section 2, first in a fairly general way and then applied to a
simple production/inventory model. This model 1s tackled 1n detail
in Section 3, where it is restricted to one state space dimension and
an efficient algorithm for its solution is derived. In Section 4 the
multi-dimensional version is discussed together with the difficulties
that it presents. The chapter ends with a discussion of the outcome

of this investigation into dynamic programming techniques.



-48-

2. THE DYNAMC PROGRAVMNG APPROACH

2.1. A General Formulation

Suppose that the production/inventory system is modelled as a
Markov process. Characterize the state of the system or state variable
at the end of time period t by the random vector g~ At the start of
the t th time period suppose that controls xt are applied and random
input yt realised. In applications the state variable might represent
stock levels, the controls:production targets and the random input:
demand.

Suppose that the revenue accrued in the t th time period, VA is

some prescribed function of qt |, xt and y

i,e. Mi v (gM ,xt,yt)

Suppose also that the state space evolves from its value at the
end of time period t-1 to that at the end of time period t according to

some prescribed function of and yt

le. qt - xt, yt).

Then the dynamic programming approach involves the solution of
the following problem, Ft(qt_1), for each possible value of qt-1 and

for t =T, T-1,...,1,7T being the time horizon.

Problem Pf(gqt_i) "
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Defining V =0,

subject to gt =ft(qt-1. xt,yt)

ad VVVI|**

where St(qt | ) is the set of permissible controls at the start of time
period t and Vt(qt_ i s the maximum expected revenue accrued in time
periods t to T inclusive, given that the state space at the start of
time period t is qt_j. This provides the optimal solution to such
problems where the decision xt must be made at the start of time period
t. See Bellman [ 5],

If yt has distribution function then the above problem

might more usefully be written as:
Problem Pt(qt-1)

Find vt(qt 1) =Mx JtV~A g™ .x”) + Vi+l(ft(gqt. 1,xt,5))>dFt(0
xt

subject to xt € st™qt-In

In practice a grid of possible values of qt_j,
{gj."j ; i =1,2,...,1} must be constructed and | problems,
P(@ (J=), i =1,2,...,1 solved at each stage. Thus at the (t+1) th
stage values Vt+1l(q[”) are found and at the following t th stage the

function Vt+1(qt) must be approximated by interpolation between the

points Vt+*(qt”™ ).



-50-

However, this approximation may be considerably refined in
the case of the single state space dimension restriction of the

simple model discussed next. This is done in Section 3.

2.2. A Simple Model

The simple model outlined in this section is of a type dis-
cussed by Beale et al. [4 ], and as far as possible their notation
will be used. It is a simple production/inventory model in which
demand is uncertain and in which there is a simple upper bound on
the total production in any time period.

Let the vectors pt>at,st and dt represent production in,
sales in, stock at the end of, and demand in period t respectively.
Let the i th component of these vectors be that pertaining to the i th
product type. e.g. let p-t be the i th component of pt, the production
of item i in time period t.

Let the vectors Pt> Cpt and Cst denote the unit selling price,
production cost and inventory holding cost in time period t.

The object of the analysis is, then, to maximise the expected
total revenue, V, from the first time period until the time horizon at

the end of the t th time period:

T t T T
Maximise V=E 1 (P| at ” Cp Pt " c$t st
over P jfP j t=I
T *
subject to: | pt s Pt
st-i & -\ -1t m0

s. - max(st_1 + pt-dt,0) » O,
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where all vectors are by default column vectors, T denotes the
transpose of a vector, lisa column vector of I's, and p* is the
meximum allowable total production in time period t.

The demand, dt, is modelled in the following manner:
dt =Bt(l * $tet)

where, again, 1 is a vector of 1's and is a multivariate normal

random vector with distribution function Ft and with independently

distributed components. Bt and are known, fixed system matrices.
This problem can be decomposed into smaller dynamic programming

subproblems in the manner described in the next subsection.

2.3. Dynamic Programming Applied to the Simple Model

In order to apply dynamic programming to the simple model, the
model is considered to be Markov. Its state variable at the end of the
t th time period is the stock level vector st.

Denote the maximum expected revenue acquired from time periods
t to T inclusive, given that the stock level at the start of the t th

time period is s™ by

Wi>-

Then the objective function of the t th time period subproblem

Using the materials balance equation
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st-1 +Pt ' at - St " O

to eliminate the sales variable, at, the t th time period subproblem,
Pt(st j) is more usefully written as follows.

Find
* i st- | +tad(pi * ot)pt-<pi +cst>Essti st-I>+Eut+H (st>Ist- 131

where the maximisation is performed over pt for each st ~and is subject

to

1A
o}

and st - max(st_1l+pt-dt.O)

1
°

where

1l
°

dt‘Bt (I + Stet)

Again, in practice a suitable grid of points for st ” on which
to find Vt(st j) must be devised, as must an interpolation procedure to
approximate from it Vt as a function of st This is easily done in
the case where st " has only one dimension and an efficient solution

algorithm can be devised. This is discussed in the next section.



3. THE CASE OF A SINGLE DIMENSIONAL STATE SPACE
3.1. The Simplification Made

As has already been mentioned, a model with only one state
space dimension offers considerable scope for computational tractability
and efficiency. There has been some interest shown in reducing the
dimension of the state space in models with a multiple dimensional state
space in order to achieve computational feasibility. Dallenbach [14 ]
ingeniously partitions the state space of a manpower/production planning
model in order to achieve one effective state space dimension. Thomas
[53 ] adopts a similar approach to a price/production planning model.

In general, however, the scope for these tricks is limited, and attention
should be more properly directed to the problem of product aggregation
and disaggregation. Gaalman [21 ] provides optimal aggregation/dis-
aggregation rules for the now classical HW?5 model of Holt, Modigliani,
Muth and Simon [33], but otherwise there is little attention paid to
the problem in the literature.

The remainder of this section will be devoted to the derivation
of an efficient algorithm for the solution of the single product version
of the simple model discussed in section 2. Some attention will, however,
be paid to ways in which it might be extended to cope with more general

problem constraints.

3.2. Derivation of the t th Time Period Optimisation Subproblem.

In the one-product case the stock at the end of the t th time

period depends on that at the end of the preceding period according to
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st =mex i(st-1 + pt ' Bt> "' BtStet’'0}

where et is a Gaussian random variable. For convenience set

rt =st-1 +pt * Bt
and ot “ Btst
Then st ={max rt - 0,0}
and E(stls”™j) =rtFt(rt/ot) - OtGt(rt/ot),

fx
where Gt(x) = SdFJO*

Therefore the objective function of the t th time period sub-

problem, Pt(st_may be written

vt(st-i) =PtBt + Max {gt(rt) - Optpt + E(Vt+i(st)Is™ )}
R

where rt 3 st_j +Pt " Bt
and gt(rt) = - (Pt + CSt){rtFt(rt/ot) -OtGt(rt/at)}.
It is now necessary to evaluate E(Vt+ (s”™)Ist_1).

Suppose that values for {st> Vt+1(st)} are known only at discrete

points: {(st)\ (Vt+1)1: 1=0,1...... 1} where 0 = (st)° < (st)l < (st)1+l
for i =

Set

ai = [(M+D)i+l - (Vi+l)i]/[(st)1+-(st)1].
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Then Vt+1(st) may be approximated by a piecewise linear function of
st

i.e. Vt+l(st) = (Vt+1)1 + aj[st - (st)1]

for (st)i s st < (st)i+1.

Let ?2J(rt) =[rt - (st)i]/ot<

Then it is seen that

v ™ @)1 = o MH(TOS)ARE) + [ MHO)XRU)
rt/at
1-1
m | VvV rto
1-0
where for i 2 1, T™(r”) is defined by
w ] 1 ot(i{ - i) dFtU)

I(Vt+1)1* 4 at 4 KFt(i{) - Ft(4 +1))

14 t@@>1vtfl»

and TO(rt) = (Vt+1)° (1 - FtU?)>.
It is now convenient to define the function f : IR-R by
1-1

ft(x) - gt(x +Bt) + PtBt + J Tt(x + Bt)

whence the t th time period subproblem Ft(st_j) can now be written :
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Find for each st 1

vV j) m"* <V*t) -V  pt>

where the maximisation is over pt and is subject to

° s pts p*

and xt-pt =st_r

3.3. The Form of the Solution to the Subproblem Pt

There are several possible approaches to the solution of the
t th time period subproblem Pt given above. The most flexible, in the
sense of being able to cope with variants of the production or techno-
logical constraint, is to take a piecewise linear approximation to
over a fixed grid and do the maximisation by parametric linear program-
ming, varying the element st j on the right hand side. This would then
generate a new set of points {(s”™_j)"™, (VY1> these being the values
of the right hand side and objective function when the basis changes.
However, before performing the parametric programming it is more elegant
to directly approximate the demand distribution with a discrete one
rather than approximate f~ piecewise linearly over a fixed grid.

There is, however, a more efficient method of solution to Pt
if flexibility in the sense discussed above is unimportant.

Consider the problem Pt (st_1) above. Clearly the maximising

Pt is a function of st_j. Denote it by p° (st_j). Then if

0 < ptnst-IN < Pt
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the problem is equivalent to one of unconstrained optimisation and

fthst-1 + pt™ * CPt = where f'(x) = df/dx-

o
Define st-1 to be that value of st_1 at which fE(st ~ - Cpt =0 or
infinity if f~s~) - Cpt >0 for all st_1 >0 or zero if fj.(st )

Cpt <O for all st_1 >0.

It follows that

W |> = 'ft(st-1 +9\) - Optp* if stml s s)j - p*

FIASE-IA © OPASL-1"SE-1) If st-l ' pt St-1 * st-l
ftast-* sy > 5

So agraph of \r against st_1 looks like

It remains to find f£ explicitly. Now
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Il
ft(x) * 9t(x-Bt) + PtBt + £ Ti(x-Bt), s0
fM Bt N‘ T Bf
] - + -
tX) gt{(x 1) 1=0 i(x 1)
But gt(y) = - (Pt + C$t)iy Ft(y/ot) -atGt(y/ot)}
so g'(y) - Pt - (Pt + Cst)Ft(y/at).

1-1
Instead of calculating 1 T!(y) by differentiating each T.
10 1 1

and summing, it is better to differentiate

@) » EGA ' sy + Pt - Bt - y)

y"ot
Vt+1(y-ot5)dFt(5) + Vt+1(0) dF.(5)
Loo y/a+

for which £T.|(y) is an approximation, and then approximate it.

/113t
Now fyt(y) Vt+l (y-at5)dFe(0

and Vt+l (s”) = dvt+~(st)/dst, may be approximated by the step function
<) - [(VE+1D) 1+ - (VE+D)1]/[(st) 1+l - (s~ 1]
for st : (st)l s st < (st)l+1

Again, setting
c[ = [y - (sp)l)/at

it is seen that



fty)= i <4 T «-DRUS,))

1=0
where & is taken to be zero.

Substituting into the last equation for f[(x) the following is

obtained:
"W - pt - (Pt + Cst)Ft((x_Bt)/at)

o 1 («; - «-i)Ft(4 (x.BY))
1-0

Therefore a value for s° ”~ can be obtained by solving
f*(x) - Cpt = 0.

3.4. An Efficient Algorithm for the Simple Model

The results of Section 3.3 can be expressed as an efficient
algorithm in following manner. The following procedure is implemented

for t =T7,7-1,...,1.

T+l 1 . .
STEP 0: Set V' = (st) equal to the unit value of the closing

inventory. Set t =T.

STEP 1: Solve f~(x) - Cpt =0, the solution to which is s“.
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STEP 2. Calculate for a fixed grid of points which include

st-1 * pt and st-1 as adjacent points. Call these grid

points (st 1)1 and (VW =we((st 1)i).
STEP 3: Estimate Vt'(st_1) by aj for (s™ )1 s < (st 1)1+l

where of. = [(VI)1+L - (Vt)1]/[(st_1)i+l - (s~ )1] .

STEP 4: Set t =t-1 and return to step 1.

STEP 5: Calculate V1(sq) where sq is the initial stock level. Stop.
This algorithm, despite the crudity of its estimates of Vt |,

appears to work well. The estimation of V1 could easily be refined if

desired.

3.5. A Small Numerical Example

The following small example was solved using the algorithm

described. It is a four time period (season) model in which:

Unit selling price (all seasons) 10.0

Unit production cost (all seasons) 5.0

Unit storage cost (all seasons) 2.0

Total productive capacity (all seasons) 35.0 units

Mean demand in season 1 20.0 units
2 25.0 units
3 35.0 units

4 45.0 units
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The stochastic element is supplied by supposing that the demand
is normally distributed with standard deviation 0.2236 times its mean,
suitably truncated to proscribe negative demand.

The results are given below for two cases, firstly when the
closing inventory is given its "full" value i.e. 10.0Junit and
secondly when given a "discounted" value of 9.5/unit.

THE RESULTS

For case (i) : full value of the closing inventory

Expected production

12.6644 35.0000 35.0000 35.0000
Expected sales

19.2405 24,9849 34.8628 425230

Expected stocks

3.4239 13.4390 13.5763 6.0533

Expected objective function value

611.8112 489.8358 443.2149 298.6470

For case (ii) : discounted value of the closing inventory
Expected production

12.5692 24.8830 35.0003 35.0000
Expected sales

19.2140 24.9538 34.7385 41.7114

Expected stocks
3.3553 11.2844 11.5459 4.8345
Expected objective function value

608.6293 486.0849 425.2821 278.3607
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NOTE: The 'expectedl values given herein are not strictly the
mathematical expected values, but those values that would result
from starting each time period from the expected value of the
state variable.
In both cases the algorithm used about 28 seconds of C.P.U.
time on a Burroughs 6700 machine. No special effort was nade to produce

the most efficient coding possible of the algorithm.
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4- the case of a multi-dimensional state space

In the multi-dimensional state space case the state space
must be discretized by a multi-dimensional grid. The t th time period
subproblem P~Cg”j) must then be solved for every value of the state
vector at the end of the t th time period, j, which corresponds to
a vertex of the grid. As discussed in Section 1.3, this leads to
horrendous computational difficulties when the number of state space
dimensions is large.

This is equivalent to a discretization of the stochastic input
or demand at least in the case of the production/inventory model dis-
cussed in Section 2. For discretization of demand effectively restricts
the controls (production targets) to a discrete set; each discrete
possible production decision being just sufficient to avoid a discrete
demand point exceeding supply.

Choice of suitable points of discretization for the demand
distribution is difficult. If the demand distribution is normal then
suitable points and probability weights might be those of Gauss-Hermite
quadrature, but even these are of doubtful value in the multi-dimensional
case.

In the non-stochastic or deterministic case the problems of
distribution discretization do not arise and those associated with the
"curse of dimensionality” can be mitigated by starting with a very
coarse grid for the state space. Dynamic programming then yields the

optimal path through vertices of the grid, i.e. optimal sequence of
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state space realisations, and around this path a finer grid can be
constructed, and so on. However, linear programming methods,
especially those associated with staircase structured technology
matrices (see, for example, Madsen [40 ], for a review of such

techniques) are more appropriate.
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5. CONCLUSIONS

The basic structure of stochastic production planning models
has been briefly discussed and the application of dynamic programming
to such models given. It has been shown that if the production planning
model is formulated as a Markov process whose state vector
describes the state of the system, then dynamic programming involves
the solution of a series of subproblems. Each subproblem is the
optimisation of the expected revenue from the current time period until
the time horizon and must be performed for each possible state of the
system at the start of the current period. The subproblems are solved
recursively backwards: the first involving only the last period, the
second the last two periods and so on. The solution to each subproblem
is necessary for the solution of the next.

It has been shown that the computational complexity of the
dynamic programming approach, although expanding linearly with the
number of time periods in the model, explodes exponentially with the
number of state space dimensions. It is therefore unsuitable for
multi-commodity models, but it may be very efficient for single
commodity ones. This has been discussed and an efficient algorithm
for the solution of a simple such model derived, and some computational
experience reported.

So if aggregation and disaggregation schemes are readily
apparent, dynamic programming may provide a useful solution technique

for stochastic production planning models when all the state space
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dimensions have been aggregated to form a single effective state
space dimension. The difficulty of providing such schemes for cap
acitated models has motivated the multi-commodity model and approx

imate solution technique which is given in the next two chapters.



CHAPTER 5

A GENERAL MODEL FOR PRODUCTION

PLANNING
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1. INTRODUCTION

The formulation of multi-time period stochastic Markov models
is very natural in the study of medium term production planning and
workforce scheduling problems, where it is desired to account directly
for the variations in some inputs, particularly demand. Medium term
problems are here considered to be those with a planning horizon of,
say, a year which is subdivided into decision periods of a month or
quarter. Control decisions, for example production rates or workforce
levels, and system variables, for example stock levels, are considered
fixed during each decision period. The problem, one of dynamic stoch-
astic theory, is well established. See, for example Dempster [ 17],
Solutions to it are usually approached by dynamic programming, but this
is computationally restricted to cases in which the state space has only
one or two dimensions.

The study and use of such models has been severely limited by a
lack of computationallytractable solution techniques. The one notable
exception is that of Beale et al. [ 4 ], which provides an approximate
solution to a simple production-inventory model, but is capable of
handling any reasonable number of products.

Simpler models have received much attention. Gaalman [20 ]
tackles a multi-time period stochastic model with control-theoretical
techniques, but it is uncapacitated and, moreover, is unable to handle
the change in the system state that would arise, for example, at the

point of stock-out. Other multi-time period models are approached



through the methods of chance constraints or dynamic programming.

See, for example Charnes, Cooper and Symonds [JO ], who aggregate

to restric their attention to a single product and use chance con-
strained programming. Dallenbach []4] and Thomas [53] ingeniously
partition the state space and use dynamic programming to cope with

two dimensions. Multi-period models with many dimensions are gen-
erally only treated in the deterministic case. See Gabbay [[22]

and Hax and Meal pCQ for the treatment of such problems with
extensions to a multi-echelon production process. A single period
stochastic model is tackled by Hodges and Moore [[32], who incorporate
the randomness of the demand by a suitable marginal analysis of the
linear programming solution. Two-period models reduce to the problem
of stochastic programming with fixed recourse in the sense of Wets [58] .
Theoretical aspects of this problem have received much attention in

the literature from, for example, Walkup and Wets [[56]] and Vadja [[54]].
Application to single product inventory and manpower planning have been

made by El-Agizy p []

It is in principle desirable to have an exact solution to an O.R.
model. But this is particularly difficult for multi-time period
stochastic programming, and furthermore the assumption that the relevant
probability distributions can be fully specified is probably quite

unrealistic. So we hence concentrate on "good approximate solutions".

The model proposed in this chapter is a generalisation of that of
Beale et al [4] . The generalisations enable a much more general

class of production/inventory/workforce planning models to be handled
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than is possible with their model. An approximate solution technique
is derived in chapter 6. This is also based upon their work, but
improvements are made to their method in addition to the necessary
generalisations.

The model is given explicitly and discussed in section 2. An
application to a specific production/inventory/workforce planning
problem is given in section 3. The chapter ends with a brief summary

and conclusions in section 4.
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2. A DESCRIPTION CF THE MODE

The model proposed below for the modelling of
production planning problems is of a discrete time, controlled
stochastic system. For a given solution algorithm, the process is
Markov. Also, apart from one constraint in each time period (con-
straint (5) below) the model is linear. Under certain convexity
conditions, which are derived and discussed in section 3.3 of chapter
6 this constraint can be replaced by two equivalent linear constraints
and the model becomes a stochastic linear program.

Explicitly stated it is:

n T T
Maximise E( 1 ditgt + d2txt) U)
=1
subject to:
rt = Ritgqt-1 + R2tXt @
St” A (3)

gt " gt *Vt-i *Vt *cwt*Vt {4

wt = max (zt,0) (5)
2t m 2° * Kigt-i * Lixt = ®
xt 2 o> ()

Constraints (2) - (7) are for t =1,2,...,T. State t =0 is the initial

or starting state. Furthermore:

The qt are state variables realised at the end of time
period t, the xt are control decisions made at the start of time period
t, the yt are the stochastic inputs realised during time period t ,zt

represents the amount by which the stochastic input is exceeded by

some linear deterministic function of the control and input state variables
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for the time period, as a vector with positive or negative components,

whilst wt defines the positive component of zt.

q°. y°. 2° and r™ are fixed vectors. At> Bt> Ct, D> Kt, Lt,
M’ RIt and R2t are fixed system matrices. dlt and d2t are vectors
of cost coefficients, also assumed fixed, e” are multivariate normal
random vectors with zero mean and dispersion matrix Disp (yt), and

independent in t i.e. et and eu are independent if t f u.

The objective function is the simple maximisation of the expected
value of a linear combination of the state and control variables
from the starting state until the time horizon. Any discount factor
would be incorporated in the cost coefficients.

Constraints (2) and (7) are called the control constraints. They
define the set of feasible controls in the t th time period given the
state space at the start of that time period, qt j, which might be used

to model permissible production levels, for example. Defining this

set by

St(qt-1} = {xt:Rltqgt-1 + R2tXt 3 Pt* Xt " 0}
it must be stipulated that =t(qt is non-empty for all possible
qt-r

Constraint (3) will be referred to as the input constraint. The
input might be used to model demand for individual products. This
constraint would allow the mean demand in each time period to be a
linear function of the state space at the start of that time period.

Thus, by choice of a suitable state space the dynamic linear model



-72-

and Bayesian forecasting techniques of Harrison and Stevens [29 ] can
be incorporated within the model.In addition two approaches to modelling
the dispersion matrix of the random input given the previous time period
state space, i.e. the dispersion matrix of et> Disp (yt), are con-

sidered.

(a) The ‘additive' case in which Disp (yt) is fixed, and

(b) The 'multiplicative’ case in which the standard deviation

of e" is proportional to the mean of y™.

i.e. (Disp (yt))i; * (Eyt)i (P®)" (Eyt)-

where P° is a given fixed matrix.

Constraints (4), (5) and (6) will be termed the evolution equations.
Given the state of the system and the controls applied at the start of
time period t these equations describe how the system evolves to the
start of time period t+l according to the realised value of the t th
time period stochastic input yt*

So, at the start of time period t, the state of the system is
described by qt Control decisions xt are made and the system
evolves through the evolution equations as the stochastic input yt is

realised to its state at the start of the next time period, qt, and
revenue dlitTgt +d ™t is accrued*

Diagramatically the process may be thought of as:






3. an application of the general model to a production/manpower/

INVENTORY PLANNING PROBLEM

The purpose of this section is to illustrate the kind of appli-
cation encompassed by the general model which has motivated its formu-
lation. Production, workforce and inventory levels are to be planned
for each of T time periods. Production, manpower and speculative stock
levels are decided at the start of each period. Demand is realised
during that period after which the stocks and/or backorders become
apparent. Provision is mede for production and workforce change costs,
although these must be directly proportional to the changes made.
Manpower levels can be adjusted by changing the workforce or overtime
or short time (undertime) working. Speculative stock is planned by
earmarking some of the available stock as being not for sale. This
may be important in the production of some products, where
the sale price may be greater in future time periods. Production can
be increased by subcontracted work.

It is assumed that backorders are always satisfied before the
current demand, and at the end of each time period stock in excess of
the storage capacity must be discarded (i.e. thrown away or sold very
cheaply ); for the model is capacitated not only with respect to plant
production facilities, but also with respect to storage facilities.

For a given planning algorithm the model is Markov. Decision
and state variables are given below. It is important that the
consequence of decisions made at the start of a time period which

emerge only after the demand is realised be modelled as state space



realisations. After these definitions the necessary system constraints
are discussed and given. These then have to be manipulated in order

to reflect the form of the general model.

(a) Decisions made at the start of time period t

Description Notation

Increase/Decrease plant production

xIt/x2t
Subcontracted production

x3t
Increase/Decrease labour force

x4t/ x5t
Overtime/short time worked

x6t/x7t
Stock withheld

X8t
Backorders satisfied

X9t

(Plus slacks on control constraints)

(b) State variables realised at the end of time period t

Description Notation

Plant ducti | |

ant production leve gt
Labour force employed 2t
Total stock level (including stock withheld) Bt
Total backorder level gt
Current sales g5t
New backorders g6t
Stock discarded qt

All the costs are linear in the variables above, which are vectors.
The i th component of a variable pertaining to stocks, sales, pro-

duction or backorders refers to the i th product category. The j th
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component of a variable pertaining to the labour force refers to the
j trrcategory of employee. The labour force itself is not measured
in numbers of employees, but in numbers of standard hours worked per

time period (i.e. hours worked without over- or short-time ).

(c) The stochastic input in time period t is just the demand, d™.
Again, d™ is a vector whose i thcomponent is the demand for the i th

category of product.

(d) Necessary system constraints for time period t.

It is assumed that the technological contraints on plant pro-
duction can be modelled by bounds on a linear function of the total
hours worked and products made per period. Now the total number of
hours worked is the standard time of the labour force plus the over-

time minus the short-time i.e.

g2t + X6t ' x7t’

It is assumed that the model's cost structure will proscribe simul-
taneous over and short time working for the same category of employee.

So the technological plant production constraints are modelled by

R1ING2t + X6t * X7t) + R2tqlt 5 rlt* (1)

d RE; being fixed system matrices and r.. a fixed system vector.

It
Overtime is limited to a fraction (I/o) of standard time and
short time must be less than the standard time. This can be specified

by the single constraint

(2)
ax6t + x7t * g2t*
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The labour force at the start of the th time period must be

balanced with that at the end of the t th time period, so

g2t = g2t-1 + x4t " x5t *

Similarly, the plant production must be balanced across time

periods by

L S | N R § S ¢74 S 4>

The total stock level at the end of-the t th time period must
be equal to that at the start plus the total production minus the sum

of the sales, backorders filled and stock discarded. Therefore:

g3t =g3t-1 +glt +x3t* g5t ' x9t " q7t * n

The backorders must also balance: those at the end of the time
period must be equal to those at the start plus any new backorders

minus the backorders filled.

g4t 3 pt-1 + g6t " x9f n

It will be convenient in the discussion of further system con-
straints to define a new vector, st> representing the stock available

for sales and backorders:

St 3 g3t-1 +glt + x3t * x8t* T~
This must be constrained to be non-negative to proscribe the withholding

of more stock than is physically present.
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Another slack, xnt 1s added to (2) and g2t 1s eliminated by

substitution from (3) to yield

0 =qg2t-1 +x4t * x5t * aX6t " x7t ' xllt*

Equations (3) and (4) are already in the appropriate form, so

can be left as they are.

It is convenient to substitute for qlt given by (4) in equation

(7)
st = glt-1 +g3t-1 +xlIt “ x2t + x3t * x8t’

Addition of a slack, x12t to constraint (8) now yields:

0 =gqlt-1 +g3t-1 +xIt * x2t +3t ' X8t * Xi2t* 18
The addition of a slack x13t to constraint (9) yields
r2t a x8t + x13t - O)

Constraint (10) can be replaced by the two inequalities

x9t 5 St
and xgt * o4 tl.
Addition of slacks Xj4t and xJ5t respectively to the inequalities and

substitution for given by (8') in the first yields

10-
0=qlt-1 +g3t-1+XIt ' X2t + X3t ' X8t ' Xot ' X14t

and 0 =g4t_1- xgt * xi5t * (107
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Now equation (11) can be written:

g5t =St ' x9t  mex {St " x9t ' df OK

Setting zJt =st - xgt - dt

=gqlt-1 +g3t-1 + XIt * X2t + X3t ' X8t ' x9t ' dt

and substituting for st given by (81) it is seen that

gbt =qglt-1 +g3t-1 + xIt " x2t + x3t ' x8t ' x9t

- max (zIt,0). (117]

Now it is necessary to manipulate equation (12). Substitution

for gra given by (IT) and zu given by (14) yields

dt " g5t 3 "zlt + max N 1t'0N

max (-zlt,0).

Therefore qgt * max (d™ - d5t»0)

= maximax (-z~t>0),0)

max (-zlt,0),
and (12) can be replaced by

g6t = max (zIt.0) - zIt . (127)
Elimination of g5t given by (11') in (13) yields

g?t = maximax (zIt*°) +x8t ' r2t’0nN*



-81-

0. Hence if z°t + xgt—ir2 0 then q7t mOQ,

But x8t * r2t *
otherwise

ts

g7t " zIt +x8t " r2t’ so

g7t = M (ZU, T2 - XQY) + gL oy

Setting o — 71t +x8t ' rat

Tor2t +qglt-1 + g3t-1 + XIt ¢ x2t +x3t ' x9t * dtx (19
qrt = mex (z2t*°) . (13
It is now possible to put (5) into the appropriate format by
substitution for glt> g5t and q7t given by (4), (IT) and (13") re-
spectively. This yields
g3t = x8t + max “zlt' 0N’ (5%)

Lastly, substitution for g6t given by (12') into (6) yields

it = gdt-1 « Xqt + max (zIt'0) ' zI f (6.)

Setting

wit max (zit,0) for | m1.2 (16)

and yit *y2t m qt

the constraints are in the form demanded by the general model. They

are summarised below:
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rit “ R2tqlt-1 + R1tg2t-1
+ Rtxlt - Rtx2t + RtX¥t * RtXGt + RLDGt + RLEX7t + x10t ¢«
0 =qg2t-1 + X4t * X5t ' ax6t ' X7t " Xt
0 =qlt-1 +g3t-1 +xIt ' Xt + X3t ' x8t "' X2t
r2t =8t + Xi3t
0 =qglt-1 +g3t-1 +xIt X2t + X3t ' X8t ' Xt ‘' Xl4t
0 @1-1- 9t x5t
glt-1 + xIt ' x2t
g2t-1 + X4t ' X6t
Xt + Wt " Vet
W11 Xgt + W f
g5t 3 qlt-1 + g3t-1 + Xt * X2t + X3t " X8t ' Xot ' Wt
g6t 3 Wt ' ZIt
q7t 3 Vet
ZIt =qlt-1 + g3t-1 + XIit ' x2t + X3t Xt " X9t " ylt

2t 'r2t + glt-1 + g3t-l + xIt ' X2t + x3t " X9t ' y2t

wit =mex (zit,0) for 1 =12

and xit 20 for i =1,2,...,15

Constraints (11), (2*), (8'), (91, (10", (10") and (17) are the
control constraints, although strictly they should be augmented by two
additional constraints which imply that the plant production level qlt,

and labour force, gt are positive
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ie' 0 =qlt-1 +xIt ' x2t " x16t (18)

and 0 a g2t-1 + x4t mx5t « x17t <19>

where x16t and xJ7t are two additional slacks. For any g-t »,
1 =1,2,..7 there will always be feasible Xjt, j =1,2,...,17.
Constraints (4), (3), (5*), (6*), (11"), (121) and (13') are
the evolution equations. For any i 31,..,7 and feasible
Xjt, j =1,..,17 it can be assumed that the probability of any qit
not being z 0 is sufficiently small to beignored. Forqgltand g2t
will be z0 by the additional constraints given above. g2tw ill
always be > 0 because (wlt - w2t) z 0 forall values ofthestochastic

input dt> g4t is always z 0 because

wt ' zIt " max (-zIf0) 20

and Xgt s g4t ™ by control constraint (10"). g5t will always be

positive if the demand is positive for

qlt-1 +g3t-1 + XIt " x2t + X3t * X8t ' x9t Z O

by control constraint (10'), so some component of g5t> (q5t)i say. w™M1l
only be negative if the corresponding component of wit> («It)i is

positive in which case

(g5t~ “m(* 1t 1

and (yu )i is simply -(dt)i, so (g5t). will only be negative if the
i th component of the demand is negative! Although demand is modelled
along a multivariate normal distribution it may be assumed that the

probability of any component of it being negative is sufficiently small
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to be ignored. g6t will always be 2 0 because (WJt - z”) * g and
(13") obviously implies that q7t will always be positive.

The state vector gt's can easily be expanded so as to
enable a Bayesian forecasting technique to be incorporated into the
model.

The revenue accrued during the t th™time period is a linear
function of qit> i =1,2,...,7 and x™, j =1,2,...,9.

The model will be convex (see section 3.3 of chapter 6) if
Ct sO, forall t=1,2,....T

where nt is a vector whose i jUi component represents the value of the
i th component of gt in time period t. Applying this to the model

given above, it is seen that it will be convex if

(a) (stock value - stockholding cost) + (backorder value -
backorder holding cost) - (sale price) - (cost of new backorder)

is negative for each time period, and

(b) (stock value - stockholding cost) - (cost of discarding stock)

is negative.

Although (b) may be assumed always to apply, otherwise stock left over
at the end of each time period would be thrown away regardless of
whether there was any spare storage capacity. (a) may fail to apply
if it is expedient to withhold stock when the sale price in a particular

time period is very low compared with the unit value of the items in

stock.



4. CONCLUSIONS

The problem of medium term production planning has been addressed
and a suitably general stochastic model has been proposed. An application
of it to a more specific planning problem has been given in order to
demonstrate its potential usefulness. The approximate solution method
proposed in the following chapter is capable of handling any reasonable
number of product lines and labour categories in the sense that the size
of the problem that can be solved is of the same order as the size of
problem that can be solved ignoring all the stochastic elements. The
only major limitation of the model lies in its inability to handle
set up costs e.g. fixed costs that might be incurred by the decision
to produce any quantity of a particular product or to make any change
to the workforce level. Nevertheless it is hoped that the model and
the approximate solution technique may be of value in the field of
medium term planning.

For convenience, the problem posed by the general model will be
termed the full problem. It is this problem which the following chapter

addresses in the derivation of an approximate solution technique.
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1. INTRODUCTION

In the last chapter a general planning model was introduced and
an application to a production/inventory/workforce planning
problem given. (Under certain conditions, which are derived and dis-
cussed in Section 2.3 below),this model is a stochastic linear
program in the sense that it reduces to an ordinary linear program
as the variability in the stochastic input tends to zero.

This chapter is devoted to the derivation of an approximate
solution technique to the general model. Attention has been devoted
towards good approximate techniques because of the computational,
intractability of exact ones. An exact solution to the model would
require the full derivation of the optimal controls xt as functions
of the preceeding state variable,q”. To appreciate the computational
difficulty of this, suppose that the problem is discretized by taking a grid
of points for each qt " and then solved by finding xt(qt j) for each
point on the grid. Some such scheme is necessary in any exact
numerical approach. |If the state space has n dimensions and N grid
points are used for each dimension, then N function evaluations are
required for each time period. This approach is feasible only if n
is small when dynamic programming techniques could solve the discretized

problem exactly. However, this method is of little practical use when

n is large .

The method of solution proposed here is computationally tractable

for any reasonable number of state space dimensions. Firstly notice
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that In practice only the first control decision, is actually
required, for at the end of the first time period better information
would be available for the data on subsequent periods and the model
would be re-run to determine x/.

The technique suggested here is a development of the algorithm
proposed by Beale et al. [ 4],it requires the formulation of a
reduced problem involving only the expected values of the stochastic
input, state space and control decisions but does not eliminate their
variability. The state variables and control decisions are random vectors
because the stochastic input is specified as a random vector. This
leads to the state variable being a random vector, and thus the control
decisions, which are functions of the preceeding state variable, are in
general random vectors. For the purpose of this analysis the first
control decision, x™ is regarded as a random variable equal to its
expected value with probability one, since x™ is only a function of
gQ the initial state of the system, assumed to be a known item of
data. Thus the expected value of x”, returned by a solution to the
reduced problem, is the exact first time period control decision.

The reduced problem is a simple non-linear program which turns
out to be convex if the original or full problem is a stochastic
linear program. The reduced problem can be viewed as a form of
"deterministic equivalent" to the full problem although strictly the
contraints on the expected values of the random variables are implied

by, but do not imply,the constraints in the full problem on the random

variables themselves.
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However, more information is required for the full formulation
of the reduced problem than is initially available. This difficulty
is overcome by replacing the reduced problem by a sequence of restricted
reduced problems and solving them in turn: the solution to each re-
stricted reduced problem yields more information about the process
which enables the formulation of the next restricted reduced problem.
The restricted reduced problems tend to an approximate version of
the reduced problem. The computational effort required to solve the
sequence of restricted reduced problems is notas great as might first
be imagined, for the next one in the sequence will be similar to the
last and considerable advantage can be taken of this.

The matter is more fully discussed in Section 6, which is devoted
to computational aspects of the procedure and gives a small numerical
example.

Section 3 is devoted to the derivation and study of the reduced
problem. The structure of the restricted reduced problems is given
in Section 4. However, the precise formulation of the restricted
reduced problems requires further study of the variability of the
state variables. This is done in Section 5. A summary of the method
in Section 7 concludes the chapter.

Some preliminary technicalities need to be tackled first and

these are addressed in the next section where some convenient notation

is introduced.
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2. TECHNICAL PRELIMINARIES

2.1. Sonme Notational Conveniences

Throughout this chapter vectors are represented by lower case
letters and matrices by upper case letters. Vectors are, as usual,
always taken to be column vectors unless otherwise stated. The
superscript T will always denote the transpose of a matrix or vector.
Many vectors and matrices pertain to a particular time period.
That a matrix or vector pertains to the t th time period is denoted
by a subscript The i th component of such a vector is denoted by
the subscripts”™. For example, the i th component of the t th time
period stochastic input is denoted by yi(;.
| is always used to represent the identity matrix, its dimension

being obvious from the sense in which it is used.

2.2. Random Variables in the Problem

It has already been mentioned in the introduction to this chapter
that the state variable, qt, the control decisions xt and the linking
variable are actually random variables as well as the stochastic
input yt* This follows from the dependence of qt on zt> which is a
linear function of yt, and the dependence of xt> by the Markovian
nature of the system on the preceeding state variable, q”j. Although
x1 is therefore a function of the initial system state, gQ which
is just part of the problem's input data, it is treated for convenience

as a random variable equal to its expected value with probability one.
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2.3. Representation of Multivariate Random Vectors

Let x be a random vector. Denote its mean, E(x), by x and its

dispersion matrix by Disp (x).
i.e. Disp (X) = E((x-x)(x-x)T).

Disp (x) is, therefore, by definition positive semi-definite.
Let x and y be multivariate random vectors. Denote their co-

variance matrix by Cov (x,y)
ie. Cov (xy) =E((x-x)(y-y)T).

Now if Mis a positive semi-definite matrix there always exists
a lower triangular matrix L such that MmLL”~. To see this let M=

(mij); L = (Aij) and given Mdefine L by:

11 =~ nl

21 = neVAll -

(22 = N2 " 2LA

*31 = n8l/ *U

*32 = MB2 " *31F21M22
*33 = AnE3 ' 3L " EN
*41 * mlA ||

2 =2 ¢ *41%21/22

*43 = (M3 " *41*31 ' *42*327*33
2 2 2
*44 = 4 '* 41 0 %42 '* 43}

and so on.
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Square roots all exist because M1s positive semi-definite and
divisions by zero do not occur for the same reason (i.e. the numerator
is zero whenever the denominator is zero and the result may be taken
as zero).

If x is a random vector, let the lower triangular decomposition

of Disp (x) be Std(x)

l.e. Disp (x) =Std(x).(Std(x))T.

Then if x =0 there always exists a vector £, of zero mean unit variance

independent components such that x can be represented by

x - Std(x).£,

for even if Disp (x) and hence Std(x) are singular then one or more
component of £ will have no effect on x(and these components may be

taken to have, say, a Gaussian distribution).

2.4. Representation of the Stochastic Input

The stochastic input is considered to have a multivariate normal
distribution, whose mean may depend linearly on the state space at

the end of the previous time period.

i.e. yt v N(yt, Disp (yt))

where ~to=yt + M qt-|

for some constant vector y° and matrix M. Two separate cases are

considered herein:
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(@) The additive case, in which Disp (y”) is fixed

Q%
(b) The multiplicative, case, in which Disp (yt) &Yt P° Y , where

P° is a fixed matrix and Y™ 1s a diagonal matrix whose i th

a
diagonal entry is y.~.

So, in the additive case yt may be represented by

yt =yt + Std(yt).nt

where Disp (y”) = Std(yt) [Std(yt)]T and is a random vector dis
tributed as N (0,I).

Whilst in the multiplicative case yt may be represented by

where P° =S° (S°)T and again nt is a random vector distributed as
N (0,lI). Notice that by definition P° must be a positive semi-definite,

symmetric matrix.

This completes the preliminary technical discussion. The formu-

lation of the reduced model is tackled next.



3. THE REDUCED PROBLEM
3.1. Derivation of the Reduced Problem

For convenience the full problem or general model of Chapter 5

is re-stated here. It is:

. T t T
Maximise E{ £ dIt qt + d2t x} (1)
t=I

subject to the following constraints for t =1,2,...,T

rt * RIt gt-1 + R2t xt

h =yt +M qt-1 +et ®3)
gt =qt + At qgt-1 + Btxt + Ct wt + Dt zt (4)
wt =max (zt,0) (5)
zt =zt + Kt qt-1 + Ltxt * *t (6)
and X51_> @) @)

et is a multivariate zero mean normal random vector whose dis

persion matrix is Disp (y").
In the following text, (2) will be referred to as the control

constraint, (3) as the input constraint, and (4), (5) and (6) are

called the evolution equations.
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The basic idea is to replace the random veatorSin the full
problem by their expected values in such a way that their randomness
is neither ignored nor seriously distorted to formulate what will
be called the reduced problem. The objective function is represented

by simply replacing and xt by their expected values, so it becomes

Maximise 1 {d~ gt + d2J xt). (8
t

So the full problem could be replaced by an equivalent deterministic

one if necessary and sufficient constraints can be imposed upon gt and

X For convenience write the constraints of the full problem as
qt = qt + Atqt-1 + BtXt + Ct max(zt'°) + Dtet O

and xt € st(qt-1) (10

where zt =7t + Kt gt-1 + Ltxt + et

and St(qgt-i) - (x:rt =RltgM + Rztx, n O },

1 and o being fixed system vectors equal to (z° - y°) and (q° + Dtz*)
zt

respetively, and K°, A° and B° being fixed system matrices equal to
(Kt * M), (At + DtK°) and (Bt + D) respectively.

Nowv the necessary and sufficient constraints on the g™ s and X s
implied by (9) are

(11)



So if the control decisions were unconstrained and if the distribution
of zt were a known function of it, then the full problem could be
replaced by an equivalent deterministic one whose objective function

is (8) and whose constraint set is defined by (11) and

(12

The reduced problem is constructed by approximating the control

constraints (10) by

X116 VAL-ib (13)

and assuming that E{max(zt,0)} is a function of zt if the dispersion
matrix of zt> Disp (zt), were known. It is therefore defined by the
objective function (8) and the constraints (11), (12) and (13).

i.e. that problem which would be obtained from the full problem defined
by (1) " (7) by replacing the random variables with their expected
values in all rows except (5). Notice that the objective function
value that would be returned by a solution to the reduced problem

will always be greater than that returned by a solution to the full

problem. The evaluation of E{max(zt,0)} =wt requires further analysis.

Let oit =/(Disp U t))»
(14)
and 51t = (z.t - z1t)/olt-

Then 51t is a zero mean, unit variance random variable. Now
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E(wlt) = E{max (zu ,0)}

au E{max(?.t, - zJt/on )) +in

°1t fit (zit/alt}- <15)

where fit is a real function defined by

fit(x) = L (5 + *)d6it(0. (16)

G,jt being the distribution function of

Defining the function ft:]Rn -*-Rn, (where n is the dimension of

zt) by

(fr () = Py(r>

the expected value of wt may be written as

E(wt) - Zt zt) (17)

where is a diagonal matrix whose i th diagonal term is o”.

The evolution equations may now be written in terms of the

expected values of g, x™ and yfc

gt =qt + At qt-1 +Bt xt + Ct wt + Dtit
1

N (18)
wt =Lt V Zt V
h szt +Kt gt-1 + Lt *t « *f
In the additive case where Disp (yt) is fixed is treated as a

fixed matrix, whereas in the multiplicative case it will be treated

as being a linear function of yt.



Summarising, the reduced problem involving only the expected values
of the random variables has been derived from the full problem
involving the random variables themselves. The constraints of the
reduced problem are implied by those of the full problem. Explicitly

stated the reduced problem is:

Maximise £(d”™ g™ + d”™ xt)
t

subject to the following constraints for t =1,2,...,T
rt " RIt V | +R2t Xt
h -y\+M Vi
N=qt + AV i +B *t +ct "t+ Dt zt
"t =Et ft st}

Zt+ KRV i+l * ' h

>
1

and xfc * 0.

Unfortunately both It and ft are, in general, unknown. In the
sequence of restricted reduced problems derived from the problem above, it
was decided to approximate the distribution of zt by that of a multi-
variate normal distribution, whence f.t(x) is approximated by
<>} + x4>(x), where <M are the Gaussian probability density function

and distribution function respectively.
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Estimation of the standard deviation of z is mre difficult,
and it is this quantity that the sequence of restricted reduced
problems progressively estimates. Information provided by the
solution to one enables a better estimate of the standard deviation

of z.~, and hence E”, to be made for the formulation of the next.

3.2. Randomised Decision Rules

Above it has been implicitly assumed that the control decisions
xt are deterministic functions of the preceeding state space realis-
ations gt j. That this is not a restrictive assumption in the sense
that optimal decision rules may always be taken to have this property
is shown below. Although it is intuitively reasonable that this
should be so, it is not entirely obvious. Moreover the exclusion of
randomised decision rules is necessary for the reduced problem to
be a realistic reflection of the full one.

Suppose that randomised decision rules are allowed in the full
problem, in particular consider the effect of making xt a randomised
function of qt The decision xt will not affect the process, part-
icularly the revenue acquired,up to time period t. So for a given
value of the state vector at the start of time period t, g, consider
the maximum expected revenue acquired from time period t onwards,
given that the non-randomised decision x”™ is made at the start of
time period t. Denote it by V' (xt).

Now suppose that x™ is a randomised decision rule defined by
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PXJ =x»>> « X J X1l X>0 M-
1

I f R is to be feasible then each point in the decision space LR

must be feasible. It is necessary to show that there exists a feasible

point in the decision space x° such that
VI (xJ) * E AxJ).

But this is easy for set x° =x ™ , where x” is such that

VE(xjN) | VAN for all 1,

EVI(x3)* 2XiW (x[1))
1

s 1 X, v (x°)
i

= vV t>

x; is feasible since all the x)[N re feasible and the assertion proved
for discrete randomised decision rules. The argument can easily be
extended to cover general randomised decision rules.

The consequence of this result is that there is no merit in
considering randomised decision rules, so without incurring any sub-

optimality the decision xt can be taken to be a deterministic function

°f qt.r
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3.3. Convexity and Stochastic Linear Programming

In this section a condition on the reduced problem will be

derived, which when satisfied»ensures that its objective function

is concave in the decision variables and moreover ensures that its
constraints can be replaced by equivalent ones which define a convex
feasible set. Moreover, this same condition when satisfied ensures
that the full problem is a stochastic linear program in the sense
that it reduces to a linear program as the random variation in the
stochastic input tends to zero. |In order to derive this condition it
will be assumed that the probability density function of zt exists.

The reduced problem may be written as:

Maximise J~Nd™ qt + d™ xt) (1)
t

(2)

and xt * O for all t.

lo o
where  zt =zt 'yt

and B° =Bt + D ™.
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For convenience define Vt and by
VE " odit st + d2t *t ®)
and V(t) = Z Vu' (4)
uat

Consider the system at the start of time period t, and the
process from time period t until the time horizon. Now is a
fixed function of qu” and xu* Regard as a function of qt |
and x”. It is necessary to provide conditions under which
is a concave function of Xp This can be achieved by assuming
that / t+17™is a concave function of qt for fixed foru2t + 1,

and providing conditions for which:

(1) is concave in qt_j for fixed xu, u2t, and
(i) is concave in xf for fixed qt_j and xu> u 2 t+1.
This is because = VT+l can be regarded as existent but

identically zero and hence concave in q_. Condition (ii) is precisely
the concavity condition, whilst condition (i) is necessary for the
backwards induction.

Let gt(qt) md{t 5t * V(t+1)(qt) - (5)

Since / t+17is a function of qt, then

v(t) “ d2tT *t + (6)

Condition (i) is satisfied by gt being concave in qtl i.e.
dngf/dgt J being negative semi-definite. (It will be showmn that

the second derivatives exist because, by assumption, the probability



density function of exists). Condition (11) is satisfied by gt
being concave in xt i.e. dzgt_/(;xt being negative semi-definite. The

former is investigated first.

Now 3gt/3qu .i *0I3W ~ it-r39t/3t* (7)
k
soaV ™ it-ivi =13t /39t-i39t-r3v 39kt
k (8)

+ 1 tfkt/3*it-iA t~ jt-i™ V 3B« *« -

K &
For convenience let (J)™ * 39t 739it-1 n
and (H)ld * 32gt/3qit3qgjt - uo)

Then by assumption, H = (H.”") is negative semi-definite. The second

term on the right-hand side of (8) is

JTH] til)
which is negative semi-definite, because for any vector vy,
yTITHIYY = (Jy)T H(y)
s O,

because H is negative semi-definite.

Attention is now directed to the first term on the fight-hand side

of (8), namely
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li At /3it-iJt-r3st/3\ r 12>
w3kt it_ia (A)ki + | (CtKi adit3nit-i (13)
1
ad
where o~ and are as defined in Section 3.1.
Whence
3w /3g)t-i TV 2 (14)
> "n(u /On>-3’n /3n-1>"
where 00

'w<»l * i «

G (<) being the distribution function of 7zn ' ztt~N°£t*

For convenience set (M°)£. = 3aft/ 3git-r For the additive model

of the stochastic input this will be zero, but it need not be for

the multiplicative model.

So differentiating (13) with respect to g~ j it is seen that

AKEAU-TAJt-T = | {cEOk*» VA w Vi *
3
Differentiating (14) with respect to gjt-1 it 1s seen that

AnNit-injt-i = (Jt)n (Jt)Ej-5n*

where  (OA”j is (KtNij ™ (zit/oitAVij (a7)
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and 5it " (l/on ,dW -iit/oit)* d0)

dGt(* exists as a function by assumption, since it is the probability
density function of (z~"~it™OLt*
Writing

ikt(qt) m >0k<qt>/>okt

it is seen that (12) is:

N E CEKE CEE MA nkt - ~ 9
k |

Since CJt is always non-negative, the matrix whose (i,j)— component is (19)

will be negative semi-definite if
I W  k ts Ofers" *e
k

Setting nt to be the vector whose k th component is nkt> i-e.

nt = dgi[_/dqlt_, it is seen that the required condition is

n@)Ta*a @

A similar argument reveals that condition (1i), i.e. being
concave in xt for fixed qt | and u 2 t+l is satisfied by the same
condition.

So if (20) is satisfied for all t, then in the reduced problem
the objective function is concave in the decision variables. The

vector nt deserves further discussion. It is equivalently defined by
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nt = dvAvdaqt,

so its 1 th component may be regarded as the value of the i th com
ponent of o in the t th time period. For example, if g~ represented
the stock level of item 1 at the end of time period t, then nit would
be the unit value of item i at the end of that period after the t th
time period stockholding costs had been subtracted.

For the above condition to be useful, it is necessary to show that
the set of feasible conditions is convex. Unfortunately, in general
the constraint equations (2) do not define such a convex set. However,
under the convexity condition (20) it will be shown that they can be replaced
by an equivalent set of constraints which do. If the problem defined
by the equivalent set of constraints is called the revised reduced
problem, then under the concavity condition the optimal solution to
the reduced problem is the optimal solution to the revised reduced
problem and vice-versa, so both problems can be regarded as being
equivalent.

Although it is not possible to determine nt before the reduced
problem is solved, it is usually possible to intuitively put reliable
bounds on it. An easy method of checking that the convexity condition
holds in practice is given in Section 6.4.

The revised reduced problem is the same as the reduced problem

except that the evolution equation

w =72t M Zt Ztn

of the reduced problem is replaced by
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(21)

This will make no difference to the problem if there is no increase in

profit made by increasing wt from zt).

i.e. if 3gt/3wijt s O for all i (22)

where the decisions xu> u s t are held constant. Now

3gt/3wit m 1 39t/agkf” k t/ 351t
k

and 3gkt/3«it is simply (Ct)ki> and also 39t/3gkt is nkt.

ie. V. Nt Kt kI*

so inequality (22) will be satisfied if nj Ct s O, which is precisely
the convexity condition (20). So under the convexity condition the
revised reduced problem is equivalent to the reduced problem. It

is the former that is now discussed.

It is shown that the revised reduced problem is convex by expressing
it as the limit of a sequence of linear programs PK as K « . The

linear program PK is constructed as follows.
Let k™, k™, k™ k”~  be a sequence of real numbers between
O and 1 such that
k(i) * (i+D)/(K+2). (23)

Consider the i th component of inequality (21). It is
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wit 2 °it fit(z1t/&it * (24)

Now =1 - t(-x), where Git is the distribution function

of (zit - z”t)/o”™t, which is continuous by assumption. Define the

sequence of real numbers a

Define the set of constants ct~, 0, j =1,2,...,K by

when x = and x =

The linear program PK is constructed from the revised reduced

problem by replacing (24) by the K linear constraints

n 2“u ;it*«itl"u e (26)

Since f1t is convex (because fl1t"(x) = dQjt(~x)» which is a function

by assumption, 1s always non-negative) the maximum error caused by

this replacement will be less than
(i) - k(-D

which tends to zero as K



-108-

That (26) is linear follows from a,, being either constant
(in the additive case) or a linear function of gt ” (in the
multiplicative case).

The feasible set defined by the constraints of PK is convex
for all K and furthermore converges to the feasible set of the
revised reduced problem as K <2 Hence the feasible set defined
by the constraints of the revised reduced problem is convex.

To see that the convexity condition (20) is sufficient to ensure
that the full problem is a stochastic linear program i.e. that it
reduces to a linear program as the stochastic variation of the random
input tends to zero, observe that as the variability of the stochastic
input tends to zero, all the random variables in the problem converge
in probability to their expected values and so the reduced problem

converges to the full one. Under condition (20) the constraint

wt = E(max(zt,0)}

can then be replaced by the two equivalent linear constraints
"t 2zt

and wt a 0,

whence the reduced problem and therefore the full problem become

ordinary linear programs.
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4. THE RESTRICTED REDUCED PROBLEM

4.1. Formulation of the Restricted Reduced Problem

The reduced problem is a non-linear program derived from the
original full stochastic problem which involves only the expected
values of the random variables, rather than the random variables them-
selves. Unfortunately its formulation requires a knowledge of the
distribution of zt> and this is, in general, not available. This
problem is circumvented by making some approximations and formulating
a series of restricted reduced problems, the solution to each providing
information necessary for the formulation of the next. Under the
approximations the solutions to the restricted reduced problems tend
to the solution of the reduced problem. The apparent computational
labouriousness of this approach is mitigated substantially by the
advantage that can be taken of the similarity between the restricted
reduced problems. In order to formulate the restricted reduced

problem, a first approximation is necessary. It is:

Approximation 1: that zt can be treated as a multivariate normal

random vector.

This approximation is reasonable since exact information about
even the distribution of the stochastic input yt, is in practice, very
unlikely to be available; characterisation by mean and dispersion
matrix is the most that can be expected. So calculations with the
precise distributions of zf assuming that the stochastic input is
precisely mul tivariate normal mey be unhelpful. In practical applications

where the probability that wn is zero is small, z.t will be very nearly

normal.
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for t =1,2,

where 17 is a diagonal matrix whose i t diagonal component is a”.

4.2. The Separable Program

Separable programming versions can now be given of the restricted
reduced problem. The problems corresponding to the two models of
the stochastic input now have to be carefully distinguished. The

additive one is treated first

(a) The additive case.

This is fairly straightforward. It will be expedient to let
k
vit( )y for k =1»2,...,N be a grid of points for z-jtMall* Let

fi~ =fo(vWk). Introduce the separable variables (K and for

convenience define the vectors x|k~ f~ | vjk~and matrix by

kh . x(K
IR
(k)
m Tit
(kh . V(K
t 1 vit

ad AN+ BP0 =

0 1t j.

Then the non-linear equation (8) becomes

-t i4|9 <|§ (10)
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k k

M (11)
k

{k) (12)

where (ot)i =a”.

The separable linear programming formulation of the problem thus
obtained is:
Maximise £ (djt qt + dZT xt) (13)

t
(k)

over gt> x™ and ,

subject to:

rt =RIt qt-1 + R2t Xt
h =h +M qgt-i
=qt +At qt-i +Bt*t +ct"t + Dt h

5t mzt +K Vi +L V (14)

“ m f(K)

it - 14«,««
k

ot = k ®
k

*t2°-
In practice, yt> wt and would be eliminated to give the

constraints
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rt * RIt Rt-1 * RZt *t

RI'E*Rvi+®@v 1Q@4R48
k
(15)

{ AR vik) >zl I G Tl

't - 24 k)- 5ti0 -

k
where 2t1 _ Z;[O_ *to
d=p+a
Kt = Kt - M

At - At + DKt
and Bt =Bt + Dt Lr

The grid {v’(kI k =1,2,....N} would be refined under the usual
interpolation procedure. |If the convexity condition derived in Section
3.3 is satisfied then no additional constraint proscribing xj™'s
non-adjacent in k from being positive is required. However if it
does not hold then such a constraint must be added. This is common-
place in non-linear programming and standard facilities are available
in most good mathematical programming codes.

The above separable program requires values for the constraints

, which are initially unknown. A procedure for estimating is
derived in Sections 4.3 and 4.4 below after derivation of the separable

program for the multiplicative model.
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(b) The Multiplicative Case.

In the multiplicative case the standard deviation of each com-
ponent of the stochastic input is directly proportional to its mean.
To handle this in the formulation of a separable programming version
of the restricted reduced problem the following approximation is used.

The multiplicative approximation: that the standard deviation
of each component of can be taken to be directly proportional to

the mean of the corresponding component of yt, i.e.

1-*- <16>

for some constant x”.

Because of the iterative scheme of restricted reduced problems
this approximation is not as restrictive as it first appears. There
is a full discussion of this in Section 4.3 below.

The analysis now proceeds in a very similar way to that for the
additive model. Only minor modifications are needed and these are

given below.

For gt-1 = qgt_It the stochastic input yt is distributed as

N(PL, Yt Pt 9t) «))
where Pt myt + Mt qt-1 (1)

and Yt is a diagonal matrix whose 1 th diagonal component is y”~t

By the multiplicative approximation, z”t is distributed as:
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“<ilf At TIt (19)

So the analysis proceeds as before with (y.t ) replacing

In particular equation (8) becomes:

wt "\ Tt f{it (20)
where is a diagonal matrix whose i tir™diagonal entry is x~.

When introducing the separable variables, xjk\ the vjk” must
be a grid of points for zit/(y~t T.jt)* The equations involving the

separable variables, namely equations (10) - (12) therefore become:

wt = 1 A*I0 f[K) (21)
k

ot = 14Kk vk (22)
k

and 4 Tt = I xtk) - (23)
k

The separable program for the restricted reduced problem in the

multiplicative case can now be explicitly stated:

Maximise £ (d™ g™ + xt )
t

over gt> xt and Xﬂ\k) subject to:
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rt = ru 5t1+ R2t *t
h - h-1

<t m g°*AtV i +Bt*t+c

Et m V i+Lt*t-~
wt - gk i) (24)
| N\
Yt "
20 *

Again, in practice yt> Yt> wt and ;t would be eliminated by

substitution to give the constraints

rt =RIt ~-1 + R2t xt

5t <eo{+ A? qt-i * Bt;t * jjct*t° f(k

| A v<k>. zj * KE5L, # Lt Xt
k

n»o0
Xt * 0
where qj, z|, A°, B° and K° are as for the additive case and the grid

{vlk), k 3 would be successively refined.
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The same remarks about the concavity of the objective function
apply as for the additive case. The t”s must be estimated, and a
suitable procedure enabling this to be done is given and discussed

in Sections 4.3 and 4.4 below.

4.3. The Iterative Approach

In the formulation of the restricted reduced problems above
the -terms  were still unknown. This difficulty is tackled by the
provision of a procedure by which ot is estimated. This procedure,
however, requires information about the process gained from a solution
to the restricted reduced model in the first place.

So the technique is an iterative one. An initial estimate of
ot> a[°\ for each t is made and the restricted reduced problem solved
with these values of the ot's. From this solution a second estimate,

is made for and the restricted reduced problem re-solved with
this new value of This enables a third estimate, (21, of at to be
made, and so on.

This is conceptually straightforward in the case of the additive
model. In the multiplicative case, however, the Tt's have to be
re-estimated and these are really functions of the yt's, but have
been treated as though they were constant by the multiplicative
approximation. Thus the approximation can be seen to be one of making
x[n) a function of ytm"~ (where y~n"~ is the value of yt obtained

from the solution to the n th restricted reduced problem) rather than
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The initial estimate of ot, is obtained by setting oit to

their minimum possible values that would be consequent on gt " being
fixed rather than a random variable. So in the additive case the
initial value of o-t is

°n  =Amsp (yt))ii

whilst in the multiplicative the initial estimate of xt is

TU =/(DisP MtAiirit*
which in this case is constant in y”™.

Thus the initial restricted reduced problem is that which would
be obtained by replacing gt> xt and yt by q* x£ and y*, where
=E(qtigt-i=qt-i}
xt = E(xtl<t-1 =qt-1}

and  y{ - Eyt]oe 1 - g<j).

The re-evaluation procedures for the o”'s and xt's are given

below. The additive and multiplicative models are treated separately.
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5. THE RE-FORMULATION OF THE RESTRICTED REDUCED PROBLEM

5.1. The Additive Case.

In this section a procedure for the re-evaluation of o" is derived
for the problem with the additive model of the stochastic input.
Modifications necessary for the multiplicative model are given sub-
sequently. One further approximation has been found necessary, and
it is clearly stated and justified with discussion as it is introduced.
The time required to numerically execute the re-evaluation procedure
expands linearly with the number of time periods in the model.

Since is the standard deviation of zit> to estimate it it
is necessary to study the distribution of zt, and indeed to study
the behaviour of all the random variables in the problem. To do this
it is necessary to return to the evolution equations of the full

problem. For convenience they are re-stated below.

(1)

w = mex (zt,0) (2)

®3)

Linder Approximation 1 , that zt can be treated as if it has a

multivariate normal distribution, it can be expressed by

2t =it + Std(zt)-et 4

where Std(zt) is the lower triangular decomposition of Disp (zt)
suchthatDisp (zt) = Std(zt).(Std(zt))T as described in Section 2.3,

and et is a vector of mutually independent Gaussian random variables.



Also can be represented by

qt =qt + Std(qt).Ct (5)

where Gt is a random vector with zero mean and dispersion matrix
equal to the identity matrix.

The method of re-evaluating at is a recursive one and requires
the estimation of Disp (-Zj), Disp (q~, Disp (z2), Disp (q2),...
and so on. It will be shown that Disp (zt) can be expressed in
terms of Disp (yt) and Disp (gt_1). and also that Disp (qt) can be
expressed in terms of Disp (yt), Disp (zt) and Disp (qt j). But this

requires one last approximation.

Approximation 2 : The control applied in each time period can be
considered to be a linear function of the state space at the start

of that time period.

where x° is a fixed vector and Nt a fixed matrix.

By the Markovian nature of the system, the decision rule xt must
be a function of the preceeding state space, gt ~ Estimation of the
random variation in zt requires that xu be assumed to be some known
function of qu” for u s t; any improvement on the linear approximation
would require xu to be derived on a grid of points for qy j. This is
required in any dynamic programming approach and is precisely the

technique avoided here in the interest of computational tractability.



The assumption that the decision rule is linear is not as
restrictive as it might first appear, for the approximation is
only used for the re-estimation of a and does not alter the structure
of the non-linear program whose final solution provides the actual
control decisions. Thus, the approximation does not restrict the
controls provided by the algorithm to be linear decision rules.

An estimate of the linear coefficient matrix, Nt> can be obtained
from an analysis of the last solution to the non-linear program by
using "fictitious" variables in the manner described in Section 6.2.
Better estimates of the N”s can be obtained iteratively each time
the non-linear program is solved with a better estimate of the o”/'s.

Now recall the model of the stochastic input. It is
h " h +std(yt)<nt 7
(8

and nt is a vector of mutually independent Gaussian random variates.

Introduce some new notation. Define Jt by

then combining (3), (5), (6), (7), (8) and (9) it is seen that

7t = Zt + It Std(C't-1)*2t-1 + Std(yt)*Tt (10)

=zt+

Whence, since 5t 1 and nt are independent:
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Disp(zt) =Jt Disp(qt | )J™ + Disp(yt) (|D

and a.t = /(Dlsp (zt))ii

So, having approximated xt by a linear function of qt j an
expression for Disp(zt) in terms of Disp (qt and Disp (yt) has
been derived.

It remains to estimate Disp (qt). As with the estimation of
Disp (z”.), this is done recursively. However, the calculations are
substantially more complicated since the linear analysis that has
been used so far is no longer appropriate. For convenience, some of
the calculations are deferred until Section 5.3 and only the results
will be quoted here.

Combining equations (1), (3), (6) and (9), o™ may be expressed

as

(13)

where g* is a fixed vector and Ht a fixed matrix defined by
(14)
and Ht = At + + Dt . (15)

et is a zero mean, multivariate normal random vector whose dispersion

matrix is Disp (yt), so the stochastic input, yt is being regarded

as
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h *yt +M qgt-1 + ef (16)
Therefore (qt - qt) can be expressed by

v qt =Ht(gt-r*t-i) + ct(v iit) - Dtet* a7)
so Disp (g”) can now be evaluated:

Disp (qt) = E{(qt-qt)(qt-qt)T}

Ht Disp (qt-1)H™ + Ct Disp(wt)C7+DtDisp(yt)D7

+

Ht Cov(gqt_1,wt)C™ + Ct Cov(wt,qt_1)Ct
- Ct Cov(wt,et)D™ - Dt Cov(et wt)C7, (18)

where advantage has been taken of the independence of et and qt
It is shown in Section 5.3 that under Approximation 1 , that

can be treated as a multivariate normal random vector,
Cov (wt,et) =-Ut Disp (yt) (19)

where Ut is a diagonal vector, whose i th diagonal entry is
$(zit//(Disp (zt))ii), i.e. i>(zit/T1lt), 4being the Gaussian distri-
bution function.

Also in that section it is shown that

Cov (wt,qt.1) = UtJt Disp (qt-1) (20)
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For this calculation, again, only Approximation 1 is required.
Combining equations (18), (19) and (20) and using (11) to

substitute for Disp (z”), it is seen that

D1sp(gt) =Ft Disp (q ™ jFj + Gt Disp(yt)GT + C~cl (21)

where  Ft Tt +Ct U It (22)
Gt = Dt +Ct U (23)
and = Disp (wt) - Ut Disp (zt)u» (24)

The calculation of Disp (wt) under Approximation 1 , that zt
is normal, is in principle straightforward. It is given in Section

5.3 where an expression for it in terms of z, and Disp (Zt) is derived.

t
Summarising, a method has been provided whereby the solution to

one restricted reduced problem can be used to re-estimate the o”'s

and enable the formulation of the next restricted reduced problem to

be made. Under the assumption that the control decisions, xt> can be

approximated by linear functions of the preceeding state space values,

qt_j, an expression for the dispersion matrix of zt has been derived

in terms of the dispersion matrices of qt j and y”™. An expression for

the dispersion matrix of gt has then been given in terms of the dispersion

matrices of qt-1. yt and z T h e method of re-evaluation of the ot's

is as follows:

1. Set Disp (gQ =0 and calculate and Disp (z)
2. Calculate Uj and Disp (W)

3. Calculate Disp (qj)

4. Calculate 02 and Disp (z2)

5. Calculate W2 and Disp (w2)

and so on until the final o has been calculated.
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Recalling that qt-1 can be represented by

gt-1 =qt-1 + Std(qt- IK 5t-1 {30)

where E,” is another vector of mutually independent Gaussian random
variables, and substituting into expression (27) for the random

variable y\ and noting that
m4 *M t-i
It is seen that yt can be represented by
yt =yt + M~ tdfg KA, (31)
Consider now z. It can be represented by
zt =it + Jt Stdgt-1~t-1 + Std'yt™nt’ (32

where Std(yt) is stochastic and therefore needs further examination.

Combining (29) and (31) it is seen that
(Std(yt)nt)i B (yt + MStd(qt | )5t_1)i(s°nt)i* (33)
Eliminating Std(yt)nt from equations (32) and (33) it is seen that

St"St * (Jt std(S-ilst-i)t

0 (34)
+ (yt + MStd(gt_i)Et_i)i*(stntN

) o (35)
“*it +alt + 6it Yit* say*



where ou m(JtStd(qt_1l)¢t 1)1
Bit * (yt + Mstd(qt.i)¢t.i)i (36)

and Yijt a (st '

But a-t is independent of Yjt for all (i,j) and Blt is independent

of Yjt for all (i,j). Also E(a-t) =0 and E(Yit) =0. Therefore
(Dlsp(zt))l - E{(al + B~-j)(0j +BjYj)>
mEN j) * E(6,6j)E(ilY])

But E(an aJt) - (Jt Dtsplg”™juj)»

and " ST * "t 01, (gt- 1)Kt) 1j*

Aso E(TItYJt) ' <P?>1j-
Thus, defining the matrix operation ® by
EOTIGINON @
Disp (zt) may be written as:
Disp (zt) =1Jt Disp (qt-I"NJt
+ (yt yj + M Disp(qt-1)M a Pt . (38)

This is the estimation equation for Disp (zt) and replaces equation

(11) of the additive model. Hence Tt is now estimated by
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Tit m/{ 1 CUt)M(OX)1k *
ik

* jit2(pt,n 1™ u " (39)

The estimation of Disp (qt) is the same as for the additive
model except that /(D1lsp (zt))™ = y~t, so the i th diagonal
entry of is *(z~Nt/y™tT™t), and in the r'ecursive expression for
Disp (g”.), Disp (y”) is replaced by '\\(lt pe \L(J" which has been shown

to be equivalent to
(yt yj + M Disp ®pj. (40)

Therefore the recursion equation (¢1) becomes:

Disp (qt) - Ft Disp (g™ jF* «C~cl
¢ G~My™N) + M Disp(gt_1)Mj) O PIGn (41)

where Ft =Ht +

Gt =-°t + CtUt
and Et =Disp (wt) - Ut Disp (zt)un.

The calculation of Disp (wt) is the same as before, being done
under Approximation 1 , that zt can be treated as a multivariate
normal random vector, and it can be expressed in terms of zt and
Disp (z”). The calculations are in Section 5.3.

The same procedure can now be used to re-evaluate it with
equations (38), (39) and (41) replacing equations (11), (12) and (21)

respectively.



-129-

5*3. Some Necessary Calculations

In sections 5.1 and 5.2 reference has been mede to formulae from
which Cov(wt,et), Cov(wt,qt_1) and Disp(wt) can be calculated. These
are now derived. It is convenient to restate the evolution equations

in the form in which they have been used:

it * +H Vi *ct“t " °tct
H "lt* JtVi ‘et

wt =max Ut,0)

where g™ and z* are fixed vectors and Ht and are fixed matrices

defined by

Jt =Kt +Lt Nt - M

Ht = At + BtNt + Dt°f

and et is a zero mean multivariate normal random vector with dis-
persion matrix Disp (yt). Approximation 2 , that the control decisions
can be treated as linear functions of the preceeding state space has
been used in the above representation of the evolution equations.
Approximation 1 that zt can be treated as a multivariate normal
random vector is also necessary for all the calculations of this

section.

(@) The calculation of Cov (wt>e”)

Since et has zero mean 1t is seen that
Cov(wt,et) = Ewt eX)

E(mex U t,0)ej).



-130-

Under Approximation 1 , zt and et are treated as being jointly

normally distributed. Their covariance matrix is
Qv Ut.et) = Kzt g))
" Z\ + Jtqt-l)et " etet}-
=Het ej),
because et and are mutually independent.
i.e. Cov (zt.et) —D1sp (yt).

. 2 . 2 .
For convenience let * (Disp (zt))"™, = (Disp (yt))™ and
°it gt pijt **(D1sP (yt))ij* so Pijt is the correlation coefficient
between z”t and e”.

Now, the (i,j)th coefficient of Cov (wt,et) is

E(max(z.t,0)ejt) = E(°itsjt max™ ' -5t/a.t)n)

where £,n are bivariate normal random variables with distribution

BN (0,0,I,I,plﬂ-). For convenience drop the subscripts on p. Then

E(max(£,-zit/oit)n)
C f 1 r'zit/oitf
= . En<t-(?.n;p)dndE - (z"/a.J n$U»n;p)dnd£
J- R 11 11 JR
where 9>En;p) is the standardised bivariate normal probability

density function
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2it/oit
f_ «(0O f nd*(~n yde - f *(5)f nd*~  $-)dC
J-zit/an k /(l-p2) aiti- if /(1-PZ)

where §and 4 are the Gaussian probability density function and distri-
bution function respectively
3 p{(-lit/oitM51t/alt) + *(Z1t"Git) + (V 0!t~ (%it/oit)}
=  p*(lit/alt).
Therefore

E(«x(l1,t,0).jt) m o(t JtPIjt *(ilt/olt)

=-(Disp (yt))ij4>(zit//(Disp(yt))ii).

Thus setting Ut to be a diagonal matrix whose i th diagonal entry
is <(;™N//(Dispiy”™))”), it is seen that

Cov (wt,et) =-Ut Disp (yt).

(b) Calculation of Cov

The calculations are similar to those for Cov (wt,et) except

that gt~ is not assumed to be normally distributed. Now

cov (Wt.qt_1) » E(wt(qt_r qt-i)T)

E(max(zt,0).(qt_1-qt_1)T).

Also Cov (zt,qt j) =E((zt-zt)(gqt_l-qt jN7)

m HCIt(qt-i*qt-i) “ et](qt-rqt-i)T)
* Jt Disp(qt j)

because qt and et are mutually independent.
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Set » (D1sp(zt))11, - (Dlsp (g~ )™

and ou It IPIjt- (Jt 01*P<VI,,1J*

Then p~t 1s the correlation coefficient between z and g™ _j. So

GvWa )Yy “ olt MEnaE -z I}

where 5 is a Gaussian random variable and n is a zero mean, unit variance

random variable defined by

n" (gjt-1 -gjt-1)/Sjt-1

and therefore the correlation between C and n is p . Again, for
convenience drop the subscripts on p. If f(4,n) is the joint probability

density function of C and n. the (i,j)th coefficient of Cov(wt,qt_1) Is

r r r*zZit/oltf

Ng * _ i i
Oits’it-l{) A 4J |Dn f(4,n)dnd4 - (zit/oit) I ,an(4.n)dnd4}

—ottsit-| (11 12 say.

Now I, 4 E(n|4)*(4)d4,
it/ult

where $ 1s the probability density function of which 1s by assumption
the Gaussian one. Furthermore E(n|4) can de taken to be a linear function
of 5 because zt Is linear in gt~ So let E(n|4) = X4* However,

p a E(4n)

» [ 4 E(n|4)*(4)d4
Jr

& [ X42%(4)d4 =X.
Jr
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So Acan be taken to be p and E(n|5) = p£. Therefore

* . r<t>(5)d5
Zit/0it

p{-(iit/ait)a»(iit/olt) + *(z1t/ait)}

Likewise

*2

"p(*itMaitA N Lt OIN ¥
Therefore, substituting for |j and 1 it is seen that

(Cov(Kt.gt_1))|J 1 01 jt*tsl @

i.e. Cov(wt ,qt_1) = UtJt Disp (qt_1) .

(c) Calculation of Disp (wt)

Disp (Wt) = E(wWwJ) - wtwj.

The calculation proceeds by evaluating the terms as the right-hand
side separately. The former is tackled first. Again, it is assumed
that zt is normally distributed.

Introduce some convenient notation.
Let = (Disp (zt)).i and c™o-p™ =(Disp (z Al s o let <) and

$>(¢) be the Gaussian probability density function and distribution
function respectively. Let * *.p) denote the probability density

function of the standardised bivariate normal distribution. Define

Pf by
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Pi - -iit/°i

Now E(wu Wit) = QiOj | ™ (x-pi)(y-P)<(=(x,y;plj)dxdy
xsp. Jysp

forlp~|< 1. Expanding the integrand it is seen that

Bwgwe) = 5 IS - R MR- P R Rl

where

iiil- f Xyi,(x,y;p. )dx dy
J Jy™p.  IX™PI J

-PiJ(PiJ(Pi.PJ;PiJ) + RIJ(pJ.Pi;p.J))
+ (1-pij)~Pi*Pj;Pij> + pi / (Pi'g Ipij)

J(x,y:p)= <Hx)4>((px-y)//(I-p2))

BE(x,y;p) = U(S.n;p)dnds, «
; Nty

y<i>(x,y;pH)dx dy

le*pj ix™p.
& OPIpipij) + pija(pi*pi pi
and I|j3) m <p(xy;p. .)dx dy
ejapj /X2p. J
N (PIiPjiPij)-

It is convenient to define a new function by

<Kx,y,p) =yj(x,y;p) + Xj(y,x;p)
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then E(w™t Wjt) can be expressed by

Vjtd-fijWPrPjiVv e (pu*pig)®c(Pi'g ioij) - f<pi-g*pij>
for -1 < p.J, < 1

If p~ =1, then to obtain an expression for E(wqtwjt). the limit
of the above expression can be taken as p.”, -m1l. Notice, however,

that

1lim iHX,y;p)
pHi

lim $ (X, y;p) = i>(wW), and
p+l

Cy-<U), u = max(x,y)

11?7 (1-p2)<Kx,y;p) = O.

So, for p.j = 1, E(witwjt) is

al®j{(1+P1P)*("PO) * (pi+pj“po)l,. @)}

where pQ =max (pi,Pj).

If HI = -1 then the limit can be taken as p.. -1. This time
1im iNxyp) = 0 if xty >0
p+-l .
y<tx(X)+x4>(y) if xty <0
lim 4€(x,y;p) = O if x+y >0
4>(-y)+$(-x)-I if x+ty <0

and lim (I-p2)<>(xy;p) = 0.
p-t-1
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Now wit = Ql(e(pl) - P1#(-P1))

So 5« Bjt = 0IOjN(PiN"PiFCPINCI>(PI)-PIS>())) -

Summarising, the dispersion matrix of wt has been calculated in
terms of the mean and dispersion matrix of zt under the assumption
that is normally distributed.

Writing 4k = <k) and 4Ck =i(-pk) for k =0, i.j,

*ij meCP1*PJIPLIL*

and = ~(p”™ Pjip7i),

the (i,j)th component of Disp (wt) 1s:

. . K <l
“(pu *PIRK ey (if pitt(V oprix)
("iv A e <V « U "1
pll ¢ -1

“i?jiC (Pipj" L (*T+j-1)-P iV pj*1]6

where 6 = fO0 1f Pi + Pj >0

h  if pi +Pj <O0.



6. COMPUTATIONAL ASPECTS

6.1. The Iterative Approach

It is necessary to emphasise the iterative approach to the
approximate solution to the reduced problem, which provides an
approximate solution to the full problem. At each iteration the
solution to the restricted reduced problem provides information
enabling a better estimate of the ot's or xt's to be made. This
improved estimate is used in the formulation of the next restricted
reduced problem for the next iteration. In general, the process nmay
not always converge, because the matrix of coefficients, N> in
Ppproximation 2 (that xt depends linearly on qt associated with
optimal tableau ™ of the restricted reduced problem may produce an
optimal tableau T2 in the next restricted reduced problem, and the
Nt associated with tableau T2 may produce an optimal tableau T in
the following restricted reduced problem. However, in numerical tests
on a four time period, two commodity, model, the process converged
rapidly, there being little change in the returned objective value or
first time period controls after three iterations.

Computational advantage can be taken of the similarity of the
restricted reduced problems, these being identical except for the
values of the an's or Tt's. Any standard revise procedure can be used
to update the right hand sides and technology matrix of the restricted
reduced problem and use the previous solution as a starting basis for

the next. Hence successive iterations may be very fast.



6.2. Estimation of the N

Recall that Nt is used to describe the dependence of the control
variables xt on the state space at the end of the previous time period

qt j according to the equation

xt s x°t+ Nt gt-r

It has already been remarked that can be obtained from an
analysis of the final tableau of the solution to the last restricted
reduced problem, but the details deserve further discussion.

The most straightforward way to obtain Nt is to introduce
'fictitious' variables g*. replacing every occurrence of gt in the
constraints by (gt - g*). |Introduce g* into the objective function
with a sufficiently large penalty cost, say d* to ensure that g* is

always non basic in the final solution.

Now (Nt)(j - » u/ 3qgt_,

However 3x7~/3qJt ~is simply the coefficient of gTt-1 in the xit row
of the final tableau if xit is basic.
If x is non-basic it will remain so for sufficiently small

changes in g™ I and so 3xit/3”jt_i may then be taken to be zero.
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6.3. Speed of operation

The time taken to solve a linear program is roughly proportional
to the cube of the number of constraints. So the time taken by the
approximate solution method of the reduced problem will expand as the
cube of the dimension of g This is a considerable improvement on

dynamic programming methods wherein the solution time expands

exponentially with the dimension of g*.

6.4. A Practical Check that the Convexity Condition Holds

If it is desired that the problem be convex, then the convexity

condition can easily be checked by replacing the non-linear constraint

»t mE£t M £1' :t>

of the reduced problem by the constraint

Wt =Et VAtLZt) + V st 2

where is a slack variable. The non-linear constraints of the
restricted reduced problems can be similarly modified by the explicit
introduction of slack variables. |If these are non-basic in their

solutions then the convexity condition is satisfied.

6.5. Numerical Results

The approximate solution algorithm described in this chapter was
applied to a special case of the multiplicative version of the general

model, namely the simple production/inventory model of Beale et al. [4

1.
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Their model 1s described fully in Chapter 3 and is summarised in
Chapter 9, Section 2. The algorithm was tested on two simple
examples which they provided. These are the "no dependence" and
"dependence" cases of the example detailed in Chapter 9, Section 3.
Briefly, it is of a two product production/inventory system wherein
the total production of both products is bounded in each time period.
There are four time periods. Expected demand in the last two outstrips
the production capacity, so there is some need to produce to stock
in the first two. In the "no dependence" case the mean demand, and
therefore the demand's dispersion matrix, is fixed whereas in the
dependence case half of the mean demand for the first product is
directly proportional to the sales of that product in the previous
time period. Thus the "no dependence" case is a special case of
the additive version of the general model.

In Table A below the results for the "no dependence" case are
summarised. Values of the objective function, first time period
production decisions and the estimates of (the standard deviation
of the z~) are given for each of five iterations (i.e. solutions to
the first five restricted reduced problems). The results of the
solution algorithm of Beale et al. and the objective function and
first time period decisions of a dynamic programming solution are
included for comparison. For the dynamic programming the demand
distribution was restricted to integer values, the corresponding
probability weights being proportional to the ordinates of the

probability density function.

Lm
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Table B below summarises the results for the "dependence" case.
Again the results of the solution algorithm of Beale et al. are
included for comparison.

Estimates of the a”'s were also obtained statistically by
replicative simulation. The results are summarised in Table C below.
The technique is discussed in detail in Chapter 7 and its

application to the particular examples is described in Chapter 9,

where further results of the simulation experiments can be found.



TABLE A : RESULTS OF THE ALGORITHM CN THE "NO DEPENDENCE" CASE

o

[

s Sc

2 =8

S 95
[ ac =
= [SR=ES
1 863.65
2 857.53
3 857.25
4 857.23
5 857.22
B* 859.54
DpP* 8591

Product no.

[EnY

1st time per-

iod production

decision

12.41

6.39

12.87

6.67

12.97

6.67

12.97

6.67

12.97

6.67

12.13

6.05

o

4.472

3.354

4.472

3.354

4.472

3.354

4.472

3.354

4.472
3.354

4472
3.354

a.2

5.590

3.354

6.418

4.021

6.495
4.076

6.511

4.076

6.511

4.076

5.590

3.354

* B denotes the algorithm of Beale et al.,

D.P. denotes dynamic programming.

7.826

3.354

9.871

4.983

9.927

5.040

9.943

5.035

9.935

5.046

9.842

4.980

a-4

10.062

3.354

13.260

5211

13.297

5.350

13.313

5.352

13.312

5.353

10.062

36.464



TABLE B ; RESULTS OF THE ALGORITHM ON THE

c Qi
<V C o % o>
ong A
S i3 3
O *4- >
1 860.50
2 850.58
3 849.90
4 849.89
5 849.88
B* 845.58

* B denotes the algorithm of Beale et al.

O

E_ CoO
4» O %A
4» k 1> U
~ 3 _a;
*» Q.-OT3

14.45

6.39

14.45

6.67

14.45

6.72

14.45

6.74

14.45

6.74

14.74

6.74
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4.472

3.354

4472

3.354

4.472

3.354

4472

3.354

4.472

3.354

4.472

3.354

"DEPENDENCE"
a-2 °*3
5590 7.826
3354 3354
8.033 12594
4.020 4.915
8.033 12.905
4.077 5.024
8.033 12.898
4.086 5.038
8.033 12.898
4.090 5.042
5.670 15.786
9.758 3.354

CASE

a4

10.062

3.354

16.471
5115

17.185

5.198

17.219

5.182

17.220

5.186

21.012

3.354
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The “No Dependence" Case

Time period
Upper 2t ile
Mean

Lower 27\%ile

Upper 2% le
Mean

Lower

"Dependence”

Time period
Upper 2% ile
Mean

Lower 2»$ile

Upper 2»s%ile
Mean

Lower 2*S$ile

4221
3.640

3.196

3.606
3.110

2.730

4221
3.640

3.196

3.606
3.110

2.730

7.056
6.085

5.342

4.061
3.502

3.074

2
7.132
6.151

5.400

4.405
3.799

3.335

1 9.930

| 8.718

' 4.398

| 3.861

ESTIMATES OF o-t OBTAINED BY SIMULATION

3 ~ n

11514 17.309
15.790

13.862

5.150 6.308

5.440

4776

3 4
12.907 22.670
11131 19.551
9.772 17.164
6.862 8.488
5.918 7.320
5.195 6.426
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As can be seen from the above results, the solutions to the
restricted reduced problems converge rapidly there being no change in
the first time period production decisions and little change in the
objective function value or estimates of the o”'s after three
iterations. The estimates of the future uncertainty of supply over
demand, represented by the o.t's converges to a pattern that is
intuitively to be expected. The expected production level from
iteration 2 onwards is, in fact, at capacity in the last three periods,
so the system offers little scope for mitigating the future uncertainty
in demand through flexibility in production levels. The uncertaintity
in the excess of supply over demand might be expected to increase the
further one looks into the future, and this is indeed what happens.
Estimates of are plotted against t for each product in both the
"no dependence” and "dependence" cases in graphs A and B respectively.

The pattern of the estimates of the mede by the algorithm
for the 5th iteration is similar to that obtained by simulation. How
ever, the confidence intervals put upon the simulation estimates
must be treated with caution, especially in the later time periods.
They were computed under the assumption that the zit's are normally
distributed, whence (m-l)o~/a” has a distribution, where a™t
is the sample estimate of o™t mede after m independent trials. This
assumption may be unrealistic if the distribution of zit is actually
skew, which it is likely to be in the final two time periods.

The final returned objective function value is a fairly accurate
estimate of the expected return that would be consequent on actually

using the algorithm. The results of simulation experiments, detailed
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in Section 4 of Chapter 9 indicate that if the algorithm were actually
used the expected revenue would be 859.36 + 0.28 and 850.32 =+ 0.66

in the "no dependence" and "dependence" cases respectively; the possible
errors in either direction being one estimated standard deviation

from the estimate of the expected revenue.
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7. CONCLUSIONS

7.1. The Approximate Scheme

Just as the generalised model of Chapter 5 was a generalisation
of the production planning model of Beale et al. [ 4], so the
approximate solution proposed here is based upon the one which they
use. There are, however, some important differences, and these are
discussed below.

Briefly, the approximate solution techniques to the full problem
is as follows. Firstly the random variables in the full problem are
replaced by their expected values in such a way that the constraints
of the full problem directly imply those on the expected values of
the random variables. This does not eliminate the variability of
the random variables or distort the structure of the problem. The
model thus obtained is termed the reduced problem, which is a deter-
ministic non-linear program. Attention is then paid to the solution
of the reduced problem since all that is really desired from a solution
to the full problem is the best first time period controls, which if
regarded as random variables,are equal to their expected values with
probability one. This is because randomised decision rules are
specifically excluded, it having been shown that such decision rules
are no better than non-randomised ones.

However, it is still not possible to solve the reduced model,as
its solution requires more information about the random variables than

is initially available. The difficulty is overcome by approximating the



distribution of zby a multivariate normal distribution and thus
formulating a special case of the reduced model, which is termed

the restricted reduced problem. Explicit separable non-linear pro-
gramming versions of this problem are then given. But even these
require a knowledge of the standard deviation of each component

of Zj., and this is not known. So initial or minimum estimates of

it are made and the corresponding restricted reduced problem solved.
This solution provides information which enables better estimates

of the standard deviations to be made. These are used to formulate

the second restricted reduced problem, the solution to which is used
to re-estimate the standard deviations and formulate the next restricted
reduced problem, and so on. In this way the restricted reduced problem
is solved iteratively and this provides an approximate solution to the

full problem.

7.2. Differences between the Proposed Solution Technique and that

of Beale et al.

The problem which this chapter aims to solve is a generalisation
of that of Beale et al. However, although the solution technique is

based upon a generalisation of theirs, there are some important improvements.

Firstly, the additive variant, in which the dispersion matrix of
the random input is fixed, is treated. This has the merit of being
simpler than the version in which the random input's dispersion matrix
depends upon its mean, and more robust in the sense that fewer approxi-

mations are necessary.
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The model of Beale et al. can be regarded as a special case of
the multiplicative variant of the general model. However, they assume
that the standard deviation of can be regarded as being directly
proportional to the sales in period t, rather than the mean demands,
in the formulation of the reduced problem. They then assume it to
be directly proportional to the mean demand in their recursive variance
estimation procedure. This has the advantage of mitigating paradoxical
results that might arise from a positive probability of negative
demand consequent on assuming it to be normally distributed. If it
is not desired to meet demand in full then their assumption greatly
reduces its variability. But the variability of demand in a particular
time period should be independent of whether it is desired to meet
it in that period. Consequently their approach distorts the structure
of the problem and was therefore not adopted.

Secondly, the iterative scheme in which the restricted reduced
problems are solved is different. In their scheme, after the solution
of the initial restricted reduced problem, a problem is solved involving
the last period only assuming that the state space at the start of that
period is equal to its mean value given by the solution of the initial
problem. The next restricted reduced problem which they solve involves
only the last two time periods and so on. Their process terminates
at the solution of the second restricted reduced problem to involve
all time periods.

The scheme proposed here is an improvement for two reasons. Firstly
the number of restricted reduced problems does not expand faster than

the number of time periods in the problem, and secondly because the
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similarity between the restricted reduced problems can be more
easily exploited to improve computational efficiency.

Thirdly, the method by which the dispersion matrix of the state
space, qt> is recursively estimated is different. In the method
proposed here there is no need to approximate WIR/=max(izt..,0) by
a linear function of zit. Their method, which does this,leads to

errors even in the covariance terms.

7.3. Convexity

A condition is derived whichwhen satisfied, ensures that the
objective function in the reduced problem is a concave function of
the decision variables and also that the constraints in the reduced
problem can be replaced by an equivalent set which define a convex
feasible region. The same results apply to the restricted reduced
problems since they are special cases of the reduced problem. More-
over, the condition is also sufficient to ensure that the full problem
is a stochastic linear program.

However it is not always easy to check that the convexity condition
is satisfied theoretically. In practice if it is desired that the
condition holds, it can easily be checked by putting an explicit slack
variable on the non-linear constraint. The condition holds if the

slack is non-basic in the solution.

7.4. Computation

The approximatesolution technique here can be effectively used

numerically for any reasonable dimension of the state space, qt> for
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the time required to solve each restricted reduced problem only expands
as the cube of the total number of constraints, and hence as the cube
of the dimension of qt< In practical applications where the state
space vector may represent stock levels it can be used to handle any
reasonable number of products. This compares very favourably with
dynamic programming techniques, wherein the solution time expands as
the power of the number of state space dimensions and in practice
could only be used on production planning problems effectively if
less than four (say) products were being considered.

In all, it is hoped that the model proposed in Chapter 5 and the
solution technique proposed here will be of practical use in many
planning problems where uncertainties in, say, the demands for

individual products needs to be considered.



CHAPTER 7

THEORETICAL APPROACHES TO THE EVALUATION OF SMOOTHING

ALGORITHMS



1. INTRODUCTION

1.1. The Problem

This section is concerned with the evaluation of approximate
production smoothing algorithms. The algorithms considered assume
some multi-time period, finite time horizon, stochastic Markovian
model of the environment. Typically, they could be scheduling the
production of a number of different items over usual time periods.
Stock levels at the end of each time period may then constitute the
state space of the underlying Markov process. In modelling the
environment, the state space is assumed to be continuous, but possibly
hounded, by, for example, maximum and minimum permissible stock levels.
Moreover the transition probabilities are assumed to have a continuous
distribution.

It is necessary to evaluate the merit of approximate smoothing
algorithms in order to assess the impact of the approximations made.
It is important to determine whether the approximations are based on
reliable assumptions, in which case the consequent suboptimality may
be slight, or whether the approximations are less realistic in which
case the consequent suboptimality may be more serious.

It is supposed that the algorithms are intended to optimise some
attribute of interest, which is, by assumption, uniquely determined by
the sequence ofvariable space realisations.They might, for example, be
designed to maximise profit or revenue. However, since the process is
stochastic, this attribute Itself will be stochastic. The concern of

this chapter will be the estimation of the expected or mean value of
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the attribute in question. An algorithm Itself may give an estimate
of the expected value of this attribute; however, this cannot be
assumed to be an adequate estimate of the mean value of the
attribute that would be consequent on actually using the

algorithm in practice. In short, it is necessary to study

the actual behaviour of the process under the control of the
algorithm being evaluated and hence determine a reliable estimate

of the attribute of interest.

1.2. Comparison with exact algorithms

Some evaluation of the performance of an algorithm may be made
by comparison of its output, for example initial production level
decisions, with those from an algorithm known to be exact.

The scope of exact algorithms must, however, be limited if
approximate algorithms are being considered. The obvious class of
exact algorithms to use is that of those based upon dynamic programming.
Except in the case where the state space is one dimensional or when the
structure of the process can be exploited to reduce the state space to
an equivalent one of one dimension (see, for example Dallenbach [14]
and Thomas [¢>3]), these approaches require the discretisation of the
state space and probability distributions. This is, of course, an
approximation, but a reliable one whose reliability can be checked, if
necessary, by considering a sequence of successively finer discretisa-
tions. Furthermore, because of the familiar "curse of dimensionality",

computational requirements restrict its application to simple models.
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computational requirements restrict its application to simple models.
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Having obtained reliable or exactly optimal decision values
from the algorithm, comparison with those obtained from an approximate
algorithm may not be helpful in gauging the impact of the approximations
made. This is because small errors in the decision values, say Initial
production decisions, will typically only make second order changes in
the expected value of the attribute being optimised, say profit.

There is, however, another approach to the evaluation of algorithms

available, namely that of replicative simulation. This is outlined next.

1.3. Replicative simulation

In this technique the environment within which the algorithm
operates is simulated on a computer. The procedure is divided into a
number of independent trials, each of which proceeds in the following
manner.

Firstly the algorithm is run on a given set of data for the
required number of time periods. The first time period controls, for
example initial production level decisions, are then determined.
Random numbers are then generated to simulate the stochastic element
of the process, for example, demand for individual products. The system
then evolves according to the way in which the environment is modelled
until the start of the next time period. The statevector, for example
stock levels, is then realised for the start of the next time period
and the algorithm run again, with the new data thus generated, from
the second time period until the time horizon. This procedure is
repeated until the time horizon is reached, when the actual outcome of
using the algorithm for the particular set of realised values of the

stochastic elements is then determined.
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The trial is then repated a number of times with different random
numbers. From the knowledge of the outcome of each trial the mean of
the attribute of Interest can then be estimated.

The term replicative simulation is used to denote the replication
of a number of independent trials and to distinguish it from regenerative
simulation wherein some attribute of a steady state or time invariant
process is to be estimated and the process is divided into a number of
independent trials after the simulation run has been made. For a more
detailed description of regenerative simulation see Heidelberger [31 ]
or Lavenberg et al. [3d].

The advantage of simulation is that it enables the actual effect
of using a particular algorithm to be studied. The estimate of that
attribute of the process on which attention is focussed can then be
compared with that given by the algorithm itself. Disagreement between
the two is a measure of the suboptimality of the algorithm; moreover
the estimate obtained from the simulation can be compared with that
obtained from an exact algorithm to provide a further assessment of
the merit of the approximate algorithm being tested. The simulation
technique also enables realistic comparisons to be made between d iff-
erent algorithms.

The principal difficulty of simulation, however, is that of
accuracy. The standard error of the estimate of the mean of the
attribute of interest decreases only as the reciprocal of the square
root of the number of simulation trials. So straightforward simulation
(naive "add up and average") may give such an inaccurate estimate from

a single run that convergence is unacceptably slow. Various variance
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reduction techniques are introduced to remedy this i.e. to reduce
the variance with a fixed number of trials or to reduce the number
of trials necessary to obtain some desired degree of accuracy. The
techniques discussed here are those of control variates. The most
effective one was found to be that of a martingale control variate,

constructed for each simulation run.
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2. VARIANCE REDUCTION TECHNIQUES

2.1. Control Variates

There has been a variety of variance reduction techniques pub-
lished since Hammersley and Morton [2a] and Hammersley and Mauldon [27]
published in 1956. Much of it is concerned with robust estimators of
location of the unknown distribution of data from a given sample. See,
for example Gross [20] or Relies [46]. These are of no concern here;
neither are the complex systems of antithetic variates developed in
Hammersley and Morton [28] for the evaluation of multidimensional
integrals occurring in atomic reactor design. The techniques of
importance here are those of control and antithetic variates. The
ideas behind these are described in Simon [SO]and Lavenberg and Welch
[J7], and are outlined below.

Suppose that the attribute of interest of the stochastic process,
for example, profit, is denoted by V. The concern of this chapter Is
the estimation of its expected value,EV. Suppose also that another
random variable, Whaving zero mean but highly correlated with V can
be found.

Then instead of estimating E(V) it may be better to estimate

E(V*) where

V* =V - aU, a being sone real constant

since
E(V¥) =BV
and var(V*) s var(V) -2a cov(v,U) +a2var ()
< var(V)

if 2a cov(V,U) > a2 var(U).
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The value of a which minimises var(V*) 1s

Cov (V,U)/var (U).

This is a special case of a more general result which Is proved 1n the

next subsection. The resulting minimum variance of V* is

(1- p2) Var (V)

where p 1s the correlation coefficient between V and U. Such a random
variable U is said to be a control variate for V, if its correlation
with V is positive and an antithetic variate for V if its correlation
with V is negative.

For convenience call the random variable V* defined above the
controlled random variable. If 1t can be constructed it is clearly
expedient to estimate EV by an average of the realised values of V*
rather than V.

In practice a number of different control variables say
Ul ,u2'.,;,Un may be available* The above theory easily extends to
the use of multiple control variates in the following manner.

Let U be the n-vector whose ith component is the ith control

variate U™ Then define the controlled random variable V* by

V* =clu

where a is a fixed vector of coefficients, ” denotes transpose and
all vectors are by default column vectors.

The optimal control variable coefficient a is shown below to be
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[Disp (U)]*1 Cov (V,U)

where Disp (U) is the dispersion matrix of Uand Cov (V,U) is the
n-vector whose components are the covariance between V and the U~™'s,

The resulting minimum variance is

1 - rJu) var (V)

where

rJu - Cov (V,U)T [Disp (U)]'l Cov (V.U).

2.2. Optimal fixed control variate coefficients

A proof of the above result can be found in Anderson [2 ], but
it is given briefly here.

Let V*(a) be the random variable defined by

V*(@) =V - aTu

where a and U are as defined above. Then
var V*(a) =E [(V-EV) - cJu][(V-EV)-0Ju]
=var V- 20J Cov (U\V) + oJ Disp (U)a
=var V - cJ(2Cov (U,V) + Disp (U) a)

If vis a vector and Ma matrix let (v) and (M) denote the ith and
(i,j)th component of v and Mrespectively. Then the above equation

may be represented by



var V*(a) =var V- J a.[2(Cov(U,V)) -1J o.(D1lsp(U))..]
1 1 j 3 "J
whence

3(var V*(°i))/3ak - -2(Cov(U,V))k + 2 J ai(Oisp(U))1k

which is zero if and only if

I (Disp(U))ki a. = (Cov (U,V))k

i.e. 3(var V*(a°)v3ak =0 if and only if

Disp (U) a0 = Cov (U,V).

Furthermore

32(var V*(0))/3al3t - 2(Disp (U)™

which is positive semi-definite, therefore var V*(@) is minimised by

a =a°, where

a0 = [Disp (U)]'1l Cov (U,V).

If Disp (U) is singular its inverse may be taken to be the (non-unique)

psuedo-inverse and a0 any solution of

Disp (U) a° m=mCov (U,V).

2.3. Estimation of the optimal control variate coefficients

In practice both Disp (U) and Cov (U,V) are usually unknown and

have to be estimated in some way. The obvious estimators to use are



the sample dispersion of U and the sample covariance of Uand V. If
the simulation consists of mindependent trials and u..v.. are the
realised values of 1) and V on the ith trial, then the sample dispersion

matrix of U is

PT  (i9r

m
where U = - ~u., and the sample covariance vector of Uand V is
m 1-1 1
m
¢l ,[,< «,
m
where v =- ~Nv..
m=I 1

For convenience denote the sample dispersion matrix of U by A
and sample covariance vector of V and U by b. Then the optimal control

variate coefficient, a0, is estimated by & where a is a solution of

Aa - b

The controlled random variable, V* is now

v+ =v - STU

There are two disadvantages to this approach. Firstly V* will
not, in general, be unbiased i.e. EV* t EV and secondly the realisations
of the controlled random variable V* for each simulation trial will not

be independent. The consequence of the first remark is obvious whilst



the consequence of the second is that it nay he difficult to estimate

the variance of the final estimator of EV,

m
w=LltU] w
» 1-101 -

where vT is the value of V* realised on the ith simulation trial.

These problems are now addressed.

Theorem 2.1.
m
If v** — 2~ Vi, where Vi is the controlled random variable of
m 1=1 1 1

interest in the ith trial, defined by

Vi =V. - STU,,

a being defined as above, V» IL being the random variables V and U

associated with the ith trial, then

E(V*) - EV is order (£e),

where mis the number of trials in the simulation.

In other words V* is an asymptotically unbiased estimator of EV

and the resultant bias is order (1/m).

Proof.

Consider the effect of adding another simulation trial to the
estimate V*. Call it the (m+th trial. It will be shown that the
expected value of a U”j is O(I/m), where the result of the (m+l)th

trial is used in the evaluation of a. It follows that E(a U is
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m
is O(I/m) whence E(™ 7 odlI™) is O(I/m).

m n
Let A:f]’?\li_ B (ur a)(u,-0)T, 4 =~ ~u. and
m m
inr v-x N vr

A and b are the sample dispersion matrix of U and covariance vector
of Vand U.
Suppose that the addition of the (m+l)th trial changes the

sample dispersion and covariance to A' and b' respectively.

Then A = (A)A + (5 & and

o1 = (7,00 + @

m

WherEA0:<vi-=»Vi'U)Tv m . U} and
i=l
m
B:’\JrrH-|~5><Vi'V)' V-l N

i=il
Suppose, also, that the addition of the (m+l)th trial changes
the estimate of the optimal control variate coefficient from a to a"
Then a* = (Al)-1b".

Now (AD)'l - (~ ) A*1(I +-f-A V 1)"1
m-1

(¢HA'1- (-f-OA'VA-1] + 0(I/m2).
m -1



Therefore

mb’] + 0O(1/m2)
m -1 m -1

Now UnH is independent of A and a so

But EUmyj = 0, therefore

E(S'VI) - £ E[trace{(b° - A°S)ull A'1}] + 0(I/m?2)

which is of order (1/m) as required.

The consequence of the above theorem is that in practice it would
be unwise to use S as the control variate coefficient, as the resultant
bias of the final estimator of EV is of the same order as its variance.
However, it is shown in Lavenberg and Welch [37 ] that if (V,U) are
jointly normally distributed there is no resultant bias.

The problem can easily be circumvented, however. For instead of

defining the controlled random variable for the ith trial to be
VF » Vi - aTUi
define it to be

VI*Me“i U

A
where is a solution to A = b”, A®, b™ being the sample dispersion
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matrix of U and covariance matrix of Uand V calculated by excluding
the result of the ith™ trial. Then and I are independent whence
E(alTul) = 0.

The above approach entails the solution of msets of simultaneous
linear equations in n unknowns (where n is the dimension of U). This
may be computationally expensive, but a more efficient method of evaluating

can be developed.

The basic idea is the exploitation of the similarity between the
AN's and bNs for different i and hence between the g’\'s. As in the
proof of the proceeding theoremct”™ is expressed as the sum of a and

some small quantity of order (1/m).

No* N\ *jer j t “s-“i"'v [ i ml j/lJ

a'dbi 1 A < 5j,(Y V >5i
uhere Ai m<;$ [A- 1 s?i

e- bin O » =i b?]
where (ui-51)(u1-51)T1

and b? = (u.-0-Mv~-Vj).

Since A° is the product of two vectors the Sherman-Morrlson formula
(See Sherman and Morrison [49]) can be used to express AN as
AT1 - A'l + (m-k1)"1A’ 1A®A'L

where k¥ B (u™ - U0MT A1 (u. - Q).
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Therefore
* -1
ad» A/ b
=a + (m-k™) *A ~Ana - b7 .

If the number of trials, m, is large this will certainly be a
more expedient way of calculating the r:’\‘s than solving A "o (o
for each i. It only requires the inversion of one matrix, A, the time
to do which is proportional to n (where A is of dimension n x n).
Subsequent calculation of then requires matrix multiplication taking
a time proportional to np. Whereas, solving A" * b takes a time
proportional to n3 and would have to be repeated for each 1.

However, to make use of the formula provided above it is necessary
to ensure that m-k”~ 0. The following theorem provides sufficient

conditions:

Theorem 2.2
If A, ulj, , k.j, mand n are as defined above then

(m-kj) >0 if ns m2.

Proof: Notice that

where

ou
im -ij

A is positive (semi)-definite by definition, so k<* 0. It 1s therefore

sufficient to show that if ns m-2, then k < muwhere
m



Now n = trace {AA;nl}
“ trace {1}1(u1-0)(u1-u)TA_1>

by the definition of A.
m

So n= 1 trace {(u<-u)(u4-u)TA-1}
i-1 1 1

= 1|:1 (ui 5)V 1(ui 3)

-IstiT
n2
(m -1y
Therefore k <m if and only 1f
n<ialilL .
m
Since the left hand side is m-2 + ™ it can be seen that if ns m2
then k<m So (m-k™) is positive for each 1 if ns m-2 as required.
If the control variate coefficient vector is estimated from the
sample dispersion matrix of the control variates and sample covariance
vector of the outcome and control variates in the manner originally

suggested l.e. the controlled outcome of the 1th trial being
v* » vi - aTul,

then the sequence of outcomes of the simulation procedure,
(Vj, VE. v*) has only mn degrees of freedom, where n is the
dimension of the control vector, U. Thus, the variance of the final

estimator of EV,
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will be
var (v*) = var v*,

and var (v*) is estimated by
m

o2(v*) = (f~vy) } (vt - v¥)2.

Therefore, the appropriate estimator of the variance of v* is
m
| (v* . v*)2.
i=1 1

Lavenberg and Welch [37 ] assume that the vector

0

has a multivariate normal distribution, and derive confidence intervals
for v* based upon Student's t distribution. They also show that the
variance reduction achieved by using the estimate a of the optimal
coefficient vector, a0, is the potential variance reduction, which

would be achieved if aO were known, multiplied by the factor

m2
mn-2 *

If the bias control methods outlined above are being used, then
the variance estimator has one fewer degrees of freedom. The appropriate

estimator of the variance of v* becomes
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and estimation of the optimal coefficient vector degrades the potential

variance reduction by a factor of

m-3
m-n-3 '

As can be seen, the realised variance reduction deteriorates as
the dimension of the control variates vector, U increases. Sometimes
it is important to choose a small set of control variates from among
the set of possible control variates, and this can be a problem.

In the application of the above variance reduction techniques
to the study of algorithms operating within a finite time period Markov
model of the environment, effective control variables were found to
be the difference between the space realisations at the end of each
time period and their expected values one time period before. The

results are given in Chapter 9.
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3. GENERAL FUNCTIONS OF CONTROL VARIATES

3.1. The Concept of General Functions of Control Variates

The form of the controlled random variate of interest that has

been explored is
V¥ =V - dlTU

where U are the control variates and a is a fixed vector. Estimation
of the optimal value for a requires the results of all the simulation
trials.

In general, this approach will be inferior to one involving the
use of more general functions of the control variates, U, where the

controlled random variate of interest would have the form
V¥ =V - ve(u),

Vc being a function frornFn (n being the dimension of U) to F.

Suppose that the algorithm being tested provides information
about the process from which a suitable function Vc can be constructed.
This has the merit of being potentially much more powerful than the
previous approach, particularly if the algorithm being tested is
not severely suboptimal. Furthermore, if a suitable function can
be derived from a single simulation trial, then the controlled output
of each trial is independent, and so the problems in estimating the
variance of the estimate of the mean of the attribute of interest do

not arise.



-173-

Derivation of a suitable functional form for V) depends on the
model of the stochastic process within which the algorithms being
tested operate, and on the choice of control variates, U. This is
explored for the particular application being considered, namely the
simulation of a finite time period Markov process, after a more
detailed description of its structure in Section 3.2. Natural re-
strictions to the class of admissible functional forms of Vc are
introduced and discussed in Section 3.3. It is shown in Section 3.4
that with this restriction, the problem of constructing reduces
to one of modelling the expected future contribution to the attribute

of interest as a function of the next time-period state space realisation

3.2. A Symbolic Representation of the Underlying Process.

Hereafter the concern of this chapter is with the evaluation of
approximate smoothing algorithms which operate within a discrete time,
finite time-period Markov model of the environment, as discussed in
Section 1. The notation introduced here should be sufficiently general
to cover all such applications.

The process naturally divides into T distinct time periods:

1, 2,..., T. The subscript t will be used to denote that some quantity
pertains to time period t. Then pertaining to each time period is the
principal attribute of interest, Vt> hereafter called revenue or profit
(considered to be a scalar), the state variable at the end of the time
period, Qt (this is considered to be a vector and might represent,for

example, stock levels and a weighted average of previous sales), the
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controls applied, Xt (also considered to be a vector and 1t 1s an output
from the algorithm being studied, perhaps production levels), and the
stochastic input, Y~ Again this is considered to be a vector and
might represent demand for products or availability of raw materials.
Now suppose that a particular algorithm, assuming a particular
model of the underlying process, is being studied. Then the sequence of
state variables, {Qq, Q ~ forms a Markov process. The revenue Vt

is a random variable and the total revenue from a simulation trial is

V=EvV.
t=1 z

Furthermore, it can be assumed that Vt is a function of @ 1 and

For in the last resort the state space could be expanded and
Vt set to zero for all t <T and Vy set to V.

As far as possible random variables will be denoted by upper
case letters and their outcomes by lower case letters.

Consider the progress of a simulation trial. At the start of
time period t (Y~ ,...,Yt ") have been realised by (y~,....,yt_j) and
(QN,....Qt j) by (g~,....qt ~). The algorithm is run for time periods
t, t+1,...,T. The t th time-period controls are then determined and
the distribution of Q& given that Qt | =qt_1 is completely known.

Define the "one-step-ahead" expected revenue:

VHt ' WHt(Qt-I>- "here

W qgt-p = EQ/VtNgt- |5t

Vt(gt-1'5)drQt|qt. 1(5>
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where Fn in (') is the distribution function of Q given that
gtqt-1 1
So is the expected revenue in time period t

given that @t ~ =gt ~- Because of the remark in the above paragraph
VHt can be calculated exactly from the output of the scheduling

algorithm.
T

Set VH = ~ VHt- Then EV = EV.

EV might be estimated by averaging the realised values of V or VW
When the martingle control statistic derived in Sections 3.3 and 3.4

is used, however, it will make no difference, as will be shown.

3.3. The Martingale Control Variates

A particular form of control variate function is now proposed.
It will be shown that for each trial, the sequence of functions of
control variates proposed forms a martingale. Although this puts a
restriction on the class of functions of the control variates which
will be considered, there is no consequent suboptimality. Subsequent
sections deal with optimality criteria for the martingale and suggest
ways in which it might be constructed from information provided by
the scheduling algorithm.

Advantage is taken of the time-periodic structure of the process
being simulated. Decompose the total control for each trial VC(U) into

parts associated with each time period, i.e.

let r(U) = E Vrt(V)

t=1
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where V/~U) is the control pertaining to the t th time period.

It is now proposed that be a function of the state variable
at the start of the t th time period, Qt and the difference
between the state variable at the end of the t th time period and its

expected value one time period before, @t - E(Qt|Qt 7).

1,e- VCt =VCt(Qt-1,Qt " At~ t-I~*

Since the total revenue can be decomposed into the sum of revenues
accrued in each time period, which are, moreover, functions of the
state variable at the start and end of that time period, this is a
natural restriction. That, potentially, all the varability in the
estimate of EV can be eliminated is shown at the end of Section 3.4.

Also the functions V™t are restricted to be those for which

E(VctlQt.i> mo.

Again, nothing is lost by this restriction since EVct must be known
and may, without loss of generality, be set to the zero. Therefore
E(VctIQt-i) must be taken to be zero, since it cannot be assumed that
the distribution of @ ~is known.

The t th time period control is regarded as a control of the
t th time period revenue. The total controlled attribute of interest,

V* can be expressed as:
T



The rationale behind the use of the state random state variables
rather than, say, the random input, is that in each trial the realised
value of the attribute of interest (revenue) is, by assumption, a
computable function of the sequence of state space realisations and
is only a function of the random input through its effect on the
state space realisations. Moreover, the t th time period revenue, Vt,
is a directly computable function of @ 1 and Q .

Intuitively the construction of may be regarded as follows.
For a particular trial, suppose that the start of time period t has
been reached, (Qj...... are realised by qt_j contains
all the information necessary to describe the state of the process at
the start of time period t. Given this information,

VCt(gt-r XA"E(QtK -1~ is a measure the "1Uck" associated with the
next position on the state space,

Now, a martingale is defined to be a sequence of random variables,

M say with the property that

E(Mt [MOML.......M-1) =M_1( for all t * 1.

The term MMM N is called the t th martingale difference. The
martingale property is therefore equivalent to the property that the
expected value of each martingale difference given all the previous

martingale differences is zero.

i.e. IMyi M2 *****\Dt-2 =0 f°'r all t 2 1

where MQt m M -
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Theorem 3.1.

(@) Evet =0 for all t and

(b) The Vct*s are martingale differences

i.e. (Vcl, Va +\C2, VCl +Vc2 +Vc3,...) is a martingale.

Proof

(@) Let Fn  (*)» Fnii (*) be the distribution functions of Q.
4t-1 ‘' qt-1 t1

and Qt given that Qt_1 =dt_1. respectively. Now V~t is a function of

Q_i and Q.
Therefore EvVct =J E(Vct|QM * O dF~N U)
m 0,

because E(vctlQt-I =?) =0 for all

(b) To prove the second part of the theorem it is sufficient to show

that

E(VCtIVCIVC2.... VCt-|~  o*
i-e- E(VCt™"Cu = VCu' U = m0

Now let Fyt 1 (s Vqj. vc2” ,,,vct-I™ be the distr’bution function
of & ~given that =v~ foru=1,2,...,t-1. Also let S be the

set of possible realisations of Qt | given VCu =vCu, u =1,2,...,t-1I.
NW  E[*ctIQt., m?; »CQu - vCuu = 1l... t-1]

= E[Vct|Qt-i =5]. for all Ce S»

because {Q0,Q",...> is a Markov process. It follows that



-179-

E[VCt>VCu =vCu’ U = 1....... ~

" 1 ECVctlQt-r~FqgnU)
?£S
» 0,
because the integrand is zero for all £ e S.

Therefore the t's are martingale differences and will hereafter

be referred to as such.

3.4. The Optimality Criterion for the Martingale Difference Functions

It is desired to choose the martingale differences to minimise

the variance of the controlled revenue

-
ve=1 (vt -V )
-1 *
T T
Now var Vv =1 1 Cov (V. - rtV - V-)
t=I u=l X L wu

J [ E«Vt-Vct)(vO-VI[u)}-(EV)2

since EVct = EVCu = 0.

Because the summand is symmetric in t and u, var V* can be expressed

as

E<VCt-2V > *2\ Jt IMCBOu -V ,, « VB/Cu» + " r V-

where V =1 V..
t
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Now var V 1s independent of the Vct's, so it is desired to minimise

the sum of

\Y E{S'vc t- 2vctV > and

\ E(i it (vct#cu - W -Vcu»-
Conditioning with respect to Qt can be expressed as
Si-Mi E(Vct2-2vct\t|QV »
mEilv.r(*ct|Ot. )-8eov(*ct.*t|QX.1)).
Conditioning with respect to S2 can be expressed as
Sz =2E(t J t E(vctV vctVVCA-i>>
mEQ2\ E j t EvQu - » A -I>

vt JtESCulVI)IQ-I11>

conditioning with respect to Qt_j also. Now the expectation of

given Qu ~is zero, therefore
S2. E(-2 1 E[vet J t EIVIVXIilQw «

“E{-21ElV | VIQ I}
t U>t

Combining the above expressions for Sj and S2 it is seen that

var V* - var Vis



-181-

E( 1 VCR2 - 2% D1
ct ulst J'W -

and as var V 1s fixed, this is the expression to be minimised by

appropriate choice of functions V~.
Now the t th term in the summand is not dependent on for

u Ft. Minimisation is therefore achieved by minimising, for each t,

Elvct2 « 2VCt VV | >

where V* is a function of @& and defined to be

I ENA> -
u>t

Suppose that a simulation trial is in progress and the start of
time period t has been reached; @ “ has been realised by qt y Given
this particular realisation of @ j, the problem is then one of choosing

the function vct(Qt) to minimise
e E(Vct2 -2Vc tvt),

such that EV™ =0.
The minimisation can be regarded as being over A e R,

where Vct has been parameterised:

‘Ct VOt (XI»X2'  XN(V

Vct being twice differentiable with respect to the Als and

32»ct/9X, =0.
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This is because such a parameterised function (e.g. a polynomial)
can approximate any measurable function arbitrarily closely (for
sufficiently large N) over any bounded subset of the range of
(except for sub-subsets of null probability) and such a subset can
be chosen such that the expectation over it is arbitrarily close to
the expectation over the full range of Q<

Define the Lagrangian to be

LXi ........ V > mEctZ2ctvt * \bt>-

Then 3L/3p = E(Vct)
and 3L/3X. = E(3Vct/3Xr (2V(;t-2Vt + p))

Now 32L/3y2 =0 and moreover

3 L/3Xi 3Xj = E(3Vct/3Xr 3Vct/3X])

2
so the matrix whose components are 3 L/3X. 3xJ. is positive semi-
i

definite, whence
E(Vct2 - ZVCt V1)

will be minimised subject to EV

3L/3p =0,

and 3L/3X. =0 Vi

Now 3L/3Xi =0 Vi is ir

*ct mV' - 7"
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whilst 3L/3y =0 if and only if
2y =Rt
Therefore the required minimising is

vet(Qt _ EQtlqgt-i)} =vt(Qt ' E@Qtlqgt-i)) ' Evt-

The problem ofconstructing!/~” - E(Ql1qgt j)) therefore reduces
to one of modelling v\ the expected future revenue as a function of
Q - E(Qt|gt_1). This problem is tackled in the next section where

two models, a linear and a quadratic one, are proposed.
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4, MODELLING THE EXPECTED FUTURE REVENUE
4.1. General Considerations

Consider one particular simulation run. At the start of time-
period t suppose that the state vector Q has been realised by q
Then the process for time periods t, t+1,...,T has to be considered,
and in particular the t tr™time period controls and the t th time
period martingale difference function, V”, have to be derived. The
former is a problem for the particular algorithm being studied; it is
the construction of the latter that is of concern here. From an
analytical viewpoint this is equivalent to the first such function
of a (T-t+1) time period process. So without loss of generality the
construction of the first such martingale difference function only,
Vcl»can be treated. This considerably simplifies the notation required.

Consider, then, the process at the start of time period 1. The
first time period controls have been determined and the distribution
of Q» given the present position on the initial state space, qQ, is
completely known. It is desired to model the expected future revenue
as a function of the realisation, g~ of the state vector at the end
of the first time period without re-running the algorithm. This estimate
is the martingale difference function, VC1(qQ.Qj - E(Ql|qQ)), which when
applied to the actual realisation of Q™ g”, yields the first martingale
difference Vcitqo'gl " E(Ql|gQ) of the martingale which will become

the control statistic for the simulation run.
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The martingale difference function is constructed about
qj = E(Q1|gQ). This is for two reasons. Firstly, the control
statistic only approximates the behaviour of E(V|), so it is
natural to construct it about the mean of Q., and secondly, because
its construction requires certain information about the stochastic
process which may only be available in the neighbourhood of g~

Now, the expected future revenue can be split into that accrued

in the first time period and that accrued in subsequent time periods:

E(VIQi) =EivjlQj) +E(V(2)IQ1),

where

V2> . 1 wvt.

Since Vj is, by assumptions known function of qQ and the first

term on the RHS,

can be calculated analytically. So the problem reduces to one of

modelling E (| Q, ). VCi(q0,Qr gi) is split into the sum of

w W i) and Vbci™ V V N where

Aci(% sgr 51) » VL@0QD) - EV1(0.QD)]  and

. . ANlA
W W ’i) is an estimate of E(V™|Q)).

Recall that the "one-step-ahead" expected revenue WH is
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VH « "« "tI'W

T

EVi * ] 2 E<vti®t-i> -

Therefore the appropriate function to be modelled in order to derive

a suitable control statistic for VH is

e(vhlgi) = EVi + E(v2IQi)*

?
so again the problem reduces to one of modelling E(V iQj), the appropriate

control statistic simply being

vBci(v QrV *

However, if the appropriate control statistics are used there is
no advantage in forming two estimates of the expected revenue, EV, from
the actual revenues accrued in each simulation trial and the "one-step-
ahead" revenues, for they will both be the same.

The controlled value of the actual revenue accrued in each

trial is

v = A (vt - vct)

T
t:'| (Vt * VACt “ VBCt)
T

i t!i ivt«t—l*V—vt(\/ r ¢t, + E<vtl* M ,}
T

1 Veee

t
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Since VCt " VACt + VBCt and

VACt =Vt « w V - E/NVtIQt-I>"

T T
So V= EE(VEIQLL) - A Vg

t=I t=l

T

t=I ~ Ht * VBCt
and this is the controlled value of the one-step-ahead revenue Wu.
A graph of E(V(2)|Qj) against some component of Qj will haUe

the following form:

e(v{2)]qal)

and will usually be concave.

Two models of E(V(2)|Qj) will be treated, namely a linear and
quadratic function of QL - E(Q™gQ). These have the merit of being

fairly straightforward to derive and computationally effective in

practice.
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4.2. Some Essential Notation

Let f be a function: Rm--> R . Then if f is differentiable,

define the vector df(x)/dx by:
(df(x)/dx). = 3f(x)/3x..

If fis twice differentiable define the matrix d’f(x)/dx> by:
(d2f(x)/dx2)ij = 3zf(x)/3x13x] .

Let g be a function: Rm—>Rm Then if g is differentiable, define

the matrix dg(x)/dx by:
(dg(x)/dx).j =3(g(x))i/3x..

If gis twice differentiable, define the 3rd rank tensor dzg(x)/dx2 by:
(d2g(x)/dx2).jk = 32(g(x))k/3x.3Xj .

Let h be a function:Rm-->Rmxp QL Define the 3rd rank tensor

dh(x)/dx by:
(dh(x)/dx).jk = 3(h(x))jk/3x..

Let T be any (m x mx m) 3rd rank tensor, Man (m x m) matrix

and v an m-vector. Then define the following products by:
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™ by o1
t
MT =1
A ¢ W0 Tk
Tv by 1
K (T>ijk<v)k

and =1
VT by o (VK(Tkt

Recall that the sequence of state space random variables Q@>Q~..
is a Markov process. Let the distribution function of Qt given that

Q =C where u <t be denoted by:

FU(*U)

4.3. The Linear Model

For the linear case a martingale difference function of the

following form is proposed:

VBC1 "1 ' =~1 "' g
where cjj = EiQj) and the tedious explicit representation of the
dependence on the initial state space position, gQ, has now been

dropped.
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This guarantees that EVBCL = 0 and hence that EvVct » 0. It
is intuitively desirable that a should be set equal to the best
possible estimate of the gradient of EiV/NIQj) at QL = This
value for a has proved computationally effective. So the problem

reduces to the estimation of
a(qj) - dE(V(2)l|qi)/dqi at »

Decomposing E(VSZJ' |g”) into the sum of contributions made in

each time period:

T

E(V(2)la.) = DEV [a.)
1 =2 11

it is seen that

dE(V(2) |qi)/dqi ™ } dE(vt|ql)/dql,

and the problem reduces to the estimation of each term in the sum.

Now E(Vt |q1) = E(VHt|ql) for t * 2,

where vnt = E/vt~ t- 1N
T
So dE(V”™ |ql)/dgl = ~ dE(VHt|ql)/dgl and the concern is now with

the estimation of dE(VHtlIq”~/dg” Under certain conditions to be
discussed below, the following relations, which are crucial to this

estimation, apply.
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Relation RI: dE(VHt|ql)/dgl =dEQt_1|ql)dgl d ™)

Relation R2: dE(Qt|ql)dql e PN

The definitions of and Pu(qj) differ according to the conditions

which apply, the following two cases only being treated:

case (i) dt(gx) = dwHtU)/d£ evaluated at £ = E(Qt_l’L )

and pu(ql) =de(QulIQ-I = evaluated at C = E(Qu_1]|q1).

case (ii) dt(gx) = E(dVHt(Qt_1)/dQt_1]|q1)

So under the appropriate conditions dE(VHt|ql)/dgql may be

computed by combining relations Rl and R2 into the following formula:
Formula FI: dE(VHt|ql)/dgl =P~ qgq ™~ ) ... Pt_1(ql)dt(ql)

The first two or the last of the following conditions are

sufficient to ensure that formula FI is applicable.
Condition Cl: WHt™qt-P 's Nnear in 1*
Condition C2: E(Quldu_i) 1S linear in g It for u=2,3,...,t-1.

Condition C3: There exists a distribution function such that

Fy(EIn) - Gy(C - E(QuIQv =n))

for all vs u, and for u=2,3,....t-1.
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Conditions CI and C2 are self explanatory, but condition C3
deserves further explanation. It is the condition that the
distribution of Qu given knowledge of the outcome qy of Qv for v <u
depends on gv through its location parameter only, i.e. The mean but
not the shape of the distribution function of Qu depends on qv.

It will be shown that the case (i) interpretation of formula FI
holds if conditions ClI and C2 apply, and the case (ii) interpretation
of FI holds if condition C3 applies. Thus the 'case (i) interpretation’
of the system will be used to mean that conditions Cl and C2 hold
for all t ~ 2, and the 'case (ii) interpretation'will be used to mean
that condition C3 applies for all t 2 2. The following results are

necessary.

Theorem 4.1.

If condition CI holds then so does relation Rl in either case (1)

or case (ii).

Proof

Under condition ClI we have:

E(WHtNMt-INgI™ ='W A - N
whence

dE(vHl1gl)/dgl = dE(Qt. 1iql)/dql dvHtU)/d2i<= e« A A )*

which is RI(i). RI(ii) follows immediately since the second term on

the left hand side is constant in qj.



Theorem 4.2.
If condition C2 holds then so does relation R2 in either case (i)

or case (ii).

Proof
We first show that R2(i) holds. The proof proceeds by induction

ont. It is sufficient to show that:
dEdJthjl/d,, =d£@Qt_I |gl)/dgl dEiIQ jg~I/dgNInN
since R2(ii) trivially holds for t = 2.
Now E(QQt [gi) « | E(QQt]|Qt | =C) dF~UIQH
= E(Qt|Qt_i = E(Qt-1]gl)), applying condition C2.

Therefore dE(Qt|qj) = dE(Qt | |gl)/dql dEQt|qt_1)/dqt_1|g™ =E(@Qt_1|ql)

as required.
Noting that under C2 the second term in the right hand side above
is constant in q , it is seen that relation R2(i) is equivalent to

R 2 (ii), which completes the proof.

Theorem 4.3.

If condition C3 holds, then so do relations Rl and R2 in case (ii).

Proof

We show that R I(ii) holds first.



-194-

Now  E(VHt(Qt_1)[gx) =] WY(C) dFj_1(Clql)

¢ dG~U - E(Qt_1|gl)), by condition C3

1
VHt™ + E(Qt_11qgi)) dGt-1~~" by chan9e of variables

Whence dE(VHt|q,) dEM ™ Iqjl/dqj | d*Ht<n)/dnl
= dE(Qt_1|ql)/dgl j dWHt(C)/dC dF™_1(C|ql), by

condition C3 and change of variables. And the above relation is R I(ii).
The second part of the proof proceeds by induction on t. It is

sufficient to show that:
dE(Qt [q1)/dqgl = dE(Qt_1]ql)/dql (dEp (Qt|Qt-1)/dQt_1|qj)

since R2(i) is trivially true for t =2,

Now E<Qt]ql) =/ EtQjIQNj m5) dFAUIg~
m}E(QtiQt.i-5»E (Q {.i|ql))dGj.iU).
by condition C3 and change of variables.

Whence dE(Qjqg, )/dq. =dEQ, Jql/dq, f dE(Qjq. )/d
111 -1 1 1j 1 t1

. N
e figt 1=+ 1 [
= dE(Qt-1|qi)/dgi f dEQQt|Qt_1 = 0/d5 dFj_1(C|ql)

= dE(Qt_1|g1)/dgl Eg™ ~NdEp™NQE |Qt_i)/dQt_il~ i)»

as required.
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If the formula FI applies in whichever version, then it provides
a ready way of decomposing dE(V” |g™N)/dg” into more easily estimated

components:
T
dE(V(2)|gi)dgi = I P2(Ql) ... @_1(ql)
where the first term of the sum is ™ (g”.

From a computational viewpoint the sum is efficiently calculated

by the backwards recursion:
eT =0

6t-1 =dt+ Pt6t

the 6's being calculated backwards from Bj to Bj. which is the required

sum.

The means of constructing the first martingale difference has

now been suggested, namely

\VCL(V>1> mVACI(Qr 51) * \BCI(M I>

where

and
vbci@i"i) " Qr5)™*
a being an estimate of dE(V~jg~/dqgq” calculated at ql =c™
It must be stressed that even if none of the conditions are
satisfied exactly then formula FI may still be applied if Cl and @

or C3 hold approximately. All that is required is an estimate of

dE(VA27ig~N)/dqj; even a bad estimate can be better than none at all.
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In general the case (i) versions of P~Ag” and ci™q.) are easier to
calculate than their case (ii) counterparts, so given the choice,

it is better to use the case (i) versions.

4.4. The Quadratic Model

Herein, a quadratic form for the martingale difference function

VBci(Qr qi). is proposed, namely

It will be constructed to have the following two properties, the first

of which is essential, and the second intuitively desirable:

(1) E<VBC1(Ql-ql)) - O

(ii) The first and second differential of VgClL at ql = g™ will be

equal to the best estimate of those of E(V™|qj) at ql a
Now EiVgj-jCQj-aj)) = «(c”) + E((Q1~al)TB(al)(Qj-qi)).

Let Disp (Qj) be the dispersion matrix of Qj, then:

E(VBCiQ' A1) = + traCe {DiSP ’

So, in order to satisfy the first property <(ql) is chosen to be

- trace (Disp (Qj).B(cjj)} -

Notice that without loss of generality, Big”™ can be taken to
be symmetric, i.e. B(qj) = Big™™.

Sufficient conditions are now derived to satisfy the second

property.
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Now dvBCI(V gl)/dql =angi™ + + B(Qi)T)(q1-"1)
* aicjj) + 2B(ql)(ql-q1)T.

So  dvBCl(ql-ql)/dql a(q.
ql =gl

Hence, as in the linear case, BBQj(qj-<ij) anc*E(V~™|g”) will
have the same differential at ql =g~ if:

a(qi) = dE(V(2)|qgi)/dqr

The estimation of dE(V” |dql)™gl has already been discussed in the
previous section on the linear martingale; the same methods of estimation

can be used here.

Now d2VBcl(gl-ql)/dg™ =2 B

therefore, in order to satisfy equality of the second differentials,

we must have
B =2E(V(2)|ql)/dgq2 |g™ ,

Thus, it is sufficient to set Biqgj) equal to the best estimate
available of

SdAvVAIgn/dg*

and evaluate It at * g™ The remainder of this section will be

devoted to its estimation.

By definition d2E(V~™ |qj)/dg2 =d/dq~NdEN2)IgN/dgn.
dE(V™2Nqj)/dgj has already been estimated by aig”, so d2E(V " Ig”~/dg2

can be estimated by da(ql)/dql.
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If an analytical expression for a ™ ), as opposed to a numerical
estimate of a ), has been found, then 2B(qj) can be obtained by
simply differentiating a(qj). In what follows, hoever, we assume
that this is not the case and look for an explicit representation
of da(qg.)/dgp
It is assumed that we can use formula FI to estimate dE(V~Ig”/dqj

by a” ).

If the case(i) interpretation of o(q”) applies, i.e. F(Qu|qu j)
and E(VHt|qt_j) are linear in gy | and qt | respectively, then a”™)

is constant in g™ and do{(g”)/dqgj is a matrix of zeros,

i.e. da(ql)/dql = 0.

Now consider the case (ii) interpretation of “ (g”), when condition

C3 applies and

Pu(qj) = E <* ~in )/dQ(_1lql),

and
w m E(dVHt(Qt. 1)/dQt. 1|q1).

Introduce some convenient notation.

Let M(qi) = p2(ql)p3(gl) *espt(ql) fo rt* 2
= | , the indentity matrix,for t =1
and Tt(ql) = Vt-lf\HrWt\ﬂ'iA for t 2 2.
T
Then a(qj)



and dTt(gl)/dql I

u=

"here | IV i> ji(dv di>fik(lLu *r-pt-i"t>k f
1 (“u-1)jl RV Hihl for u=t
ie. r ((dDy/dgj)(Pu+l-. .Pt.1dt>>U-I for u<t
for u=t

mo«cmyV'ii
We need to investigate dt/dg™ and dd’Ydg™ further. The following
theorem enables them to be decomposed.
Theorem 4 .4.

Under condition C3 the following relations hold

Relation R3: dd~dqj = where d™ =

Relation R4: dPy/dqgj , where V* EQ™ (d2EQ (Qu|Qu_1)/dQ™ 1|q

Proof

Let VA(c) = dvHt(T)/d 1, and Vjjt({) = d2*Ht(E)/dE2.

sow dt . E(v;t(Qt. 1)h i)

"] VHUE* E(Qt-1 dl» dSL I(i>

by condition C3 and a change of variables.



Therefore ddt /dql = dE(Qt-l |q1)/dq1 »||t(5 * EIQAJq,)) (ﬂ.i<«>
LIBT3 IS [h ] 4F] Lt
=\.i"“v
by Theorem 4.3 and the definition of This is relation R5.

Let pu(0 =E(QJQu_1l=0. P,(5) = dyu(C)/dC, and

pi)(?) = d2pu(c)/dE2.
Then Pu. | u"U) dF~UIq),)

m|W *'«W I» <i(5>.

by condition C3 and a change of variables.
i n] W + B Ihj
Therefore:
3(0u)3k/3gn = PGQL1HI» /*In { K<i* (Qu. 1 ]ql))>1jt dC
Now the integral on theright hand side is:
i K<£»ijk dRI-i<fi v
m (E(P;(Ou.,)[g D)L,

|
So dPu/dg™ = dE(Qu_Jg”~)/dqgl P~ whence relation R4 follows by applying

Theorem 3.
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If condition C3 and therefore Theorem 4 applies, T* may be

expressed by:

Tu-V IM -1~

where AN =tV(Iu+l ... for u<t
=d for u =t.
t
Now

267) =da(q,)/dg

and j ot
da/dgq, - ~ I T*
1 t=2u=2 u
T T
= 1 1 TK
u=2 t=u u
T
Writing. A, = 7~ A*, we have
u t=2 u

T
Formula F2: 2B(ql) = ™ Uu_j AuU-"j

Notice that B(g”) given by the above formula is indeed symmetric, since

A* is and therefore so is Ay.

From a computational viewpoint there is an efficient double

recursion for the above sum. Define Bu and ru by



Then Au = + VA Ou> and the required sum is simply r/.

Tu can be calculated by the backwards recursion from u =T
to 1, requiring only the temporary store of Bu» Au> and Tu at each
stage.

Again, as in the case of the linear martingale difference function,
it must be emphasised that formula F2 may still be applied even if
none of the requisite conditions apply exactly, for even a bad estimate

of dZE((\;vl' |qj)/dqj2 may be of considerably more value than none at all.
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5. CONCLUSIONS

The need to evaluate approximate production planning algorithms
has been discussed and ways of doing so explored. The most promising
approach is that of replicative simulation, which is the only way
to gauge the actual effect of using an approximate algorithm in
practice. Since the accuracy of the estimates of the parameters of
interest thus obtained is only proportional to the reciprocal of the
square root of the number of trials, it is important to ensure that
the variability in the estimates returned by each trial is as small
as possible. To this end variance reduction techniques were discussed
and in particular the use of control variates investigated in detail.

For each simulation trial a number of control variates will, in
general be available. So ways of combining them are of paramount
importance. Fixed linear combinations are easiest, both from a
conceptual and analytical viewpoint . For a given attribute of
interest and a given set of control variates, the optimal fixed
linear combination is derived. However, this depends on the dispersion
matrix of the control variates and the covariance vector of the control
variates and the attributes of interest. In general these will not
be known and must be estimated. Use of the consequent estimate of the
optimal linear combination leads to problems of bias and difficulty
in estimating the variance of the final estimate of the parameter of
interest. It is shown that the bias is of order 1/m, where mis the
number of simulation trials. A method of eliminating the bias at the
expense of much computation is given and a procedure for avoiding

most of the computational effort then derived. The problem of variance
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estimation is approached though the work of Lavenberg and Welch [37 ]$
and it is shown that the potential variance reduction is degraded as
the number of control variates increases.

The use of more general functions of control variates was then
explored. These have the merit of being potentially far more powerful
than fixed linear functions. If independent functions can be derived
for each trial then the problems of bias control and variance estimations
do not arise. The class of such functions that were considered is
usefully restricted by reference to the application of algorithm
evaluation, and particularly to the time periodic structure of the
process. It is shown that such functions of control variates form
martingale differences. Optimality criteria for these martingale
difference functions are derived and the problem then reduces to one
of modelling theexpected future contribution to the attribute of
interest as a function of the realisation of next time-period state
space.

Two such models, namely a linear and a quadratic model are proposed.
Their construction depends on a detailed decomposition of the process
into aspects pertaining to each time period. This is only achieved
under one of two assumptions. Whilst the assumptions will not, in
general, hold exactly they may often hold approximately and the
martingale difference function thus constructed may still be effective.

Depending on the assumptions made, appropriate formulae for the models

are derived.
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These formulae are applied to the 'general model' of Chapter 5
in Chapter 8 and the results of using them in practice on the
comparison and evaluation of the "full" algorithm of Beale et al. [4 ],
their "first pass" method and ordinary linear programming are given

in Chapter 9.
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1. INTRODUCTION

1.1. The Purpose of the Chapter

In the previous chapter it was suggested that approximate
scheduling algorithms be evaluated by replicative simulation. Since
the accuracy of the method is only proportional to the reciprocal of
the square root of the number of simulation trails, it is desirable to
remove unnecessary variability in the result of each trial.

In pursuit of this object a martingale control statistic

was proposed. Direct estimation of the terms of the control statistic
being difficult, they were decomposed (under certain assumptions) into
more easily estimated components. Estimation of these components is
peculiar to the algorithm being tested and the model of the stochastic
process within which it works. It is the purpose of this chapter to
provide explicit formulae for the estimation of these components in
the case of the "general® model developed in Chapters 5 and 6. However
the formulae derived herein can, with mild procedural modifications,
be applied to two other algorithms, namely the "first pass" or first
step of the general model (wherein only one non-linear program is
solved) and ordinary linear programming, ignoring all stochastic

elements.

1.2. An Outline of the chapter
The "general® model is introduced and pertinent aspects are
discussed in section 2. There are two possible interpretations of

the formulae derived in the previous chapter, depending on the
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assumptions under which they were derived. As in the previous
chapter, these will be referenced by case (1) and case (il). The
case (i) versions are much the simpler and are treated first. Only
the linear martingale difference function is appropriate in this
case. The linear and quadratic martingale difference functions

are then tackled under the assumptions of case (ii).

All of the approaches involve some approximations. These are
confined to all or some of those needed in the solution algorithm for
the general model, and so their use is natural here.

The notation used is that of Chapters 5 and 6. In particular,
the convention of the previous chapter that upper case letters denote
random variables and lower case letters their realisations is dropped

in order to more easily distinguish between matrices and vectors.
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2. THE GENERAL MODA

2.1. A Brief Description of the 'Generall Model.

The model is developed in Chapters 5and 6. It is a generalisation

of that of Beale et al. [4 ]. It assumes that the stochastic process
can be represented as a discrete time period Markov process with a
fixed, finite horizon. At the start of each time period, the algorithm
provides a control vector xt; during that time period the stochastic
environment supplies a random input vector yt and the state variable
evolves from vector gt_1 at the start of the period to qt at the end
of the period according to certain evolution equations. The revenue
accrued during the tth time period is a linear function of the state
vector at the end of the time period and the control vector applied

at the start of the time period. The algorithm is designed to maximise
the total revenue accrued from the first time period until the time
horizon. Given the initial data,the controls applied at the start of
each time period are a function of the state space at the end of the
preceding time period, thus preserving the Markovian structure of

the process. Therefore the revenue accrued during each time period
can be considered to be a function of the state vector at the start

and finish of the time period only.

2.2. A Symbolic Description of the Process.

The state vector evolves from its value at the start of the t th
time period, gt j, to its value at the end of that time period g™

according to the equations:
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"t "'t + #tgt-l * 8txt * Ctwt * Dzt

zt "zt *Vit-t *Lurt h

wt mmax (zt*0)

-yt + * ct

being a multivariate normal random vector with zero
mean and dispersion matrix Disp (y")

where

g° and yt are fixed vectors and Bt* cf Dt’ Kt’' Lt and M

are fixed system matrices.

The revenue accrued during the t th time period is

Vt ' dit xt +d2t qt

where dlIt and d™t are fixed system vectors.

2.3. The Random Input

The random input yt is driven by the multivariate normal random
vector et>and for fixed qt | has dispersion matrix Disp (yt). Now
there are two possible interpretations of the dispersion matrix. In
the "additive" case it is fixed, whilst in the "multiplicative" case

(Disp (y”))*2 is proportional to the mean of yt.
i.e. Disp (yt) =Yt P° Yt

*
where P? is a fixed matrix and ¥ is a diagonal matrix, whose i _th

diagonal entry is (yt)i and yt myt +



-210-

For the case (ii) interpretation of the formulae derived in
the previous chapter, the two models have to be treated separately,
whilst for the case (i) interpretation there is no need to distinguish

between the models of the stochastic input.

2.4. The Approximation of the Control VectorProvided by the Algorithm

As in the solution procedure of the general model, it is necessary
to approximate the control provided by the algorithm x™ by a linear

function of the previous time period state vector,
i.e. xt =x° + Nqt-1,

Xt being a fixed vector and the coefficient matrix Nt being derived
from an analysis of the final non-linear program solved by the
algorithm. This approximation is an essential part of the variance
estimation procedure of the general model algorithm and is discussed
in more detail in Chapter 6, Section 5.1. Using it the evolution

equations can be simplified and become

wt =max (zt,0)

where
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This is the form of the evolution equations which is amenable

to analysis and will therefore be the one hereafter used.

2.5. Further Approximations

Other approximations are used to split the martingale difference
function into more readily estimated components. There are two
possible approaches. If it can be supposed that the mean of the
distribution of g™ depends linearly on the outcome of qt ~ then the
case (1) interpretation of the terms of the formulae derived in
Chapter 7 is appropriate. Alternatively, if it may be supposed that
only the mean and not the shape of the distribution of gt depends
on the outcome of qt then the case (ii) interpretation of the
terms of those formulae is appropriate. Neither supposition will in
general be exactly true but either or both may hold approximately.
The latter approximation can intuitively be expected to be good in
the case where the additive model of the stochastic input is being
used; then the shape of the distribution of qt only varies with the
outcome of g™ 1 through the point of truncation of wi< Its usefulness
in the case where the multiplicative model of the stochastic input is
being used is, however, more doubtful.

The case (i) interpretation is treated in the next section. The
case (ii) interpretation is more complex and the succeeding three

sections are devoted to it.
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3. THE CASE (i) INTERPRETATION OF THE MARTINGALE DIFFERENCE FUNCTION

In this section the mean of qt will be supposed to be a linear
function of the outcome of dt_1* The merits and demerits of this
assumption have already been discussed; this section is devoted to
obtaining specific formulae.

As has already been mentioned in Chapter 7, Section 4.4, under
the above assumption all the quadratic terms in the quadratic martin-
gale difference function are identically zero, so here it is only
necessary to deal with the linear case.

It is therefore sufficient to provide formulae for the calculation

of and Vt where these are defined by:
dt = dg(Vt|qt_1)/dqt_1
and 0t =dE(qt|gt_1)/dqt_1

both being evaluated at qt_~ = E(qt_~"|q]j).
Approximating the control decisions by a linear function of the
state space at the end of the preceding time period and using the

notation of Section 2.4 it is seen that

where the differential is evaluated at qt_1 E(qt-11g1)-

Also

=d2) xt +d2t Negt_1 +dj gt

where the control decision xt is being approximated by xt * x° +
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Differentiating with respect to gt~ it is seen that

dE(Vtigt-1)/dqt-1 = Ned2t + dE(qtiqt- 1)/dgt-1*dit

so dt =N d2t +ptdlf

Therefore, the approximation necessary for the case (i) inter-
pretation of the martingale difference function, namely the approxi-
mation of E(qt|qt_1) as a linear function of gt 1 is one of approxi
mating E(Vt|gt_~) as a linear function of gt ™

The approximation suggested here is one of approximating each
component of wt by a linear function of the corresponding component

of zt in such a way that the variance of each component of wkt is

unchanged

i.e. wjt =~ z.~N + (constant)

where =f(zTt/ait), o™ and z*t being the standard deviation
and mean of (z-l1ql) and ~eing defined to be the positive

square root of
xGHI[L +28(x)] + {L +x2[I - i>(x)]}$(x) - [<i>(Xx)]2.

¥and +are the Gaussian probability density function and distribution
function respectively. In this way i~z.”~ and max(zit,0) have the
same variance. Defining to be the diagonal matrix whose i th

diagonal component is wt is approximated by

wt =f tzt + (constant).
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Although the covariance terms of wt are not, in general,
preserved by this approximation, it appears to work well in practice
as the results of Chapter 9 show.

Using this approximation it is seen that

E(wtiqt-i) =*t °t qt-1 + (constant) *

Hence

dE(Wt K - i)/dqt-i= (\ JO)T

which, when substituted into the expression for tt yields

H + Ji *tcl
and we still have

di » Neg2t + VE dit#

Notice that this derivation applies to both the additive and
multiplicative models, for the only relevant difference between the
two is in the estimation of a,”~. A procedure for the estimation
of the entire dispersion matrix of zt is given in Chapter 6 for both
the additive and multiplicative models, although it should be run
forward recursively from time period 2 instead of time period 1,
starting at the expected value of the first time period state variable, Vv
Here Z’t* is approximated by E(ZE() given by the model's solution from
which Nt and hence Jt (= Kt + LtNt ~ M) is also derived. Attention
is now directed to the case (ii) interpretation of the martingale
difference function where it is necessary to carefully distinguish

between the additive and multiplicative models.
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4. THE CASE (ii) INTERPRETATION OF THE MARTINGALE DIFFERENCE

FUNCTION: THE LINEAR MODEL

4.1. The Terms Requiring Calculation

In this section it is supposed that only the mean and not the
shape of the distribution of the state space at the end of each time
period depends on the previous statevector realisation. With this
assumption the components of the linear model of the expected future
revenue which require calculations are dt and it> which are defined

by

As in Section 3, the key calculation in the estimation of the

above terms is

for it was shown there that

dEqt(qtlqgt- 1)/dqt-1 = (Ht)T + dE(wtlqt- 1)/dgt-1(Ct)T

and dEg™(Vt |gt_1)/dqt_1 » (Nt)T + [dEiqJg”~/dgq”™ ™

Taking expectations over qt_j for given g™ and setting
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4- THE CASE (ii) INTERPRETATION OF THE MARTINGALE DIFFERENCE

FUNCTION: THE LINEAR MODEL

4.1. The Terms Requiring Calculation

In this section it is supposed that only the mean and not the
shape of the distribution of the state space at the end of each time
period depends on the previous statevector realisation. With this
assumption the components of the linear model of the expected future
revenue which require calculations are dt and V& which are defined

by

and Dt =  t(dEqt<dt I<It-l/d<t-1fql) e

As in Section 3, the key calculation in the estimation of the

above terms is

for it was shown there that

E t<itlVi)ld>t-i= )T * EstlI'<t-i>'dV i (ct)T

and dEq (vtIV 1)/dgt-1 " *N*T * [® qtllt-1*/dqt-1>dIt »

Taking expectations over qt_~ for given g™ and setting
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1t follows that

\ " wtsT » », tict>T

and  dt = (Nt} d2t + VEtdlf

4.2. The Distributions of zt and zt

Before further progress can be made, it is necessary to study the

distribution of zt and zt, where

zt + et
n
and z* +
Here et is a zero mean normal random vector with dispersion matrix Disp (yt).
14
For fixed q ™, is, of course, fixed, but consider the distribution of
zt when gt _~ is considered to be a random variable conditional on g™
Y

For this purpose it is expedient to approximate the distribution of z

given gl by a multivariate normal distribution with mean

zt " E(*tlgl) = E(ztlql}
N
and dispersion matrix Disp (zjq,).

Introduce some convenient notation. Let

A
rit (Disp (Zt-Iqgi))il

Mt s (°1sP </))11

and  ip it o+ osit

then o~ is the i th diagonal entry of the dispersion matrix of zt given
g”~. For convenience also define the diagonal matrices St, |t to be those

whose 1 th diagonal entry is s~ and respectively.
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Sinee wt is defined by
wt mmax (zt>0)

it is easy to show that

where st is a vector whose i th entry is sit and G and F are

functions from JRn ‘mRn x JRn (n being the dimension of z”), defined

by
CF(x)fl m f »(x,) 1 =]
1 0 i T
and - i mj
lo 1tj

$being the Gaussian probability density function and ) = ( $

-00

Differentiating with respect to gt ~ one obtains:

dE(wt |qt-i)/dqt.i =~ (S ;1 zt)st)/dqt |
+ cKGis; 1 zt)zt)/dqt_r

Calculation of the terms on the right hand side depends on the model
of the random input used. In the "multiplicative” case st depends
on gt whereas in the additive case it is fixed. The latter version

is simpler and is treated first.
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4.3. The Additive Model of the Random Input

In this model, the dispersion matrix of yt, the random input
is fixed, i.e. independent of the previous time period state vector

qt_j. Thus sit is independent of qt ~ and

(d(F(s;* it)st)/dqt. 1)1

e —(Zjt/Sjt)»(zjt/Sjt) 32.t/3,n,r

Here Zjt and git_1 are the j th and i th components of zt and gt j

respectively.

Also (diGiS; 1 zt))/dqt_1)il
= a(G(st zt™zt~ Jgit-i
AV - Ny N (Mt st (N sjt) >

whence, adding the two expressions above, the rate of change of

E(wt|gt with respect to qt 1 is seen to be:

(dE(wt |gt_1)/dqt_1)1j - <3ijt/3qgn . 1)*(zIt/SIt).

N

|
But zt =zt + qt-1, therefore

Rjt/Mu-i = and

dE”Wtict.i™ det-i * jt G'st zt™*
Regarding z” as a random variable in the manner discussed in

Section 4.2, it is seen that
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EiGis; 1 zt)) =GU"1 z*).

Details of the calculation are given in Section 6.1.

Therefore

where the expectation over g™ 1 is taken conditional on g~ This
expression for ®wt may be substituted into those already derived for

tt and to yield:

A suitable procedure for the estimation of 2™ and z* is discussed in
Section 4.5. Having thus estimated Pt and for t =2,3,...,T formula
FI derived in the previous chapter may then be used to calculate the
first linear martingale difference function of the martingale control
statistic. Notice the marked similarity between the formulae for

Pt and derived in Section 3 for the case (i) interpretation and
those derived in this section. Those of Section 3 are those of this

section with

replaced by
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1-1
1t]

> being the Gaussian distribution function and f being defined in
Section 3. They both have similar properties in that for fixed

both and (Gi™ 1 zt7ii tend to 1 as z?t tends tO infinity and

to zero as z*t tends to minus infinity.

It is now necessary to compute t?t and d for the "multiplicative

model of the stochastic input.

4.4. The Multiplicative Model of the Stochastic Input

Here, the dispersion matrix of yt and hence st is not fixed

but is linearly dependent on

S ° is a fixed diagonal matrix whose i th diagonal entry is s°t

and is a diagonal matrix whose i tr™diagonal entry is the i tji

component of yt>

Therefore

Differentiating E(wt|qt j) with respect to qt 1 the following

is obtained:
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HE(WE Jot.i)/<Iqt.1 m (S° M)T FfS™L zt> * oj S(Sj' z{).

Regarding qt and hence zas random variables, it is seen that
EfFIs;1 1t» - str;1HQq1lz*

where the expectation is conditional on Details of the calculation

are given in Section 6.2. It has already been shown that the expect-
1% 1
ation of G(St zt) conditional on gl is G(S™ z*) so

ms?v V tlRKEilzt> *

When substituted into the expressions fori>t, d® in terms of V ,

this yields
\ *Ht & fu;1z*>*j] gu;1lz*»cj
and dt =n) d2t * Ctdlt.

Again, once and z* have been estimated the above expressions
provide a ready way to estimate V™ and dt and hence the first
martingale difference function via formula FlI and its associated

recursion given in the previous chapter.

4.5. Estimation of the Terms in the Formulae for £t and dt.

Once Nt has been estimated, Jt and Ht can be calculated from
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Jt =Kt +Lt NN ' M

Ht = At +Bt Nt + Dt Jt*

since At> Bt, Dt> Kt, Lt and M are system matrices. St and Zt are
diagonal matrices whose i th™diagonal term is s-t and a™t> where
sit is the standard deviation of the i jth component of the t time
period random input whilst is the standard deviation of the i th
component of (27N IPi)e

z* is approximated by E () given in the model's solution from
which is also derived, o~ is found by the recursive procedure
in the model's solution algorithm for the estimation of the dispersion
matrix of zt and just taking the square root of its i th diagonal
term. However, the recursive procedure must be run forwards from time
period 2 instead of time period 1, starting at the expected position

on the state space at the end of the first time period.



5- The Case (ii) Interpretation of the Martingale Control Statistic:

The Quadratic Model.
5.1. The Terms Requiring Calculation

In this section concern is with the construction of a quadratic

martingale difference function of the form

VC1 = VAC1 + vBcr

VBC1

VBCL (gl " V »

=«((ij]) +(dj - gpTan) + (g~g”Bignighg”

where o™ = E(Q").

Construction of the linear coefficient, a{g") is identical to
that of the linear martingale difference function, treated in Section
4. Construction of the quadratic matrix coefficient, B(q”), is
achieved via recursions given in the previous chapter involving

dt. Pt» d[ and Pj., there being defined by

\&t = Eqt_1(d2Eqt (gt |[qt-1)/dqgt-1Igl)*
Formulae enabling dt and Pt to be calculated have already been

derived in Section 4, so it remains to calculate <(@"), d. and Pj.
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The constant term «(cjj) must be calculated exactly as any
errors would lead to a bias in the control statistic i.e. E(VBC1) t O,
which would destroy its usefulness. It was shown in the previous
chapter that the necessary value of <(g”) that ensures unbiasedness

of the control statistic is

-trace {Disp (ql1).B(q1)},

where Disp (g”) is the dispersion matrix of the first time period state
variable g~ Fortunately the formulae given in Sections 5.1 and

5.2 of Chapter 6 for the estimation of Disp (qt) in terms of Disp (qt 7),
Disp (yt) and Disp (zt) gives an exact value for Disp (qj), for Disp (qQ)
can be taken to be identically zero, so z1 is normally distributed with

dispersion matrix Disp (y”, which is known exactly and Disp (g7 is

(Dj + CjUjjDIsp (y1)(D1 + ClU1)T + Cl[D1sp(wt - Disp (y”™cj

where is a diagonal matrix whose i th diagonal entry is
$(z-j//(D1sp(yj)).li)t4 being the Gaussian distribution function and
Disp (wj) is calculated exactly from the formulae derived in Section

5.3 of Chapter 6.

5.2. The Additive Model of the Random Infrut

The form of the evolution equations derived in Section 2.4 is

"t m"t ¢HV i *ct\' Diet

It Mt* JtV i met

and wt = max (zt>0),
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where q*, z* are fixed vectors and Ht> Jt are considered to be fixed
matrices, et is a zero mean multivariate normal random vector with
dispersion matrix Disp (yt).
Define
Uit m E(-2«wt |ot. DAL o)
then

n  mEd2E(qt|<t.)/dqtfi|qi)

Kt d

i.e. e(aE(gktht.i)/5qlt.iSfljt.ih 1) * J

Also in Section 3 it was shown that
Vt = d2t xt + d2t Ntgt-1 + qlt qt*

Xt being a fixed vector, and so
d * E(d2E<vt[ot. 1)/dgtfL) - P;t di{
i.e. E(a2E(Vt|qt.1)/8&n . 13¢Jt. 1|ql) - J ttjk Cdlt >k
k

Therefore the key term in the estimation of Pj. and dj. is V~A. It

is to the estimation of that attention is now directed.

In Section 4.3 it was shown that
3
3E(wktlgt-P/3git-1 = Itki *~kt kten
$ being the Gaussian distribution function, z”, st being the mean

and standard deviation of zkt for fixed qt_1>
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Differentiating the above expression with respect to g..

it is seen that
3W K - 1)/3W  jt -1 m *< V skt>(» V 3V i)1/skt
Atk) Mtk /N KktAMW Nkt *

since C(It>Kj-

Regarding g~ and hence as random variables it can be

shown that

E<*<Vskt>l'i) m(Skt/Okt)»(!ki/Okt>-

N
where zkt Is assumed to be normally distributed and z*t, ckt are the

mean and standard deviation of zkt for fixed g~ Details of the
calculation can be found in Section 6.2.

Therefore

AWENiK * A K i A j A zkt/akt) 1/ok f

Substituting this result into the equations for dj. it is seen that

(°Ajk =| NA i N EETIt/ G, Valith Ctrkt

ad U tj m 1(1>i)tjk(<lt) k-
k

Once o™t and z*t have been estimated the above equations provide
a convenient method of estimating Vit and d Calculation of the quadratic
coefficient Big”) is then achieved via the recursion formulae F2 derived

in the previous chapter. It is now necessary to study the multiplicative

model of the random input.
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~Ne4, The Multiplicative Model of the Random Input

In the multiplicative case, sit, the standard deviation of zit

for fixed g~ 1s not fixed but a linear function of

l.e. St - S°(y° * H, q~j).

st, s° being diagonal matrices whose i th entry is s.t, s.°. s ° is
fixed as is the vector y°. As in the additive case discussed in Section

5.3 the key term in the estimation of and is PN:

~trijk  E E@kelgt- 1°3glt-13gjt-11g 1

Now, it has already been shown in Section 4.4 that for the

multiplicative model

SE('ktlqt-1)/3gn -1 " *Rt'kt + f, kt™ kt*

* |°t>kl«(gkt/skt)
where Rt =S° M>

Differentiating the above expression with respect to g~ »

it is seen that
IE<«ktlgt-i)/iW  qjt-i

tI'VKIl ' *2Kt/sktARAKIN Itrk) " Akt/sktr*V Kj-,s N |t/ W
Regarding gt~ and hence zt as random variables for given q®

it is seen that
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eOkt = EN zkt/skt, Ixl) = (skt/akt” (zkt/akt}
elkt = E((zkt/skt)i(zkt/skt)Igl) = ~skt/akt” zkt/akt™zkt/akt™
e2kt " E((\ t/skt)2™ zkt/sktH<li) " (rkt/akt™eOkt + < W Okt,elk f

Again, zE™ and are the mean and standard deviation of z” given

. 2 . . . v
N» rjcg‘=ak12. - Skt, and details of the calculation which assume z
to be normally distributed are given in Section 6.2.

Therefore, taking expectations it is seen that is

AGD)Ki(Jt)kjeOkt * ~ tW 'V kj + (RtW Jt)kl]elkt
+ /REAKIAREINKje2K tA 1/ skt

Therefore (Dj.)~k may be expressed'by

I {(J)*I('VjLjeOU " C(R),i(Jt)ilj + "RAJAINEI"elEL

+ RINEINREN je2EtN 1/SENCKE

and K),j * | @>1kad,)|t
k

As in the case of the formulae for the terms in the linear mart-
ingale difference function, is a fixed system matrix; having found
Nt from the model's solution, Jt 1s determined from a combination of
Nt and given system matrices, z* is approximated by the value of E(zt)
given by the model's solution and a”t is found by running the recursive
Disp (zt) evaluation procedure of the model's solution technique forwards

starting at time period 2 instead of period 1 and then setting

«It " (°isP Ct>>ir*
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6.  SOVE NECESSARY CALCULATIONS

6.1. The Calculation of E($(z/s)).

Let <« be the Gaussian distribution function and z a (univariate)
random variable, normally distributed with mean z* and variance r2. Let

s be a real positive constant. Then it is required to calculate

E($(z/s)) =) *(e/s)d*(U-z*)/r). 1)
feF

Let <|>(x)y;p) be the standardized bivariate normal distribution

leep (x,y;p) =— -——-Yy exp-——-—- (X2 - 2pxy +y2}.
2ir/(1-p2) 2(1-p2)

Consider the double integral |, defined by

I = [ 4>(5»n;p)dndE.
' 5eF In"™-x

Changing the order of integration and integrating over £ e R it is

seen that
I3 *(x). (2)
However integrating over n*-x first one obtains:

'3[ 4>9[  d$((n-pC)//(I-p2)dE;
3 [ *(«*((p5+x)//(1-p2))d5

=1 Q"R h (3).
o//(i-p)



-230-

Return to the original integral (1). Changing the variable of

Integration It is seen that

E(d>(z/s)) - f . (4)
J EeF r/S

Compare (3) with (4). The integrals are the same if
x//(l-p2) = 2Z%/s and p//(I-p2) =r1/s .

Solving the latter for p it is seen that
p2 = (r/s)2/(1 + (r/s)2).

Whence x = 2/5/(1+ (r/s)2) =z*//(r2 + %2).

Therefore, comparing (4) with (2) it is seen that

E(4>(z/s)) = i(zV/r2 +s2)).

6.2. The Calculation of E((z/s)n4>(z/s)) for n =0,1,2.

2
Again, z is a random variable distributed as N(zV )ands is
a real positive constant. $€is the Gaussian probability density function.

Set In 2E((z/s)% (z/5s))
A U/sA(E/s)d$((C-z*)/r)

° J ((r/s)n + z*/s)n<f>(r/s)n + (z*/s))<Mn)dn,

by change of variables. Rearranging the exponents of the two <*s in

the integrand it is seen that
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_ - « "o ool d
i, me— fr) dnj“ *ri ‘(S//(rZ« 2) Jan

(r-ri-rs_Z) /(rIZ+syZ)) (/—(r_r'_—s72—))n n

where J = U+a)%(¢)dc
JCeR

and a m Sz*/rj(r2+52)
Integrating Jn by parts 1t is seen that

Jn = -U+a)"'l dt(C) +al EI-for na?2
n_

n-i)Jn2 +alJnl, for n* 2.
(n-i)in_2

Now JQ =1 and Jj » a, therefore
J2 =1+ a2

Substituting for Jn the following results for 1Q 2 and |2

are inmediate:

o =y—T7 ——fT— o(—it*7 )
1 r+sz /(r+s; /(r +s2)

2 3
d “ 9 N ~ ~)_Q _7~ _~ —_ N N
- h2 r§+s% /(r \+§ZB " r\%( rsZ+sZ7) / (r§+szo) ’9 (rZé-gZ%_)
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7 . CONCLUSIONS

In the previous chapter a martingale control statistic was
proposed to improve the evaluation of approximate stochastic
scheduling algorithms by simulation. Although the control statistic
was decomposed under certain assumptions into simpler components,
the calculation of these components is specific to the process being
modelled and the algorithm studied. Formulae enabling these components
to be estimated for the model of Chapter 5 and solution algorithm of
Chapter 6 have been derived in this chapter for both sets of assumptions
necessary for the control statistic's decomposition. Numerically,
the formulae enable the martingale control statistic to be very rapidly
estimated by comparison to the time required to run the solution
algorithm.

Although it has been implicitly assumed that the solution
algorithm described in Chapter 6 is being used, the formulae derived
herein can be applied to any solution technique of the general model
of Chapter 5, provided that the rate of change of the control decisions
with respect to changes in the previous time period state variable can
be estimated. Estimates of the dispersion matrices necessary here
can then be made by running the recursive dispersion matrix estimation
procedure described in Section 5 of Chapter 6 forward from the second

time period.



In the next chapter a special case of the general model is
considered, namely the production/inventory model of Beale et al. [ 4].
The formulae derived here are then applied to the construction of the
martingale control statistics for four different solution algorithms.
Their performance on a simple four period problem is then evaluated
by simulation and the effectiveness of the control statistics can

be seen.
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1. INTRODUCTION

In this chapter the theory developed in chapters 7 and 8 is put
into practice. Four production planning algorithms were tested by
replicative simulation on a simple two product, four period example.
The example is that provided by Beale et al. [4 ]. The four
algorithms comprise the algorithm developed for the general model
in chapter 6, the "full" method, of Beale et al., their "first pass"”
method and ordinary linear programming ignoring all stochastic
elements.

The production/inventory model which the algorithms of Beale
et al. are designed to solve is a special case of the general model
described in chapter 5. Although their solution procedures differ
from that developed for the general model in chapter 6, the formulae
derived in chapter 8 for the construction of martingale control
statistics can still be applied. With care they can even be used
with the ordinary linear programming method.

Thus it is possible not only to compare and evaluate the
algorithms, but also to investigate the practical efficiacy of the
control statistics developed in chapter 7. Four separate control
statistics were tried, these being that using the unbiased estimation
of the optimal fixed control variate coefficients (developed in
chapter 7, section 2.3), the case (i) martingale control statistic
(developed in chapter 7, section 4.3), and the case (ii) martingale
control statistic in the linear and quadratic versions (developed in
chapter 7 sections 4.3 and 4.4). The first mentioned control statistic

will be referred to as the "fixed coefficient" control statistic.



The production/inventory model of Beale et al. is described,
briefly, in section 2 where it is shown to be a special case of the
general model. The simple example of it on which the four algorithms
are tested is given in section 3. The results of the simulation
involving 100 independent trials are given in section 4 and con-

clusions drawn from them in section 5.
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2. THE MODEL ON WHICH THE ALGORITHMS MERE TESTED AND THE CONTROL

STATISTICS USED

2.1. The Production/Inventory Model of Beale et al.

The algorithms were tested on the model of Beale et al. [ 4 ].
It is necessary to explicitly show that this model is, indeed a
special case of the general model and this is now done. Using their
notation, let a, p” s and d™ be the sales in, production in,
stock level at the end of, and demand in period t, respectively.
Identify the ith® product with the ith component of these vectors.
Let e® be the excess of supply over demand in period t. Let P,
Cpt and C$t be vectors of unit selling prices, production costs and
inventory holding costs in time period t. Then their model may be

stated:

Maximise E T PIat - Cp¥ pfc - C$¥ st} over pt,at,st
t=I

subject to the production constraint

ITpt 5 TCAP(t)’

where | is a vector of I's and TCAP(t) is the maximum permissible total

production in time period t, and subject to the evolution equations

at =st-1 +pt ' ft

et =st-1 tF
ft = max (et,0)

and dMt =B$t - Bt a~, dvt being the mean demand in time period t,
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given sales in the previous period. The state space is thus
represented by (a”, st).

In representing the model of Beale et al. in this way advantage
has been taken of the fact that in most practical applications,
particularly the simple example given in section 3, it is always
more profitable to meet as much demand as possible than to withhold
stock that could be sold.

The model used for the demand is a version of the multiplicative
model for the stochastic input of the general model. They propose

that

where d”~ and dMit are the ith components of dt and dMt respectively.

eit and nt are indePendent real Gaussian random variables, and Cit,

Rit are known constants. Thus if the dispersion matrix of dt>

Disp (d”) has ith diagonal entry sit then

sn msi? dcku
a'd sitm'(‘it2* Ru12)
Indeed Disp (dt) may be expressed by

(Disp (dt))ij % dMit(Pt).j dMjt
where
<n +Rit2) 1 3]

cit gt 1t



They approximate the production decision as a linear function
of the last time period sales and the stock level at the end of the

last time period.

pt =pt + APtl at-1 + Apt2 st-r

for some fixed vector p°. Using this notation, the matrices Jt and
needed in the estimation of the martingale control statistic of

chapter 8 are

(Aptl ' Bt apt2 * 1)
and mptl éPtZ + 1 respectively.
| o 0

The system matrix Ct of the general model is

-1
\I

and the cost coefficient vectors dit, d2t of the general model are

and -Cpt respectively.

The vector represented by zt in the general model is simply et,

the excess of supply over demand.



-239-

The "full" method or solution techniques of Beale et al. 1s
similar to the appropriate special case of that developed for the
general model in chapter 6. The differences are discussed in
section 7.2 of that chapter.

The "first pass" method of Beale et al. is simply the first
stage of the "full" method. It corresponds to solving the first
non-linear program of the full method, which has initial minimal
estimates of the state variable variances.

The ordinary linear programming approach is one of considering
all the random variables in the model to be equal to their mean

values and ignoring their stochastic variation.

2.2. Construction of the Control Statistics

The "fixed coefficient" method is the simplest for it only
requires the identification of suitable control variates. Since, for
a given algorithm, the process is Markov and the revenue a function of
tne state variable realisations it is natural to use these as control
variates. But the raw state variable realisations cannot be used
directly as their mean is not, in general, known. This difficulty
is circumvented by noticing that at the start of any time period, t
say, given the present state vector g™ and controls xt> the
distribution of g™ and in particular its mean is known. So instead

of using the raw state vector values (q , t-1,...,T} as control variates,

the set

{(qt - E(qtigED))*1=1...T>



is used. This is straightforward and, as can be seen from the
results of section 4, effective in practice. Bias control was
achieved in the manner of chapter 7, section 2.3 by not using the
data from a trial in the estimation of the dispersion matrix (of
the control variates) and covariance vector (between the control
variates and the revenue) used to determine the control variate's
coefficients for that trial. Advantage was also taken of the
efficient computational procedure derived in that section.

The case (i) martingale control statistic, which assumes a
linear relation between the state space realisation at the end of
one time period and the mean of that at the end of the next, is the
simplest of the martingale control statistics. Substitution of
the system vectors and matrices given in the preceeding subsection
into the equations derived in section 3 of chapter 8 yields the
necessary components of the recursions given in chapter 7 section
4.3 which compute the control statistic. However, attention must be

paid to the calculation of

E(e.tlal =E(ax), s =E(s])),

the mean of the excess of supply over demand for the ith product in
the t th time period, given that the state space at the end of the

first time period is equal to its mean value, its variance

Var(eillal = E(ai)*si =E(si))

and the coefficient matrices of the production control approximation

(APtl  APt2 /™

This is discussed below.
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The case (ii) martingale control statistic, which assumes
that only the mean and not the shape of the distribution of the
state vectorat the end of one time period depends on the value
of its realisation at the end of the preceeding time period, is
computed by the recursions given in sections 4.3 and 4.4 of chapter
7, the components of which are calculated by substitution of the
system vectors and matrices into the equations given in chapter 8,
sections 4.4 and 5.4. Again attention must be paid to the estimation
of those quantities necessary for the construction of the case (i)
martingale control statistic, and in addition, to
var(d.t|lal =EUj), sl =

E(eit]la =E(aj), = Efs”) is approximated by the mean value
of et returned by the algorithm, except in the ordinary linear pro-
gramming method, where the returned expected value was too crude for

the control statistics to realise their full potential. There it was

approximated by

sn-i +in - an

where dl..t is the mean demand and pl{ the mean production of item i

in time period t returned by the algorithm and s™t_~ is defined by

sit-1 “ °it-1 f(elt-1/alt-I>
and f(x) = 4>(x) + xi>(x),

$ ,4>being the Gaussian probability density function and distribution

function respectively, and a”jbeingan estimate of var(e.£_"aj = E(aj),

Sj = E(Sx)).
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Since an estimate of var (dit) is returned by the algorithm
(it being a known proportion of E(d-t)), attention is directed to

the estimation of var(e.t|al =E(al), Sj =E(s )).

The procedure for doing this is the same for all three algorithms
being tested. The last non-linear program (or linear program) of
the algorithm is run with the addition of the "fictitious" variables
described in chapter 6 section 6.2. This enables the matrices
Aptj and Ap”~ to be extracted from the program's solution. The state var-
iable at the end of the first time period is then set equal to its
mean value (so its dispersion matrix can be taken to be identically
zero) and the recursive variance estimation procedure run forward
from the second to the final time period. This yields the dispersion
matrices of the et's, but they are conditional on the state space at

the end of the first time period being equal to its mean value
i.e. Disp (etlal =E~™), sl =EN)).

The martingale control statistics can thus be applied to all
four algorithms under consideration. The results of their use on

the simple example below are given in section 4.



3. A SIMPLE NUMERICAL EXAMPLE

The example on which the three algorithms were tried 1s that
of Beale et al. which is of a simple two product/inventory system.
The two products are produced over four time periods. There is an
upper bound on the total production in each period. Demand for
the two products is uncertain; only its probability distribution
is known. The stock available for sale in each time period comprises
the stock at the start of that time period and the production during
that period. Stockholding costs are proportional to the stock remain-
ing at the end of each time period after that period's sales have

been made. The data is as follows:

Product | Product Il

Unit production cost (all periods) 5.0 2.0
Unit storage cost (all periods) 2.0 2.0
Unit sales price (all periods) 10.0 6.0
Mean demand in period 1 20.0 15.0

2 25.0 15.0

3 35.0 15.0

4 45.0 15.0
Unit value of the closing inven-
tory 10.0 6.0
Initial stocks 10.0 10.0

Total productive capacity is 50.0 units per period

The demand is assumed to be normally distributed with dispersion
matrix proportional to the square of the mean. The coefficient of

variation was assumed to be 0.224 for each product in each period
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and the correlation between products was assumed to be 0.8 in each
time period. More precisely this corresponds to setting CMt =0.2
and Rit =0.1 for all i,t in the demand model given in section 2.1.
The above example may be considered to be a "no dependence"
case. In addition, a variant called the "dependence" case in which
half the demand for product | is directly proportional to the sales
in the preceeding period was considered. For the demand model given
in section 3.1, this means that Bllt has values 0.2222, 0.6250,
0.7000 and 0.6429 for t =1,2,3 and 4 respectively. All other Bi'j"t
are zero for j ¥ 0. It has been assumed that the initial sales of
product | (i.e. sales in the period immediately preceeding the

first) were 45.0 units.



-245-

4. THE RESULTS

The results of testing the four algorithms each on 100
replicative simulation trials are summarised below. Those for the
"no dependence" case are given in Table A and those for the "dependence"
case are given in Table B. The same random number seed was used for
each set of 100 trials, so the results for each algorithm are highly
correlated. This is an advantage in making comparisons between them.
The notation used in the tables is as follows.

Algorithms A,B,C and O are the solution method developed for
the general model in chapter 6, the "full" method of Beale et al.,
their "first pass" method and ordinary linear programming ignoring
all stochastic elements, respectively. A-B denotes the extra revenue
that would be accrued from using algorithm A rather than algorithm B;
similarly for A-C, B-C, and so forth.

Control statistics 1,2,3 and 4 are those of the fixed coefficients,
the linear martingale assuming the case (i) conditions and the linear
martingale and quadratic martingale assuming the case (ii) conditions
respectively.

y is the estimate of the expected revenue made after 100 trials
and a is its estimated standard deviation. The "returned objective
function value" column shows the estimate of the expected revenue

given by the algorithm itself.
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The results enable some conclusions to be drawn about the
efficiacy of the control statistics and of the algorithms themselves.

There 1s little difference 1n the performance of the three
algorithms that take some account of the stochastic variability of
the problem, and they all appreciably out-perform the ordinary
linear programming method which does not. However, the algorithm A,
that was developed for the general model does significantly out-
perform the "full" method of Beale et al., B, in the "no dependence"
case. The difference in the expected revenues made by the two was
estimated at 0.23 by the use of the "fixed coefficients" control
statistic with a sample standard deviation of 0.054. But this is
only a very small difference in the expected return of approximately
859 consequent from using either algorithm.

The penalties incurred by ignoring the stochastic variation in
the problem, as comparison with the results for the ordinary linear
programming method shows, can be considerable. Moreover, the dis-
crepancy between the expected revenue returned by the algorithm and
that which was consequent from actually using it is very large. This
shows that the optimal objective function value given by a deterministic
model of a stochastic problem may be seriously misleading.

The control statistics were surprisingly effective, yielding
reductions in the sample standard deviations of up to a factor of 25
in the "no-dependence" case and 15 in the "dependence" case. Their
relative efficiacy varies in a way that might be Intuitively expected.
With the exception of the quadratic one, those which involve the con-
struction of a martingale from information about the process provided

by the algorithm itself perform better, the better the algorithm. In



particular they out-perform the control statistics based upon the

"fixed coefficients"” of the control variables for the three algorithms

which take account of the stochastic nature of the system. If the

revenue accrued from each trial is assumed to be normally distributed,

then the F-test can be used to provide bounds in the comparison of

the sample variances, if they are assumed to be independent or positively

correlated. Such comparison reveals that the case (1i) martingale

control statistic (that based on the assumption that only the mean and

not the shape of the distribution of the state space in each time

period depends on its realisation one time period before) is significantly

better than the case (i) martingale control statistic (that based on the

assumption that the mean of the state space at the end of one time

period is a linear function of its realisation one time period before)

when it is applied to the solution algorithm of the general model (A)

and significantly worse when applied to the ordinary linear programming

method (D). Significance in both instances is at the 95% level. This

indicates that under a good planning algorithm the case (ii) assumptions

about the process may be more realistic than the case (1) assumptions.
The performance of the martingale control statistics based upon

a quadratic model of the process is disappointing. There may

be two reasons for this. In the approximate model of the

process made in the construction of the martingale control

statistics, the first derivatives of the expected future revenue with

respect to changes in the next time period state space realisations may

change discontinuously when the basis of the approximate model changes.

Also the quadratic coefficient matrix is derived from the backwards

recursion, it being T where
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rt-i* 4t * W t T-

See section 4.4 of chapter 7 for a detailed explanation of the terms
and its derivation. Essentially, the matrices At and Vt have to be
estimated and in practice all the A's and therefore the r's are negative
semi-definite. Thus errors in the estimation of the P's build up to
yield a final more strongly negative semi-definite than it should
be. In other words any errors in the estimation of the quadratic

coefficient matrix lead to a strong negative semi-definite bias.



5. CONCLUSIONS

Four production planning algorithms have been tested by replicative
simulation on two variants of a simple two product, four time period
example of a production/inventory model. It has been shown that this
model is a special case of the general model of chapter 5, and that
the two examples can be regarded as special cases of the "additive"
and "multiplicative" variants of the general model. The theory developed
in chapters 7 and 8 on the use of control variates has been put into
practice. The simulation experiments therefore also provided a test
of the control variates.

The results show that the control variates are indeed effective.
No particular set of control statistics consistently out performs the
others, although the quadratic martingale control statistic is
uniformly worse. As might be expected, the control variates perform
better on the simpler "no dependence" or "additive" example in which
the dispersion matrix of the demand is fixed than on the more complicated
"dependence” or "multiplicative" example in which it is directly
proportional to the square of the mean. The standard deviation of
the estimate of the expected revenue was reduced by up to a factor of
25 in the former case and 15 in the latter.

Although there was little difference in the performance of the
algorithms that took some account of the stochastic variability in the
problem, they appreciably out-performed the deterministic linear pro-

graming method. This indicates that there may be severe penalties in
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ignoring the stochastic variability of demand, but that first order
departures from the optimal first time period decision values may

only make second order changes in the actual expected revenue con-
sequent on using them in practice. This is a desirable feature of

the system and indicates that approximate planning algorithms may

be reliable.

However, on an example with more time periods, say a monthly one,
the more sophisticated algorithms which re-estimate the dispersion
matrices of the random variables would out-perform the simple
stochastic algorithm which does not. Unfortunately, simulation

experiments on a monthly model would be expensive.









1. PRODUCTION/INVENTORY MODELLING

This thesis is concerned with the potential use of stochastic
programming models for medium term production planning. This involves
tactical decisions, typically the determination of monthly production
targets over a planning horizon of a year. Strategic planning problems
such as those associated with the construction of new production facilities
have been specifically excluded as have short term planning problems
associated with day to day factory management.

There are two principal problems associated with medium term
production planning. The first is the balancing of frequent changes
in production rate against high inventory levels in order to cope with
a fluctuating, but known, demand. The second is the determination of
the optimal buffer or safety stocks in order to cope with uncertainties
in future demand requirements. Both of these problems can be approached
by the study of the appropriate mathematical model of the production/
inventory system. Those associated with the latter problems must be
probabilistic in the sense that they incorporate random variables into
their formulation, and more general in the sense that they can be easily
extended to handle the former problem, whereas the reverse is not the case.

Probabilistic planning models fall naturally into the ambit of
stochastic programming. Although this field has received much attention
in recent years, practical applications of stochastic programming models
to production planning problems are few. This is because exact solutions
to stochastic models of general multi-commodity, multi-time period planning
problems are computationally intractable. Accordingly this thesis develops

a good approximate solution method to a general production/inventory model.
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2. THE GENERAL MCDEL AND ITS APPROXIMATE SOLUTION TECHNIQUE

The model proposed in this thesis for medium term production
planning is a multi-period, multi-commodity model and is an extension
of that of Beale, Forrest and Taylor [ 4 ], Under certain conditions,
which would normally be met in practice, it is convex and is a stochastic
linear program. The approximate method of solution developed for it
is also based upon the work of Beale et al., but it is more flexible,
contains fewer approximations, and is procedurally improved. A problem,
termed the reduced problem, is derived from the full stochastic problem.
The reduced problem involves the expected values of the random variables
in the full problem. |f the control decisions (for example production
targets) are unrestricted then it is equivalent to the full stochastic
problem. If the control decisions are restricted, then the constraints
on the reduced problem are implied by but do not imply the constraints
in the full problem, and the reduced problem is an approximation of the
full problem. The reduced problem is tackled by making normality assumptions
about the distributions of some of the random variables in the problem. It
is then necessary to estimate the variability of these random variables
and this is done iteratively by solving a sequence of such problems. The
solution to each providing better information about the stochastic process
being modelled enabling a better estimate of the variability to be mede
for the formulation of the next. Computational advantage can be taken
of the similarity between each problem in the sequence and numerical
experience suggests that convergence is rapid, only three iterations

being sufficient for a four period example.
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3. THE EVALUATION OF APPROXIMATE SOLUTION TECHNIQUES

It is important to assess the relative impact of the approximations
made in approximate solution algorithms of stochastic models. In this
thesis three approximate algorithms were compared with each other and
deterministic linear programming. The method developed for the evaluation
of approximate techniques is that of replicative simulation. It divides
into a number of independent trials. In each trial the environment within
which the stochastic models operate is simulated on a computer. Pseudo-
random numbers are used to provide realisations of the random variables.
The production/inventory system then evolves subject to these realisations
and under the control of the approximate algorithms from the first time-
period in the model until the time horizon, when the utility or revenue
gained from using the algorithm is apparent. The trial is repeated a
large number of times so that attributes of interest within the process
can be estimated statistically. However, the accuracy of this method
only improves as the reciprocal of the square root of the number of
trials so that each trial may provide such an inaccurate estimate of
the attribute of interest that convergence may be unacceptably slow.

To improve the accuracy of each trial control statistics have
been developed. These fall into two distinct categories. The first
in which data from all the trials is used in the estimation of the best
coefficients of the control variables is fairly standard, although a
novel way has been suggested for eliminating the resultant bias. To
be effective this method requires many more trials than there are control
statistics. Since the control statistics suggested here are the deviations
of the state variables from their expected values one time period previously,
the use of this method may involve a prohibitively large number of trials

if the number of time periods and/or commodities in the problem is large.
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The second type of control statistic developed involves the
construction of a martingale control statistic for each trial from
information about the stochastic process provided by the algorithm
being tested. The construction of these control statistics does not
require data from the other trials and so realises its potential for
the improvement of the accuracy of the statistical estimates of the
attributes of interest whatever the number of trials made. It is
therefore possible to use them if it is desired only to make a small
number of trials compared with the number of commodities and/or time
periods in the problem. So it is possible to use them to make statistical
estimates of attributes of interest in very complex examples from a
small number of trials.

As might be intuitively expected, the efficacy of the latter set
of control statistics depends on the merit of the algorithm being tested.
For the solution technique to the general model described in Section 2,
in practice they perform better than the former class of control statistics,
even when the number of simulation trials is large.

The results of the simulation trials indicate that there was little
difference between the three approximate algorithms that took some account
of the stochastic nature of the process being modelled, but they all out
performed the deterministic linear programming method which did not.
However, they were tested on four period examples. If there were more
time periods in the examples then the approximate algoritnm which took
no account of the variability of the state variables would be inferior to

those which did. Also, the difference between the utility returned by



the algorithm's objective function was often different from that accrued
from actually using it. This discrepancy may be regarded as a measure

of the sub-optimality of the algorithm and was greater the more approximate
the algorithm. It was particularly large in the case of the deterministic
linear programming method. This indicates that the utility returned by

a determinsitic model of a stochastic problem may be seriously mis-

leading.
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4. SUGGESTIONS FOR FURTHER RESEARCH

In this thesis a general model for medium term production planning
has been proposed and a computationally tractable approximate solution
technique has been developed. It is hoped that this method will become
part of a commerically available suite of computer programs, perhaps
as an extension of the mathematical programming system SCICONIC [47 ].
The approximate solution technique to the general model has been tested
statistically along with three other methods, one of which was simple
linear programming ignoring all stochastic elements in the problem, on
two four-period examples by replicative simulation. The results suggest
that there may be significant penalities in ignoring the stochastic
variation in demand, but that first order deviations from the optimal
production decisions may only lead to second order penalities in practice.

This latter conjecture deserves further consideration. For if
under certain conditions it is true, then approximate solution methods
to stochastic models may be more reliable than previously supposed.

To study the conjecture further, two separate issues require further
investigation. Firstly, it may be possible to quantify the effect of
small deviations from the optimal production decisions more precisely

than has been possible here. Secondly.it may be possible to more
accurately quantify the deviations in the decisions provided by approximate
algorithms from their truly optimal values.

These problems are formidable. They might be approached by a
very comprehensive series of tests on a great variety of examples by
statistical simulation. If the martingale control statistics are used
then it may be possible to achieve sufficient accuracy by a small number
of trials (say four or five) on each example. Alternatively it may be

possible,if not to solve them analytically,at least reduce them to a
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series of simpler sub-proboems by suitable theoretical analysis. Each
sub-problem could then b' investigated statistically.

The areas of research suggested above are very difficult and
beyond the scope of this thesis. It may be that the questions raised
can never be fully answered theoretically, but any answers to them

would advance the art of stochastic modelling.
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