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Why do some soccer bettors lose more money than others? 

Ranier Buhagiar, Dominic Cortis, Philip W. S. Newall 

Journal of Behavioral and Experimental Finance 

Abstract 

Why do some soccer bettors lose more money than others? In an efficient prediction market, each 

gambler should break-even before costs (but losing a constant amount after costs, reflecting the 

bookmaker’s margin). Previous empirical studies across numerous sports betting markets show that 

bets on longshots tend to lose more than bets on favourites (favourite-longshot bias). We use 

163,992 soccer odds from ten European leagues to test plausible hypotheses around why some 

soccer bettors lose more money than others. Are soccer bettors with above average losses simply 

biased, or are their losses driven by betting on events that are inherently unpredictable? We confirm 

the existence of favourite-longshot bias in soccer in this sample, but find another surprising feature 

of betting on longshots. As measured by the Brier score, bookmakers’ odds were better predictors of 

longshots than favourites, suggesting another potential channel whereby bettors’ preference for 

betting on longshots may cost them dearly. 

1. Introduction 

Soccer betting is big business, with online sports betting companies producing gross 

gambling revenues (stakes minus winnings)  of over €6 billion in 2015 (European Gambling 

and Betting Association, 2016). For this simple economic reason, it is important to find out 

why soccer bettors lose money. But betting markets are also often studied as simple real-

world domains for testing the economic theory of financial markets (Lessmann, Sung, & 

Johnson, 2009; Sauer, 1998). In this paper, we use a large dataset of 163,992 soccer odds 

from ten top European leagues to test plausible hypotheses around why some soccer bettors 

lose more money than others. Are soccer bettors with above-average losses simply biased, or 

are their losses driven by betting on events that are inherently unpredictable? Recent notable 

upsets in both soccer and politics illustrate how the big data approach used in this paper 

contributes to the forecasting literature. 

There is one basic reason why most sports bettors must lose. Unlike in financial markets, the 

average sports bettor must lose in order to provide bookmakers with their positive margin. 

(Although financial intermediaries also have positive margins, the stock market is a positive-

sum game, while sports betting is a zero-sum game.)  Bookmakers are traditionally thought to 

set odds on each potential outcome to create a “balanced book,” meaning that their gross 

gambling revenue is the same for any outcome of the sporting match (Stark & Cortis, 2017). 

If markets were perfectly efficient, then bettors‟ losses on both likely and unlikely events 

should be equal. Otherwise, smart bettors could obtain better-than-average returns.  However, 

unlikely outcomes appear to be overestimated by the average bettor. Better-than-average 

returns can generally be obtained by betting on favourites (although not necessarily enough to 

overcome the bookmaker‟s margin). This anomaly, called the favourite-longshot bias, 

describes the tendency for gamblers to over-estimate the likelihood of longshots winning and 

under-estimate favourites (Ali, 1977; Thaler & Ziemba, 1988). There is an extensive 



 

 

literature on favourite-longshot bias, with most research finding that longshots have greater 

long-run losses than favourites (Ali, 1977; Bird & McCrae, 1987; Gandar, Zuber, & Johnson, 

2001; Griffith, 1949; Hausch, Ziemba, & Rubinstein, 1981; Winter & Kukuk, 2006; Vaughan 

Williams, 1999) . More recently (Vaughan Williams, Sung, Fraser-Mackenzie, Peirson, & 

Johnson, 2016) found evidence of the favourite-longshot bias in poker players. 

Nevertheless, some exceptions have been found, with above-average losses for favourites in 

Asian racecourses (Coleman, 2004; Walls & Busche, 2003), baseball (Woodland & 

Woodland, 1994), and sometimes in soccer (Gil & Levitt, 2012). However, other studies of 

soccer betting have found above-average losses for longshots, in line with the majority of 

research in other sports (Cain, Law, & Peel, 2003; Constantinou & Fenton, 2013; Deschamps 

& Gergaud, 2012; Graham & Stott, 2008; Vlastakis, Dotsis, & Markellos, 2009). One-off 

cases, such as Leicester City winning the 2016 English Premier League as 5000:1 outsiders, 

help to illustrate how longshots may not universally be bad bets. Longshots are risky for 

bookmakers if incorrectly priced. Bookmakers may well find it more difficult to accurately 

price longshots in dynamic sporting environments, where the “true” odds are constantly 

changing. 

Most of the favourite-longshot bias literature in soccer used relatively small sample sizes, 

potentially explaining why contrasting results occur. In this paper we analyse a total sample 

of 163,992 soccer odds from 41,003 matches (for ten leagues over twelve seasons). The first 

aim of this research therefore is to examine whether in this large sample betting markets 

efficiently price events, and if they do not, whether longshots or favourites suffer above-

average losses. 

We also use this large dataset to explore a novel interpretation of favourite-longshot bias. It is 

possible that bettors‟ results are driven not by bettors‟ misperceptions, as argued in the 

previous literature, but also by inaccuracies in bookmakers‟ odds. Likely events are quite 

possibly easier for bookmakers to predict, given there will be a larger sample of likely events 

in previous history to base estimates on. The unpredicted political events of 2016, The UK‟s 

referendum over Brexit and Donald Trump‟s election both being given a 25% on polling day 

(Griffin, 2016), highlight that “unlikely” events can be incredibly hard to predict well, even 

for professional forecasters.  

2. Methodology 

2.1 Data 

The data consist of twelve seasons from 2005/06 to 2016/17 for ten popular European club 

leagues (Table 1). In addition to the English Premier League, we also include the English 

Championship (second tier) and the Scottish Premiership, as the United Kingdom is Europe‟s 

largest betting market (Hudson, 2014).   

The data consist of the full-time result, the average „1X2‟ odds („1‟ signifies a home team 

win, „X‟ a draw and „2‟ an away team win) and average „Over and Under 2.5 Goals‟ odds 

(bets on whether more/less than two goals are scored in a match). As the over and under odds 

are mutually exclusive, we focus solely on overs (that is odds on three or more goals), since 

the results on the unders markets will be their inverse. The average odds for a number of 



 

 

bookmakers as collated by BetBrain.com were used. We did not notice a trend in the mean 

number of bookmakers used over time, but an increase in the minimum number of 

bookmakers sampled was evident. A small number of matches were excluded, as shown in 

the appendix.  

Table 1: Number of Bookmakers used for Match Odds 

Division Mean Minimum Maximum 

Belgian 38.74 8 62 

Eng. Champ. 41.85 17 74 

Eng. Prem. 43.45 9 79 

French 41.99 10 73 

German 42.48 11 77 

Italian 42.25 1 77 

Dutch 40.29 13 68 

Portuguese 38.47 1 64 

Scottish 40.07 1 68 

Spanish 42.91 25 78 

Total 41.52 1 79 

 

2.2 Determining probabilities, profit and accuracy 

Bettors place wagers on particular outcomes and earn money if it occurs. The value of the 

prospective prize in relation to the wager results in a subjective probability - the likelihood of 

each outcome as perceived by the betting market. Prospective prizes are communicated via 

“odds”, as explained in this section. 

One method of displaying odds is the European/Decimal format, where the odds represent the 

total prospective prize from a bet of €1. European odds are conveniently also the inverse of 

the probability of the outcome. For example, the odds for rolling a fair die are   for each 

outcome (each of the six sides has probability = 1/6 of occurring on a single roll). However, a 

bookmaker would place this at a lower value, say    . This results in the sum of implied 

probabilities being  (     )          where the       can be defined as the bookmaker 

margin (denoted  ). It can be proven that the expected profit of a bookmaker as a percentage 

of wagers made is 
 

   
 (Cortis, 2015), being  

 

  
 here. Consider that if a    bet is placed on 

each outcome,           is paid out in winnings with    retained by the bookmaker as 

profit. Bettors lose a thirtieth of their wagers in expectation. 

Implied probabilities from bookmakers‟ odds for a complete set of outcomes in an event must 

sum to greater than 1, in order for bookmakers to avoid arbitrage (Cortis, 2015).  The higher 

the sum of probabilities beyond 1, the higher the bookmaker‟s profit margin against a random 

bettor (Kuypers, 2000). Across the full dataset, we find average 1X2 probabilities summing 

to 1.0771, and Over and Under 2.5 probabilities summing to 1.0699. This finding aligns with 

prior research, showing that the bookmaker profit margin tends to increase with the number 

of possible events (three for 1X2, two for Over and Under 2.5;  (Ayton, 1997; Newall P. W., 



 

 

2015; Newall P. W., 2017). The average sum of probabilities gradually declined over the 

time-period studied, as illustrated in Figure 1, showing that these betting markets have 

become more competitive over time. 

 

 
Figure 1: Market Spread over seasons for 1X2 odds 

An accurate probabilistic forecast must be coherent: probabilities must sum to 1 for a 

complete set of events (Seidenfeld, 1985). Therefore, there are two different interpretations of 

probability1:  

 the raw probability directly implied by the betting odds ( )  

 the subjective probability of an outcome2 (  ), which is the implied probability 

adjusted for the bookmaker margin ( )    

Raw probabilities reflect the bookmaker profit margin, and therefore sum to greater than 1 for 

a complete set of events (Cortis, 2015). Subjective probabilities adjust for the bookmaker 

profit margin, and are therefore “coherent”: summing to 1 for a complete set of events. 

                                                           
1
 Notation similar to Cortis (2015) and Shin(1991) is used. 

2
 A proportional relationship between subjective and implied probabilities such that    

 

   
 is assumed 

similar to Archontakis & Osborne (2007) and Cortis, Hales, & Bezzina (2013). 



 

 

Subjective probabilities will be compared with realized “objective probabilities”: the actual 

post-event objective probability of an outcome (  ), estimated to be the number of actual 

occurrences as a proportion of the number of observations made. 

Therefore, objective probabilities are estimated based on the relative frequency of events in 

the dataset. For example, if the team Manchester United won 23 of 50 matches, then the 

objective probability of Manchester United winning would be 
  

  
      Given a large 

enough dataset, measured objective probabilities should coincide with “true” objective 

probabilities, via the law of large numbers. 

We measure losses by assuming a “unit” bet of €1 is made on each outcome. This can be 

defined as  
 

 
∑(  

 

 
) where   is a Boolean variable (which is 1 if the outcome occurs, and 0 

otherwise) while and   is the number of observations measured over). For example, assume 

four events with odds of 3.6, 3.8, 3.5 and 3.4, and only the first outcome with odds of 3.6 

occurred, then the percentage loss is 
 

 
[(     )       ] = 10%. We expect bets to 

result in a loss, reflecting the bookmaker profit margin. Favourite-longshot bias will be tested 

for by examining if losses vary as odds change. 

To test the hypotheses related to prediction accuracy, we use the Brier Score (Brier, 1950). 

This is defined as the mean square difference between the subjective probability and actual 

outcome (i.e. 
∑(    )

 

 
). A Brier score can vary between zero and one, with more accurate 

predictions reflected by Brier scores closer to zero. For example, if the home team is 

predicted to win with probability = 1 and it does, this provides a Brier score of zero. But if 

the home team does not win, this provides the maximum Brier score of one. As another 

example, consider that if three matches were predicted 22%, 23% and 24% likely to be a 

home win and only the last one ended with the home team winning, the Brier Score is 0.2263. 

Intermediate predicted probabilities provide smaller gains from accurate predictions, but with 

smaller increases in the Brier score for inaccurate predictions. For example, a predicted 

probability of 0.5 provides a Brier score of 0.25 whether the home team wins or not. 

2.3 Subdividing the range of probabilities 

Given the continuous nature of the data, we needed to group “similar” data points together in 

order to test our hypotheses. We chose to subdivide data points into twenty “ranges” of 

probabilities. Twenty ranges were considered as ideal as a smaller number of ranges may not 

have statistical significance while larger ranges may not show any trends. Tests made on ten 

and thirty ranges yielded similar results.  

If the ranges were based on equal subjective probabilities of 5% range, some would have 

significantly high sample sizes (for example there are 36,831 observations in the 25%-30% 

range) and other significantly small samples (no odds implied a subjective probability above 

95%). At a total of 163,992 odds were observed, the ideal would be to have 8,200 

observations per range (20*8,200). We used an iterative process, such that each range would 

be between half and twice this value resulting in no range more than quadruple size of any 

other. We believe this is a methodological improvement in this field of research. Indeed much 



 

 

research subdividing the ranges of probabilistic outcomes leads to unstable results due to 

small sample sizes. For example, it is very rare to have a big favourite in horseracing (Ali, 

1977). 

The iterative process is as follows: 

1. Subdivide into twenty equal ranges of subjective probabilities. 

2. Find the range with the largest number of odds observations.  

a. If this is more than 16,399,  

i. subdivide it into two ranges by taking the mid-point of the subjective 

probability range, and 

ii. merge the range with the lowest number of odds observations to the 

smallest adjacent range.
3
 

b. If the largest range has less than 16,399 observations, find the smallest range. 

If this has less than 4,100 observations, then 

i. merge this range to the smallest adjacent range, and 

ii. subdivide the largest range in two by taking its mid-point. 

3. Repeat step 2 until all total odd ranges have between 4,100 and 16,399 observations. 

The final ranges of subjective probabilities, together with the number of observations are 

shown in Table 2.  As can be seen, the first range of the least-likely events ranges from 0 

to 0.15, and contains 9,126 total observations. This probability range is relatively wide, 

because there are relatively few events that bookmakers consider this unlikely. There are 

many more events of intermediate odds ranges, which is why for example the procedure 

bins 8,378 events in the range 0.28125 to 0.2875. 

This process does have its limitations, since not all outcomes have equal dispersion. For 

example, the subjective probabilities for draws (                   ) and overs 

(                   ) are less dispersed than home (                   ) 

and away (                   ).  

Table 2: Number of Observed Odds 

ps Total Home Draw Away Overs 

[0,0.15) 9,126 1,477 1,165 6,484  

[0.15,0.2) 8,726 1,379 2,689 4,657 1 

[0.2,0.25) 13,125 1,609 5,695 5,821  

[0.25,0.2625) 5,348 488 3,109 1,751  

[0.2625,0.275) 8,066 537 5,685 1,844  

[0.275,0.28125) 6,331 272 5,193 866  

[0.28125,0.2875) 8,378 309 7,259 810  

[0.2875,0.3) 8,708 664 6,387 1,657  

[0.3,0.325) 8,629 1,654 3,673 3,298 4 

[0.325,0.35) 4,864 1,860 69 2,889 46 

[0.35,0.4) 11,418 5,761 37 3,519 2,101 

                                                           
3
 Using the first iteration as an example: The 25%-30% range was split into ranges of 25%-27.5% and 27.5%-

30% while the smallest range of 95%-100% was added to the adjacent range 90%-95%. 



 

 

[0.4,0.425) 7,855 3,026 9 1,264 3,556 

[0.425,0.45) 9,798 3,094 10 1,025 5,669 

[0.45,0.475) 10,115 2,834 4 765 6,512 

[0.475,0.5) 8,538 2,352 4 655 5,527 

[0.5,0.525) 7,016 2,132 3 574 4,307 

[0.525,0.55) 6,524 1,907 3 544 4,070 

[0.55,0.6) 9,419 2,876 4 944 5,595 

[0.6,0.65) 5,089 2,048 3 690 2,348 

[0.65,1) 6,919 4,723 1 945 1,250 

Total 163,992 41,002 41,002 41,002 40,986 

 

2.4 Hypotheses 

Three variables are being compared: the subjective probability of an outcome, bettors‟ losses, 

and prediction accuracy. The existence of a longshot bias would imply that bettors‟ losses are 

lower for more likely events (H
a
1): 

H
a
1: Bettors will lose more on unlikely than likely events (longshot bias). This is measured by 

the profitability of the unit bet strategy across different odds ranges. There will be a negative 

correlation between subjective probabilities and losses on unit bets. 

Secondly, given that they will have a larger sample of similar events to use from previous 

history, we expect bookmakers to be able to set odds that are more accurate for more likely 

outcomes (H
b

1): 

H
b

1: Predictions will be more accurate for likely than unlikely events.  There will be a 

negative correlation between Brier scores and subjective probabilities. 

Moreover, we envisage that accurate predictions are easier to manage for bookmakers and 

this is used as an advantage over bettors (H
b

1). Therefore:  

H
c
1: Bettors will lose more on events that are predicted accurately. There will be a negative  

correlation between bettors‟ losses and the Brier score. 

We use two-tailed hypothesis tests for each relationship and also consider each league 

separately. In order to limit the effects of ranges with a small number of observations, we re-

examine the two-tailed hypothesis on only the ranges with at least 50 observations.  

3. Analysis and Results 

3.1 General and Match Odds (1X2) 

Figure 2 compares the subjective and objective probabilities. In an efficient market, the two 

probabilities would be equal and fit around a 45-degree line passing through the origin (zero 

favourite-longshot bias). The graph shows a trend of unlikely events characterised by 

subjective probabilities that are slightly higher than objective probabilities. The betting 

market appears to overestimate the likelihood of unlikely events. Contrastingly, likely events 

have implied probabilities that are lower than objective probabilities. The betting market 

appears to underestimate the likelihood of likely events. This observation of longshot bias, in 



 

 

a large sample, corresponds to much of the previous literature on soccer (Cain, Law, & Peel, 

2003; Constantinou & Fenton, 2013; Deschamps & Gergaud, 2012; Graham & Stott, 2008; 

Vlastakis, Dotsis, & Markellos, 2009).  

 

Figure 2: Relationship between ps and po 



 

 

Table 3: Bettor Losses for Unit Bets per Odd and Brier Scores 

 Total Home Draw Away Overs 

Subjective Prob 

(ps) 
Actual 

Loss 

Exp 

Loss 

Brier 

Score 

Actual 

Loss 

Exp 

Loss 

Brier 

Score 

Actual 

Loss 

Exp 

Loss 

Brier 

Score 

Actual 

Loss 

Exp 

Loss 

Brier 

Score 

Actual 

Loss 

Exp 

Loss 

Brier 

Score 
 

[0,0.15) 26.2% 6.9% 0.081 11.1% 6.8% 0.099 28.6% 6.3% 0.089  29.2% 7.1% 0.075       

[0.15,0.2) 13.8% 7.1% 0.137 8.7% 7.0% 0.142 21.8% 6.9% 0.127  10.6% 7.3% 0.141 -42.0%^^^ 76.8% 0.700 

[0.2,0.25) 11.4% 7.0% 0.169 5.1% 7.1% 0.177 10.9% 6.8% 0.171  13.7% 7.2% 0.166       

[0.25,0.2625) 14.5% 7.1% 0.181 5.6% 6.9% 0.193 16.2% 7.1% 0.179  13.8% 7.1% 0.181       

[0.2625,0.275) 10.1% 7.2% 0.193 8.5% 7.0% 0.195 10.7% 7.2% 0.192  8.8% 7.2% 0.194       

[0.275,0.28125) 9.5% 7.5% 0.198 3.4% 6.8% 0.205 8.6% 7.5% 0.199  17.2% 7.2% 0.187       

[0.28125,0.2875) 6.7% 7.4% 0.204 2.6% 7.0% 0.216 6.7% 7.5% 0.205  10.7% 7.3% 0.199       

[0.2875,0.3) 5.4% 6.9% 0.209 10.3% 6.9% 0.203 3.3% 6.8% 0.211  11.3% 7.2% 0.202       

[0.3,0.325) 9.4% 7.3% 0.211 8.4% 7.1% 0.213 5.7% 7.5% 0.215  14.2% 7.2% 0.206 -50.0%^^^ 5.8% 0.284 

[0.325,0.35) 8.1% 7.3% 0.222 9.8% 7.2% 0.220 7.7%^ 8.2% 0.223  7.0% 7.3% 0.224 10.4%^^ 6.2% 0.219 

[0.35,0.4) 7.4% 7.2% 0.234 8.3% 7.3% 0.233 14.7%^^ 8.4% 0.227  4.7% 7.2% 0.236 9.4% 6.8% 0.234 

[0.4,0.425) 8.2% 7.0% 0.241 4.8% 7.3% 0.244 27.2%^^^ 9.5% 0.228  3.4% 7.1% 0.245 12.7% 6.8% 0.238 

[0.425,0.45) 7.2% 6.9% 0.246 7.7% 7.2% 0.246 -4.7%^^ 9.2% 0.254  2.2% 6.9% 0.249 7.9% 6.7% 0.245 

[0.45,0.475) 5.6% 6.7% 0.249 3.1% 7.2% 0.250 2.0%^^^ 8.7% 0.249  5.9% 6.9% 0.249 6.7% 6.5% 0.248 

[0.475,0.5) 5.1% 6.6% 0.250 7.4% 7.3% 0.250 6.5%^^^ 10.0% 0.249  5.2% 7.1% 0.250 4.1% 6.2% 0.250 

[0.5,0.525) 3.7% 6.6% 0.249 2.7% 7.2% 0.249 41.7%^^^ 9.4% 0.253  2.5% 7.2% 0.249 4.3% 6.1% 0.249 

[0.525,0.55) 5.9% 6.7% 0.248 2.9% 7.3% 0.247 -70.0%^^^ 9.3% 0.217  5.0% 7.1% 0.248 7.6% 6.4% 0.249 

[0.55,0.6) 5.5% 6.9% 0.243 2.9% 7.2% 0.241 21.8%^^^ 9.9% 0.248  4.6% 7.1% 0.242 7.0% 6.7% 0.245 

[0.6,0.65) 4.7% 6.9% 0.231 4.9% 7.0% 0.230 -44.0%^^^ 9.9% 0.140  3.3% 6.9% 0.229 5.0% 6.8% 0.232 

[0.65,1) 2.0% 6.8% 0.178 1.1% 6.9% 0.169 -29.0%^^^ 14.4% 0.113  3.5% 6.5% 0.193 4.3% 6.6% 0.203 

Total 8.3% 6.9% 0.214 5.6% 7.2% 0.218 9.8% 7.1% 

               

0.189 12.5% 7.2% 0.180 6.9% 6.5% 0.244 

^ <100 Observations, ^^ <50 observations, ^^^ <10 observations 

Profit/Loss columns show the percentage profit/loss made if a unit bet is placed on odds recorded within this range.   Expected Profit/Loss columns are derived from the bookmaker margin.



 

 

Table 3, showing the actual losses, expected losses as defined by Cortis (2015), and the Brier 

Scores for different ranges and the four outcomes, implies that our first hypothesis (H
a
1) may 

be true. Although the expected loss, determined by the betting margin, is somewhat similar 

for all subjective probability ranges, the losses made for lower probability outcomes are much 

higher than higher probability outcomes. This is corroborated by the majority of significant 

correlations between profits and observed probabilities being negative (Table 4). Excluding 

ranges with less than fifty observations, only the German Bundesliga does not seem to exhibit 

any evidence of the longshot bias. Otherwise we do not find any major discrepancies between 

different leagues. 

Table 4: Correlation between Losses and Observed Proportions (  ) 

    Overall Home Draw Away Over 

All 
Leagues 

All  
-0.786*** -0.484** 

-0.514** 
-0.781*** 

0.607** 

>50 -0.922*** -0.650*** 

Belgian 
All  

-0.555** 

-0.134 0.201 -0.410* 0.474 

>50 -0.004 -0.770* -0.275 0.398 

Dutch 
All  

-0.507** 

0.075 0.532 -0.586*** 0.056 

>50 0.095 -0.085 -0.572** -0.391 

Eng. 
Prem 

All  

-0.742*** 

0.161 
-0.926*** 

0.443* 

-0.547 

>50 0.052 -0.388 

Eng. 
Cham 

All  

-0.588*** 

0.013 -0.925*** 0.482** 0.563 

>50 -0.001 -0.263 0.343 -0.516 

French 
All  

-0.665*** 

-0.222 -0.862*** 0.647*** 0.060 

>50 -0.152 -0.391 0.607** -0.520 

German 
All  

-0.111 
0.274 -0.753** 

-0.227 
-0.508 

>50 0.294 -0.750* 0.176 

Italian 
All  

-0.707*** 
-0.669* -0.498** 

0.654*** -0.546 
>50 -0.675* -0.503 

Port. 
All  

-0.750*** 
-0.553** 0.127 0.616*** -0.410 

>50 -0.859* -0.805** 0.594*** -0.686* 

Scottish 
All  

-0.410* 
0.044 -0.514 0.063 0.630* 

>50 -0.238 -0.413 0.317 -0.098 

Spanish 
All  

-0.757*** 

-0.064 -0.478 0.342 0.559* 

>50 -0.015 -0.860*** 0.269 -0.207 
*** significant at p < 0.01, ** significant at p < 0.05, * significant at p < 0.1 

All values proven significant using a two-tailed test. 

  

Table 55: Correlation between Brier Scores and Observed Proportions (  ) 

    Overall Home Draw Away Over 

All 
Leagues 

All  
0.644*** 0.573** 

0.283 
0.703*** 

-0.679** 

>50 0.992*** -0.577 

Belgian 
All  

0.616*** 

0.521** 0.567 0.695*** -0.826*** 

>50 0.301 0.949*** 0.895*** -0.758* 

Dutch All  0.694*** 0.471** 0.367 0.776*** -0.695* 



 

 

 

*** significant at p < 0.01, ** significant at p < 0.05, * significant at p < 0.1 

All values proven significant using a two-tailed test 

The results for our second hypothesis comparing prediction accuracy with event probability 

(Table 5), imply that the Brier Score is higher for higher-probability outcomes. The lower 

Brier Score for lower-probability outcomes indicates that unlikely events actually seem to be 

predicted more accurately than likely events. There is evidence of a contradictory hypothesis, 

against our second hypothesis. 

Our third hypothesis, that bettors will lose more on accurately predicted outcomes, can be 

examined via Table 6‟s correlations between Brier Scores and losses. All significant 

correlations between Brier Scores and losses (Table 6) are negative for ranges with at least 

fifty observations. Less accurate odds (higher Brier Scores) lead to lower losses for bettors. 

Draws warrant special attention as correlation coefficients tend to be higher. Past research has 

shown a negative longshot bias and lower losses than backing other outcomes in English 

Soccer (Snowberg & Wolfers, 2010). Contradictory to this, our results based on European 

soccer imply lower losses for most ranges but higher overall percentile losses on unit bets 

than backing home wins (Table 3). One can notice some one-off profits within highly likely 

ranges. For example there was only one game that was deemed more than 65% likely to be a 

draw, (and which did indeed end in a draw, Table 3). Moreover, Figure 2 displays a more 

acute longshot bias for draws than other outcomes.  Bettors‟ losses on draws tend to be lower 

for more likely outcomes and inaccurate predictions (Tables 4 & 6), possibly due to draws 

being more inaccurate for likely cases (Table 5). This is in agreement with the general belief 

that draws are considered the most challenging outcome to predict (Pope & Peel, 1989). 

Table 6: Correlation between Brier Scores and Losses 

    Overall Home Draw Away Over 

All All  -0.820*** -0.342 0.140 -0.870* -0.682** 

>50 0.509** 0.968*** 0.770*** -0.922** 

Eng. 
Prem 

All  

0.656*** 

0.444* 
0.995*** 0.707*** 

0.358 

>50 0.554** -0.396 

Eng. 
Cham 

All  

0.742*** 

0.690*** 0.970*** 0.552** 0.702** 

>50 0.561** 0.896** 0.941*** 0.643 

French 
All  

0.683*** 

0.659*** 0.977*** 0.705*** -0.358 

>50 0.642*** 0.946*** 0.954*** -0.180 

German 
All  

0.663*** 
0.541** 0.983*** 

0.623*** 
0.315 

>50 0.562** 0.985*** -0.913*** 

Italian 
All  

0.652*** 
0.630*** 0.286 

0.656*** -0.676** 
>50 0.633*** 0.966*** 

Port. 
All  

0.577*** 
0.542** 0.595* 0.675*** -0.590* 

>50 0.557** 0.985*** 0.666*** -0.091 

Scottish 
All  

0.646*** 

0.459** 0.944*** 0.540** 0.636* 

>50 0.563** 0.936*** 0.543* 0.192 

Spanish 
All  

0.578*** 

0.420* 0.783*** 0.684*** -0.727** 

>50 0.409 0.983*** 0.655*** -0.753** 



 

 

Leagues >50 -0.959*** 0.119 

Belgian 
All  

-0.544** 
-0.384 -0.692** -0.454* -0.434 

>50 -0.071 -0.931*** -0.576** -0.336 

Dutch 
All  

-0.715*** 
-0.392* -0.591 -0.847*** -0.464 

>50 -0.181 -0.327 -0.850*** 0.641 

Eng. 
Prem 

All  
-0.719*** 

-0.285 
-0.954*** -0.586* 

-0.954*** 

>50 0.046 -0.351 

Eng. 
Cham 

All  
-0.718*** 

-0.268 -0.989*** -0.107 0.825*** 

>50 -0.119 -0.651 -0.555** -0.557 

French 
All  

-0.707*** 
-0.469** -0.933*** -0.730*** -0.655** 

>50 -0.416* -0.665* -0.728*** -0.151 

German 
All  

-0.114 
0.030 -0.854*** 

-0.064 
-0.923*** 

>50 0.248 -0.852** 0.053 

Italian 
All  

-0.802*** 
-0.793*** 0.155 

-0.711* 0.543 
>50 -0.792*** -0.704** 

Port. 
All  

-0.802*** 
-0.721*** -0.719** -0.606*** -0.922*** 

>50 -0.767*** -0.891*** -0.623*** -0.114 

Scottish 
All  

-0.600*** 
-0.447* -0.766** -0.505** 0.762** 

>50 -0.328 -0.705* -0.594** 0.236 

Spanish 
All  

-0.689*** 
-0.163 -0.908*** -0.543** -0.928*** 

>50 -0.142 -0.938*** -0.495** 0.259 
*** significant at p < 0.01, ** significant at p < 0.05, * significant at p < 0.1 

All values proven significant using a two-tailed test 

3.2 Contrasting results in the overs market 

The overs market, characterised by relatively low variability in subjective probabilities, 

displayed some conflicting results.  

For Belgian, Dutch, German, Italian and Spanish leagues, bookmakers tended to be less 

accurate in predicting unlikely outcomes than likely ones (providing evidence in support of 

our second hypothesis, contrasting to the rest of the data, see Table 6). Some of the difficulty 

stems from the fact that these five leagues have among the highest standard deviation of goals 

scored per match from the ten leagues sampled (Table 7).  

Table 7: Total Goal Distribution per League 

League Goals/match 

Belgian Pro League 2.73 (± 1.65) 

Dutch Eredivisie 3.05 (± 1.74) 

English Prem 2.67 (± 1.67) 

English Cham 2.58 (± 1.59) 

French Ligue 1 2.40 (± 1.56) 

League Goals/match 

German Bundesliga 2.87 (± 1.71) 

Italian Serie A 2.63 (± 1.64) 

Portuguese Prim. Liga 2.45 (± 1.59) 

Scottish Premier 2.65 (± 1.64) 

Spanish La Liga 2.73 (± 1.71) 

4. Conclusion 

We found evidence to sustain two of our three hypotheses: bettors lose more on unlikely than 

likely events (longshot bias), and bettors lose more on events that are more accurately 



 

 

predicted by bookmakers. In contrast to our second hypothesis, unlikely events were actually 

predicted more accurately by bookmakers than likely events.  

Longshot bias results pose the following question: why haven‟t markets adjusted accordingly, 

given that this bias has been discovered in studies decades ago, and the market efficiency 

prediction from economic theory? We think that the possibility of arbitrage results in odds 

inaccuracy as the “wisdom of the crowd” is followed. The betting market is sufficiently 

liquid such that bookmakers cannot offer odds that create arbitrage opportunities for smart 

bettors. For example, even if one bookmaker is certain that the probability of a two-outcome 

event is equally likely, it would be hesitant to offer odds at evens if the rest of the market is 

pricing it at a ratio of 1:3 for outcomes A and B as it would risk having all wagers on 

Outcome B. Although profitable in the long run, it is more likely to result in bookmaker 

default in the short run. In a similar vein to financial markets, being contrarian is not 

generally advisable
4
.  

The limitations of the Brier Score as a metric may have been one reason for not finding 

evidence of our hypothesis that likely events are predicted more accurately than unlikely 

events. An outcome predicted to occur 1% but occurring 2% of the time has an expected 

Brier Score of 0.0197 while an outcome that occurs 95% of the time but with a prediction of 

90% has an expected Brier Score of 0.05. The latter is a higher value, even though the former 

represents a mis-estimation of 100%. An outcome predicted to occur 50% of the time has an 

expected Brier Score of 0.25. The Brier-Score is a non-linear function. However, this does 

not invalidate the results obtained as even taking into consideration the non-linearity of the 

Brier Score, no correlations would have been expected when using this metric. The fact that 

such correlations show strength in the results, especially when considering that the Brier 

Score is symmetric around 0.5
5
. 

It could also be that soccer and other sporting matches are “small worlds,” with relatively few 

potential events which bookmakers can predict accurately compared to more-complex real 

world events. One test of these contrasting hypotheses is to explore whether bookmakers‟ 

predictions of real world events, such as Brexit or Donald Trump‟s election, are also more 

accurate for less likely events.  

An implication for bookmakers is derived from our supported hypothesis that bettors lose 

more on events that are more-accurately predicted by bookmakers. The bookmaker profit 

margin means that bookmakers need not forecast probabilities perfectly in order to achieve 

expected positive returns (Cortis, 2015). Yet our results indicate that greater accuracy implies 

higher bookmaking profits. If bookmakers manage to increase their prediction accuracy 

relative to bettors‟, perhaps through larger datasets and improvements in machine learning, 

then bettors‟ losses may be expected to increase in the future. This observation may be 

relevant to any policy-makers who are worried about the scale of bettors‟ losses, of over €6 

                                                           
4
 An example is Tony Dye who was selling off equities in the mid-90s predicting a stock market crash. He was 

fired just a few days before the market crashed (The Independent,2008). 
5
 Predictions of x% likelihood have the same expected Brier Score as predictions of (1-x)% likelihood. For 

example, the expected Brier Score for a prediction 5% has a Brier Score of 0.0475, the same as the expected 
Brier Score of a prediction that is 95% likely.  



 

 

billion in 2015 (European Gambling and Betting Association, 2016). This is in contrast to the 

traditional economic model, which would predict that increased bookmaker competition (see 

Figure 1) should lead to lower bettor losses. 

Overall our results show that bettors‟ losses are higher on unlikely events; that unlikely 

events are better predicted by bookmakers; and that bettors lose more on accurately predicted 

events. These results should be noted by gambling policymakers, given previously 

established findings that British bookmakers tend to heavily advertise “complex” unlikely 

events on TV and in their shop windows (Newall, 2015; Newall, 2017). Complex gambles 

such as, “Thomas Müller to score the first goal and Germany win 3-1”, offer high potential 

wins despite having far higher bookmaker profit margins than the gambles evaluated in the 

present study (Newall, 2015; Newall, 2017). Furthermore, these bets tend to involve 

combinations of likely events, such as a star player scoring the first goal, or a favourite team 

winning by a specific high scoreline (Newall, 2015). In fact these bets on complex events 

muddy the historical distinction between favourites and longshots, since greater bet 

complexity allows them to be simultaneously both (a longshot combined of multiple “likely” 

events). Research should continue to investigate these issues, in order to help protect soccer 

bettors‟ wallets against the risk of increasing bookmaker sophistication.  
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Appendix 
No odds available: 

 2011/12: Leiria - Nacional as Leira was facing financial difficulties. 

 2009/10: All Mouscron (Belgium) matches as the team was declared bankrupt and Belgian 

Pro League playoffs. 

1X2 odds unavailable: 

 2005/06: Messina  - Lazio odds excluded as average odds implied the existence arbitrage as 

defined by Cortis (2015). 

Over/under 2.5 odds unavailable. 

 2005/06: Cagliari – Fiorentina. 

 2006/07: Porto - Leira*, Sporting Lisbon - Boavista*, Beira Mar – Aves, Burnley – Stoke. 

 2008/09: Rangers – Falkirk*, Aberdeen – Celtic*, Kilmarnock – Falkirk*, St Mirren – 

Motherwell*, Inverness - Hamilton, Lazio – Reggina*. 

 2009/10: Deportivo La Coruna – Valencia excluded as average odds implied the existence 

arbitrage as defined by Cortis (2015). 

 2011/12: Benfica – Leiria. 

 2013/14: Real Madrid – Villareal as the betting margin was over 300% indicating a possible 

error. 

 2015/16: Benfica – Uniao Madeira 

 2016/17: Belenenses – Boavista, AZ Alkmaar – Nijmegen, Celtic – Motherwell excluded as 

average odds implied the existence arbitrage as defined by Cortis (2015). 

Match odds unavailable but approximated using Bet365.com odds 

 All matches marked * 

 2006/07: Biera Mar – Aves Pacos, Sporting Braga – Ferreira  


