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Abstract 

The deleterious effects of maternal diatom diets on copepod embryonic development have 

been puzzling the scientific community for the past 15 years. Since the discovery of the 

first anti-mitotic compounds, polyunsaturated aldehydes deriving from fatty acid oxidation, 

our knowledge of the oxylipin metabolism in diatoms has been continuously increasing. 

Not only have new oxylipin compounds been identified, but it is becoming apparent that 

oxylipin metabolism is highly complex and specific. 

This thesis contributes to the understanding of oxylipin metabolism in diatoms by studying 

the activity of diatom lipoxygenases, the enzymes responsible for the first oxidative step in 

transforming polyunsaturated fatty acids into oxylipins. Lipoxygenase activity was 

measured by a colorimetric and a polarographic assay, and its relationship to oxylipin 

production was examined. Lipoxygenase metabolism in diatoms was studied under natural 

conditions during a bloom at sea, under semi-natural conditions during a mesocosm 

experiment, and in the laboratory, with special emphasis on Skeletanema marinai. The 

effect of diatom oxylipin production on copepod reproductive success was also examined. 

Increased oxylipin production was found with the onset of the stationary phase in culture 

and during the decline of the mesocosm bloom, which indicates a regulatory role for 

oxylipins in bloom demise, even though this could not be verified at sea. Lipoxygenase 

activity and oxylipin production were highly variable and specific to the level of clones. 

The most important conclusion to be drawn from the present experiments is the lack of 

correlation between lipoxygenase activity and oxylipin production. This strongly indicates 

that other compounds still need to be identitied and that we do not yet have a complete 

picture of oxylipin metabolism in diatoms. 
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1 Introduction 

1.1 Plankton in the Marine Environment 

At first glance, the open ocean appears a homogeneous environment and it seems 

surprising that such a system could be capable of supporting productive and diverse 

ecosystems. Yet, small-scale variations created by the dynamic fluctuations of abiotic and 

biotic factors support high productivity, as well as biodiversity. Important players in the 

open water column, the so called pelagic realm, are planktonic organisms. They form a 

group of drifting organisms whose movements cannot compete with large-scale 

movements ofthe water column and they are therefore subject to the ocean currents. As in 

terrestrial systems, plankton communities are characterized by primary producers, 

autotrophic phytoplankton, and primary consumers, heterotrophic zooplankton, as well as 

higher trophic levels, such as fish or marine mammals. Carbon fixation of phytoplankton 

has been judged to equal that of terrestrial systems, contributing -50% to total global 

primary production (Field et al. 1998). 

The phytoplankton is composed mainly of unicellular eukaryotic algae which range in size 

from -2-200 Jlm in diameter and exist in a great variety of shapes and sizes. These 

micro algae include green algae, coccolithophorids, diatoms and dinoflagellates, even 

though many species of the latter phylum are hetero- or mixotrophic. Recently, the 

importance of even smaller photosynthetic prokaryotic organisms has been recognized. 

These abundant cyanobacteria belong to the genus Synechococcus and Proch/orococcus 

and contribute fundamentally to primary productivity in many areas of the world's oceans 

(Azam and Worden 2004). 
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Diatoms often form blooms in coastal and upwelling areas and can contribute up to 50% to 

total marine primary production (Mann 1999). They are also highly abundant in freshwater 

systems and can be found as epiphytes, forming biofilms on biological surfaces and 

sediments. The characteristic diatom "frustule", the strong silica cell wall, makes diatoms 

important not only in the global carbon cycle, but also in the global silica cycle (Treguer et 

al. 1995). Massive sink-outs from diatom blooms are of geological importance as they 

form siliceous oozes in the deep sea (Smetacek 1985). Apart from its role in sinking, the 

diatom frustule has been suggested to function as a protection against zooplankton grazers 

(Hamm et al. 2003) because of its flexibility and robustness, for which it fmds applications 

in nanotechnology. The highly intricate design and diversity of the diatom frustule also 

conveys a characteristic beauty to this class of micro algae (Figure 1-1). 
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Figure 1-1: Diatoms from Ernst Haeckel's "Kunstformen der N atur" (1904). 

Zooplankton feed on diatoms and other phytoplankton and make up the animal part of the 

plankton. These heterotrophic organisms include protozoa, such as foraminiferans, 

radiolarians, and heterotrophic dinoflagellates, and metazoa, such as cnidarians, 

crustaceans, chaetognaths, molluscs, and chordates. An important group of zooplankters 

are the calanoid copepods, small crustaceans with a size of 0.5-2 mm. Their name 

"copepoda" derives from the Greek word ''kope'' , meaning "oar" and "podos", meaning 

"foot" (Mauchline 1998). In fact , copepods are characterized by paddle-shaped appendages 

that function as filters for collecting food from the environment, even though many species 

are also raptorial. Copepods also show a variety of shapes and size (Figure 1-2) and are 

abundant in marine and freshwater systems, occurring in the pelagic, as well as in the 
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benthic realm. They can contribute up to 70% to the total plankton biomass, with highest 

abundances found in the polar region (Longhurst 1985). As herbivorous grazers, they feed 

willingly on diatoms (Paffenhoefer 1976; Paffenhoefer 2002) and have evolved strong 

teeth-like structures to break open the diatom frustule (Sullivan et al. 1975). 
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Figure 1-2: Copepods from Ernst Haeckel's "Kunstformen der Natur" (1904). 
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1.2 Diatom-copepod Interactions 

Traditionally, the diatom-copepod link has been considered fundamental for the transfer of 

energy from primary to secondary production and further up the food web to sustainable 

fisheries (Runge 1988; Cushing 1989; Mann 1993). Fish larvae depend greatly on copepod 

eggs and nauplii (Mann 1993), making copepod secondary production an important factor 

in the flow of energy and carbon from primary production to higher trophic levels 

(Figure 1-3). 

• • · 
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Figure 1-3: The classical marine food web; the box highlights the interaction between 
phytoplankton and copepods (Hardy 1959). 
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1.2.1 Copepod Reproduction 

Egg production rates are usually considered a good indicator of secondary production in 

copepods (Kimmerer et al. 2005). Egg production rates in turn are usually positively 

correlated with food supply and thereby are highest during blooms (Beckman and Peterson 

1986; Peterson and Kimmerer 1994; Kimmerer et al. 2005). However, the development of 

copepod eggs to hatched nauplii and the following development of nauplii to adult 

copepods are just as important as initial egg production rates for controlling cohort size of 

the next generation. Important aspects for determining copepod secondary production are 

therefore factors controlling egg mortality, for example grazing on the produced eggs 

(Kiorboe et al. 1988). Cannibalism on copepod eggs has been observed in copepods 

(Landry 1978), as well as grazing by other zooplankton (Beckman and Peterson 1986). 

Physical factors such as sinking (e. g. through formation of resting eggs) (Uye 1982) or 

biological factors such as diseases (Peterson and Kimmerer 1994) or parasites e. g. 

dinoflagellates (Drebes 1978), may all play an important role in copepod recruitment. 

Ianora and Poulet (1993) first observed that hatching success of copepod eggs can 

furthermore be compromised when females feed on certain diatom diets, in their case 

Thalassiasira ratula. Over the past 15 years, doubts have arisen as to the beneficial role of 

diatoms for copepod reproduction. Whereas reduced hatching success of copepod eggs was 

previously ascribed to a lack of fertilization (Katona 1975), Ianora et al. (1992) 

demonstrated that reduced egg viability could be found even in fertilized eggs and that 

reduced hatching success was due to maternal diets of certain diatom species (Ianora and 

Poulet 1993; Ianora et al. 1995). In fact, in a world-wide survey conducted by Ban et al. 

(1997), only one out of the 17 diatom species studied did not compromise copepod 

reproductive success. In addition to reducing hatching success of eggs, maternal diets of 
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certain diatom species lead to malformations in hatched nauplii such as missing or reduced 

limbs (Poulet et al. 1995; Ianora et al. 2004). The reason for these malformations has been 

identified as the occurrence of apoptotic tissue in nauplii (Poulet et al. 2003; Rornano et al. 

2003), leading ultimately to reduced hatching of impacted eggs. Although in some cases 

egg production is also compromised by diatoms (Ban et al. 1997), often these microalgae 

support high egg production rates (lanora and Poulet 1993; Miralto et al. 2003). The main 

reproductive parameters impaired by maternal diatom diets are hatching success and 

naupliar development (Poulet et al. 1995; Ianora et al. 2004). This discovery adds another 

important facet to copepod recruitment and needs to be taken into account when examining 

copepod population dynamics. 

1.2.2 Detrimental Impact of Diatom Diets 

The contribution of diatoms to copepod diets had been questioned previously because of 

the recognized importance of alternative diets in an increasingly complex food web model 

(Kleppel et al. 1991). These authors suggested that copepods may graze preferentially on 

dinoflagellates or microzooplankton and that the role of diatoms in copepod nutrition had 

been given too much importance. The nutritional aspect of copepod secondary production, 

especially the quality of food supply, was highlighted by these authors and the hypothesis 

formed that a mixed and varied diet should result in highest egg production rates (Kleppel 

1993). This in turn emphasised the importance of non-diatom foods in copepod diets. 

Contemporarily, results obtained by Ianora and Poulet (1993) demonstrated a deleterious 

effect of diatom diets on reproductive fitness. One of the explanations proposed tor the 

deleterious effect of diatoms on copepod reproductive success was a nutritional deticiency 

in diatoms (Jonasdottir and Kiorboe 1996). Certain dietary components including 
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polyunsaturated fatty acids (PUF As) have been judged fundamental for egg production, as 

well as for hatching success of copepod eggs (Mueller-Navarra et al. 2000; 10nasdottir et 

al. 2002; Arendt et al. 2005). However, the PUF A-content in diatoms tends to be high 

(8erge et al. 1995), so a potential nutritional deficit in diatoms is probably due to some 

other component. Furthermore, several authors failed to find a correlation between naupliar 

development and nutritional factors, such as nitrogen to carbon ratios, PUF A-, or 

sterol-content of phytoplankton food (Dutz et al. 2008; Koski et al. 2008). It has also been 

suggested that fatty acids from diatom cells are rapidly degraded upon grazing, making 

them unavailable for copepod metabolism and thereby inducing PUF A-deficiency 

(Wichard et al. 2007). 

As diatoms do not seem to be lacking an obvious nutritional factor (Ianora and Poulet 

1993), an alternative explanation for the detrimental effect of diatoms on copepods 

concentrated on the production of anti-mitotic compounds by this class of micro algae, held 

responsible for compromising the development of copepod embryos (Poulet et al. 1994). 

This hypothesis was based on incubation experiments of copepod eggs with diatom 

extracts which resulted in compromised egg development (Poulet et al. 1994; Uye 1996). 

Production of toxic compounds was confirmed by Miralto et al. (1999), who identified 

polyunsaturated aldehydes (PUAs) as the anti-mitotic agents in diatoms. The first 

anti-mitotic compounds isolated by these authors from marine diatoms were two isomers 

of decatrienal and one isomer of decadienal. Both belong to the group of 

a,p,y,D-unsaturated aldehydes characterized by a 2,4-pentadiene moiety conjugated to the 

aldehydic group (Pohnert 2002). These and other shorter-chain PUAs had been previously 

described in the freshwater diatoms Melosira varians and Fragilaria sp., but had not been 

investigated for their effect on grazer secondary production (Wendel and luettner 1996). 

Miralto et al. (1999) identified them for the first time in the marine environment and 
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correlated them to a decrease in reproductive success of calanoid copepods. Since then, 

PUAs have been discovered in several marine and freshwater species (Wichard et al. 

2005). Also the shorter-chain PUAs, namely octadienal and octatrienal, as well as 

heptadienal have been isolated from marine species (d'Ippolito et al. 2002a), even though 

greater biological activity has been observed for longer-chain homologues (d'Ippolito et al. 

2002b; Adolph et al. 2003; Ceballos and Ianora 2003). This type of insidious mechanism 

for impairing grazers by interfering with reproduction is new in the marine environment, 

because most grazer defences act directly, e. g. by grazer deterrence or poisoning. 

1.2.3 Production of Polyunsaturated Aldehydes by Diatoms 

Polyunsaturated aldehydes (PUAs) result from the oxidation of polyunsaturated fatty acids 

(PUFAs) and therefore belong to the class ofoxylipins (Figure 1-4). The term "oxylipins" 

was introduced by Gerwick et al. (1991) for describing fatty acid derived oxygenated 

compounds in marine algae. Oxylipins were defined by these authors as: "oxygenated 

compounds which are formed from fatty acids by reactions involving at least one step of 

mono- or dioxygenase-catalyzed oxygenation" (Gerwick et al. 1991). This definition 

thereby includes the well-known mammalian eicosanoids, as well as "biosynthetically 

related compounds oflonger and shorter chain length" (Gerwick et al. 1991) produced by 

algae, plants, and fungi. 
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Figure 1-4: Production of the polyunsaturated aldehydes octatrienal and octadienal from 
Cwfatty acids released from glycolipid, and production of heptadienal and decatrienal from 
Cw fatty acids relea ed from pho pholipid; adapted from d' Ippolito et al. (2004) and 
Pohnert (2005). 

In diatoms, PUAs are rapidly relea ed upon loss of cell integrity, for example upon grazing 

by copepods (Pohnert 2000). Upon wounding of the cell, lipases release PUF As from 

complex lipids (Figure 1-4). Chloroplastic glycolipids are a ource ofCwPUFA, such as 

CI6:4W 1 and C 16:30)4 which are converted to the C -aldehyde octatrienal and octadienal, 

respectively (d'Ippolito et al. 2003; d'lppolito et al. 2004; Cutignano et a!. 2006) 

(Figure 1-4). The C2o-PUF A eico apentaenoic acid (C20 s(3) i relea ed from membrane 

phospholipids and serves as a precur or for the Cr aldehyde heptadienal and the 

CID-aldehyde decatrienal (Pohnert 2002; d'lppolito et al. 2003; d'Ippolito et al. 2004) 

(Figure 1-4). The P FAs released by lipase are oxidized by lipoxygena e (LOX) to 
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fatty acid hydroperoxides (F AHs) which are converted to PUAs by lyase activity further 

down-stream (Pohnert 2002; d'Ippolito et al. 2006) (Figure 1-4). Therefore LOX enzymes 

play an important role in the production of oxylipins from fatty acids because they are 

responsible for the first oxidative step. The reason behind rapid production of oxylipins 

upon cell rupture probably lies in the compartmentalization of enzymes and substrates, 

allowing release of free fatty acids as substrate for LOX only upon loss of cell integrity 

(Pohnert 2005). Although the release of PUAs had been previously excluded for intact 

cells (Pohnert 2002), it has been recently postulated that intact cells of Skeletonema 

marinoi release PUAs into the cell medium at the end of stationary phase before going into 

senescence (Vidoudez and Pohnert 2008). This release of PUAs by intact cells in specific 

growth phases has been interpreted as a regulatory mechanism and given as an example for 

the possible role of aldehydes in cell to cell signalling (Vardi et al. 2006). Another 

alternative function, apart from grazer defence and cell to cell signalling proposed for 

PUAs in marine systems is allelopathy. PUAs have been described to impact 

phytoplankton (Casotti and Mazza 200S; Ribalet et al. 2007a), as well as bacteria (Ribalet 

et al. 2008), possibly imparting a competitive advantage to PUA-producing species. 

1.2.4 New Insights into Diatom Oxylipin Metabolism 

The proposed role of polyunsaturated aldehydes (PUAs) as an insidious defence 

mechanism against grazers by induction of a teratogenic effect has been criticized 

(Jonasdottir et al. 1998; Irigoien et at. 2002) and its relevance in natural systems is still 

debated (Sommer 2009). Criticisms have been founded mainly on contradictory results 

obtained from field studies, which sometimes failed to find a deleterious effect of diatoms 

on copepod reproduction (Pond et al. 1996; Irigoien et al. 2000; Irigoien et al. 2002; 
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Verheye and Irigoien 2002; Sommer 2009). However, numerous studies have also 

validated the negative effect of phytoplankton assemblages on copepod secondary 

production during periods of high diatom concentrations, even though effects could not 

always be correlated to the production of PUAs by phytoplankton (Laabir et al. 1995; 

Ianora et al. 2004; Poulet et al. 2007; Ianora et al. 2008). 

A possible explanation for the lack of correlation between PUA production by diatoms and 

copepod reproductive success may be that PUAs are not the only active molecules 

produced by diatoms. Recently, other oxylipins such as hydroxy-acids and epoxyalcohols 

have been isolated (d'Ippolito et al. 2005; Fontana et al. 2007b), which also stem from the 

oxidative metabolism of fatty acids (Figures 1-5 and 1-6). These molecules have also been 

found to negatively impact copepod reproductive success (Fontana et al. 2007b; Ianora et 

al. 2008) and even the intermediate fatty acid hydroperoxides (F AHs) have been found to 

reduce hatching success when F AHs are incubated directly with copepod eggs (Fontana et 

al. 2007b). These new insights into oxylipin metabolism in diatoms and the discovery of 

new ''toxic'' metabolites may explain the deleterious effect of diatoms on hatching success 

in the absence ofPUA-production (Ianora et al. 2008). 

Oxylipin metabolism in diatoms is quite complex, with variations found among strains of 

the same species (Pohnert et al. 2002; Taylor et al. 2009) and even among different 

physiological status of the same diatom culture due to e. g. different nutrient regimes 

(Ribalet et al. 2007b; Ribalet et al. 2009) or various growth phases (Ribalet et al. 2007b; 

d'Ippolito et al. 2009). This great plasticity in oxylipin metabolism may shed some light on 

the often contradictory results obtained in the field. In addition to the great variability in 

diatom oxylipin metabolism observed on all levels, different species of copepods also 

display varying responses to oxylipin-producing diatoms (Paffenhoefer et al. 2005). 
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Copepods evidently vary in their sensitivity towards oxylipins and certain copepod species 

may be more apt at dealing with oxidative stress than others, due to detoxification 

mechanisms present in these species (Ianora 2005; Lee et al. 2007; Souza et al. 2007). The 

variability in oxylipin production by diatoms on one hand and the flexible response of 

consumer copepods on the other, may explain the lack of effect described in some cases in 

the literature. It has additionally been suggested that diatoms may be critical only during a 

short time window (Sommer 2009). As diatoms can successfully support somatic growth 

of copepods, alternative diets may only be important during the limited time period of 

reproduction (Sommer 2009), reducing the impact of diatoms on copepod reproduction in 

the field. 

The increasing number of studies on diatom-copepod interactions, especially under the 

aspect of diatom oxylipin metabolism is creating a complex picture with conclusions 

depending on the diatom and copepod species examined (Ban et al. 1997), as well as on 

other contextual factors such as alternative food sources (Sommer 2009). While 

undoubtedly some diatom species deleteriously impact the reproduction of some copepod 

species, there is still considerable on-going debate as to what extent the results observed in 

the laboratory with mono-cultures are relevant to the field, where food supply is diverse 

(Sommer 2009). 

1.3 The Role of Lipoxygenases in Oxylipin Production 

The variations in the production of oxylipins by different diatom species are presumably 

due to different arrays of enzymatic systems. As mentioned above, oxylipin production is 

initiated by the oxidation of fatty acids by lipoxygenase (LOX) to fatty acid 
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hydroperoxides (FAHs) (Pohnert 2002). Therefore LOX is one of the key enzymes in the 

production of oxylipins, even though it has been suggested that the release of fatty acids by 

lipases could also be a rate-determining step in the reaction (d'Ippolito et al. 2003). 

1.3.1 General Functions of Lipoxygenases 

Lipoxygenases (LOXs) are found in almost all eukaryotes, where they are responsible for 

the dioxygenation of fatty acids by means ofa co-factor, a non-heme iron contained in the 

reactive site, which needs to be in the oxidized (Fe3+) state to be active (Schilstra et al. 

1994). LOXs are fundamental for cell functioning, being involved in signalling pathways 

and in the induction of structural and metabolic changes in cells (Brash 1999). Signalling 

functions result from the production of fatty acid hydroperoxides (FAHs) from 

polyunsaturated fatty acids (PUFAs), which can be highly specific (Brash 1999). FAHs can 

act directly as signalling molecules, for example in a reduced form as a hydroxy-acid 

(Piomelli et al. 1987) or be converted further into secondary oxylipins with signalling 

functions, as in the production of leukotrienes in mammals (Yamamoto et al. 1997) or 

jasmonates in plants (Royo et al. 1996; Feussner and Wasternack 2002). However, LOX 

can also directly oxidize esterified fatty acids, inducing changes in membrane structure and 

provoke a more general lipid peroxidation (Feinmark and Cornicelli 1997; Kuehn et al. 

2002). Lastly, through oxidation of esterified fatty acids, they can also be involved in the 

liberation of fatty acids for metabolic purposes, facilitating secondary oxidation of 

membrane-bound FAHs to liberate fatty acids from lipid stores (Feussner et al. 1997). 

Plants and animals differ in their substrate for LOX activity with el8-fatty acids such as 

linoleate and a-linolenate acids mainly used by plant LOX (Feussner and Wasternack 

40 



2002) and Czo-fatty acids such as arachidonic and eicosapentaenoic acids, as well as 

C22-fatty acids such as docosahexaenoic acid, by animal LOX (Kuehn et al. 2002). 

In plants, oxylipins produced by LOX pathways are involved in regulating growth and 

development (Miyamoto et al. 1997), such as germination of seedlings (Ohta et al. 1986~ 

Melan et al. 1994), tuberisation and flowering (Creelman and Mullet 1995), and ripening 

of fruit (Ferrie et al. 1994; Kausch and Handa 1997), as well as in senescence (Yamane et 

al. 1981 ~ Sembdner and Parthier 1993). Oxylipins are furthermore involved in induced 

defence reactions against pathogens, as well as in wound responses. LOX enzymes in 

plants oxidize Cl8-fatty acids either at the 9- or 13-position of the carbon backbone (9- or 

13-LOX, respectively) (Feussner and Wastemack 2002). Further conversions of the 

produced hydroperoxides lead to a plethora of oxylipin molecules with the 

above-mentioned multitude of functions. Lyase activity, for example, leads to the 

production of volatile C6- or C9-aldehydes which give plants their characteristic "leafy 

odour" and may be involved in plant-plant communications, as well as having 

antimicrobial and antifungal properties (Matsui et al. 2000). 13-Hydroperoxides may also 

be converted to jasmonates, cyclic Clz-compounds involved in plant signalling and induced 

defence responses, such as the expression of defence genes upon herbivore attack (Farmer 

and Ryan 1990; Wastemak and Parthier 1997). Additionally, the reduction of 

hydroperoxides to the corresponding alcohols may be involved in wound healing, as they 

are structural components of the cuticle (Blee 1998). 

In animals, 5-, 12-, and 15-LOX pathways have been described (Serhan 1997). These lead 

to the production of oxylipins mainly from arachidonic acid (Czo:4r06) and play important 

roles in inflammatory and immune responses (Samuelsson 1983). These oxylipins can be 

divided into two major groups, the prostanoids which include prostaglandins, 
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prostacyclins, and thromboxanes, and the leukotrienes (Samuelsson 1980). The former are 

produced by cyclooxygenases which carry out two dioxygenation reactions resulting in the 

formation of a 5-carbon ring, whereas the latter are the products of 5-LOX activity 

(Needleman et al. 1986). Recently, other oxylipins resulting also from the oxidation of 

arachidonic acid by LOX pathways have been identified, such as hepoxilins from 12-LOXs 

(Pace-Asciak and Martin 1984) and lipoxins, which seem to result from multiple LOX 

pathways and are anti-inflammatory mediators (Mitchell et al. 2002). Other lipid-derived 

mediators involved in anti-inflammatory reactions and in resolution of inflammation derive 

from ro3-PUF As, such as the C2o-PUF A eicosapentaenoic acid or the C22-PUF A 

docosahexaenoic acid (DHA). These so called resolvins are produced by cyclooxygenases 

and form a class of poly hydroxy-fatty acids (Serhan et al. 2002). DHA is also the precursor 

for docosatrienes, hydroxy-containing docosanoids which are characterized by conjugated 

triene structures (Serhan 2005) and derive from epoxide-containing intermediates (Hong et 

al. 2003). Akin to the resolvins, these oxylipins act as endogenous protective mediators in 

inflammatory reactions (Hong et al. 2003). 

1.3.2 Lipoxygenase Activity in Diatoms 

Lipoxygenase (LOX) metabolism has some interesting aspects in diatoms. In contrast to 

plants, Cls-fatty acids are not preferred substrates for diatom LOX (Pohnert 2000; 

d'Ippolito et al. 2006) and are present only in trace amounts in these micro algae (d'Ippolito 

et al. 2003). Instead, LOX enzymes in diatoms, akin to those in mammals, metabolize the 

C2o-fatty acids eicosapentaenoic acid (EPA) and arachidonic acid, even though the latter is 

probably not relevant under natural conditions, due to its low presence in diatoms (Pohnert 

2002; d'Ippolito et al. 2006). In addition to oxidizing EPA (Figure 1-6), diatom oxidative 
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fatty acid metabolism demonstrates a novel LOX metabolism on Cl 6-fatty acids (CI6:3 and 

CI6:4) (d'Ippolito et a/. 2003) (Figure 1-5). Several classes of LOXs have been identified in 

diatoms, differing in positional specificity and in the stereochemistry of the produced fatty 

acid hydroperoxides (F AHs) (Figures 1-5 and 1-6) and most diatoms demonstrate more 

than one apparent LOX activity. The complexity in LOX enzymes explains some of the 

diverse oxylipin profiles identified in different diatom species. Diversity is further 

increased by down-stream enzymes involved in transforming F AHs to secondary 

oxylipins. Also in this field, diatoms offer a possibility for discovery of novel enzymes, 

such as a novel hydroperoxide halo lyase in Stephanopyxis turris (Wichard and Pohnert 

2006). Hydroperoxide lyases (HPLs) are generally assumed responsible for transforming 

F AHs into aldehydes (Figures 1-5 and 1-6) (Andreou et al. 2009), although a bifunctional 

LOX activity has also been suggested which may directly transform PUF As into 

polyunsaturated aldehydes (PU As) (Pohnert 2005). Figures 1-5 and 1-6 give a selective 

overview of the LOX activities on Cw and C2o-fatty acid precursors, respectively, relevant 

for Thalassiosira rotula, Skeletonema marinoi, and Chaetoceros ajJinis. 
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Figure 1-5: 9-lipoxygena e (LOX) activity on C w fatty acid (HT A, HTrA) in diatoms; 
adapted from Barofsky and Pohnert (2007) and Andreou et al. (2009) (AOS: allene oxide 
syntha e, HPL: hydroperoxide lyase). 

T rotu/a and S. marinoi have been found to both possess 9(S)-LOX activity for oxidizing 

the Cwfatty acids hexadecatetraenoic acid (HT A) and hexadecatrienoic acid (HTrA) to the 

respective hydroperoxides (Figure 1-5) (d'Ippolito et al. 2006; Fontana et al. 2007b). The e 

can then be further converted by a presumable allene oxide synthase (AOS) to the 

corresponding epoxyalcohols (Figure 1-5). Alternatively, the 9(S)-hydroperoxides can be 

either reduced to the corresponding hydroxy-acids via a presumable peroxida e activity or 

converted to aldehydes (Figure 1-5). Production of aldehydes eem to follow a unique 

hydroperoxide Iya e (HPL) pathway in T rotllla, leading to the production of octatri nal in 

the case of HT A and octadienal in the ca e of HTrA, together with the production of a 
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short-chain hydroxy-fatty acid as a second product (Barofsky and Pohnert 2007) (Figure 

1-5). 

f1i -hydroxy-EP A 
~ 

14-hydroxy-EP A 

~xy-&-epoxy-ET A 
OH 

Figure 1-6: Selective overview of oxylipin metabolism of the C2o-fatty acid eicosapentaenoic 
acid (EPA) in diatoms; adapted from Andreou et al. (2009) (LOX: lipol.,),genase, AOS: aUene 
oxide synthase, HPL: hydroperoxide lyase, HPEPA: hydroperoxy-eicosapentaenoic acid). 

The metabolism of C2o-fatty acids is more complex with several different LOX activities 

leading to the production of hydroxy-acids, epoxyalcohols, and aldehydes (Figure 1-6). 

EPA is presumably oxidized at the 9-carbon atom similar to the Cwfatty acids (Figure 

1-5). The intermediate 9-hydroperoxide (9-HPEPA) IS transformed either to 

7-hydroxy-8-epoxy-eicosatetraenoic acid (epoxyalcohol) by a presumable AOS activity or 
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to the hydroxy-fatty acid (9-hydroxy-EPA) via a reducing activity, possibly carried out by 

peroxidases (Figure 1-6). However, numerous other LOX activities have been described 

for C20-fatty acids, such as a 15(S)-, as well as a 5(R)-activity, in S. marinoi (Fontana et al. 

2007b) (Figure 1-6). 14-LOX activity on EPA is assumed to lead to the formation of 

heptadienal through lyase (HPL) activity on the intermediate hydroperoxide (14-HPEPA) 

in S. marinoi (previously S. costatum (Sarno et al. 2005)) (d'Ippolito et al. 2004) (Figure 

1-6). Alternative pathways may lead from the l4-HPEPA to the production of 

14-hydroxy-EPA in C. affinis via peroxidase activity (Fontana et al. 2007b) or to 

epoxyalcohols via a presumable AOS (Figure 1-6). An 11 (R)-LOX activity has been 

described for the production of decatrienal via lyase (HPL) activity on the 

11 {R)-hydroperoxide in T. rotula (d'Ippolito et al. 2006) (Figure 1-6). Lastly, a 12-LOX 

activity has been reported for the diatom S. turris (Wichard and Pohnert 2006). The variety 

ofLOX activities found in diatoms coupled to various enzymatic activities on the produced 

hydroperoxides, such as HPL, AOS, and reducing activities produce a plethora of oxylipin 

molecules. Diatom oxylipins other than aldehydes may serve the same functions as 

proposed for aldehydes, such as grazer defence, cell signalling, or allelopathy, or may have 

novel functions that still remain to be discovered and described. 

1.4 Aims of the Thesis 

The deleterious effect of diatoms on copepod reproduction due to oxidative fatty acid 

metabolism is usually analysed by quantification of oxylipin production via mass 

spectrometry after extraction ofphytoplankton samples with organic solvents. This method 

is precise and sensitive, but involves a lengthy procedure and requires the necessary 

equipment, as well as the know-how to interpret the spectrometric data. Therefore the need 
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for a more rapid and easy method to quantify these compounds has emerged, such as a 

colorimetric assay for the analysis of lipoxygenase (LOX) activity (Fontana et al. 2007b), 

the enzyme responsible for the first oxidative step in the production of oxylipins by 

oxidizing fatty acids to fatty acid hydroperoxides (F AHs) (Pohnert 2002). Hence the object 

of this thesis was to develop such a method for quantifying oxylipin production in diatoms. 

Furthermore, various aspects influencing LOX activity were examined, as well as their 

effect on the reproductive success of calanoid copepods. Analysis of aldehydes and other 

oxylipins was carried out in close collaboration with the group of Angelo Fontana 

(ICB-CNR, Pozzuoli). 

1) The first part of the thesis consisted of analyzing field phytoplankton samples, 

collected during the Skeletonema marinoi-dominated spring bloom in the Northern 

Adriatic Sea in 2005, for oxylipin production and LOX activity by the colorimetric assay. 

This provided an ample data pool for examining whether oxylipin production was 

correlated to LOX activity. It furthermore allowed an evaluation of whether hatching 

success of eggs produced by Calanus helgolandicus during the same time period, 

depended on the oxidative fatty acid metabolism of diatoms at sea. 

2) Since some questions as to the applicability of the colorimetric assay for 

determining LOX activity arose during the analysis of field phytoplankton samples, a 

second part of the thesis consisted of analysing cultures of various diatom species, as well 

as clones of the same species. Samples were analyzed for oxylipin production and for LOX 

activity with the colorimetric assay and an alternative method. This aided in the evaluation 

of LOX activity assays and provided interesting data for examining species- and 

clone-specific differences in oxidative fatty acid metabolism in diatoms. 
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3) A third part of the thesis concentrated on examining the effect of various factors on 

oxylipin metabolism in diatoms. One of the aspects examined was nutrient limitation by 

analyzing cultures of S. marinai grown under P-limitation in continuous culture. The effect 

of induced metabolic changes in diatoms on copepod reproduction was also examined by 

carrying out incubation experiments with C. helgalandicus. Another aspect considered was 

modulated oxylipin metabolism during different growth phases, both in the laboratory and 

in the field. Laboratory studies were carried out with Pseuda-nitzschia delicatissima, 

whereas field data were collected during a mesocosm experiment carried out at the 

University of Bergen as part of a EUROCEANS project on inducing a mono-algal bloom 

of S. marinai. 
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2 Lipoxygenase Metabolism of Skeletonema marinoi during the 

Diatom Bloom in the Northern Adriatic Sea in 2005 and its 

Effects on the Reproductive Success of Calanus 

helgolandicus 

In the Northern Adriatic Sea, yearly late winter diatom blooms have been found to 

negatively impact the reproductive success of Calanus helgalandicus. During the bloom in 

2005, the lipoxygenase (LOX) metabolism of the phytoplankton assemblage, dominated by 

Skeletanema marinai, was therefore examined by the colorimetric assay and by 

spectrometric analyses of phytoplankton extracts. Copepod hatching success was strongly 

impacted during the peak of the bloom in 2005 and faecal pellet analysis in 2009 

demonstrated that copepods apparently feed on S. marinai during bloom periods. Aldehyde 

production was low in the collected phytoplankton samples in 2005 and the production of 

other oxylipins was detectable mainly at the beginning of the bloom. However, the 

LOX-derived intermediates of oxylipin metabolism, the fatty acid hydroperoxides (FAHs), 

detected colorimetrically, were correlated to the presence of diatoms at sea and reached 

their peak during the height of the bloom. Therefore, FAH production was also correlated 

to the decrease in hatching success, which was in phase with the presence of diatoms at 

sea. This decrease in hatching success may therefore have been due to a direct effect of 

F AHs or to a delayed effect of secondary oxylipins produced at the beginning of the 

bloom. The deleterious effect of the diatom bloom on copepod reproduction in 2005 was 

intermediate compared to the previous two years, which corresponded to an intermediate 

oxylipin production by the phytoplankton assemblage in 2005. 
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2.l Introduction 

Strong diatom blooms that negatively impact the hatching success of important 

zooplankton grazers, calanoid copepods, have been described as occurring in late winter in 

the Northern Adriatic Sea (Miralto et al. 1999). The deleterious effect of diatoms on 

copepod reproduction has been ascribed to the production of toxic secondary metabolites 

such as polyunsaturated aldehydes (PUAs) by this class of micro algae, which compromise 

hatching success of copepod eggs by inducing an apoptotic effect (Miralto et al. 1999). 

Considering that the usual analysis of oxylipin production by mass spectrometry is quite 

elaborate, a colorimetric assay, based on the detection oflipoxygenase (LOX) activity was 

examined for its applicability to quantifying oxylipin metabolism in the phytoplankton 

assemblage. The colorimetric assay is both rapid and simple and requires only a 

spectrophotometer such as those commonly used in oceanic cruises. It may therefore be a 

valuable method for measuring the potential impact of diatoms on copepods directly at sea 

during field sampling. The colorimetric assay has been adapted from an assay proposed by 

Anthon and Barrett (2001) and is based on the indirect colorimetric detection of fatty acid 

hydroperoxides (FAHs), the products of LOX activity. These couple 

3-methyl-2-benzothiazolinone (MBTH) and 3-(dimethylamino)-benzoic acid (DMAB) to a 

coloured compound in an oxidative reaction catalyzed by haemoglobin (Figure 2-1). 
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Figure 2-1: Oxidative coupling due to fatty acid hydroperoxides (FADs) of 
3-methyl-2-benzothiazolinone (MBTH) and 3-(dimethylamino)-benzoic acid (DMAB) 
catalyzed by haemoglobin. 

The formation of the coloured compound can be detected spectrophotometrically. As 

colour formation is proportional to product formation by LOX enzymes, this assay 

provides a specific and sensitive method for determining LOX activity in phytoplankton 

samples. The coloured compound absorbs at 598 nm, thereby providing an advantage over 

the commonly used direct spectrophotometric detection of F AHs at 234 nm (Axelrod et al. 

1981). Direct detection of F AHs at UV -range is not feasible in crude cell lysates because 

of interfering UV-absorbing material, which should not pose a problem at 598 nm (Anthon 

and Barrett 2001). Therefore the colorimetric assay should be applicable to the analysis of 

FAH production in phytoplankton samples. 
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To examine whether the colorimetric assay could provide a valid alternative to mass 

spectrometric oxylipin analysis, phytoplankton samples collected during the diatom bloom 

in the Northern Adriatic Sea in 2005 were analysed for LOX activity by the colorimetric 

assay and for oxylipin production by mass spectrometry. These results were compared with 

the hatching success 0 f copepods measured at the time. Grazing by copepod females was 

not determined numerically. However, in 2009 faecal pellets were examined under the 

scanning electron microscope (SEM) to indirectly establish whether diatoms had been 

grazed. These results were then generalized for the yearly Adriatic diatom bloom, as least 

when the bloom was dominated by Skeletonema marinoi as was the case in both 2005 and 

2009. 

2.2 Materials and Methods 

2.2.1 General 

When not otherwise specified, chemicals were obtained from Sigma-Aldrich. Solvents 

were obtained from Carlo Erba reagents (Milan, Italy) or 1. T. Baker (Deventer, 

Netherlands) and were GC-grade. A cooled centrifuge (OR 15P, Braun Biotechnology 

International) was used to separate the organic from the aqueous phase during extraction 

with organic solvents. Cell residue from sample incubations in Eppendorf tubes was 

removed in an ultracentrifuge (biofuge fresco, Heraeus). A spectrophotometer (Hewlett 

Packard 8453) was used to read absorbance at different wavelengths. Statistical analyses 

were carried out with GraphPad Prism 4.00 (GraphPad Software, Inc.). 

Collection of field phytoplankton samples and incubation experiments for determining 

copepod reproduction were carried out by Antonio Miralto (SZN, Napoli). Phytoplankton 
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composition and cell concentrations in field phytoplankton samples were determined by 

Mauro Bastianini (lSMAR-CNR, Venezia). For the year 2005, no phytoplankton cell 

counts were available for the water column. However, cell counts of the collected 

phytoplankton net samples should be indicative of cell concentrations because samples 

were always collected in the same way (see 2.2.2.1). Values for cells mr' in the following 

figures therefore do not refer to cell concentrations at sea, but to the concentrations in the 

phytoplankton net samples before centrifugation. 

2.2.2 Field Phytoplankton Samples 

2.2.2.1 Sample Collection 

Phytoplankton samples were collected at six stations along a transect from the mouth of the 

Po river to the centre of the Northern Adriatic Sea, whereby station 1 was the station 

farthest from shore and station 6 nearest to the coast (Table 2-1). Samples were collected 

by hauling a 20-J.1m phytoplankton net at the surface for 20 min. Net phytoplankton 

samples were concentrated in a 50-ml Falcon tube (BectonDickinson) by centrifugation 

and the pellets frozen in liquid nitrogen and stored at -80°C until analysis. 
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Table 2-1: Latitude and longitude of six stations sampled in the Northern Adriatic Sea in 
2005. 

Station Latitude Longitude 

St. 1 44° 55',694 12° 56',672 

St. 2 44° 55',824 12° 53',104 

St. 3 44° 55' ,885 12° 49' ,430 

St. 4 44° 55',990 12° 45',734 

St. 5 44° 56',010 12° 42',032 

St. 6 44° 56',278 12° 37',418 

2.2.2.2 Sample Preparation 

Frozen phytoplankton pellets were left to thaw at room temperature for 15 min before 

suspending cells in H20deionised (Milli-Q) at one millilitre per gram sample (d'Ippolito et al. 

2003). Suspended cells were sonicated for 1 min (2*30s) at max. 20% output (Branson 

sonifier 250) on ice, carefully avoiding the formation of foam. Because sample volume 

increased after sonication, the total volume was measured to calculate the necessary 

aliquots in wet weight for the colorimetric assay (see 2.2.3). These were removed from the 

cell lysate and the colorimetric assay was started as soon as possible after sonication. 

Subsamples from the cell lysate were also taken for protein determination (30-50 JlI) (see 

2.2.6), which were frozen at -20°C in 1 % protease inhibitor (Complete). Furthermore, 

subsamples were removed for chlorophyll a determination, which was carried out 

immediately (see 2.2.5). 30 min after sonication, acetone (1: 1 v:v) was added to the 

remaining cell lysate, as well as decenal and 16-hydroxy-hexadecanoic acid (30-60 Jlg 

depending on total sample amount) as internal standards for the analysis of aldehydes and 

other oxylipins, respectively. 
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2.2.3 Colorimetric Lipoxygenase Activity Assay 

The colorimetric assay had already been modified from Anthon and Barrett (2001) and 

adapted for the analysis of phytoplankton lysate (Fontana et al. 2007b) by Giuliana 

d'Ippolito at ICB-CNR, Pozzuoli (a previous OPEN University PhD student of Adrianna 

Ianora), who also carried out the calibration with eicosapentaenoic acid hydroperoxide, 

used for calculation of fatty acid hydroperoxide (FAH) concentrations in the samples 

(Figure 3-4). 

Stock solutions were prepared as follows: 

Stock A (20 mM DMAB in 100 mM phosphate buffer) was prepared by dissolving 330 mg 

DMAB (3-(dimethylamino)-benzoic acid) in 5 ml 1 N HCI, before diluting to 80 ml with 

H20deionised and addition of 1.42 g Na2HP04. The pH was adjusted to 6.0 with 1 N Hel 

before bringing the final volume to 100 ml with H20deionised. 

Stock B (10 mM MBTH) was prepared by dissolving 215.7 mg MBTH 

(3-methyl-2-benzothiazolinone) in 100 ml H20deionised. 

Haemoglobin (from bovine blood) stock solution was prepared at a concentration of 5 

mg mrl in H20deionised. 

EDT A stock solution was prepared at a concentration of 10 mM and sodium dodecyl 

sulphate (SDS) at a concentration of 1 %, both in H20deionised. 

Eicosapentaenoic acid (25 mM EPA) was prepared according to Axelrod et al. (1981). 

EPA was suspended in Tween 20 (as 6% aqueous solution) at a 2:1 w:w ratio. The solution 

was clarified with 1 N NaOH (equimolar ratio) and brought to 25 mM final concentration 

with H20deionised. The solution was divided into aliquots which were flushed with nitrogen 

and stored at _20DC. 
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Working solutions were prepared from stock solutions at the following concentrations: 

Solution A: 10 mM DMAB in 50 mM sodium phosphate buffer by diluting stock AI: 1 

Solution B: 0.2 mM MBTH with 12.5 Ilg mr) Haemoglobin by diluting stock B 1 :50 in 

H20deionised to which Haemoglobin stock solution was added at a 400-fold dilution. 

For every sample, two concentrations were read corresponding to 4 and 8 mg sample wet 

weight (6-16 III cell lysate, depending on sample concentrations) (Table 2-2). These 

aliquots were added to 0.4 ml solution A (OMAB) containing 10 III EOT A (0.1 mM EOT A 

final concentration) in Eppendorf tubes. 16.2 III EP A (0.4 mM final concentration) were 

added where required (see Table 2-2) before adding 0.5 ml of solution B (MBTH). 

Samples were thoroughly mixed and incubated at room temperature for 20 min. 0.5 ml 

sodium dodecyl sulfate (SDS 1%) was added to stop the reaction. Samples were 

centrifuged (lO,OOOxg, 5 min, 4°C), supernatants were transferred to fresh Eppendorftubes 

and absorbance was read at 598 nm. Blanks were read by adding cell lysate directly to the 

co 10 rimetric reagents containing 1 % SDS, centrifuging and reading absorbance 

immediately. All data points were run in duplicate. 
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Table 2-2: Data points for the colorimetric assay. Blanks (4 mg blank and 8 mg blank) were 
read immediately, whereas all other samples were read after 20 min. Before reading the 
samples, 0.5 ml SDS 1 % were added, which were already contained in the reagent mix for 
blanks. 

Sample SolA EDTA l%SDS EPA Cells SolB 
bd] bll] bll] (J.d] [mg] (J.d] 

Solution blank 400 10 500 

EPA blank 400 10 16.2 500 

4 mg blank 400 10 500 4 500 

8 mg blank 400 10 500 8 500 

4mg 400 10 4 500 

4 mg+EPA 400 10 16.2 4 500 

Smg 400 10 S 500 

S mg+EPA 400 10 16.2 8 500 

For comparative purposes of field phytoplankton samples, lipoxygenase (LOX) activity 

determined colorimetricaUy was defined as follows. LOX activity was calculated from the 

absorbance read in the sample at 4 mg wet weight after 20 min (Table 2-2: 4 mg) without 

considering the blanks (for an explained reasoning see Chapter 3). Absorbance read in 

these samples after 20 min was corrected only for the absorbance due to the solution blank. 

FAH concentration in the sample was calculated from absorbance at 598 nm by means of a 

calibration curve carried out with eicosapentaenoic acid hydroperoxide (Figure 3-4). 

Changes in FAH concentrations in the cell lysate on incubation with exogenous fatty acids 

(Table 2-2: 4mg+EPA) were not considered in the calculations for LOX activity in the 

phytoplankton field samples (see 3.4). FAH production was normalized tor protein or 

chlorophyll a. 
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2.2.4 OxyUpin Analysis 

2.2.4.1 Sample Extraction 

The cell lysate, to which acetone (1:1 v:v) had been added (see 2.2.2.2), was centrifuged 

(2750x g, 6 min, 4°C) and the pellet extracted two more times with H20deionise<Jiacetone 

(l:1 v:v), suspending cells first in H20deionised before adding acetone and mixing vigorously 

before centrifuging. The supematants were pooled and extracted three times with CH2Ch 

(l: 1 v:v). After each centrifugation step to separate phases (same settings as above), the 

upper water phase was transferred with a Pasteur pipette into a fresh Falcon tube before 

extracting again with CH2Ch. The organic phases were combined, dried over Na2S04 and 

filtered. The solvent was removed under reduced pressure (Biichi Rotavapor R-114) until 

dryness. Extracts were dissolved in CH2Ch. divided 1:2 into two pre-weighed glass vials, 

the solvent removed under reduced pressure and the weight of the vials determined. The 

smaller sample amount (one-third) was flushed with nitrogen and frozen at -80DC until 

derivatisation with ethereal diazomethane for analysis of oxylipins other than aldehydes on 

LC-MS/MS. The larger sample amount (two-thirds) was derivatised immediately with 

(l-ethoxycarbonylethyliden)-triphenyl-phosphorane (CET) (1.1: I w:w) in CH2Ch for 20 

hours at room temperature according to d'Ippolito et al. (2002a) for the analysis of volatile 

aldehydes. After removal of the solvent, the sample was flushed with nitrogen and frozen 

at -80°C until GC-MS analysis. 

2.2.4.2 Quantification of Aldehydes and Other o.\ylipins 

All analyses ofmetabolites were conducted at the IC8-CNR (Pozzuoli) under the direction 

of Angelo Fontana according to protocols established by his group. Oxylipin molecules 
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had been previously characterized (d'Ippolito et al. 2002a; d'Ippolito et al. 2002b; 

d'Ippolito et al. 2005). Oxylipins other than aldehydes quantified in samples were the 

hydroxy-derivatives and hydroxy-epoxy-derivatives (epoxyalcohols) of hexadecatetraenoic 

acid (HT A), hexadecatrienoic acid (HTrA), and eicosapentaenoic acid (EPA) (Table 2-3). 

These were detected as methylated derivatives and identified with the help of retention 

times and mass spectra on a Qtof-micro mass spectrometer (Waters SpA, Milan, Italy), 

equipped with an ESI source (positive mode) and coupled to a Waters Alliance HPLC 

system. The internal standard (hydroxy-CI6:o) showed a molecular ion mass at 309 mlz. 

Table 2-3: Molecular ion mass [m/z] detected in Le-MS analysis of extracts and used for 
quantification of the hydroxy-acids and epoxyalcohols derived from hexadecatetraenoic acid 
(UTA), hexadecatrienoic acid (UTrA), and eicosapentaenoic acid (EPA). Abbreviations in 
brackets indicate oxylipin species identified on the chromatograms in the Appendix. 

Fatty acid Hydroxy-acid Epoxyalcohol 

HTA (C I6:4) 301 (HT A-OH) 317 (HTA-EPOX) 

HTrA (C I6:3) 303 (HTrA-OH) 319 (HTrA-EPOX) 

EPA (C20:S) 355 (EPA-OH) 371 (EPA-EPOX) 

Aldehydes were detected as CET -derivatives on a GC-MS (Hewlett & Packard 5989B 

mass spectrometer with a 5890 Series 11 Plus gas chromatograph). Aldehyde species 

quantified in samples were heptadienal, octadienal, octatrienal, and decatrienal (Table 2-4). 
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Table 2-4 Molecular ion mass [m/z] and retention times [min] detected in GC-MS analysis of 
extracts and used for quantification of the aldehydes octatrienal, octadienal, heptadienal, and 
decatrienal, derived from the respective fatty acids hexadecatetraenoic acid (HT A), 
hexadecatrienoic acid (HTrA), and eicosapentaenoic acid (EPA). Abbreviations in brackets 
indicate aldehyde species identified on the chromatograms in the Appendix. 

Fatty acid Aldehyde Molecular ion mass [m/z] Retention Time [min] 

HTA (CI6:4) Octatrienal 206 -5-6 
(OT) 

HTrA (CI6:3) Octadienal 208 -5-6 
(OD) 

EPA (C20:S) Heptadienal 194 -4-5 
(HD) 

Decatrienal 234 -8 
(DT) 

The internal standard (decenal) showed a molecular ion mass at 238 rnlz at -6 min. 

Quantification was carried out by comparison of integrated peak areas of oxylipins with 

internal standards. Oxylipin production in the phytoplankton samples was normalized 

either for protein or for diatom cells. 

2.2.5 Chlorophyll a Determination 

Varying concentrations of cell lysate were extracted in N aHC03-saturated 80% acetone for 

2 h at 4°C in the dark in Eppendorftubes. After centrifugation (lO,OOOxg, 20 min, 4°C), 

absorbance of supernatants was read at two wavelengths (630 and 664 nm) and chlorophyll 

a concentration in the cell lysate was calculated as: 

chI a (J.lg rl) = ( Valiquot [1] / Vread [J.ll] ) * (11.47 ~64 - 0.4 ~30) 
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with 464 and 430 the absorbance at 664 nm (chI a) and 630 nm (chI c), Valiquot the amount 

of sample and Vread the total sample volume (Jeffrey and Humphrey 1975). 

2.2.6 Protein Determination 

Protein content in phytoplankton samples was detennined according to the Bradford 

method (Bio-Rad) with bovine serum albumin (BSA) as standard. Samples of cell lysate 

were treated with 5% Triton for 20 min prior to analysis, diluted 1:5 with H20deionised and 

centrifuged (lO,OOOxg, 5 min, 4°C). Supernatants were incubated at 3-4 different 

concentrations with the colorimetric reagents according to manufacturer's instructions in 

Eppendorftubes and absorbance was read at 655 nm. Standard curves with 1 mg mrl BSA 

were read with each analysis and used to calculate protein concentrations in the cell lysate. 

2.2.7 Copepod Reproduction 

For each station and sampling date, females of Calanus helgolandicus were incubated 

individually in Falcon tissue culture flasks in 50 ml seawater containing natural 

phytoplankton assemblage. Eggs were counted after 24 h, whereas the percentage of 

hatched eggs was detennined after 48 h. 

2.2.8 Copepod Grazing Determined by SEM 

Faecal pellets were collected from females used for determining copepod reproductive 

success during the diatom bloom in the Northern Adriatic Sea in 2009. Samples had been 

left 3 days at room temperature (see 2.2.7), which was more than sufficient for bacterial 
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degradation of peritrophic membranes which can otherwise interfere with analyses (Turner 

and Ferrante 1979). Faecal pellets were sorted under the microscope into filtered seawater 

and stored in 4% formalin (final concentration) for two weeks at 4°C. Faecal pellets were 

isolated from four different dates and stations during the diatom bloom to observe 

differences among stations as well as changes during the course of the bloom. Samples 

were prepared for SEM analysis by filtering them onto 3.0-llm isopore™ membrane filters 

(Millipore), which were treated by ethanol (Et OH) dehydration series (25, 50, 95, and 

100%) and kept in 100% EtOH until mounting, critical point drying and spattering with 

gold (Turner 1978). Skeletonema marinoi was identified in the samples with the help of 

Diana Sarno (SZN, Napoli) by examining the ultrastructure ofthe diatom frustule. 

2.3 Results 

2.3.1 Diatom Bloom Development 

During the observed time period (February-May 2005), phytop1ankton was composed 

almost exclusively of diatoms with few other phytoplankton species present, such as the 

dinoflagellates Alexandrium spp. and Prorocentmm micans. 
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Figure 2-2: Mean diatom cell concentrations (±SEM, n=6) of stations 1-6 [cells mrl) in the 
phytoplankton net samples in February-May 2005 (numbers on x-axis indicate weeks of the 
year). Crosses represent absence of sampling (weeks 14-15 and 17-19). 

Diatom cell concentrations in the net samples started to increase towards mid-March 

whereupon the major peak was reached (1.1±O.2*106 cells mrl) (Figure 2-2). Cell 

concentrations then decreased before reaching a second, minor peak at the end of April 

(O.8±O.3*106 cells mrl). At the end of May, diatom concentrations had returned to 

pre-bloom values (O.8±O.3*l05 cells mr1
). Diatom cell numbers were an order of 

magnitude higher during the bloom compared to non-bloom values. 

2.3.2 Phytoplankton Composition 

There were no statistically significant differences between diatom cell concentrations in 

net samples from different stations (ANOVA: p>O.05). However, as actual cell counts at 

sea were not available, the phytoplankton composition during the development of the 
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bloom was examined at the different stations (Figure 2-3). Once again, concentrations in 

net samples were considered representative of concentrations at sea. Phytoplankton groups 

identified were Skeletonema marinoi, Chaetoceros spp., Pseudo-nitzschia spp., 

Thalassiosira rotula, and other minor phytoplankton groups which included non-diatoms. 
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Figure 2-3: Phytoplankton compo ition at tation 1-6 iD February-May 2005 (number on 
x-axis indicate weeks of the year). Cro es rep re ent ab ence of ampling (week 14-15 and 
17-19). Species identified included Skeletonema marilloi, Chaetoceros spp., Psetldo-Ilitzsc/lia 
spp., Thalassiosira rotula, and other minor phytoplankton pecie including non-diatom . 
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At station 1, S. marinai was the dominant phytoplankton species present in net samples 

during the entire time period with Pseuda-nitzschia spp. appearing in minor amounts 

(~25%) towards the end of the bloom in late April. Peak total concentrations in net samples 

were reached in mid-March and at the end of April. In general, phytoplankton 

concentrations in net samples at this station were the lowest of all stations examined (peak 

concentrations: 3.6* 105 cells mrl). At station 2, peak phytoplankton concentrations in net 

samples were found in mid-March (8.5* 1 05 cells mr\ consisting almost entirely of 

S. marinai. Station 3 had highest phytoplankton concentrations in collected net samples in 

mid-March as well (1.2*106 cells mr\ consisting almost entirely of S. marinai with a 

minimal contribution of Chaetaceras spp. At station 4, highest phytoplankton 

concentrations in net samples were also found in mid-March (1.9*106 cells mrl) with 

another minor peak at the end of April (1.2*106 cells mr 1
). The second peak was still 

dominated by S. marinai, but with a significant contribution of Chaetaceros spp. (~25%) 

and a minor contribution of Pseuda-nitzschia spp. (~10%). Station 5 differed from the 

other stations in that highest phytoplankton concentrations in net samples were found at the 

end of April (1.9*106 cells mrl) with a minor peak in mid-March. Also the phytoplankton 

composition differed in that it was less dominated by S. marinoi. This was especially true 

of the later peak which was composed mainly of Chaetoceros spp. (~50%) with a minor 

contribution of Pseuda-nitzschia spp. (~10%). S. marinoi made up only ~40% of total 

phytoplankton during this peak. Also at station 6, the contribution of Chaetoceros spp. to 

the phytoplankton bloom at the end of April was high. Whereas peak phytoplankton 

concentrations (1.0* 1 06 cells mr 1) at the beginning of April were due almost entirely to 

S. marinai, phytoplankton composition at the end of the month had shifted to ~60% 

Chaetaceras spp. 
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2.3.3 OxyUpin Production 

2.3.3.1 Aldehyde Production 

Aldehyde production in general was low in the samples. The type of aldehydes detected 

were heptadienal, octadienal, octatrienal, and in the early samples also decatrienal. In 

Appendix 1, a representative chromatogram is presented of a station at which 

phytoplankton lysate was producing aldehydes (station 6: 11.02.05, week 6) and a station 

at which no aldehyde production was observed (station 1: 20.05.05, week 20). Only in 

~30% of the samples were detectable amounts of aldehydes recorded, mainly at station 6 

during February and the beginning of March (Figure 2-4). This coincided with the highest 

Skeletonema concentrations (4.5*105 cells mrl, Figure 2-3) recorded in net samples at this 

station compared to other stations in February. However, although aldehyde production 

was expected to increase with increasing biomass of S. marinoi at this station, as well as at 

the other stations, this was not the case. From the end of March onward, aldehydes were 

almost absent from the phytoplankton samples (Figure 2-4). 
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Figure 2-4: Aldehyde production (n=l) normalized for diatom cells [pg cell'l] in 
phytoplankton samples collected at stations 1-6 in February-May 2005 (numbers on x-axis 
indicate weeks ofthe year). Crosses represent absence of sampling (weeks 14-15 and 17-19). 

Figure 2-5: Aldehyde production (n=l) normalized for protein [Ilg (mg protr l
] in 

phytoplankton ample collected at tations 1-6 in February-May 2005 (number on x-axis 
indicate weeks of the year). Cro e represent ab ence of sampling (weeks 14-15 and 17-19). 
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Also when aldehydes were normalized for protein, values were apparently higher at the 

beginning of the time period examined, up to a peak in mid-March (2.4± 1.0 Ilg (mg protyl) 

(Figure 2-5). Aldehyde production then dropped to ~O.2 Ilg (mg protyl in April and May. 

2.3.3.2 Production oJOxylipins Other than Aldehydes 

Cellular production of other oxylipins such as hydroxy-acids and epoxyalcohols al 0 

peaked in mid-February (28±13 pg celrl) (Figure 2-6). This peak was very pronounced 

with values thirty times higher than during the remaining time period (1.O±O.6 pg cell-I) . 

After the peak, values were more or less constant. 
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Figure 2-6: Production of oxytipins other than aldehydes (n=1) normalized for diatom ceUs 
[pg celfl] in phytoplankton sample collected at tation 1-6 in February-May 2005 (number 
on x-axi indicate week ofthe year). Cros e repre ent ab ence of ampling (\\eek 14-15 and 
17-19). 
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High mean values in mid-February were mainly due to a high production of oxylipins at 

stations 3 and 4, although stations 2 and 5 also showed high oxylipin production of -13 pg 

cell-I (Figure 2-6). However, there were no statistically significant differences between 

stations when the entire time period was considered (ANOV A: p>O.OS) and at all stations, 

peak production was found in mid-February. Mean production of oxylipins other than 

aldehydes in 2005 was 3.4±2.S pg cell-I. 
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Figure 2-7: Mean production (±SEM, n=6) of oxylipins other than aldehydes of stations 1-6 
normalized for protein [J.lg (mg protrl] in February-May 2005 (numbers on x-axis indicate 
weeks of the year). Crosses represent absence ofsampling (weeks 14-15 and 17-19). 

Mean production of other oxylipins normalized for protein also showed higher values in 

February with a peak of27± 7 ~g (mg protr l at the end of the month (Figure 2-7). Oxylipin 

production normalized for protein decreased during March and then remained low until the 

end of May. There were no statistically significant differences between stations (ANOV A: 

p>O.OS). Mean production of oxylipins other than aldehydes in 200S was 13.2±3.0 ~g 

70 



(mg protrl. Representative chromatograms for dates in which production of oxylipins 

other than aldehydes was pronounced (24.02.05: week 8) and low (1.04.05: week 13) are to 

be found in Appendix I. 

2.3.3.3 Oxylipin Production 

When aldehydes and other oxylipins were considered together, the pattern remained 

similar to that of just other oxylipins because of the low contribution of aldehydes to 

oxylipin production (Figures 2-8 and 2-9). 
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Figure 2-8: Mean oxylipin production (±SEM, n=6) of stations 1-6 normalized for diatom 
cells (pg cell-I) in February-May 2005 (numbers on x-axis indicate weeks of the year). Crosses 
represent absence of sampling (weeks 14-15 and 17-19). 

Oxylipin production was therefore mainly due to oxylipins other than aldehydes such as 

hydroxy-acids and epoxyalcohols. Mean cellular production only increased from 3.4±2.5 
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to 3.6±2.5 pg ceU·1 when aldehydes were included in oxylipin production (Figure 2-8). 

Except for the high peak in mid-February (30±13 pg celr\ cellular production of 

oxylipins was relatively constant from the beginning of February to the end of May at 

1.1±O.2 pg cell· l
. 
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Figure 2-9: Mean oxylipin production (±SEM, n=6) of stations 1-6 normalized for protein [p.g 
(mg protr l

] in February-May 2005 (numbers on x-axis indicate weeks of the year). Crosses 
represent absence ofsampling (weeks 14-15 and 17-19). 

Mean oxylipin production normalized for protein increased from 13.2±3.0 to 14.0±3.1 Ilg 

(mg prot)·1 when aldehyde production was included (Figure 2-9). The bulk of oxylipin 

production was observed in February peaking at the end of the month (28.6±6.2 Ilg (mg 

prot)·I) with a decrease during March to reach low values in April and May (:S5 Ilg (mg 
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2.3.4 Lipoxygenase Activity 

Lipoxygenase (LOX) activity determined with the colorimetric assay was not significantly 

different between stations (ANOVA: p>0.05) and therefore data for all stations were 

pooled (Figure 2-10). 
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Figure 2-10: Mean fatty acid hydroxide (FAH) production (±SEM, n=6) of stations 1-6 
normalized for protein [J.lmol (mg prot)"l] determined with the colorimetric assay in 
February-May 2005 (numbers on x-axis indicate weeks of the year). Crosses represent 
absence of sampling (weeks 14-15 and 17-19). FAH production was calculated from FAH 
concentrations in celllysates after 20 min without considering blanks. 

The colorimetric assay demonstrated highest LOX activity towards the end of the observed 

time period with the highest peak in mid-March (1.4±0.3 ~mol FAH (mg protr l) and a 

slightly lower peak at the end of April (1.2±0.2 ~mol FAH (mg protrl) (Figure 2-10). 

Mean FAH production in 2005 was 0.S8±0.12 ~mol FAH (mg protrl. 
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Chlorophyll a concentrations were only analyzed in the early phytoplankton samples 

(February to mid-March). However, when FAH production was normalised for 

chlorophyll a, a similar pattern as in Figure 2-10 was observed for LOX activity in 

phytoplankton samples during this time period (Figure 2-11). 
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Figure 2-11: Mean fatty acid hydroxide (FAH) production (±SEM, n=6) of stations 1-6 
normalized for chlorophyll a [",mol (ng chi art) determined with the colorimetric assay in 
February-May 2005 (numbers on x-axis indicate weeks of the year; sample analysis was only 
carried out up to week 11). FAH production was calculated from FAH concentrations in cell 
Iysates after 20 min without considering blanks. 
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2.3.5 Copepod Reproduction 

2.3.5.1 Egg Production Rates 

Egg production rates did not differ significantly between stations (ANOV A: p>O.05) 

Therefore mean egg production rates of all stations were calculated (Figure 2-12). 
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Figure 2-12: Mean egg production rates (±SEM, n=6) of Ca/anus he/go/andicus females [eggs 
(fem drl) collected at stations 1-6 in February-April 2005 (numbers on x-axis indicate weeks 
ofthe year). Crosses represent absence ofsampling (weeks 14-15). 

Mean egg production rates were constant at 16±2 eggs female-I dat l from the beginning of 

February to the end of April (Figure 2-12). 
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2.3.5.2 Egg Hatching Success 

Also hatching success of copepod eggs did not differ significantly between stations 

(ANOV A: p>0.05). Mean hatching success was highest at the end of February with 78±4% 

of eggs developing to hatching (Figure 2-13). 
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Figure 2-13: Mean hatching success (±SEM, n=6) of copepod eggs produced by 
Calanus helgolandicus females [%) coUected at stations 1-6 in February-April 2005 (numbers 
on x-axis indicate weeks ofthe year). Crosses represent absence of sampling (weeks 14-15). 

Hatching success decreased to a low of 21 ±2% at the beginning of April before recovering 

to higher values (59±6%) at the end of the month. Mean hatching success over the entire 

time period in 2005 was 47±5%. 
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2.3.6 Comparison between Years 

Oxylipin production ofphytoplankton samples had also been determined during the diatom 

blooms in 2003 and 2004. Therefore oxylipin production and hatching success were 

compared between the three years. Statistical analyses were carried out considering only 

the weeks of the year in which data were available for both hatching success and oxylipin 

production in all three years examined (n=6). 
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Figure 2-14: Yearly mean oxylipin production (+SEM, n=6) normalized for diatom cells [pg 
celr') in phytoplankton samples collected at stations 1-6 during the late winter diatom blooms 
in 2003, 2004, and 2005. 

Yearly mean cellular production of oxylipins in 2003 was 1.8±0.S pg celr1
, whereas 

cellular oxylipin production was significantly lower in 2004 at 0.14±0.09 pg celrl 

(Figure 2-14) (repeated measures ANOV A: F=6.0, ~=0.60, p=O.03 and Tukey's post-test: 

p<O.OS). Oxylipin production in 200S for the considered time period was 1.2±0.S pg cell-1 

and thereby did not differ significantly from either of the previous two years. 
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Figure 2-15: Yearly mean hatching success (+SEM, n=6) of copepod eggs produced by 
Ca/anus he/go/andicus females (%] collected at stations 1-6 during the late winter diatom 
blooms in 2003, 2004, and 2005. 

Mean hatching success was low in 2003 at 31±3%, whereas in 2004 hatching success was 

significantly higher at 67±5% (repeated measures ANOVA: F=16.4, ~=0.80, p=0.0015 

and Tukey's post-test: p<O.Ol). Hatching success was intermediate in 2005 at 51±8% 

(Figure 2-15) and did not differ significantly from either of the two previous years. 
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oxylipin production 
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Figure 2-16: Yearly mean oxyJipin production (+SEM, n=6) normalized for protein [J1g (mg 
protrl] in phytoplankton samples collected at stations 1-6 during the late winter diatom 
blooms in 2003, 2004, and 2005. 

A different pattern was observed when oxylipins were nonnalized for protein (Figure 2-16) 

with no statistically significant differences between the years (repeated measures ANOVA: 

p>0.05). 

2.3.7 Copepod Grazing 

Composition of faecal pellets collected from females reflected the predominance of 

Skeletonema marinoi at sea. Since there seemed to be no differences in the composition of 

faecal pellets between stations, SEM photographs from one representative station 

(station 2) were compared for different sampling dates during the course of the bloom 

(Figures 2-17 to 2-20). 
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Figure 2-17: EM photograph of a fa ecal pellet produced by a Calanus Itelgolandicus female 
collected at the beginning of the diatom bloom in 2009 (March 4th

, station 2). The red circle 
how an intact cell of Skeletollema marinoi. 

At the beginning of the bloom (early March), copepods were evidently feeding on 

S. marinoi and although ome cell eemed to pa intact through the gut (Figure 2-17), a 

large amount was dige ted, a demon trated by the numerous fragments of Skeletonema 

cell ob erved in the ample. Contributions of other diatoms, such as Chaetocero 'Pp., 

Pseudo-nit=schiu pp., Thala io Ira rotula and unidentified pennate diatoms were 

minimal. 
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Figure 2-18: SEM pbotograpb of a faecal pellet produced by a Calanu helgolandicu female 
collected on March 16th 2009 from station 2. 

In samples collected during the bloom (March 16th), faecal pellets were almost entirely 

composed of S. marinoi. Interestingly, cells also seemed more digested (Figure 2-18). Cell 

fragments prevailed and few intact cells could be identified . There also seemed to be less 

unidentified amorphous material compared to the previous sample (Figures 2-17 and 2-18). 
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Figure 2-19: SEM photograph of a faecal pellet produced by a Ca/anus helgolandicus female 
collected on March 24th 2009 from station 2. 

On March 24t
\ faecal pellet composition had changed. S. marinoi was still very abundant, 

but Chaetoceros spp. also contributed to faecal pellet composition (Figure 2-19). Cells 0 f 

Chaetoceros spp. were largely digested, but their presence was noticeable due to the 

occurrence of spines in the pellets (Figure 2-19). 
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Figure 2-20: SEM photograph of a faecal pellet produced by a Ca/anus he/go/andicus female 
collected on March 30th 2009 from station 2. 

On March 30th
, samples differed completely from previous samples. Some cell fragments 

still indicated feeding on S. marinoi and other phytoplankton were identifiable (e. g. 

Emiliana huxleyii and other coccolithophorids). However, faecal pellets eemed to be 

composed mainly of amorphous material with high amounts of bacteria (Figure 2-20). The 

bloom on this date had crashed (A. Miralto , per. comm.) and copepods were probably 

feeding either on very digestible phytoplankton such as flagellates or on a scarce food 

supply, as suggested also by the low amount of faecal pellets produced. 
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2.4 Discussion 

In 2005, egg production rates of Calanus helgolandicus remained constant in the Northern 

Adriatic Sea during spring. Egg production was not apparently negatively affected by the 

presence of oxylipin-producing diatoms during this time period. This corresponds to 

observations that diatoms can support high egg production rates, even though they may be 

deleterious to hatching success of the eggs produced (Ianora and Poulet 1993; Miralto et 

al. 2003; Vargas et al. 2006). However, neither was there an observable positive influence 

on egg production through increased food supply during the diatom bloom, since egg 

production rates remained unaffected by diatom abundance. Egg hatching success started 

to decrease at the end of February and continued decreasing with an increasing presence of 

diatoms at sea until reaching a low at the beginning of April with only -20% of eggs 

developing to hatching. However, hatching success then started to recover while diatom 

numbers were still high. 

Phytoplankton cell counts of collected net samples showed that Skeletonema marinoi was 

the main phytoplankton species present during the bloom and although other diatoms were 

contributing to the bloom at some stations, they consisted of species also known to produce 

oxylipins. Although there were slight variations in phytoplankton composition among 

stations, all phytoplankton samples collected consisted mainly of S. marinoi. Differences 

among stations were due to varying contributions of Chaetoceros spp. and 

Pseudo-nitzschia spp. Although Chaetoceros and Pseudo-nitzschia species have not been 

found to produce short-chain polyunsaturated aldehydes, they have been found to produce 

other oxylipins (Fontana et al. 2007b; d'Ippolito et al. 2009) that negatively impact 

copepod reproductive success (Miralto et al. 1999; Fontana et al. 2007b). Indeed, stations 

differed neither in oxylipin production of the phytoplankton assemblage, nor in hatching 
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success of copepod eggs. All stations seemed to have the same effect on copepod 

reproductive success throughout the course of the bloom. 

Although copepods could have been feeding also on other sources such as 

microzooplankton (Calbet and Saiz 2005), S. marinai strongly dominated the 

phytoplankton assemblage. It is likely, therefore, that copepods were feeding on 

S. marinai. This was confirmed by SEM analyses of faecal pellets, which were carried out 

for a different year, but probably indicated the general feeding trend of C. helgalandicus 

during the spring diatom bloom in the Northern Adriatic Sea. Faecal pellet composition 

demonstrated that S. marinai was grazed abundantly by C. helgalandicus during the 

bloom. Furthermore, cells were metabolized by copepods, showing that copepods were 

exposed to all of the metabolites released by cells during cell lysis (Pohnert 2000). It can 

therefore be assumed that copepods were indeed exposed to oxylipins during the spring 

diatom bloom in 2005. 

Strangely, oxylipin production by the phytoplankton samples did not correlate to the 

presence of diatoms at sea, being higher during February than during the peak of the 

bloom. In terms of cellular production, the peak observed before the bloom seems to be 

some kind of signal, even though until now oxylipin cellular production has been 

suggested to be high at the end of blooms and not at the beginning (Vardi et al. 2006; 

Vidoudez and Pohnert 2008) (see Chapters 6 and 7). Oxylipins normalized for protein 

should be more indicative of potential oxylipin concentrations in the seawater and 

therefore should coincide with the presence of diatoms. However, also in this case higher 

oxylipin production could be observed at the beginning of the bloom, when diatom 

concentrations were low. Apparently, high cellular production of diatoms led to a general 
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increased potential for oxylipin production In the phytoplankton assemblage during 

February. 

There was a delayed effect of oxylipins on egg hatching success. Aldehydes and other 

oxylipins were mainly produced in February and at the begirming of March, whereas egg 

hatching success was high during this time period and did not reach a minimum until the 

beginning of April, when oxylipin production in the phytoplankton assemblage was low. 

This may be due to a shift in effects with copepod females exposed to higher oxylipin 

concentrations during February and early March, which led to the production of eggs 

compromised for hatching success in the following weeks. Also in culture studies, it has 

been observed that several days to weeks are needed to induce a deleterious effect in 

hatching success when copepods are feeding on oxylipin-producing diatoms (Turner et al. 

2001; d'Ippolito et al. 2002b; Ceballos and Ianora 2003). Apparently, the negative effect of 

diatoms on copepod reproduction can either be compensated by females for a short time 

period or accumulation processes are necessary to induce a deleterious effect on copepod 

egg development. This delayed effect of oxylipins on copepod reproduction is in 

accordance with the observed recovery of hatching success at the end of April, when 

oxylipin production in phytoplankton samples was low, even though diatom numbers were 

still high. 

The decrease in hatching success showed a direct correlation to increasing diatom 

concentrations at sea, mostly due to S. marinoi, with hatching success compromised most 

strongly during the bloom period. This suggests an immediate impact of S. marinoi on 

copepod reproduction. However, this effect was apparently not mediated by the known 

end-metabolites of fatty acid oxidation, the oxylipins, because production was low during 

the peak of the bloom. Lipoxygenase (LOX) activity, as determined by the production of 
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fatty acid hydroperoxides (F AHs) with the colorimetric assay, on the other hand, showed a 

more direct correlation with S. marinai concentrations at sea and therefore also with 

copepod egg hatching success. Production of F AHs increased with an increase of diatom 

concentrations, linking FAH production to the presence of diatoms in the sample. F AHs 

have been found themselves to be deleterious to hatching success and the effect described 

is actually stronger than that observed for aldehydes or other oxylipins (Fontana et al. 

2007b). Therefore it is possible, that F AHs were directly impacting copepods during the 

diatom bloom, inducing an apoptotic effect in copepod eggs leading to decreased viability. 

In comparison with the previous two years, the bloom of S. marinai in 2005 had an 

intermediate effect on copepod reproduction. Hatching success was lower in 2003 which 

corresponded to a higher mean cellular oxylipin production; hence algae were more '"toxic" 

with regards to oxylipin production. In 2004, phytoplankton was producing low amounts of 

oxylipins which corresponded to high hatching success. Although variations in oxylipin 

production may not correlate directly with hatching success within a diatom bloom, in 

years with more '"toxic" algae, copepod reproduction is compromised more strongly than 

in years in which diatom cells are producing low amounts of fatty acid derived oxygenated 

metabolites. When oxylipin production is normalized for protein, mean yearly production 

of oxylipins does not coincide with the mean hatching success of that year. It therefore 

seems to be more important that diatom cells are producing high amounts of oxylipins than 

that the overall production of oxylipins in the total phytoplankton assemblage is high. As 

copepods always eat more or less the same amount of a diatom species, they are more 

strongly impacted in years with more '"toxic" cells. 
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2.5 Conclusions 

To conclude, hatching success of copepod eggs was strongly impacted during the height of 

the Skeletonema marinoi-dominated diatom bloom in 2005. This was possibly due to 

diatom oxylipin metabolism, since oxylipins were produced by the phytoplankton 

assemblage and copepods seemed to be feeding abundantly on S. marinoi. A decrease in 

hatching may have been caused either by a delayed effect of the more stable secondary 

oxylipins such as epoxyalcohols and hydroxy-acids produced at the beginning of the 

bloom, or by a more direct effect of the intermediate fatty acid hydroperoxides (FAHs) 

produced during the height of the bloom. It remains to be seen for what reason the 

production of secondary oxylipins such as aldehydes, epoxyalcohols and hydroxy-acids 

does not correspond to their presumed precursors, the F AHs. In any case, in years with 

stronger average oxylipin production by the phytoplankton assemblage, the average 

hatching success during the bloom period seems to be compromised more strongly than in 

years with weak oxylipin production. 
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3 Method development 

Using the colorimetric assay for the determination of lipoxygenase (LOX) activity via the 

production of fatty acid hydroperoxides (F AHs) posed several problems, such as a lack of 

linearity and a lack of increase from blank to sample values. These problems were 

addressed analysing phytoplankton laboratory cultures and including a polarographic assay 

for measuring LOX activity. The lack of linearity in the colorimetric assay was ascribed to 

an inability of the secondary colorimetric reaction to accurately follow FAH production at 

high production rates. The polarographic assay showed improved linearity since it directly 

measured the consumption of one of the reactants. Furthermore, the colour compound 

formed in the colorimetric assay was found to be instable, making it imperative to read 

samples always at precise time intervals. The colorimetric assay was restricted to a 

pH-value of 6.0 and could not be adapted to the pH of seawater (8.15), an adaptation which 

was possible with the polarographic assay. The pH-value of the buffer was not only 

important for LOX activity measurements, but also seemed important for the extraction of 

samples for oxylipin quantification with lower oxylipin production determined at lower 

pH-values. Freezing samples had no significant influence on the two LOX assays and on 

oxylipin production and could therefore be applied to the collection of field samples. 
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3.1 Introduction 

All phytoplankton samples collected in the field were analyzed for lipoxygenase (LOX) 

activity by the colorimetric assay and extracted with organic solvents for identification and 

quantification of oxylipins via mass spectrometric analyses. However, several difficulties 

were encountered using the colorimetric assay, which were addressed by analyzing 

samples obtained from phytoplankton laboratory cultures. First of all, there seemed to be a 

problem with the linearity of the assay. Adding twice the sample amount in the assay 

(8 mg instead of 4 mg wet weight) never led to twice the absorbance. Another problem 

encountered in some cases was a lack of increase in absorbance from the blank to the 

sample, and also a lack of increase in absorbance upon the addition of exogenous fatty 

acids, which should have increased fatty acid hydroperoxide (FAH) production by LOX. 

Even though samples were producing oxylipins, LOX activity could not be demonstrated 

by the colorimetric assay in these cases. Therefore in this chapter another assay was 

examined for its applicability to measuring LOX activity. This assay is based on the 

consumption of dioxygen during the oxidation of fatty acids to FAHs by LOX enzymes, 

which should take place in a molar ratio of 1: 1 (Figure 3-1). 
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Figure 3-1: Oxidation of polyunsaturated fatty acids to fatty acid bydroperoxides by 
Iipoxygenase via insertion of a dioxygen molecule. 

Oxygen consumption rate was measured polarographically in an oxygraph and related to 

LOX activity (Axelrod et al. 1981). While the colorimetric assay was nonnally carried out 

at pH=6.0 (pH-range: 5.5-7.0 (Anthon and Barrett 2001)), the oxygraph could be used 

under various pH-conditions, because it directly measures the rate of oxygen consumption, 

independent of a secondary reaction. To create a similar environment as presumably 

encountered by LOX enzymes at sea, LOX activity in the cell lysate was generally 

determined in buffer at the pH of seawater (8.15) in the polarographic assay. Therefore it 

was examined whether the colorimetric assay could also be adapted to this pH. 

Since analysis of LOX activity was carried out on field phytoplankton samples that had 

been frozen in liquid nitrogen and kept at -SO°C until analysis, studies in this chapter also 

established whether this handling of the samples could influence the results. 
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3.2 Materials and Methods 

3.2.1 Phytoplankton Culture Samples 

Phytoplankton cultures were grown in two-litre polycarbonate bottles under gentle 

bubbling with sterile (O.22-llm filtered) ambient air. Cultures were kept in a climate 

chamber at 20°C on a 12h: 12h lightdark cycle at 100 Ilmol photons m-2 s-'. Samples were 

harvested in stationary phase by centrifugation in a cooled centrifuge (DR 15P, Braun 

Biotechnology International) with a swing-out rotor (Table 3-1). 

For comparative analyses of fresh and frozen samples, half of the culture was centrifuged 

and analysed immediately, whereas the other half was pelleted, frozen in liquid nitrogen 

and kept at -80°C until analysis in analogy to field phytoplankton samples. Four replicates 

each of Chaetaceras affinis and the Skeletanema marinai clone isolated in 2003 from the 

Northern Adriatic Sea were analysed in a fresh and frozen state. The same isolate of 

S. marinai was used in all other methodological analyses, except for the pH-comparisons, 

which were carried out with an isolate from 1997 for lipoxygenase (LOX) activity and 

aldehyde production and with a clone isolated in 2004 for production of oxylipins other 

than aldehydes. Selection of clones depended on availability at the moment of analysis. 

Phytoplankton cultures were concentrated by centrifugation in a pre-weighed blue Falcon 

tube (BectonDickinson) and the total volume was brought to 50 ml before final 

centrifugation. From this volume, a 100 III subsample was taken to determine cell counts. 

The cell count subs ample was diluted 1 :30 with filtered seawater, fixed with two drops of 

Lugol's solution and counted in a Sedgewick counting chamber (Hausser Scientific, 

Horsham, P A, USA) under an inverted microscope (1 Ox). After the last centrifugation step, 
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a quick-spin (30 s) ofthe pellet at increased rotational speed was carried out (Table 3-1) to 

remove excess water. The pellet weight was determined before analysis or freezing. 

Table 3-1: Centrifugation parameters for collection of culture pellet samples ofthree diatom 
species Chaetoceros afjinis, Skeleton em a marinoi, and Thalassiosira rotula, used in this and 
the following chapter. 

Phytoplankton Time Rot. Speed Quick-spin Temp. 
Species [min] [xg] [xld rOC1 
Chaetoceros affinis 15 300 1900 18 

Skeletonema marinoi 10 1000 2800 4 

Thalassiosira rotu/a 10 1200 2800 4 

3.2.2 Polarographic Assay 

Oxygen consumption rate ofthe cell lysate was measured in a Gilson 5/6 oxygraph (Gilson 

Medical Electronics, Middleton, WI, USA) in a water-jacketed reaction vessel of two 

millilitre volume with a Clark electrode covered with a Teflon® membrane. The reaction 

vessel was kept at a constant temperature of 22°C by a circulating water bath. 

Measurements were conducted in 0.2 M sodium phosphate buffer at pH=6.0 or in 0.2 M 

sodium borate buffer at pH=8.15. 1.9 ml of buffer was left to equilibrate with atmospheric 

oxygen in the open reaction vessel for 5 min, after which the vessel was closed with a 

capillary bore stopper and the blank was registered for 5 min. The cell lysate (5-70 1-11) was 

added by an automatic pipette and oxygen consumption rate was registered for another 5 

min. Following the addition of eicosapentaenoic acid (EPA) (0.2 or 0.4 mM fmal 

concentration; solution prepared as in 2.2.3), oxygen consumption rate was registered for 

an additional 5 min. Aliquots of samples were added according to the aliquots used in the 
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colorimetric assay corresponding to 4 mg of sample wet weight and multiples thereof. 

Oxygen consumption rate was recorded by a writer head on heat-sensitive millimetre paper 

moving at a constant speed. Calculations were carried out by comparing the slopes of 

oxygen consumption rates from the linear part ofthe curves. Lipoxygenase (LOX) activity 

determined polarographically was normalized for protein content which was measured as 

described in Chapter 2 (2.2.6). 

The specificity of the polarographic assay for determining LOX activity in phytoplankton 

lysates was evaluated as follows. The increase in oxygen consumption rate upon addition 

of exogenous fatty acid (EPA) to two species known to lack LOX activity, the flagellate 

Prorocentrum minimum (Fontana et al. 2007b) and the diatom Thalassiosira weissjloggii 

(Wichard et al. 2005; Wichard et al. 2007), was compared to the increase in oxygen 

consumption rate in Skeletonema marinoi, known to possess LOX activity (Fontana et al. 

2007b). 

3.2.3 Colorimetric Assay 

Lipoxygenase (LOX) activity was determined colorimetrically as described in Chapter 2 

(2.2.3). In the present study, however, LOX activity was calculated from the difference in 

absorbance between the blank and the sample. LOX activity was normalized for protein. 

Alternatives to sodium dodecyl sulphate (SDS) for blocking LOX enzymes before reading 

the absorbance in the spectrophotometer were also tested. 

The specificity of the colorimetric assay for determining LOX activity was evaluated as 

follows. Pure LOX enzyme (3.2.5) was incubated with eicosapentaenoic acid (EPA) after 

the addition of the LOX inhibitor nordihydroguaiaretic acid (NDGA) at 50 IlM. 
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3.2.4 Oxylipin Analysis 

Production of volatile aldehydes and oxylipins other than aldehydes was determined as 

described in Chapter 2 (2.2.4) and was normalized for cells. For the analysis of fresh and 

frozen samples, the production of aldehydes and oxylipins other than aldehydes was 

pooled to compare oxylipin production between treatments. 

3.2.5 Calibration 

For calibration purposes, a solution of pure lipoxygenase (LOX) enzyme (lipoxidase from 

soybean at 45,000 units mg- I
) was prepared in 0.2 M sodium borate buffer (pH=8.l5) at 

2 mg mrl. This solution was also used for some of the methodological studies. In the 

colorimetric and polarographic assays, aliquots ofLOX enzyme were incubated at different 

concentrations with eicosapentaenoic acid (EPA) at 0.4 mM final concentration according 

to 2.2.3 and 3.2.2. 

3.3 Results 

3.3.1 Specificity of Lipoxygenase Activity Assays 

3.3.1.1 Polarographic Assay 

In Thalassiosira weissfloggii, oxygen consumption rate of the cell lysate was low and did 

not increase upon the addition of eicosapentaenoic acid (EPA) (Figure 3-2). Also in 

Prorocentrum minimum, oxygen consumption rate did not increase upon EP A-addition. In 

Skeletonema marino; lysate on the other hand, oxygen consumption increased significantly 

upon the addition of exogenous EPA (t-test: t=5.l8, df= 11, p=0.0003). This activity could 
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be blocked completely when a boiled cell lysate of S. marinai was used in the assay 

(Figure 3-2). 
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lysate lysate+EPA 

T. weissf/oggii 
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S.marinoi 

I:::J S.marinoi boiled 

Figure 3-2: Mean oxygen con umption rate (+SEM, n=2 except Skeletollema marinoi: n=12) 
[/.lmol O2 (mg prot minrl ) in cell Iy ate (lysate) and in cell lysate incubated with 
eico apentaenoic acid (0.2 mM) (Iy ate+EPA) of Tltalassiosira weissfloggii, Prorocentrum 
mi"imum, and S. marillo;, including a boiled sample of S. marinoi measured with the 
polarographic a ay at pH=8.1S. 

3.3.1.2 Calorimetric A ay 

Preliminary studie with the lipo ygena e (LOX) inhibitor nordihydroguaiaretic acid 

( DGA) indicated that fatty acid hydroperoxide (FAH) production wa indeed due to LOX 

activity becau e DGA completely blocked FAH production (Figure 3-3). Inhibitor 

tudie were then abandoned becau e DGA failed to block activity of both cell lysate and 

pure LOX enz me from 0 bean (3 .2.5) at pH=8.1S in the polarographic a say. 
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Figure 3-3: Mean fatty acid hydroperoxide (FAH) production (+SEM, n=2) (pM] from 
varying amounts of pure Iipoxygenase (LOX) enzyme (unit] incubated with 0.4 mM 
eicosapentaenoic acid only (+EPA) and with EPA and the LOX inhibitor (0.05 mM) 
nordihydroguaiaretic acid (+EPA +NDGA) determined with the colorimetric assay. 

3.3.2 Linearity 

3.3.2.1 Calorimetric Assay 

When the colorimetric assay was calibrated directly with eicosapentaenoic acid 

hydro peroxide (FAH), the relationship between FAH concentration and absorbance at 

598 nm remained linear up to at least 30 ~M (Figure 3-4). This corresponded to the 

concentration range given for linearity in the original paper by Anthon and Barrett (2001). 

However, FAH concentrations produced by phytoplankton lysates were often higher than 

this value. 

97 



0,3 

E 
c 
co 0,2 
0'> 
Lt) -~ 
C 
ell 
-e 
g 0,1 
.0 « • 

• 

y= 0,01x 

R2 = 0,91 

0,0 ~------,-------~----~------~------~------~------~ 

° 5 10 15 20 25 30 35 

FAH [~M] 

Figure 3-4: Relationship between mean absorbance (±SEM, n=2) at 598 nm and 
concentration of eicosapentaenoic acid hydroperoxide (FAH) [IlM) in the colorimetric assay. 
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Figure 3-5: Relationship between mean fatty acid hydro peroxide (FAH) concentration 
(±SEM, n=I-3 depending on LOX amount) (pM] and amount of lipoxygenase (LOX) (unit] 
incubated with eicosapentaenoic acid (0.4 mM) in the colorimetric assay. 

When the assay was calibrated with pure lipoxygenase (LOX) enzyme with 

eicosapentaenoic acid (EPA) as substrate (0.4 mM final concentration), linearity was in 

fact restricted to a LOX concentration below 450 units, after which the curve levelled off 

(Figure 3-5). However, compared to incubating directly with the hydroperoxide, 

absorbance seemed to be linear to LOX amount up to a concentration of ~90 JlM FAH 

(Figure 3-5). 
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Figure 3-6: Relationship between mean fatty acid hydro peroxide (FAH) concentration 
(±SEM, n=I-2 depending on pellet wet weight) [I'M] and Skeletonema marinoi pellet wet 
weight [mg] in the colorimetric assay. 

When the colorimetric assay was carried out with a cell lysate of Skeletonema marinoi, the 

relationship between the amount of algal sample added and the amount of FAH detected 

was linear up to ~16 mg wet weight of sample which corresponded to a FAH concentration 

of ~60 ~M (Figure 3-6). 

3.3.2.2 Polarographic Assay 

The polarographic assay showed greater linearity when calibrated with pure lipoxygenase 

(LOX) enzyme and eicosapentaenoic acid (EPA) (0.4 mM final concentration) than the 

colorimetric assay (Figure 3-7). The relationship between LOX amount and oxygen 

consumption rate was linear up to the highest amount tested (630 units). 
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Figure 3-7: Relationship between mean oxygen consumption rate (±SEM, n=I-3 depending 
on LOX amount) [nmol Oz min- I

] and amount of lipoxygenase (LOX) [unit] incubated with 
eicosapentaenoic acid (0.4 mM) in the polarographic assay at pH=8.15. 

3.3.3 Stopping the Colorimetric Assay 

One alternative tested for stopping the LOX reaction before reading the absorbance of the 

sample was the addition of methanol after 20 min. This, however, led to conflicting results. 

When samples were boiled prior to sonication, thereby prior to preparation of the cell 

lysate, Skeletanema marinai cell lysate showed no increase in FAH production with time in 

contrast to a normally lysed cell suspension (Figure 3-8). 
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Figure 3-8: Mean absorbance (+SEM, n=2) at 598 nm of a boiled cell lysate and a normally 
lysed cell suspension of Skeleton em a mar;no; at 0, 5, and 20 min after the start of the 
colorimetric assay. 

However, when boiling was used as a method to stop the reaction after 20 min prior to 

reading sample absorbance, a continued increase in colour formation was observed 

(Figure 3-9). 
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Figure 3-9: Mean absorbance (+SEM, n=2) at 598 nm of samples read 0, 20, and 40 min after 
stopping the colorimetric assay by boiling samples. The colorimetric assay was carried out 
with cell lysate of Skeleton em a marinoi. 
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Figure 3-10: Mean absorbance (+SEM, n=2) at S98 nm of samples read 0, 20, 40, and SO min 
after stopping the colorimetric assay by addition of increasing concentrations of SDS (0.3, 2, 
and 7%). The colorimetric assay was carried out with a cell lysate of Skeletonema marinoi. 

The same steady increase in absorbance was demonstrated when SDS-concentrations for 

stopping the reaction after 20 min were increased (Figure 3-10). Even when the highest 

possible concentration ofSDS (7%) was used, re-reading the samples after 20,40, and 50 

min after the initial reading led to a continuous increase in absorbance. However, it could 

be demonstrated polarographically that the same sample analyzed in buffer containing 

even SDS concentrations as low as 0.3% failed to show LOX activity. Na2S03 was added 

to the oxygraph to control that oxygen measurements were not influenced by the detergent 

itself and that the lack of registered oxygen consumption was actually due to an inhibitory 

effect of the detergent on LOX activity. 
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3.3.4 pH-variability 

3.3.4.1 Colorimetric Assay 

Carrying out the colorimetric assay with a cell lysate of Skeletonema marinoi at increasing 

pH led to a decrease in absorbance (Figure 3-11). 

-E 
c 

00 m 
It) -

pH=6.0 pH=8.15 pH=9.0 

Figure 3-11: Mean absorbance (+S EM, n=2) at 598 nm of a cell lysate of Skeleton em a marinoi 
measured in the colorimetric assay carried out at various pH (pH=6.0, 8.15, and 9.0). 
Absorbance values were not corrected for blank values. 

3.3.4.2 Polarographic Assay 

The same cell lysate of Skeletonema marinoi measured in the colorimetric assay at 

increasing pH was measured at the same pH-values in the oxygraph (Figure 3-12). 
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Figure 3-12: Mean oxygen consumption rate (+SEM; pH=6.0: n=2, pH=8.15: n=4, pH=9.0: 
n=l) ["mol O2 (mg prot minrl] of Skeletonema marinoi cell lysate upon EPA-addition (0.2 
mM) determined polarographically at various pH (pH=6.0, 8.15, and 9.0). 

This demonstrated that apparently lipoxygenase (LOX) enzymes in this sample were not 

active with eicosapentaenoic acid (EPA) as substrate at pH=6.0 and pH=9.0. An increase 

in oxygen consumption rate upon the addition of EPA, hence LOX activity, was observed 

only at pH=8.15 (Figure 3-12). 

3.3.4.3 Oxylipin Production 

This pH-dependency of the lipoxygenase (LOX) reaction could also be demonstrated by 

extracting a cell lysate of Skeletonema marinoi suspended in buffer at two different pH 

(pH=6.0 and 8.15) and quantifying oxylipin production according to 2.2.4 (Table 3-2). 

106 



Table 3-2: Production of aldehydes and oxylipins other than aldehydes (n=l) normalized for 
cells Ifg cell-I] in cell lysate of Skeleton em a marinoi suspended in buffer at pH=6.0 and 
pH=8.15. Analysis of aldehyde production was carried out on a different sample of S. marinoi 
cell lysate than analysis of production of oxylipins other than aldehydes. 

pH Aldehydes [fg cell-I) Other oxylipins [fg cell:J) 

6.0 145 13 

8.15 238 127 

Whereas aldehyde production seemed only weakly affected by pH, production of oxylipins 

other than aldehydes seemed to be strongly influenced by changes in pH-value. Aldehyde 

production increased only by -65% when cell lysate was incubated in buffer at pH=8.15 

instead of at pH=6.0. The production of other oxylipins, on the other hand, showed a 

ten-fold increase when cell lysate was incubated at pH=8.15 instead of pH=6.0. Low 

production of other oxylipins compared to aldehydes may be due to the fact that analyses 

for the two oxylipin groups were carried out on separate samples of S. marinoi and were 

therefore not comparable. 

3.3.5 Comparison of Fresh and Frozen Phytoplankton Samples 

3.3.5.1 Calorimetric Assay 

Production of fatty acid hydroperoxides (FAHs) in cell lysates of frozen samples was not 

significantly different from FAH production in celllysates of fresh samples of Chaetoceros 

ajJinis (t-test: p>0.05) (Figure 3-13). 
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Figure 3-13: Mean production (+SEM, n=4) of fatty acid hydroperoxide (FAH) normalized 
for protein [,..,mol (mg protrl] in fresh and frozen samples of Chaetoceros affinis. Detection of 
FAH was carried out with the colorimetric assay. 
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Figure 3-14: Mean production (+SEM, n=4) of fatty acid hydroperoxide (FAH) normalized 
for protein [,..,mol (mg protrl] in fresh and frozen samples of Skeleton em a marinoi. Detection 
of FAH was carried out with the colorimetric assay. 
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Also for Skeletonema marinoi, cell lysate of frozen samples did not produce significantly 

higher concentrations of F AHs than cell lysate of fresh samples (t=2.5, df=3, p>0.05) 

(Figure 3-14). 

3.3.5.2 Polarographic Assay 

Lipoxygenase (LOX) activity determined polarographically at pH=8.15 was not 

significantly different between fresh and frozen samples of Chaetoceros afjinis (t-test: 

p>O.05) (Figure 3-15). 
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Figure 3-15: Mean oxygen consumption rate (+SEM, n=4) [p.1mol O2 (mg prot min)"'] upon 
EPA-addition determined polarographically in fresh and frozen samples of 
Chaetoceros a/finis at pH=8.15. 
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Figure 3-16: Mean oxygen consumption rate (+SEM, n=4) ["mol O2 (mg prot min)"l] upon 
EPA-addition determined polarographically in fresh and frozen samples of 
Skeletonema marinoi at pH=8.15. 

Differences between fresh and frozen samples in regard to LOX activity determined 

polarographically were also not observed in Skeletonema marinoi (t-test: p>0.05) although 

variability of replicates in this species was very high (Figure 3-16). 

3.3.5.3 Oxy/ipin Production 

Cell lysates of fresh and frozen samples did not differ significantly in oxylipin production, 

neither when Chaetoceros affinis nor when Skeletonema marinoi were concerned (t-test: 

p>0.05) (Figures 3-17 and 3-18). Representative chromatograms of GC- and LC-MS 

analyses of fresh and frozen samples of C. affinis and S. marinoi are to be found in 

Appendix 2. 

110 



-... '= 
CD 
U 

~ ..... 
I! 
.~ .-

c. affinis 

fresh frozen 

Figure 3-17: Mean oxylipin production (+SEM, n=4) normalized for cells [pg celfl] in fresh 
and frozen samples of Chaetoceros a/finis. 
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Figure 3-18: Mean oxylipin production (+SEM, n=4) normalized for cells [fg celfl] in fresh 
and frozen samples of Skeletonema marinoi. 

Protein content remained the same in fresh and frozen samples, also indicating that 

enzymes were not significantly compromised during the freezing process. 
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3.4 Discussion 

The colorimetric assay could be successfully employed for detecting lipoxygenase (LOX) 

activity through the production of fatty acid hydroperoxides (F AHs) in fresh, as well as in 

frozen samples of phytoplankton culture. Also the polarographic assay was specific for 

LOX activity when external fatty acids, e g. eicosapentaenoic acid (EP A) were added to 

the cell lysate in the oxygraph. Only in the algal species known to display oxylipin 

metabolism, Skeletanema marinai, was there an increase in oxygen consumption rate upon 

EPA-addition to the cell lysate, whereas a cell lysate of Thalassiasira weissjlaggii and 

Prorocentrnm minimum, both known to lack oxylipin metabolism, showed no increase in 

oxygen consumption rate when EP A was added in the polarographic assay. The increase in 

oxygen consumption rate in S. marinai cell lysate disappeared upon boiling, indicating the 

involvement of enzymes. The high oxygen consumption rate of the S. marinai cell lysate 

without EP A also indicated LOX activity on endogenous fatty acids, which also 

disappeared with boiling. These results may suggest that the polarographic assay was 

specific for LOX activity and that activity could be defmed as the difference between 

oxygen consumption rate of the cell lysate and oxygen consumption rate upon the addition 

of exogenous fatty acid to the cell lysate. Also in the colorimetric assay, it is possible to 

define LOX activity as the difference in FAH concentrations in the cell lysate incubated 

with and without the addition of exogenous fatty acids. However, in the colorimetric assay, 

LOX activity can also be defined as the difference in FAH concentrations between the cell 

lysate sample and the blank. As diatoms contain large reserves of polyunsaturated fatty 

acids (Berge et al. 1995), production of F AHs through oxidation of fatty acids by LOX 

enzymes should take place in the cell lysate even without the addition of exogenous fatty 

acids. Adding exogenous fatty acids should increase FAH production due to increased 

substrate availability, but endogenous fatty acids should suffice for supporting LOX 
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activity in the cell lysate. Therefore LOX activity measured by FAH production in the 

colorimetric assay was defined as an increase in FAH concentrations in the sample 

compared to the blank. 

Comparative analyses of fresh and frozen samples demonstrated that LOX activity was 

retained during the freezing process and storing frozen samples at -80°C even for several 

years significantly altered neither LOX activity nor the production of oxylipins in the 

sample. Therefore, freezing and storing phytoplankton samples at -80°C is a valid method 

for collecting field samples for the analysis of oxidative fatty acid metabolism in 

phytoplankton. 

Several considerations need to be taken into account when applying and interpreting the 

colorimetric assay. First of all, the response of the colorimetric assay was linear only up to 

a certain concentration of FAH (-90 IlM). At high FAH concentrations, there seemed to be 

a saturation of the secondary colorimetric reaction, leading to a loss oflinearity. Therefore 

it is important to have some idea beforehand as to the possible amount of F AHs produced 

by a sample to adjust the assay accordingly. In general, it is advisable to carry out the 

colorimetric assay at low sample concentrations to avoid FAH production outside the 

linear range, also because there seemed to be no compromise oflinearity with cell lysate at 

low concentrations. Even though the limit determined for linearity with a culture of 

S. marinoi was 16 mg wet weight, field phytoplankton samples often showed saturation at 

lower sample amounts. This was probably due to the fact that field samples were collected 

from mixed phytoplankton assemblages, thereby not being directly comparable to a pure 

culture, even though they were dominated by S. marinoi. LOX activity in field 

phytoplankton samples was therefore calculated as FAH production in the more diluted 

sample (4 mg wet weight) to avoid problems with saturation at higher sample amounts and 
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a possible underestimation of LOX activity (see 2.2.3). The increased linearity of the 

polarographic compared to the colorimetric assay was probably due to the fact, that the 

former assay was based on a direct measurement of LOX activity, whereas the latter relied 

on a secondary reaction, which apparently went into saturation. 

Sodium dodecyl sulphate (SOS) at 0.3% final concentration was used to stop the LOX 

reaction in the colorimetric assay prior to centrifuging and reading absorbance in the 

blanks and samples. The lack of an increase in values observed between the blanks and the 

samples in certain cases was initially attributed to an inability of the detergent to efficiently 

block LOX enzymes, resulting in an overestimated absorbance reading of blanks. 

Therefore other ways were examined for stopping the reaction. The use of organic solvents 

did not prove successful as this led to interferences, possibly due to extraction of 

chlorophyll by the organic solvent. As expected, boiling was efficient in blocking LOX 

activity, which also indicated that FAH production was indeed due to enzymatic activity 

and not dependent on non-enzymatic processes. However, when boiling was used to 

terminate the reaction prior to reading the absorbance after 20 min, colour formation 

continued. Apparently, although LOX enzymes were blocked by boiling and no further 

FAHs were produced, formation of the colour compound was not blocked. This suggested, 

that also the inability of SOS to block the increase in absorbance over time was not due to 

an inability of the detergent to block enzyme activity, but due to instability of the colour 

compound, which continued to be formed even after FAH production was stopped. Indeed 

it was found with polarographic measurements that 0.3% SOS efficiently blocked LOX 

activity. In this way it was demonstrated unambiguously, that the continued increase in 

absorbance after SOS-addition was not due to inability of the detergent to block enzymes, 

but due to instability of the colour compound. Since this could not be blocked, it was 
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imperative to read samples at precise time intervals after the initiation of the colorimetric 

reaction. 

Polarographic measurements had the advantage that they were more flexible to changing 

parameters such as pH. In fact, LOX activity measurements of phytoplankton samples in 

the oxygraph were carried out in buffer at pH=8.15, because it was assumed that LOX 

enzymes would encounter this pH upon cell lysis at sea. The colorimetric assay, however, 

could not be adapted to this pH, because the colorimetric reaction itself was pH-dependent. 

Via polarographic measurements, it could be shown that the decrease in absorbance with 

increasing pH in the colorimetric assay was not due to decreasing enzyme activity, but 

indeed due to a diminishing sensitivity of the secondary colorimetric reaction. This also 

indicated that not all phytoplankton samples were active at the pH of the colorimetric assay 

(see Chapter 4). Therefore, if LOX enzymes were not active at the pH of the assay 

(pH=6.0), as was the case in certain clones of S. marinoi, the colorimetric assay 

underestimated or failed to demonstrate LOX activity, which explains why in some lysates 

there was no increase from the blank to the sample. Therefore, LOX activity determined 

with the colorimetric assay could not be calculated as the difference between the sample 

and the blank: in field phytoplankton samples (see 2.2.3). In certain field samples there was 

neither an increase from the blank to the sample nor an increase when LOX substrate was 

augmented by adding external EP A to the cell lysate. If LOX enzymes in the particular 

clone or clones of S. marinoi which dominated the bloom in 2005 were not active at 

pH=6.0, this would explain why the colorimetric assay could not demonstrate LOX activity 

in these cell lysates, even though samples were producing oxylipins. However, FAH 

concentrations determined in samples after 20 min without considering blanks, varied 

between field phytoplankton samples collected on different dates. Since samples were 

always analyzed in the same way, respecting the same times between sonication and 
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starting of the assay, the colorimetric assay probably measured the amount of FAHs 

produced in the sample in the time period between sonication and the start of the 

colorimetric reaction at the neutral pH of deionised water and were not due to LOX 

activity during the 20 min of assay duration. This indicates that the colorimetric assay can 

also be used to dose FAH concentrations in samples. For these reasons, LOX activity in 

field phytoplankton samples was defined as the FAH concentration measured in the sample 

after 20 min (see 2.2.3), since FAH concentrations should represent LOX activity in the 

sample before the start ofthe colorimetric reaction. 

Standard protocol was to suspend phytoplankton pellets in H20deionised (pH=7.0) (d'Ippolito 

et al. 2003). Apparently LOX enzymes were oxidizing fatty acids to FAHs at this pH. 

However, an improvement for further studies would be to suspend cells at pH=8.15 to 

allow LOX enzymes to be active at the pH presumably encountered at sea. It is also 

imperative to closely respect the time period between sonication and the start of the 

colorimetric assay to allow comparisons between FAH concentrations of different samples. 

Alternatives for reading blanks should also be taken into consideration, such as suspending 

samples in H20 deionised to correct for absorbance by chlorophyll or other cell lysate 

compounds or by boiling a part of the sample before sonication to preclude FAH formation 

in the cell lysate. Also the extraction of samples for quantification of oxylipin production 

should be carried out with samples suspended at pH=8.15 e. g. in filtered seawater, as the 

pH influences the amount of oxylipins produced in 30 min. 
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3.5 Conclusions 

Both the colorimetric and the polarographic assays were applicable to the determination of 

lipoxygenase (LOX) activity in phytoplankton lysates. The advantage of the polarographic 

assay was its flexibility to the pH-value of the buffer employed, since it directly measured 

the consumption of one of the reactants, oxygen. It therefore exhibited a linear relationship 

between measured LOX activity and the amount of LOX enzyme. This was not the case 

with the colorimetric assay because it depended on a secondary colorimetric reaction 

which went into saturation. The colorimetric assay was also limited by the instability of the 

colour compound and its dependency on pH=6.0. In general, the pH-value played an 

important role in determining LOX metabolism because also oxylipin production of the 

cell lysate seemed to depend on the pH-value of the buffer used for suspending the cells 

before sonication and extraction. Both assays could be combined to obtain a more 

complete view of LOX metabolism. Although the colorimetric assay failed to demonstrate 

activity when the phytoplankton sample was not active at pH=6.0, it could nevertheless be 

used to show LOX activity in the sample independently of exogenous fatty acids. The 

polarographic assay, on the other hand, had the advantage that it could demonstrate LOX 

activity at pH-values other than 6.0. However, it was dependent on the addition of 

exogenous fatty acids and could thereby only demonstrate part of the LOX activity present 

in the cell lysate. Freezing samples had no influence on LOX activity measurements and 

can therefore be employed as a method to collect and store samples until analysis. 
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4 Diversity of Lipoxygenase Metabolism among Different 

Diatom Species and among Different Clones of the Same 

Species 

One of the reasons for the often contradictory results obtained for diatom-copepod 

interactions at sea may be differences in lipoxygenase (LOX) metabolism among different 

diatom species and even among strains of the same species. This variability in the 

production of oxygenated fatty acid derived metabolites was investigated further by 

applying the two assays for LOX activity, colorimetric and polarographic, to three diatom 

species, Skeletonema marinoi, Thalassiosira rotula, and Chaetoceros ajJinis and to four 

clones of the same species, S. marinoi. Furthermore, all samples were extracted for 

oxylipin quantification. Differences in LOX activity and oxylipin production were 

observable among species as well as among clones. Another interesting observation made 

was that employing different assays did not lead to the same results in that the species or 

clone more active in one assay was not necessarily more active in another. Therefore the 

three assays for measuring oxylipin metabolism were not readily interchangeable. 
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4.1 Introduction 

Several studies have shown that there are species-specific differences in oxylipin 

production in diatoms (Fontana et al. 2007b) with variations even at the strain level 

(Pohnert et al. 2002; Taylor et al. 2009). This variability among strains of the same species 

can express itself in variable effects on the reproductive success of copepods (Ask et al. 

2006) and therefore may shed light on contradictory results obtained from field studies. To 

gain further insight into the diversity of oxylipin metabolism in diatoms, lipoxygenase 

(LOX) activity assays and oxylipin quantification were carried out on three different 

diatom speCIes, the well studied PUA-producing Skeletonema marinoi and 

Thalassiosira rotuta and the non-PUA producing species Chaetoceros ajJinis (Fontana et 

al. 2007b; Koski et al. 2008). Differences in oxylipin metabolism were furthermore 

analyzed among various clones of S. marinoi, isolated in four different years during the 

spring diatom bloom in the Northern Adriatic Sea. 

Species and isolates were analyzed for differences in LOX activity both colorimetrically 

and polarographically, as well as for quantitative and qualitative variations in oxylipin 

production. The pH-dependency of the LOX reaction was also studied by determining 

LOX activity in the oxygraph at two different pH-values (pH=6.0 and 8.15). Oxygen 

consumption at pH=6.0 should correspond to fatty acid hydroperoxide (FAH) production, 

as determined with the colorimetric assay, because both are due to the oxidation of fatty 

acids by LOX enzymes (Figure 3-1). Therefore LOX activity determined with the 

oxygraph at pH=6.0 was compared to LOX activity determined colorimetrically at the 

same pH. 

In this chapter, it was also evaluated whether variations in LOX activity and oxylipin 

production can explain differential negative effects of different diatom species on copepod 
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reproductive success. Looking at the literature on the reproductive success of copepods on 

various diatom diets, it is evident that different diatom species induce different responses. 

T. rotula, for example, had a weaker negative effect than S. marinai on the hatching 

success of copepod eggs when females fed on these species in the laboratory (d'Ippolito et 

al. 2002b; Ceballos and Ianora 2003). Also C. ajJinis seemed to have a weaker negative 

effect on copepod reproduction than S. marinai in feeding experiments with copepod 

females (Fontana et al. 200Th). These differences in negative impact on copepod 

reproductive success may be due to differential oxylipin metabolism. 

4.2 Materials and Methods 

Culturing and sampling of Chaetaceros ajJinis, Thalassiasira ratula, and the different 

isolates of Skeletonema marinai were carried out as described in Chapter 3 (3.2.1). 

Samples were analysed for lipoxygenase (LOX) activity with the colorimetric assay as 

described in Chapter 2 (2.2.3), and with the polarographic assay at pH=6.0 and pH=8.15 

with eicosapentaenoic acid (EPA) as external substrate (0.2 mM) as described in Chapter 3 

(3.2.2). Samples were extracted with organic solvents for oxylipin quantification as 

described in Chapter 2 (2.2.4). 

Clones of S. marinai were isolated from phytoplankton samples collected during the spring 

diatom bloom in the Northern Adriatic Sea by Marina Cabrini (Laboratorio di Biologia 

Marina, Trieste) in 1997 and by Francesco Esposito (SZN, Napoli) in 2003, 2004, and 

2005 and kept as batch cultures in the laboratory. To compare different species, mean 

values for S. marinai were calculated from the three clones isolated in 1997, 2004, and 

2005. The isolate of 2003 was not considered in calculations of mean values, because it 
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differed significantly from the other isolates in that it was the only one to demonstrate 

LOX activity at pH=6.0 (see 4.3.2). 

To evaluate the impact of differential oxylipin production by different diatom species on 

copepods, variations in cell size among diatom species were also taken into consideration. 

To this end, oxylipin production was normalized for cell carbon to take into account 

differential feeding of copepods on phytoplankton cells of varying sizes. For the 

calculation, literature values of cell carbon content were used because cell carbon 

measurements of the actual cultures used were not available (Table 4-1). 

Table 4-1: Cellular carbon content [pg C celr l
) of Skeletonema marinoi, Thalassiosira rotula, 

and Chaetoceros affinis, used for calculation of oxylipin production per milligram carbon. 
Values were obtained from the literature: a) (Carotenuto et al. 2002), b) (Koski et al. 2008), c) 
(Ianora and Poulet 1993). 

Species Carbon content [pg C cell-I] Average 

Skeletonema marinoi 20.7 a 20.7 

Thalassiosira rotula 121.9 a 267±35 D 157±15 c 183 

Chaetoceros ajJinis 137±16 b 137 

4.3 Results 

4.3.1 Species Comparison 

Skeletonema marino;, Thalass;osira rotula, and Chaetoceros ajJinis displayed different 

oxylipin metabolism. This could be shown by the polarographic and the colorimetric 
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assays, as well as by the production of oxylipins, which demonstrated both qualitative and 

quantitative differences in the production of fatty acid derived oxygenated metabolites. 

4.3.1.1 Polarographic Assay 

Lipoxygenase (LOX) activity m Skeletonema marinoi as determined by oxygen 

consumption rate differed greatly when measured in buffer at pH=6.0 compared to 

pH=8.15 (paired t-test: t=5.87, df=8, p=O.0004) (Figure 4-1). At pH=8.15, the oxygen 

consumption rate increased strongly upon addition of eicosapentaenoic acid (EPA), 

whereas no increase could be observed at pH=6.0. 

s. marinoi 

0.2-... 
I 

I -r::: ·s 
'0 0.1-... a. 
C) 

E -N 0.: 
0 
15 pH=6.0 pH=8.15 

§. 
-0.1-

Figure 4-1: Mean oxygen consumption rate [pmol O2 (mg prot min)"'] upon EPA-addition 
(0.2 mM) (+SEM, n=9) in Skeleton em a marinoi determined with the polarographic assay at 
two pH-values (pH=6.0 and pH=8.15). 
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Figure 4-2: Mean oxygen consumption rate (pmol O2 (mg prot minrl) upon EPA-addition 
(0.2 mM) (+SEM, n=3) in Thalassiosira rotula determined with the polarographic assay at 
two pH-,'alues (pH=6.0 and pH=8.15). 

In T. mIll/a, there were no significant differences in LOX activity measured 

polarographically at pH=8.l5 compared to pH=6.0 (Figure 4-2) (paired t-test: p>O.05) In 

general. the increase in oxygen consumption rate in cell lysate of T rolula upon 

EPA-addition was about ten times lower than in cell lysate of S. marinoi under the same 

conditions. 
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Figure 4-3: Mean oxygen consumption rate (pmol O2 (mg prot minrl) upon EPA-addition 
(0.2 mM) (+SEM, n=3) in Chaetoceros affinis determined with the polarographic assay at two 
pH-values (pH=6.0 and pH=8.15). 

The increase in oxygen consumption rate upon EPA-addition in cell lysate of C. ajJinis was 

three times lower than in T rotula and even thirty times lower than in S. marinai 

(Figure 4-3). There was no difference in activity between the two pH-values tested (paired 

Hest: p>O.05). 
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polarographic assay - pH=8.15 
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Figure 4-4: Mean oxygen consumption rate ("mol O2 (mg prot minrl) upon EPA-addition 
(+SEM; Ske/etonema marinoi: n=12, Tha/assiosira rotu/a: n=5, Chaetoceros affinis: n=3) 
determined with the polarographic assay at pH=8.15 in S. marinoi, T. rotu/a, and C. a!finis. 

When polarographic data were compared for the three species at pH=8.15, LOX activity 

was significantly higher in S. marinoi compared to T. rotuta and C. affinis (one-way 

ANOV A: F= I 0.34. r=0.55. p=0.0012 and Tukey's post-test: p<0.05) (Figure 4-4). 

4.3.1.2 C%rimelric Assay 

As stated previously (see Chapter 3), except for one isolate, Skeletonema marinoi showed 

almost no activity in the colorimetric assay (Figure 4-5). There was no significant increase 

of tatty acid hydroperoxide (FAH) concentrations in cell lysate after 20 min compared to 

blanks and no increase upon addition of exogenous eicosapentaenoic acid (EPA) (one-way 

ANOV A: p>O.(5). 
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Figure 4-5: Mean concentrations (+SEM. n=3 except Ske/etonema mar;no; n=15) of fatty acid 
h"droperoxide (FAil) Ip.amol (mg protr') determined with the colorimetric assay in blanks 
(0 min). in cell lysate of S. marino;, Tha/ass;os;ra rotu/a. and Chaetoceros affin;.\' (20 min) and 
in cell lysate upon EPA-addition (+EPA). 
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Also in Tha/assiosira row/a, there was neither a significant increase of FAH 

concentrations in the sample compared to the blank, nor upon the addition of EPA to the 

cell lysate (Figure 4-5) (one-way ANOV A: p>O.05). Chaetoceros afjinis, on the other 

hand, showed a strong significant increase in FAH concentrations from blanks to samples 

(one-way ANOVA: F=106.9, ~=O.98, p=O.0003 and Tukey's post-test: p<O.OI). FAH 

concentrations further increased when samples were incubated with exogenous EP A 

(p<O.OI) (Figure 4-5). 

With the colorimetric assay, C. a/finis was the only species to demonstrate significant 

production of LOX products both with and without EPA-addition. Also oxygen 

consumption rate upon EPA-addition at pH=6.0 was significantly higher in C. afjinis 

compared to T milt/a (t-test: t=2.88, df~4, p=O.045), whereas addition of EPA to 

S. marinoi cell lysate led to a decrease in oxygen consumption rate (Figure 4-6). This 

pattern was opposite to the pattern observed at pH=8.15, where S. marino; lysate had 

demonstrated significantly higher oxygen consumption rate upon EPA-addition than 

C. affinis lysate (Figure 4-4). 
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Figure 4-6: Mean oxygen consumption rate (nmol O2 (mg prot minrl) upon EPA-addition 
(+SEM; n=3, except Skeletonema mar;no;: n=8) determined with the polarographic assay at 
pH=6.0 in S. marinoi, Thaia.'is;os;ra rotuia, and Chaetoceros a/finis. 

4.3.1.3 (J.\y/ipin Production 

Skeletonema marinoi produced the aldehydes heptadienal, octadienal, and octatrienal, In 

addition to hydroxy-acids and epoxyalcohols deriving from Cw and C2o-fatty acids (Table 

4-2). In accordance with the literature, no decatrienal could be found in extracts of this 

species (d'Ippolito el al. 2002b). Thalassiosira rolula on the other hand produced the 

former three aldehydes in addition to decatrienal and hydroxy-acids and epoxyalcohols 

from Cw and C~Il-fatty acids also concordant with the literature (d'Ippolito et al. 2005; 

Fontana et "I. 2007a). As described in Fontana et al. (2007b), Chaetoceros affinis 

produced aldehydes. epoxyalcohols, and hydroxy-acids derived from eicosapentaenoic acid 

«('~Il) only (Tahle 4-2). Representative chromatograms of GC- and Le-MS analyses of all 

species can he f(lund in Appendix 3. 
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Table 4-2: Oxylipins, including the aldehydes heptadienal, octadienal, octatrienal, and 
decatrienal and the epoxyalcohols (EPOX) and hydroxy-acids (OH) produced from 
hexadecatrienoic acid (C I6:3) and hexadecatetraenoic acid (C I6:4), as well as eicosapentaenoic 
acid (C20), produced by Skeletonema marinoi, Thalassiosira rotula, and Chaetoceros affinis. 

Skeletonema marinoi Thalassiosira rotula Chaetoceros affinis 

Aldehydes 

Heptadienal X X 

Octadienal X X 

Octatrienal X X 

Decatrienal X 

Other oxylipins 

CI6:J-OH X X 

C I6:J-EPOX X X 

CI6:4-0H X X 

CI6:4-EPOX X X 

Czo-OH X X X 

Czo-EPOX X X X 

Highest cellular production of both aldehydes and other oxylipins was observed in 

T. rotll/U (1430±611 fg celr I and 1226±634 fg celrl) (Figure 4-7), even though variability 

among replicates of this species was very high. Aldehyde production in T. mtu/a was 

significantly higher than in S. marinoi (t-test: (=4.46, dj=13, p=O.0006). Production of 

oxylipins other than aldehydes in T. rotll/a was also significantly higher than in S. marinoi 

(onc-way A;\;OVA: F= 1 0.8. r~=O.59, p=O.OOI3 and Tukey's post-test: p<O.OI) but not 

significantly different from C. a{finis (p>O.05). 
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Figure 4-7: Mean production (+SEM; n=3 except Skeletonema marinoi: n=12) of aldehydes 
and other oxylipins normalized for cells lfg celrl) in S. marinoi, Thalassiosira rotula, and 
Chaetocero.'t a/fin; .... 

Production of oxylipins other than aldehydes was significantly higher in C. ajJinis than 

S. marino; (p<0.0 1). However, since C. ajJinis did not produce aldehydes, oxylipin 

production did not differ significantly between S. marinoi and C. ajJinis (one-way 

, , 
ANOV A: r=8.56, 1"""=0.40, p=O.OOl and Tukey's post-test: p>O.05). 
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Figure 4-8: Mean production (+SEM; n=3 except Skeleton em a mar;no;: n=12) of aldebydes 
and other oxyUpins normalized for cell carbon [p.tg (mg CrI] in S. mar;no;, 
Thala .... \';o ... ;ra rotula. and Chaetoceros affin;s. 

When aldehyde production was normalized for cell carbon, there were no differences 

between S. marinoi and T. rotula (Hest: p>O.05) (Figure 4-8). Also production of oxylipins 

other than aldehydes normalized for cell carbon did not differ between species (one-way 

ANOV A: p>O.05). When aldehydes and oxylipins other than aldehydes were considered 

together, there were no differences in oxylipin production among the three species. 

4.3.2 Comparison of Different Clones of Skeletonema mar;no; 

Also the four clones of Skeletonema marinoi, isolated in different years during the diatom 

bloom, demonstratL>d diftcrences in oxylipin metabolism. These differences could be 

demoJ1stratLxi hy the colorimetric and polarographic assays, as well as by oxylipin analysis. 
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4.3.2.1 Calorimetric Assay 

There were no significant increases in fatty acid hydroperoxide (FAH) concentrations from 

the blank (0 min) to the ample (20 min) or upon EPA-addition to the sample (+EPA) in 

the S. marinoi clones i olated in 1997, 2004, and 2005 (one-way ANOVAs, p>O.OS) 

(Figure 4-9). 

....... .... , --o 
~ 

a. 
C) 

E -

LOX activity - calorimetric 

o min 20 min +EPA 

1997 
2003 
2004 

~2005 

Figure 4-9: Mean concentration (+ EM; 1997: n=6, 2003 : n=9, 2004 and 2005: n=3) of fatty 
acid hydro peroxide (F H) [f.1mol (mg protrl ] determined with the colorimetric assay in 
blank (0 min), in cen Iy ate (20 min) and in cell lysate upon EPA-addition (+EPA) of the 
Skeletollema mar;IIoi clone i olated in 1997, 2003, 2004, and 2005. 

One i olate, however, differed from this general pattern. This was the clone isolated during 

the bloom in 2003, \: hich howed trong activity in the colorimetric a say with a 

ignificant difference in FAH concentration between the blank (0 min) and the sample 

upon EPA-addition ( EPA) (one-way A OVA: F=S.49, r2=0.34, p=0.012 and Tukey' 

post-te t: p <O.OI) (Figure 4-9). 
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4.3.2.2 Polarographic Assay 

Lipoxygenase (LOX) activity, as determined with the colorimetric assay for the various 

clones, was compared to LOX activity measured in the oxygraph at the same pH 

(Figure 4-10). Meaningful statistical analyses could not be carried out because of the low 

number of replicates for the clone from 2005 (n=2). However, the only isolate to 

demonstrate LOX activity in the colorimetric assay (2003) seemed to exhibit strongest 

LOX activity at pH=6.0 in the polarographic assay (Figures 4-9 and 4-10). Also the slight 

decrease in LOX activity upon EPA-addition indicated in the co lorimetric assay with the 

isolates from 2004 and 2005 was observed polarographically. 

polarographic assay - pH=6.0 
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Figure 4-10: Mean oxygen con umption rate [nmol O2 (mg prot minrl ] upon EPA-addition 
(+ EM; 1997: 0=4 2003: n=5, 2004: n=3, 2005, n=2) determined with the polarographic assay 
at pH=6.0 in the Skeleton em a marinoi clone i olated in 1997, 2003, 2004, and 2005. 

When LOX activity \i as measured at pH=8.15 this pattern changed (Figure 4-11). At 

pH= .15 there were no ignificant differences in LOX activity between clones with EPA as 

external ub trate (one-way A 0 A: p>0.05). 
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Figure 4-11 : Mean oxygen consumption rate [/lmol O2 (mg prot minrl] upon EPA-addition 
(+ EM; 1997: n=6, 2003: n=9, 2004 and 2005: n=3) determined with the polarographic assay 
at pH=8.1S in the Skeietollema marinoi clones isolated in 1997, 2003, 2004, and 2005. 

4.3 .2.3 Oxylipin Production 

The clone i olated in 2005 seemed to differ from the other clones in the production of 

aldehyde and other oxylipins (Figures 4-12, 4-13, and 4-14), even though variability 

between replicate were high and the differences were not statistically significant (one-way 

A QV A: p>0.05) . The clone from 2005 produced almost no aldehydes (Figure 4-12). 
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Figure 4-12: Mean aldehyde production (+SEM; 1997: n=6, 2003: n=9, 2004 and 2005: n=3) 
normalized for cells Ifg celrl) in the Skeletonema marinoi clones isolated in 1997, 2003, 2004, 
and 2005. 

production of other oxylipins 

1997 2003 2004 2005 

Figure 4-13: lean production (+ EM; 1997: n=6, 2003: n=9, 2004 and 2005: n=3) of 
oxylipin other than aldehyde normalized for cells lfg celrl) in the Skeletollema marilloi 
clone i olated in 1997, 2003, 2004, and 2005. 
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Figure 4-14: Mean oxyJipin production (+SEM; 1997: n=6, 2003: n=9, 2004 and 2005: n=3) 
nor malized for cell (fg celrl) in the Skeletonema marinoi clones isolated in 1997, 2003, 2004, 
and 2005. 

Also the production of 0 ylipins other than aldehydes was low in the isolate from 2005 at 

42± 7 fg celrl (Figure 4-13). Aldehyde production and the production of other oxylipins 

were in the ame ize range and were considered together as oxylipin production 

(Figure 4- 14). Thi appeared to be lowest in the isolate from 2005 at 44±7 fg celrl, 

wherea the other three clone did not eem to differ in oxylipin production. 

4.3.2.4 Ox.vlipin Compo. Won 

There were ignificant difference m oxylipin composition between clones (two-way 

A 0 A: interacti n: p>0.05, clone: p=0.0023, oxylipin: p<O.OOOI). Composition of the 

oxylipin production by the two i olate from 1997 and 2003 did not differ (Bonferroni 

po He. t: p>0.05) (Figure 4-15). 
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Figure 4-15: Mean oxylipin composition (+SEM; 1997; n=6, 2003: n=9, 2004 and 2005: n=3) 
normalized for cells Ifmol celr') in the Skeleton em a marinoi clones isolated in 1997, 2003, 
2004, and 2005 (EPOX and OH: epoxyalcohols and hydroxy-acids derived from C'6:3-, C t6:4-, 
and Cwfatty acids, respectively). 

The isolate from 1997 also did not differ significantly from the two clones isolated in 2004 

and 2005 in terms of oxylipin production (p>0.05). The significant difference in oxylipin 

composition between isolates was the production of the C2o-epoxyalcohol in 2003 

compared to 2004 and 2005 (p<0.05). All in all, the same oxylipin metabolites were 

produced by the various clones, although there was some indication as to differential 

production of individual oxylipin compounds. Initial visual analysis showed that the 

spectra of the products formed by the clones isolated in 1997 and 2003 seemed the same, 

whereas production in 2004 and 2005 seemed to be shifted more towards the 

c2o-hydroxy-acid (Figure 4-15). 
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Figure 4-16: Mean contributions (+SEM; 1997; n=6, 2003: n=9, 2004 and 2005: n=3) of Cw 
and Czo-derivatives to oxylipin composition (fmol celrt] in the Skeleton em a marinoi clones 
isolated in 1997. 2003, 2004, and 2005. 

The contribution of C2o-derivatives to the production of oxylipins other than aldehydes was 

significantly higher than the contribution of Cwderivatives in the isolate from 2005 

(paired t-test: t=6.30, c!f=2, p=0.024) (Figure 4-16). In the other isolates, the contribution of 

CI/,-fatty acids did not differ significantly from the contribution of C2o-fatty acids to the 

production ofoxylipins other than aldehydes. However, there seemed to be a ratio of about 

4.3.2.5 Other Parameters 

protcin contcnt in the cell lysates did not differ significantly between the different clones 

of Skdt'/ollemll m£lr;no; (Figure 4-17) (ANOYA: p>0.05). Also growth rates were not 

signiti~antly diftcrcnt (ANOY A: p>0.05). All clones grew at about the same rate of 

O.76rO.04 d l (Figure 4-18). 
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Figure 4-17: Mean protein concentration (+SEM; 1997: n=6, 2003: n=9, 2004 and 2005: n=3) 
(mg prot mrl) in cell Iy ate of the Skeietollema marinoi clones isolated in 1997, 2003, 2004, 
and 2005. 
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Figure 4-18 : 1ean grm\1h rate (+ EM, 1997: n=3, 2003: n=3, 2004: n=6, 2005: n=4) [d-I ] of 
the Skeietollema mari"oi clone i olated in 1997, 2003, 2004, and 2005. 
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4.4 Discussion 

The polarographic measurements indicated distinct differences in the oxidative metabolism 

of fatty acids in different diatom species. Skeletonema marinoi apparently had the strongest 

oxidizing activity on eicosapentaenoic acid (EPA) at the pH of seawater (pH=8.IS) in the 

polarographic assay. The low activity observed in Thalassiosira rotula may, however, have 

been biased by the fact that only EPA, a C2o-fatty acid was used to detect lipoxygenase 

(LOX) activity in the polarographic assay, thereby ignoring LOX metabolism of Cl6-fatty 

acids in the cell lysate. Oxylipin composition of S. marinoi demonstrated a relationship of 

oxylipins deriving from C2o-fatty acids to oxylipins deriving from Cwfatty acids of about 

2: 1. suggesting that using only EP A in the oxygraph underestimated LOX activity in 

S. marinoi. In T. row/a, however, metabolism of Cwfatty acids is predominant 

(A. Fontana. pers. comm.). Therefore, the underestimation ofLOX activity in the oxygraph 

by adding just EPA was probably much greater for T. rotu/a cell Iysates than for 

S. marinoi. It would be best in the future to carry out polarographic measurements also 

with a C1h-suhstrate to obtain a more complete picture of LOX activity. In the case of 

Chaet(}ceros affinis. using only EPA did not underestimate LOX activity because this 

species does not oxidize C l6-fatty acids (Fontana et al. 2007b). Therefore it would seem 

that LOX activity was indeed low at pH=8.IS in C. affinis. Whereas S. marino; 

demonstrated stronger oxidizing activity on EPA at pH=8.1S than pH=6.0, LOX activity in 

C. affinis seeml'<i independent of pH. In fact. at pH=6.0, C. qlfinis was the species with 

strongest LOX activity. demonstrable both by the polarographic assay carried out at this 

pH and hy the co\orimetric assay. 

LOX act i\Oity measured at the pH of seawater (pH=8.IS) should theoretically demonstrate 

LOX acti\Oity when cells break open in seawater and theretore should be most closely 
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correlated to the effect on copepods. Stronger LOX metabolism in S. marinoi at pH=8.15 

would indeed be in accordance with a stronger negative effect observed for S. marinoi on 

copepod reproductive success compared to T. rotula and C. ajJinis (d'Ippolito et al. 2002b; 

Ceballos and Ianora 2003; Fontana et al. 2007b). This suggests that measuring LOX 

activity in the oxygraph at pH=8.15 may indeed be a good method for determining the 

potential damage on copepod reproduction by diatom oxylipin metabolism. Oxylipin 

production, on the other hand, did not correlate to the detrimental impact of different 

diatom species on copepod reproduction. Cellular oxylipin production was actually lowest 

in S. marinoi and when oxyJipin production was normalized for cell carbon, which is 

probably more relevant for copepod ingestion, there were no significant differences 

observable between species. However, C. affinis did not produce aldehydes, which have 

shown to have a stronger effect on copepod reproduction than other oxylipins (Fontana et 

al. 2007b). The weaker negative effect of C. ajJinis on copepod reproduction compared to 

S. marinoi. as described in the literature (Fontana et at. 2007b), may therefore be due to a 

lack of the more toxic metabolites, aldehydes, in the former species. 

Diversity in LOX metabolism was also detectable among different isolates of S. marinoi. 

Protein content and growth rate did not differ among isolates, indicating that there were no 

major metabolic differences among the clones isolated in different years. However, there 

were ditTerences in oxidative fatty acid metabolism. Apart from apparent quantitative 

difTerences in oxylipin production, clones also differed in the relative contributions of 

different oxylipin compounds. This suggests that oxylipin metabolism may be a very 

sensitive method to distinguish among different clones of the same species. 

It is interesting to note that the isolate from 2003 was the only isolate to show significant 

LOX acti\'ity hy the production of fatty acid hydroperoxides (FAHs) at pH=6.0 in the 
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colorimetric assay. This isolate had been collected in a year in which the diatom bloom had 

had a very strong negative etfect on copepod hatching success (see Chapter 2). 

Importantly, the production of FAHs in different clones, as determined by the colorimetric 

assay, did not correspond to the production of end-metabolites, such as aldehydes and 

other oxylipins. The only clone to demonstrate LOX activity in the colorimetric assay 

(2003) did not differ in oxylipin production from two of the other isolates. Also when LOX 

activity was measured at pH=8.15 in the polarographic assay, there was no correlation 

between LOX activity and oxylipin production. All isolates had similar LOX activity at 

pH=8.l5, even though the clone isolated in 2005 seemed to produce lower amounts of 

oxylipins compared to the other three isolates. 

To conclude, differences in oxylipin metabolism exist among different diatom species and 

even among clones of the same species isolated in different years. Variability between 

strains has also been shown by Taylor et al. (2009) for aldehyde production, which varied 

among ditTerent strains of S. marinoi isolated at sea during different time periods. These 

variations in LOX activity among isolates from different years may explain some of the 

variable results observed in the field, thereby adding isolate-dependent variability as 

another important facet to the increasingly complex picture of oxylipin metabolism in 

diatoms. 
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4.5 Conclusions 

To conclude. differences in lipoxygenase (LOX) metabolism were detectable in different 

diatom species. as well as in clones of the same species isolated in different years. Whereas 

Skele/onema marinoi and Thalassiasira ratula failed to show activity with the colorimetric 

assay, Chae/oceros a/finis showed strong production of LOX products, fatty acid 

hydroperoxides (FAHs), at pH=6.0. S. marinai on the other hand demonstrated strong 

LOX metabolism on eicosapentaenoic acid (EPA) at pH=8.15 in the polarographic assay. 

Nonetheless, oxylipin production per cell was low in S. marinai. However, oxylipin 

production normalized per cell carbon was the same among species. As far as the different 

isolates of S. marinoi collected during the winter diatom bloom in the Northern Adriatic 

Sea in the years 1997, 2003, 2004, and 2005 were concerned, the S. marinai clone isolated 

in 2003 was the only one to exhibit LOX activity via the production ofFAHs at pH=6.0 in 

the colorimetric assay. However, at pH=8.l5 all clones demonstrated similar activity on 

EPA in the polarographic assay. Production of aldehydes, as well as oxylipins other than 

aldehydes was low in the isolate from 2005, whereas the other isolates did not seem to 

differ in oxylipin production. Oxylipin composition also seemed to be shifted more 

towards EPA-derivatives in the 2005 clone. Lastly, there was no correspondence between 

neither of the two assays for LOX activity and the production of oxylipins as 

end-metabolites. This indicates that there is still something missing in our knowledge of 

diatom oxylipin metabolism to be able to correlate LOX activity to oxylipin production. 
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5 Effect of Phosphorus-limitation on Lipoxygenase Activity of 

Skeletonema mar;no; and its Effects on the Reproductive 

Success of Colon us helgoland;cus 

Previous studies have demonstrated that nutrient stress induces an increase in aldehyde 

production in the diatom Skeletonema marino;. Therefore, the hypothesis was put forth that 

these nutrient-stressed diatoms should have a stronger detrimental impact on copepod 

reproductive success. To test this hypothesis, S. marinoi was grown under 

phosphorus (P)-limitation in a chemostat. The outflow culture, consisting of P-limited 

algae, was then used to feed females of Calanus helgolandicus. Females were followed for 

faecal pellet production, egg production, hatching success and the occurrence of abnormal 

nauplii during the two-week incubation experiments and these parameters were compared 

to those obtained from females feeding on nutrient-replete S. marinoi. P-limited and 

P-replete diatoms were analyzed for lipoxygenase (LOX) activity and oxylipin production. 

Mass spectrometric analyses showed that P-stress did not increase oxylipin production in 

the present experiment. LOX activity assays actually indicated increased LOX metabolism 

in P-replete cultures, which was contradictory to expectations. Correspondingly, there were 

no clear etfects of the different treatments on copepod reproduction. Hatching success of 

nauplii actually seemed less effected when females fed on P-limited alga, which was 

unexpcctt .. xl. Howeyer, teeding on P-limited alga increased the percentage of abnormal 

nauplii. In general. both treatments strongly reduced hatching success ofnauplii. 
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5.1 Introduction 

Ske/etonema marinoi negatively impacts the reproductive success of calanoid copepods, 

including Ca/anus he/golandiclls, through the production of fatty acid derived oxygenated 

metabolites such as aldehydes and other oxylipins (d'Ippolito et al. 2002b; Fontana et al. 

200Th). Recently, it has been reported that nutrient-limited cultures of this diatom species 

produce greater amounts of aldehydes (PUAs) than control nutrient-replete cultures 

(Ribalet et a/. 200Th; Ribalet et a/. 2009). Apparently, nutrient-limitation induces a stress 

in the algal cells leading to increased lipoxygenase (LOX) activity with a resulting stronger 

production of oxylipins. The hypothesis for the following experiments was that these 

nutrient-limited cultures would then have a stronger deleterious effect on copepod 

reproduction due to the increased production of fatty acid derived oxygenated metabolites. 

Nutrient-limited S. marinoi was obtained by continuous culturing of cells in a chemostat 

(Ribalet et a/. 2007b; Ribalet et al. 2009). Basically, a chemostat allows culturing of 

bacteria or phytoplankton under constant nutrient deficiency (Novick and Szilard 1950). 

This is achieved by growing cultures on a culture medium limited in the nutrient of interest 

under a constant dilution rate. The culture medium is supplied at a fixed rate to a 

thoroughly mixed growth chamber of fixed volume and the culture medium of the growth 

chamber together with the culture growing therein removed at the same rate (Caperon 

1968). Mixing in the present experimental set-up was guaranteed by magnetic stirring and 

bubbling of the culture. Upon reaching a steady state, cell growth balances dilution rate 

and cell concentrations will remain constant. In this state, cells will grow until their growth 

requirements tilr the limiting nutrient match the supply of that nutrient (Caperon 1968). If 

the dilution rate in the chemostat is less than the maximum growth rate, cells will be 

limited in the nutrient of interest (Thomas and Dodson 1972). 
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A chemostat set-up was used to culture S. marinai under phosphorus (P)-limiting 

conditions and the chemostat outflow was used to feed C. helgalandicus females. 

Chemostat samples of S. marinai were analyzed for LOX activity and for oxylipin 

production. Daily faecal pellet production rates, egg production rates, hatching success, 

and occurrence of abnormal nauplii of C. helgalandicus were compared between females 

fed P-limited S. marinoi and females fed control P-replete cultures. 

5.2 Materials and Methods 

5.2.1 Experimental Set-up 

Chemostats consisted of graduated polycarbonate bottles designed for growing maximum 

one litre of culture (Figure 5-1). Bottles were closed by a screw-top with an integrated 

magnetic stirring device and had two side openings which could be sealed air-tight by 

silicon stoppers. One of the openings allowed for inflow of the culture medium through a 

silicon tube connected on the other end to a I O-litre bottle containing the culture medium. 

Culture medium was prepared from natural oligotrophic filtered seawater following the 

usual protocol for £'2 medium according to Guillard (Guillard 1975), except that the 

concentration of phosphate was decreased from 36 ~M to 11 ~M (P-limited medium). The 

same opening used for medium inflow also accommodated a glass tube for aeration ofthe 

culture through hubbling of sterile (O.22-~m filtered) ambient air. Furthermore a silicon 

tuhe was passL'tl through this opening to the bottom of the chemostat for culture sample 

removal via a sterile s}Tinge. The other opening allowed for removal of culture (outflow) 

via a glass tuhe connected to a silicon tube which ended in the outflow collecting chamber. 

This consisted of a two-litre polycarbonate bottle with a second silicon tube allowing for 
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aeration by sterile (0.22-Jlm filtered) ambient air to avoid sedimentation of the outflow 

culture. The silicon tubes for medium inflow and culture outflow were passed through the 

same channel of a peri taltic pump to guarantee the same flow rate for inflowing medium 

and effluent culture. 

Culture 
medium 

Chemostat 
ba1t1e 

Outflow 
bottle 

Figure 5-1: On the left, the entire chemostat set-up in the culture chamber with the culture 
medium bottle on the top, the chemo tat bottle on the middle, and the outflow bottle on the 
bottom heir. On the right, a d o e-up of the chemostat bottle with inflowing medium, effluent 
culture and bubbling. Photo are courte y of Fran~ois Ribalet. 

The entire et-up, apart from the culture medium bottle which was autoc1aved separately, 

was autocla ed together (20 min at 121°C), and everything assembled under the sterile 

hood. Chemo tat "ere et up on a magnetic stirrer in a climate chamber at 20°C on a 

12h:12h light:dark cycle (100 Jlmol photons m-2 
S-I) (Figure 5-1). 

The axenic train of Skeletonema marinoi CCMP 2092 (recently separated from 

S. coslalllln ( arno el al. 2005)) i olated from the orthem Adriatic Sea was u ed for 
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inoculation of the chemostat. Axenity was established by inoculating I ml of the culture in 

0.1 % peptone agar in culture medium and incubating in the dark for several days, 

controlling daily for turbidity as indicative of bacterial growth. The same method was used 

at regular intervals to control axenity in the chemostat during the course of the experiment. 

To obtain phosphorus (P)-limited cultures, S. marinai was grown in the chemostat on 

P-limited medium at a dilution rate corresponding to -30% of maximum growth rate 

(~max). For control P-replete cultures, the dilution rate was raised to -90% of ~max. 

Maximum growth rate (~max) was determined directly in the chemostat in triplicate by 

enumerating daily cell concentrations during exponential growth before starting the 

chemostat. To obtain a nutrient-limited culture or to switch the culture from a 

nutrient-limited to a nutrient-replete status, six generations of phytoplankton cells were 

allowed to pass before starting the incubation experiments with copepods (Ribalet et al. 

2007b). At 30% ~max for P-limited cultures this time period corresponded to 14 days, 

whereas 3 days were sufficient for acclimating cells when switching from P-limited to 

P-replete cultures at 90% ~max. 

The maxImum growth rate (~max) for S. marinai was calculated from the following 

formula: 

Nd+x - cell concentration on day d+x 

Nd - cell concentration on day d 

Mean ~1I1:1' t()r S. 11Iurino; determined in the chemostat was 1.1±0.2 d- I (Figure 5-2). 

T herci() re. cell numbers were doubling every 16 hours. Accordingly, at 90% J.1max half of 

the total volume (V'''I:::: 1 000 ml) needed to be displaced in 18 hours. This necessitated a 

flow rate of 0.4 7 ml min· 1 for control P-replete cultures, whereas the required flow rate for 

P-limitcd cultures ('0° 0 1l111:1') was 0.15 ml min-I. 
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Figure 5-2: Mean maximum growth rate (±SEM, n=3 except day 2: n=2) of Skeleton em a 
mar;lfo; in the chemostat. 

5.2.2 Copepod Reproduction Experiments 

Females of Ca/anus helgo/andicus were collected weekly from the Northern Adriatic Sea 

and acc1imated tl)r several days on Prorocentrum minimum. Different populations of 

females were thus used in the different replicates, which were carried out over the course 

of several months. Individual females were incubated separately in IOO-ml crystallizing 

dishes with an etcht..'<i grid on the bottom, containing O.22-J..lm filtered seawater to which 

the necessary aliquot of S. marinoi collected from the outflow of the chemostat was added 

to reach I mg rl tl)od carbon concentrations (-30,000 cells mrl). Females were transferred 

into fresh tiHld medium daily with a wide-mouth glass pipette and the eggs and faecal 

pellcts produced in 24 h counted under a dissecting microscope. Eggs were incubated for a 

further 4X h hctllfe fixation in 20% ethanol and counting of hatched nauplii, abnormal 
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nauplii, and nonviable eggs. Crystallizing dishes containing females and eggs were kept in 

a culture chamber on a 12h: 12h light:dark cycle at 20°C. All in all, two replicates of 

two-week incubation experiments for P-limited cultures and three replicates of two-week 

incubation experiments for P-replete cultures were carried out in collaboration with Ylenia 

Carotenuto (SlN, Napoli). 

5.2.3 Analysis of Lipoxygenase Activity and Oxylipin Production 

Samples for chemical analyses were taken from the chemostat and the outflow at regular 

intervals from both treatments during the two-week incubation experiments to analyze 

lipoxygenase (LOX) metabolism in P-limited and P-replete cultures and to control whether 

the outtlow was representative of the chemostat culture (Table 5-1). Phytoplankton 

samples were collected via the sterile syringe, concentrated by centrifugation (1000xg, 10 

min, 4°C). frozen in liquid nitrogen, and stored at -80°C until analysis. Samples were 

analyzed for oxylipin production through extraction with organic solvents and mass 

spectrometric analyses of extracts as described in Chapter 2 (2.2.4). Since collected sample 

amounts were smaIl. only a few samples were analyzed for LOX activity by the 

colorimctric and the polarographic assays as described in Chapters 2 (2.2.3) and 3 (3.2.2), 

respectively. LOX activity measured in the colorimetric assay was defined as the 

difference in fatty acid hydroperoxide (FAH) concentrations between samples and blanks, 

without considering the addition of eicosapentaenoic acid (EPA). 
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Table 5-1: Sampling of the chemostat and the outflow bottle of P-Iimited and P-replete 
Skeletonema mar;no; culture during the course of the replicate experiments 1-3. Highlighted 
samples produced detectable amounts of aldehydes (see 5.3.2.1). 

P-status Replicate Day Sample P-status replicate Day Sample 

limited 1 0 Outflow replete 1 7 Chemostat 

7 Chemostat 9 Outflow 

10 Outflow 14 Chemostat 

15 Outflow 2 0 Outflow 

2 0 Chemostat 3 1 Outflow 

1 Chemostat 1 Chemostat 

14 Chemostat 8 Outflow 

12 Chemostat 

15 Outflow 

15 Chemostat 

5.2.4 Analysis of Particulate Carbon, Nitrogen, and Phosphorus 

To control tor P-limitation in chemostat cultures, culture samples for particulate carbon 

(Poe). nitrogen (PON). and phosphorus (POP) were filtered onto acidified pre-combusted 

(450"C, 4 h) GF F filters and stored at -80°C until analysis on a CHN elemental analyzer 

tor poe and PO~ (FlashEA 1112 Series, ThermoQuest). Organic phosphorus (POP) was 

measured c\llorimetrically in an autoanalyzer (Flowsys, Systea) after decomposition in 1% 

potassium persulfate solution for 30 min at 120°C (Pujo-Payand Raimbault 1994). Sample 

colledi(lll and preparation were carried out by RatTaella Casotti (SZN, Napoli) and 

measurements pcrti.1nncd by Francesca Margiotta (SZN, Napoli). Two replicate samples 
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were analyzed for each experiment and the values pooled leading to four replicates for 

P-limited and six replicates for P-replete alga. 

5.3 Results 

5.3.1 Nutrient Status 

As expectt,,'(}. the content of particulate organic phosphorus was significantly lower in 

P-limitcd cells than P-replete cells of Skeletonema marinoi (t-test: t=4.19, d.F8, p=O.0030) 

leading to a high NIP-ratio of P-limited alga (33.9±10.5) (Table 5-2). This NIP-ratio was 

significantly higher than the NIP-ratio ofP-replete alga (t-test: t=3.64, df=8, p=O.0066). 

Table 5-2: Mean nlues (±SEM; P-replete: 0=6, P-Iimited: 0=4) for particulate orgaoic 
carbon (pOe), nitrogf'o (PON), and pbospborus (POP) content normalized for cells (pg celfl] 
and C:N- and N:P-ratios in Skeletonema mar;no; grown under P-replete and P-Iimited 
conditions. 

Parameter lP-replete P-limited t-test 

poe Ipg celr
l! 19.3±2.2 42.0±6.0 p=O.OO34 

PON Ipg celr
l! 2.0±O.2 2.4±O.2 p>O.05 

I 
I 

I POP Ipg c~II-11 i O.37±O.O5 O.13±O.O2 p=O.OO30 
I 

r e:~--
! 

I 8.4±O.6 14.8±1.1 p=O.OOO5 
I 

~P--- .- _ .. - -------+---
; 15.4± 1.2 33.5±6.0 p=O.OO66 

L .. -_. -. I 

~-- .. "-~ 

152 



The NIP-ratio in P-limited alga was higher than the Redfield ratio of N/P= 16, indicating 

that cells of S. murinoi grown at low dilution rates (30% )lmax) were indeed limited in 

phosphorus. The NIP-ratio of S. marina; grown at high dilution rates (90% )lmax) was also 

close to the Redtield ratio at 15.1±1.7. 

5.3.2 Oxylipin Production 

5.3.2.1 Aldehyde Production 

Aldehydes were detectable in only three of the 17 samples analyzed (highlighted in Table 

5-1). In all three samples, the only aldehyde detected was octadienal, which derives from 

Cwfattyacids. 

aldehyde production 

.... . -B 
Q -

P-limited P-replete 

"'igure 5-3: Mean aldehyde production (+SEM; P-limited: n=5, P-replete: n=7) normalized 
for cells Ifg celrll in P-Iimited and P-replete cultures of Skeleton em a mar;no;. Data for 
samples of chemostat and outflow bottles were pooled. 
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Phytoplankton samples showed no significant difference in aldehyde production due to 

P-limitation (t-test: p>O.05) (Figure 5-3). However, considering that only two samples of 

the P-replete culture and only one of the P-limited culture produced any detectable amount 

of aldehydes. these data should be regarded as only indicative. 

5.3.2.2 Production l?t' O,ylipins Other than Aldehydes 

Also the production of oxylipins other than aldehydes was low and variability was high 

among replicate treatments. No derivatives ofC2o-fatty acids were detected in the samples. 

Only low amounts of the C I64-hydroxy-acid were present and in some cases low amounts 

of CIf> 3-hydroxy-acid and C lb3-epoxyalcohol were also detectable. Neither aldehyde 

production nor the production of other oxylipins demonstrated metabolism of C2o-fatty 

acids under the conditions of this experiment. 

-:.... 
~ 
tJ) .... 

production of other oxylipins 

chemostat outflow 

E:I P-limited 

EiI P-replete 

Figure ~-4: 'lean production of oxylipins other than aldehydes (+SEM; P-Iimited chemostat: 
n=3, P-limited outflow: n=2, P-repletc chemostat: n=3, P-replete outflow: n=4) normalized for 
cells I fg celf'l in chemostat and outflow bottles of P-Iimited and P-replete cultures of 
Skelt'IOI,rma mari,,,,i. 
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When the chemostat and outflow samples were considered together for each treatment, the 

production of oxylipins other than aldehydes did not differ significantly between P-replete 

and P-limited cultures (t-test: p>O.05) (Figure 5-4). 

5.3.2.3 Oxylipin Production 

Since values for aldehyde production were low, looking at the production of aldehydes and 

oxylipins other than aldehydes together gave the same picture as Figure 5-4 (Figure 5-5). 

There were no significant differences in oxylipin production due to P-limitation in 

Skeletonema marilloi in the present experiment (t-test: p>O.05). 

..... , -'3 
CS) 
~ 

oxylipin production 

chemostat outflow 

1::1 P-limited 

IiiiiiiiI P-replete 

Figure 5-5: :\lean o\~·lipin production (+SEM, P-Iimited chemostat: n=3, P-Iimited outflow: 
n=2. P-rcplete chemostat: n=3, P-replete outflow: n=4) normalized for cells Ifg celr') in 
chemostst and outflow bottles of P-limited and P-replete cultures of Skeleton em a marinoi. 
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5.3.3 Lipoxygenase Activity 

Lipoxygenase (LOX) activity seemed weaker in the P-limited than in the P-replete cultures 

in the chemostat as well as the outflow bottle (Figure 5-6). However, since only single 

measurements were carried out, statistical analyses were not possible. 

..... 
~ 

I -... 0 ... 
c. 
C» 

E -
'0 
E 
:1 ..... 

:I: 
4( 
~ 

LOX activity - colorimetric 

0 
chemostat outflow 

E:::J P-limited 

c:::I P-replete 

Figure 5-6: Faft)" acid hydroperoxide (FAH) production ("mol (mg protrl] (n=l) determined 
with the colorimetric assay in chemostat and outflow bottles of P-Iimited and P-replete 
cultures of Skeletonema marinoi. FAH production was defined as the difference in FAH 
concentrations between celllysates after 20 min and blanks. 

Data were scarce t()f polarographic measurements with only one sample analyzed for 

P-limited cultures and only one for P-replete cultures. However, also in this assay, the 

results indicatl.'<l that P-replete cultures had stronger LOX activity (Figure 5-7). 
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Figure 5-7: Oxygen consumption rate ["mol 02 (mg prot minrt) upon EPA-addition (0.4 
mM) to cell lysate (n=l) determined with the polarographic assay at pH=8.15 in the 
chemostat bottle of P-replete culture and the outflow bottle of P-Iimited culture of 
Skeletonema marinoi. 

5.3.4 Copepod Reproduction 

Two replicates of copepod incubation experiments for P-limited culture were carried out 

for 15 days with 14 and 15 Calanus helgolandicus females, respectively. Only 64% were 

still alive after day 8 in the first replicate, whereas survival was improved in the second 

replicate with 80°0 of females still alive from day 11 onwards (Table 5-3). The first 

P-replete replicate was carried out with 13 females for 15 days with survival high at 85% 

as of day 11. The second replicate, however, was stopped after 12 days because only one 

of the initial 10 temales had survived up to day 12 and was no longer producing eggs. 

Theret()re a third replicate was carried out for 15 days with only four females, of which all 

survived until the end of the experiment. Data of all replicates for females incubated with 

P-replcte cultures and tl)f females incubated with P-limited cultures, respectively, were 

pooled. 
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Table 5-3: Parameters (Number of days, initial number of females and survival rate of 
females 1% D of the incubation experiments carried out with females of Ca/anus he/go/andicus 
feeding on P-Iimited and P-replete cultures of Ske/etonema marinoi. 

Treatment Replicate No. days Initial no. females Survival [%) 

P-limited I 15 14 64 (day8) 

2 15 15 80 (dayll) 

P-replete 1 15 13 85 (dayl1) 

2 12 10 10 (dayI2) 

3 15 4 100 

Egg production rates (EPR) were more or less constant when C. helgolandicus fed on 

P-limitcd cultures with an average (±SEM) of 15±1 eggs (female dayr l
, whereas feeding 

on P-repletc cultures resulted in a higher overall average of 21±2 eggs (female dayr l 

(Figure 5-8). 

158 



40 -

35 -

;-' 30 -
~ 

"0 

E 25 
~ -
IJl 20 
Cl 
Cl 
~ 15 0:: 
a.. 
w 10 

5 -

1 
! ! I 1 1 ! I 
f I 

f 
t 

2 4 

! 

6 

f 

8 

day 

• P-limited 

[] P-replete 

10 12 14 16 

Figure 5-8: Mean egg production rates (EPR) (±SEM, n=15-29, depending on day and 
treatment) leggs (fem dr'l of Calanus helgolandicus females feeding on P-Iimited and 
P-replete cuhures of Skeleton em a marinoi from outflow bottles ofthe chemostat set-up. 
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EPR of females feeding on P-replete cultures was modulated, being higher at the beginning 

of the experiment with a steady decrease over time, whereas EPR of females feeding on 

P-limited cultures was more or less constant over the entire experiment. Mean overall EPR 

was significantly higher in females feeding on P-replete compared to P-limited S. marinoi 

(paired t-test: t=3.35, t!f~ 14, p=0.0048). 

Also faecal pellet production rate (FPR) was significantly higher in females feeding on 

P-replete compared to P-limited cultures (paired Hest: t=4.13, df=14, p=0.0010) (Figure 

5-9). 
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Fi~ure 5-9: :\Iean faecal pellet production rates (FPR) (±SEM, n=15-29 depending on day and 
treatment) Ifp (fern dr'l of Calanus helgolandicus females feeding on P-Iimited and P-replete 
cultures of Skeletl1lrt'ma marillo; from outflow bottles of the chemostat set-up. 
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FPR did not vary greatly with time over the course of the experiment with an average 

(±SEM) of 146±7 faecal pellets {female daYrl for females feeding on P-replete cultures 

compared to 1 09± 7 faecal pellets {female dayr1 for females feeding on P-limited cultures 

(Figure 5-9). 
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Figure 5-10: Mean hatching success (±SEM, n=13-29 depending on day and treatment) (%] 
of eggs produced by Calanu.'i helgolandicus females feeding on P-Iimited and P-replete 
cultures of Skeiet01lema mar;no; from outflow bottles of the chemostat set-up. 

Hatching success of eggs produced by females feeding on P-limited cultures was 

significantly higher than that of females feeding on P-replete cultures {paired t-test: t=3.85, 

df 14. {F 0,00 I X) (Figure 5-10). However, hatching success in general was impacted 

strongly in hoth treatments with hatching su~cess below 50% after 9 days of feeding on 

P-replctc rultures and after 10 days of feeding on P-limited cultures. 
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Figure 5-11: Mean percentage of abnormal nauplii (±SEM, n=3-29 depending on day and 
treatment) (%1 hatched from eggs produced by Calanus helgolandicus females feeding on 
P-limited and P-replete cultures of Skeletonema marino; from outflow bottles ofthe chemostat 
set-up. 

The percentage of abnormal nauplii increased strongly in both treatments with time 

(Figure 5-11). The percentage of abnormal nauplii was significantly higher in nauplii 

hatchl.'d from copepod females feeding on P-limited culture than in nauplii hatched from 

copcpod females feeding on P-replete culture (paired Hest: t=2.73, df=14, p=O.016). 

Apparently. P-limitl.'d cultures induced stronger abnormality in copepod nauplii towards 

the end of the experiment compared to P-replete cultures. 
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5.4 Discussion 

Neither oxylipin production, nor lipoxygenase (LOX) activity measurements such as fatty 

acid hydroperoxide (FAH) production determined with the colorimetric assay or oxygen 

consumption rate measured polarographically, demonstrated increased oxylipin 

metabolism in P-limited cultures of Skeletanema marinai grown in the chemostat. This 

contradicted the hypothesis, that P-limitation should act as a stress factor, increasing LOX 

activity and therefore production of fatty acid derived oxygenated metabolites, as was 

demonstrated by Ribalet et al. (200Th). An increase in oxylipin production due to 

phosphorus stress could not be confirmed in the present experiment. However, it is 

interesting to note that this strain of S. marinai was apparently active at pH=6.0 under the 

present experimental conditions because an increase in FAH concentrations from the 

blanks to the samples could be measured in the colorimetric assay. 

Analysis of phosphorus and nitrogen content In the cells showed that although the 

NIP-ratio in P-limited alga was significantly higher than that of P-replete alga, S. marinai 

grown at high dilution rates was also close to P-limitation. This may explain the lack of 

difTercnce in oxylipin production between the two treatments, especially if the influence of 

P-limitation on LOX metabolism is not continuous, but due to a threshold value. 

Altcrnatively. it is possible that P-limitation did not have a strong effect on LOX 

metabolism and othcr stress factors may be more effective at inducing an increase in fatty 

acid oxidation. Indcl.>d. in the work of Ribalet et al. (2009), silica-limitation was identified 

as a stronger stress factor and induced a much stronger increase in aldehyde production 

than phosphorus-limitation. It may therefore be useful to repeat these experiments with 

silica-limited culture Jl1l.xiiuJl1 to observe a more significant effect on LOX metabolism. 
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Although there were no significant differences in oxylipin production between the 

chemostat bottle and the outflow culture, LOX activity assays indicated increased activity 

in the chemostat bottle. The lack of agreement between chemostat and outflow culture may 

be due to changing nutrient regimes from the chemostat to the outflow, because cells 

washed into the outflow bottle are no longer under a constant dilution rate. One may 

suppose that in the outflow, cells should be even more nutrient-stressed because of the lack 

of fresh culture medium. However, in the outflow some recycling of nutrients may be 

taking place, for example by bacteria, although care was taken to keep chemostats axenic 

and the outflow culture was left in the outflow bottle at maximum for three days. Axenity 

may be improved upon by a different method of sampling. Instead of removing samples by 

aspiration through a syringe and thereby having a direct contact with the chemostat, in the 

work of Caperon the air supply tube was used for sampling (Caperon 1968). This was a 

two-way tube in which the culture was made to rise and flow out by previously clamping 

otT the outflow and increasing the pressure inside the chemostat through increased 

air-flow. After sampling and opening of the outflow, the tube was once again used to 

aerate the culture avoiding culture growth in the tube. This method provided a very sterile 

way to sample chcmostats (Caperon 1968). However, in our case the culture chamber was 

fitted with a stirring device that had to move freely, thereby not allowing an air-tight 

closure of the chernostat. making this sampling option not feasible. In the present 

experiments continuous sampling for chemical analyses were required to control for a 

continuous metabolism of the alga during the entire two-week incubation experiment. 

ThcrctilTc a ditlcrcnt chemostat set-up may be advisable for the present experiments to 

decrease contamination risk by allowing a different sampling method. It would be 

preferable to incubate copepods directly with algal culture from the chemostat, because 

culture conditilllls arc more closely controlled in the chemostat bottle and cells are 
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probably impacted more strongly by nutrient limitation. However, smce incubation 

experiments needed to be carried out over several weeks to induce an observable effect on 

copepod reproduction, using the actual chemostat to feed females was impractical because 

it would have required large volumes and continuous adjusting of the flow rate upon 

vo lume changes. 

Egg production rates (EPR) and faecal pellet production rates (FPR) were significantly 

higher in P-replete treatments. This may have been due to a higher nutritional value of 

P-replete cultures. However, when replicates were considered individually, differences for 

EPR and FPR overlapped. EPR and FPR were highest in the third replicate carried out with 

P-replete culture and lowest in the first replicate carried out with P-replete culture. 

Therefore these two parameters were probably not dependent on the nutritional status of 

food alga. but rather due to internal factors. Both parameters were probably more 

indicative of general female health and probably not related to incubation conditions. Since 

each replicate was carried out with a fresh batch of females most likely with different 

histories. intrinsic factors may have been different even though females were acc1imated 

for several days before starting incubation experiments. EPR seemed to correlate positively 

to FPR. hence to fel'ding. Females consuming more micro algae were producing more eggs 

in consequence. 

The two parameters for determining the effect of diatoms on copepod reproduction, 

hatching success and the percentage of abnormal nauplii did not correspond. Whereas 

hatching success was signiticantly higher in P-limited culture, which was contrary to 

expectations. the percentage of abnormal nauplii was significantly lower in P-replete 

cultures. as expectl.'<.l. Apparently, both treatments had a similar deleterious effect on 

copcpod reproduL1ion. This corresponded to the fact that P-limited and non-limited algae 
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were producing more or less the same amount of oxylipins, having therefore similar 

"toxicity" and a similar negative effect. In fact, both treatments strongly reduced copepod 

hatching success to 50% after 9 and 10 days of feeding on P-replete and P-limited cultures, 

respectively. 

5.5 Conclusions 

In the present chemostat experiment, phosphorus-limitation did not induce an increased 

production of oxylipins in Skeletanema marinai, even though NIP-ratios were significantly 

higher in algae grown under low compared to high dilution rates. When Ca/anus 

helgo/llndiclIs females fed on the different treatments, hatching success of nauplii resulted 

higher for females feeding on P-limited compared to P-replete alga, which was contrary to 

expectations. However, the percentage of abnormal nauplii produced by females was 

higher with females feeding on P-limited alga. In general, both treatments had a strong 

etlect on copcpod reproductive success probably due to the similar production of 

oxylipins. 
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6 Growth-phase Modulated Lipoxygenase Activity in 

Pseudo-nitzschia delicatissima 

(Results on the presence of lipoxygenase activity in Pseudo-nitzschia delicatissima, its 

modulation during different growth phases, and the characterization of oxylipin 

compounds produced, are published in d'Ippolito et at. 2009) 

Blooms of Pselldo-nitzschia delicatissima have been found to negatively impact copepod 

reproductive success at sea. Therefore, a thorough study of the lipoxygenase (LOX) 

mctabolism of this diatom species was carried out with a special emphasis on the variations 

during various growth phases. Oxylipins were characterized and quantified during five 

distinct growth phases, early exponential, mid exponential, late exponential, stationary, and 

dcclining phase. LOX metabolism was also analyzed by the polarographic and colorimetric 

LOX activity assays in each of the growth phases. P. delicatissima produced three major 

oxylipins, IS(S)-hydroxy-(5Z,8Z, 11 Z, 13Z, 17Z)-eicosapentaenoic acid (15S-HEPE), 13,14-

threo-13S-hydroxy-14S.15S-trans-epoxyeicosa-5Z,8Z, 11 Z, 17Z-tetraenoic acid (13,14-

HEpETE) and IS-oxo-5Z.9E, 11 E, 13E-pentadecatetraenoic acid. Whereas the novel 

oxo-acid was produced only upon entry into the stationary phase, 15S-HEPE and 

\3, 14-HEpETE were produced continuously with an increase in the latter phases of culture 

growth. The intensitication of oxylipin metabolism at the end of culture growth was 

corrohorated hy an increase in LOX activity identifiable polarographically through an 

increase in oxygen consumption rate. as well as colorimetrically by an increased 

production of fatty acid hydroperoxides (FAHs). These results may suggest the 

inmln:mcnt of (lxylipins in regulating culture growth. 
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6.1 Introduction 

In the present study, the pennate diatom Pseuda-nitzschia delicatissima was examined for 

oxylipin metabolism. P. delicatissima is a cosmopolitan species (Hasle 2002), forming 

blooms in coastal waters (Lundholm et al. 2004; Quijano-Scheggia et al. 2008) and 

upwelling regions (lriarte and Fryxell 1995). Low hatching success of copepod eggs in the 

field has been reported during blooms of this diatom (Miralto et al. 1999; Miralto et al. 

2003) and ascribed to the production of polyunsaturated aldehydes (PUAs) (Miralto et al. 

1999). Therefore this species was judged an interesting candidate for a closer examination 

of oxylipin metabolism. Furthermore, possible variations in oxylipin metabolism during 

the various growth phases were of interest. 

In culture. growth of planktonic diatoms is generally characterized by a short lag-phase 

after initial inoculation. followed by an exponential growth phase with rapid growth until 

rates level otT towards a stationary phase with more or less constant cell concentrations. 

The length of this stationary phase is apparently species-specific. In Skeletanema marinai, 

stationary phase could last for one (personal observations) to two weeks (Vidoudez and 

Pohnert 20(8). whereas P. delic:atissima had an extremely short stationary phase lasting a 

maximum of two days (see data below). The reason for rapid decline of cell 

concentrations. the so-called "crashing" of a diatom culture, is still poorly understood 

(Franklin I!f al. 2006). Although in natural systems primary production by diatoms is often 

balanced by losses due to grazing and sinking (Horn and Horn 2000), carbon budgets are 

not always concordant and "enigmatic losses" have been described (Walsh 1983). Viruses 

(Sun1c and (,han 1990; Brussaard 2004; Suttle 2005) and bacteria have been suggested as 

important hictors in phytoplankton cell death. Bacteria can impact algal growth either by 

cc111ysis or through competition tor nutrients (Cole 1982). Another possible reason for cell 
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lysis is attack by parasites e. g. flagellates (Kuehn 1998) or fungi (Holfeld 1998). Whereas 

all of these mechanisms may be active in nature, they are probably not relevant in a 

small-volume axenic culture, therefore the real reason for rapid cell lysis in culture remains 

unclear. 

Recently, it has been found that diatoms release metabolites into the surrounding culture 

medium depending on the growth phase in culture (Vidoudez and Pohnert 2008; Barofsky 

et af. 2009). The former authors demonstrated the specific release of two aldehydes from 

S. marinoi at the end of the stationary growth phase shortly before the decline of the 

culture. whereas the latter authors determined an entire metabolomic pattern that showed 

phase-dependent quantitative and qualitative changes. This modulated production suggests 

a signalling function for oxylipins akin to quorum sensing in bacteria (Falciatore and 

Bowler 2002; Barofsky et af. 2009), possibly leading to a co-ordinated "crashing" of the 

culture. In bacteria, quorum sensing has become an established concept during the last 

decade (Fuqua et a/. 1994; Williams et al. 2007). Quorum sensing is a density-dependent 

signalling process resulting from the production and diffusion of small molecules by 

bacteria. whose concentrations increase proJX>rtionally to JX>pulation growth until reaching 

a threshold level at which the population responds (Williams et al. 2007). Therefore it is 

tempting to suggest a similar mechanism in phytoplankton, which would allow these 

unicellular organisms to respond in a coordinated "multicellular-like" way. 

The concept of oxylipins as inducers of autocatalytic cell death has been suggested by 

Vardi et af. (lOOn) who proposed aldehydes as a possible signal for bloom-termination due 

to increased stress. However, programmed cell death is a poorly understood and sparsely 

researched phenomenon in phytoplankton (Franklin et al. 2006). Oxylipin production may 

he an cxamplc of cell to cell signalling leading to rapid decline in cell numbers (Vardi et 
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at. 2006; Vidoudez and Pohnert 2008), a process possibly induced by nutrient stress 

(Ribalet et at. 2007b). To try and validate this hypothesis, P. delicatissima was analyzed 

for lipoxygenase (LOX) activity and oxylipin production during the development and 

decline of a culture. Changes in these two parameters were followed to determine 

variations in fatty acid oxidative metabolism depending on the phase of culture growth. 

6.2 Materials and Methods 

6.2.1 Sample Collection 

Psew/o-nit=scltia delicatissima (Strain SZN B32l; 1ST sequence identical to AL-24 

GenBank DQ813830 (Amato et at. 2007» was cultured in 1 O-litre polycarbonate bottles on 

autoclaved £2 medium prepared from 0.22-J..lm filtered oligotrophic seawater (Guillard 

1975). Cultures were bubbled gently with sterile (0.22-J..lm filtered) ambient air and grown 

at 20°C under a 12h: 12h light:dark cycle (100 J..lmol photons m-2 
S-I) in a climate chamber. 

Initial cell concentrations were 300-500 cells mrl upon inoculation and culture growth was 

followed by daily enumeration in a Sedgewick counting chamber. Samples were collected 

by centrifugation (1500 x g, 10 min, 4°C) in five distinct phases along the growth curve: 

early exponential (day 3 after inoculation), mid exponential (day 4 to 5), late exponential 

(day 6). stationary (day 7 to 8), and declining phase (day 9 onward). The obtained pellets 

were frozen in liquid nitrogen and kept at -80°C until analysis. Phytoplankton culturing 

and sample collecting were carried out by Marina Montresor and Carmen Minucci (SZN, 

Napoli). 

Four complete replicate gro\\1h curves were run and the values integrated. Additionally, 

t()ur samples tllr the init ial phase (early exponential) and one for the declining phase were 
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collected and these samples considered m the mean value for each growth phase, 

eliminating outlier samples. 

6.2.2 Sample Analysis 

Modulation of oxylipin metabolism was determined by three parameters: production of 

oxylipins, oxygen consumption rate of cell lysates upon addition of exogenous fatty acids, 

and production of intermediate fatty acid hydroperoxides (FAHs) by celllysates. 

Cell lysates were prepared as described in Chapter 2 (2.2.2.2), except that pellets were 

suspendl'Cl in 50 mM phosphate buffer (pH=6.5) instead of H20deionised. Subsamples were 

removed from the cell lysates for protein determination and LOX activity assays as 

described in Chapters 2 (2.2.3, 2.2.6) and 3 (3.2.2). The colorimetric assay for these 

experiments was carried out by incubating cell lysate with the colorimetric agents without 

the addition of external fatty acids (EPA), because the endogenous pool of fatty acids 

should sutlice for supporting LOX activity. Activity was therefore calculated as in 

Chapter 3, as the difference in FAH concentrations between the sample read after 20 min 

and the blank read immediately. The cell lysate was extracted and oxylipin production 

quantified on LC-MS/MS and GC-MS as described in Chapter 2 (2.2.4). Characterization 

of oxylipins was carried out by Giuliana d'Ippolito and Adele Cutignano (lCB-CNR, 

Pozzuoli). Sterl'ochemistry of IS-HEPE was analyzed on chiral phase HPLC using a 

Chiralcc1 OD-H (4.6"250 mm, flow rate 1.5 ml min- I
, UV detection at 236 nm) column 

e1utl'rl isocratically with hexane-isopropanol (98:2 v:v) (Fontana et al. 2007b). 
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6.3 Results 

6.3.1 Growth Curve 

The average growth curve was characterized by an exponential phase lasting 6 days at a 

rapid gro\\1h rate of 1.7 d-I. This was followed by a short stationary phase lasting a 

maximum of two days with peak cell concentrations of2.9±O.6*I05 cells mrl (Figure 6-1). 

After this brief stationary phase, cultures went into senescence with cell numbers declining 

sharply from day 8 onwards. 
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Figure 6-1: :\Iean cell concentrations (±SEM; 0=3 except day 3: 0=5, day 10: 0=4) Imrl) of 
P,wudo-IIit:,,\'cI,ia delicati ...... ima duriog culture growth. 

6.3.2 Oxylipin Production 

GC-\1S analysis of cell extracts showed an absence of volatile aldehydes in this diatom 

species (see Appendix 4). LC'-MS/MS analysis after methylation of the extract, 
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demonstrated the production of three major oxylipins by Pseudo-nitzschia delicatissima: 

15(S)-hydroxy-(5Z,8Z, l1Z, 13Z, 17Z)-eicosapentaenoic acid (l5S-HEPE), 13,14-threo-13S-

hydroxy-14S, 15S-trans-epoxyeicosa-5Z,8Z, 11 Z, 1 7Z-tetraenoic acid (13, 14-HEpETE) and 

15-oxo-5Z, 9E,11 E,13E-pentadecatetraenoic acid. Absolute stereochemistry of 15S-HEPE 

was established as 99% by co-elution with authentic standards on chiral HPLC, whereas 

the trans contiguration of the 14, 15-epoxide ring of 13, 14-HEpETE was assigned on the 

basis ofthe coupling constant between the Hl4 and Hl5 protons in NMR analysis. 

Oxylipin production varied at different growth phases (Figures 6-2 and 6-3). 
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Figure 6-2: :\lean oxylipin production (+SEM; n=3 except early exp: n=5, declining: n=4) 
normalized for cells (pg celr') in different growtb pbases of Pseudo-nitzschia delicatissima 
(early exponentiaL mid exponentiaL late exponential, stationary, and declining). 
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Oxylipin production per cell was constantly low during the entire exponential phase at 

O.14±O.Ol pg cell'l. Production increased significantly in the stationary phase to O.34±O.1 0 

pg cell'l (t-test between combined exponential phase (n=11) and stationary phase (n=3): 

t=3.94, (/f=12, p=O.002) with a minor increase in the declining phase to 0.47±O.IS pg cell'l 

(t-test between stationary phase (n=3) and declining phase (n=4): p>O.05) (Figure 6-2). 
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"i~ure 6-3: !\lean oxylipin production (+SEM; n=3 except early exp: n=5, declining: n=4) 
normalized for protein I,..g (mg protr') in different growth phases of Pseudo-nitzschia 
delicati.\'.'iima (earl~ exponential. mid exponential. late exponential, stationary, and declining). 

Also when oxylipin production was normalized for protein, the highest value could be 

t()und in the stationary phase with cells producing 22.9±O.6 I1g oxylipins (mg prot)"l 

(Figure h-J). This was a significantly higher oxylipin production compared to all other 

, 
phases (onc-way A;,\OVA: F=19.65. r"'=O.91,p=O.0003). 
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6.3.3 Lipoxygenase Activity 

6.3.3.1 Polarographic Assay 

Correspondingly, lipoxygenase (LOX) activity as determined polarographically also 

seemed highest in the stationary phase with an increase in oxygen consumption rate of 

0.013 Ilmol 02 (mg prot minrl upon the addition ofextemal eicosapentaenoic acid (EPA) 

to cell lysate (Figure 6-4). Differences between phases, however, were not statistically 

significant (one-way ANOVA: p>0.05). 
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Figure 6-4: ~Iean oxygen consumption rate (+SEM; n=3 except early exp: n=5, declining: 
n==4) normaliLed for protein '",mol O2 (mg prot min)"l] upon EPA-addition to cell lysate 
determined with the polarographic assay at pH=8.15 in different growth phases of 
P.w!IIdo-"ir.. .. cI,;a de!icat;.'i.'i;ma (early exponential, mid exponential, late exponential, 
stational). and declining). 

175 



1,8 -

1,6 -

1,4 
~ , 

1,2 -c 
·E 

1,0 
Q) 
0 - 0,8 N 

0 
0 0,6 -
.E 

0,4 

0,2 

0,0 

earlyexp mid exp late exp stationary declining 

Figure 6-5: Mean oxygen consumption rate (+SEM; n=3 except early exp: n=5, declining: 
n=4) normalized for cells \fmol O2 (cell min)"') upon EPA-addition to cell lysate determined 
with the polarographic assay at pH=8.15 in different growth phases of Pseudo-nitzschia 
delicati.'i.'.ima (early exponential, mid exponential, late exponential, stationary, and declining). 

When oxygen consumption rate was normalized for cells, the values followed a similar 

pattern as cellular oxylipin production (Figure 6-2) with highest values (O.9±O.8 finol 02 

(cell min)"') apparently found in the declining phase (Figure 6-5). Differences between 

phases were not statistically significant (one-way ANOV A: p>O.05). 

6.3.3.:! ('()/orimetric Assay 

That Iipoxygenase (LOX) enzymes were active at pH=6.0 in Pseudo-nitzschia 

c/e/icoti.'si11/0 was indil.:att..'d polarographically (Figure 6-6). In fact, the increase in oxygen 

I.:onsumption rate upon EPA-addition seemed greater at pH=6.0 than 8.15, suggesting that 

LOX en/ymes in P. dt.'licatissima may be more active at lower pH. 
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Figure 6-6: Oxygen consumption rate normalized for protein l .... mol O2 (mg prot minrl] upon 
EPA-addition to ceU lysate (n=l) determined with the polarographic assay in Pseudo-nitzschia 
delicati.'isima at pH=6.0 and 8.1S. 
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Figure 6-7: Mean fatty acid hydroperoxide (FAH) production (+SEM; n=3 except early exp: 
n=5, declining: n=4) normalized for cells (fmol celr)) determined with the colorimetric assay 
in different growth phases of Pseudo-nitzschia delicatissima (early exponential, mid 
exponential, late exponential, stationary, and declining). FAH production was defined as the 
difference in FAH concentrations between celllysates after 20 min and blanks. 

Therefore, the colorimetric assay was applied to the determination of fatty acid 

hydroperoxide (FAH) production in P. delicatissima. Also in this case, peak values were 

indicated for the declining phase when FAH production was normalized for cells 

(Figure 6-7), Differences between phases, however, were not statistically significant 

(one-way ANOVA: p>O.05). 
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Figure 6-8: Mean fatty acid hydroperoxide (FAH) production (+SEM; n=3 except early exp: 
n=5, declining: n=4) normalized for protein blmol (mg protrl] determined with the 
colorimetric assay in different growth phases of Pseudo-nitzschia delicatissima (early 
exponential, mid exponential, late exponential, stationary, and declining). FAH production 
was defined as the difference in FAH concentrations between cell lysates after 20 min and 
blanks. 

The pattern was less clear when FAH production was nonnalized for protein with similar 

FAH production in all phases (one-way ANOVA: p>O.05) (Figure 6-8). 

6.3.4 Oxylipin Composition 

The three oxylipin compounds showed differential expression during the different growth 

phases (two-way ANOV A: interaction: p>O.05, oxylipin: p=O.0006, phase: p=O.03) 

(Figure 6-9). The oxo-acid was present in low amounts (2.2-7.5 fg celrl) and could be 

found only from the late exponential phase to the declining phase. The epoxyalcohol 

(13.14-HEpETE) and the hydroxy-acid (15S-HEPE) were continuously produced by the 
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culture during the entire growth curve, remaining at constant similar values up to the 

stationary phase (0.06±0.02 and 0.07±0.02 pg ceU-I, respectively). The amount of 

15S-HEPE apparently increased during the declining phase up to 0.31±0.31 pg ceU-I, even 

though this increase was not statistically significant (one-way ANOV A: p>0.05). 

Production of 13, 14-HEpETE reached its peak (0.23±0.13 pg cell-I) in the stationary phase, 

which wa a ignificant difference to the production in the early and mid exponential 

phase (one-way A OVA: p=0.011 and Tukey's post-test: p<0.05). 
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Figure 6-9: Mean production (+ EM; n=3 except early exp: n=5, declining: n=4) normalized 
for cell (pg celrlJ of the oxo-acid (15-oxoacid), the epoxyalcohol (13,14-HEpETE) and the 
hydrox -acid (15S-HEPE) in different growth phases of Pseudo-nitzsclria delicatissima. 
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6.4 Discussion 

Pseudo-nitzschia delicatissima produced three major oxylipins deriving from lipoxygenase 

(LOX) activity on the Czo-fatty acid eicosapentaenoic acid (EPA). These were the 

hydroxy-acid 15(S)-hydroxy-(5Z,8Z, lIZ,13Z, 17Z)-eicosapentaenoic acid (15S-HEPE), the 

epoxyalcoho1 13, 14-threo-13S-hydroxy-14S, 15S-trans-epoxyeicosa-5Z,8Z, 11 Z, 17Z­

tetraenoic acid (13, 14-HEpETE) and 15-oxo-5Z,9E, 11 E, 13E-pentadecatetraenoic acid. The 

first two oxylipins had been previously described in Skeletonema marinoi (Fontana et al. 

2007b), whereas the oxo-acid was a novel oxylipin. All three oxylipins derive from the 

oxidation of EPA according to the followed proposed mechanism (Figure 6-10). EPA is 

oxidized by a 15S-LOX to the 15S-hydroperoxy derivative (l5S-HpEPE) which is either 

converted to the epoxyalcohol (13, 14-HEpETE) by a putative epoxyalcohol synthase (ES), 

to the hydroxy-acid (15S-HEPE) by a putative hydroperoxide reductase (RED) or to 

15-oxoacid by a putative hydro peroxide lyase (HPL) (Figure 6-10). 
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Figure 6-10: Tbe proposed ISS-lipoxygenase (LOX) patbway in Pseudo-nitzschia 
delicafi ...... ima. (EPA: Eicosapentaenoic acid, ISS-HpEPE: lSS-bydroperoxy eicosapentaenoic 
acid, HPL: bydroperoxide lyase, RED: bydroperoxide reductase, lSS-HEPE: bydroxy­
eicosapentaenoic acid, ES: epoxyalcobol syntbase, 13,14-HEpETE: epoxyalcobol). 

No volatile aldehydes were detected in this diatom species in the present work. The 

aldehydes previously described by Miralto et al. (1999) in this species may have been an 

erroneous identification of the novel oxo-acid due to a similar chemical signal in 

NMR-analysis (A. lanora, pers. comm.). In general, the production of oxylipins in this 

diatom increased sharply with the onset of stationary phase. This corresponded to an 

elevated LOX activity as shown by increased oxygen consumption rate upon EP A-addition 

to the cell lysate in the polarographic assay. Also the production of intermediate fatty acid 

hydroperoxides (FAHs) increased towards the end of culture growth. All three parameters 

for dctcnnining oxylipin metabolism therefore coincided in demonstrating the 

intensi tic at ion of fatty acid oxidation during the stationary phase of P. delicatissima. When 

(lxylipin production was nonnalized for cells, higher values were observed in the declining 
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phase compared to the stationary phase. Instead, when values were normalized for protein, 

they were highest in the stationary phase. The discrepancy of normalizing for protein 

compared to cells may depend on the decrease in live cells in the declining phase. Enzymes 

of lysed cells which are no longer considered in the cell count may still be present and 

active in the surrounding culture medium, contributing to oxylipin production. Since 

culture samples were collected by centrifugation, oxylipins from the culture medium may 

precipitate together with the cells and contribute to overall oxylipin production by the 

centrifuged cells, thereby increasing the value calculated per cell. In either case, whether 

oxylipin production was normalized for cells or for protein, oxylipin production increased 

in the latter phases of culture growth. 

Elevated production of oxylipins in later phases of culture growth may be due to increased 

nutrient stress at elevated cell concentrations or to other stress factors triggered by higher 

culture density. This phenomenon has been observed in S. marinoi, which produces greater 

amounts of aldehydes under nutrient-limiting conditions and upon entry into the stationary 

phase in culture (Ribalet et al. 2007b). However, considering that production of these 

secondary metabolites is clearly modulated along the different phases of growth, they may 

also possess a signalling function. It is possible that these molecules have a regulatory role 

(Vidoudez and Pohnert 2008) and instead of being consequences of the culture entering 

into stationary phase are actually triggers involved in the decline ofthe culture (Vardi et al. 

2006). This indicates that oxylipins may act akin to quorum sensing molecules in bacteria 

(Falciatore and Bowler 2002), regulating unicellular behaviour in a coordinated fashion, 

possibly leading to a coordinated senescence of the culture. 

Furthermore, it is important to note that the three oxylipin compounds were produced 

differentially. The oxo-acid was present only upon entry into the stationary phase. 
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Furthermore, production of the oxo-acid in the stationary and senescent phase of the 

culture was highly variable between replicate cultures in the same growth phase. This 

suggests that the production of this molecule was highly sensitive to the physiological state 

of the algal culture. Therefore the oxo-acid may act as a specific signal regulating culture 

growth. Alternatively, the shift from exponential growth to stationary phase may result 

from the general increase in oxylipins or be depended on a complex interaction of several 

molecules. 

Comparing culture growth to the development of a bloom at sea, these metabolites may 

then also be important in nature for controlling bloom termination (Vardi et al. 2006; 

Vidoudez and Pohnert 2008). A general increase in oxylipin production or the production 

of specific molecules, not normally present during exponential growth, may regulate a shift 

in growth phases as well as induce the end of a bloom. However, little is yet known about 

the factors determining bloom termination (see Chapter 7) and further work needs to be 

done on the possible involvement of oxylipins or other secondary metabolites in this 

process and the possible environmental stimuli or internal factors triggering their 

production. 
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6.5 Conclusions 

Pseudo-nitzschia delicatissima demonstrated an increase in oxylipin metabolism with the 

progression of the growth curve. An intensification of fatty acid oxidative metabolism in 

the latter phases of culture growth was demonstrated by increased production of three 

major oxylipins, IS(S}-hydroxy-(SZ,8Z, llZ, 13Z, 17Z)-eicosapentaenoic acid (15S-HEPE), 

13, 14-threo-13S-hydroxy-14S, 15S-trans-epoxyeicosa-SZ,8Z, 11 Z, 17Z-tetraenoic acid 

(l3,14-HEpETE) and 15-oxo-5Z,9E,11E,13E-pentadecatetraenoic acid. The novel 

oxo-acid described in P. delicatissima was produced only upon entry into the stationary 

phase, whereas the production of 15S-HEPE and 13,14-HEpETE was continuous, even 

though it increased in the stationary and declining phases. Increased oxylipin production 

was correlated to an increase in lipoxygenase activity, measured as enhanced oxygen 

consumption rate in stationary phase, as well as intensified production of intermediate fatty 

acid hydroperoxides. These findings may suggest a regulatory role for oxylipins in culture 

growth and senescence, which implies a possible role for oxylipins in regulating bloom 

dynamics at sea. 
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7 Modulated Lipoxygenase Activity during a Bloom of 

Skeletonema marinoi in a Mesocosm Experiment 

The aim of the present experiment was to induce a mono-specific bloom of Skeletanema 

marinoi in a mesocosm set-up by inoculating mesocosm bags with various concentrations 

of a laboratory culture of S. marinai in addition to nutrients. For the two higher 

concentrations employed, a bloom was successfully created and its oxylipin metabolism 

was followed as well as its impact on copepod reproductive success. S. marinai produced 

aldehydes as well as other oxylipins in all mesocosms examined and production peaked 

during the demise of the bloom when oxylipin production was normalized for cells. This 

indicates a possible role for oxylipins as bloom regulators as already proposed for the 

regulation of culture growth. There was, however, no strong effect of the diatom bloom on 

copepod reproductive success. Hatching success remained high and abnormal nauplii were 

not observed, although there was some indication of an early detrimental effect on copepod 

reproduction in the form of apoptotic nauplii. Since the bloom was brief, feeding on 

S. marinoi may have induced apoptosis, but the effect was not strong enough to lead to the 

production of abnormal nauplii or to a decrease in hatching success. 
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7.1 Introduction 

In the spring of 2008 (April 15th_28th
), phytoplankton samples were collected during the 

course of a mesocosm experiment. This experiment was carried out at the mesocosm 

facility of the University of Bergen, Norway under the supervision of Jens Nejstgaard as 

part of an integrated EUROCEANS project. The goal was to create a mono-specific bloom 

of Skeletonema marinai, identify triggers for such and analyze the effects of this bloom on 

the marine ecosystem. Special emphasis was given to the role of chemical signalling in 

shaping trophic interactions. Phytoplankton samples were collected for this purpose, more 

specifically for analyzing changes in lipoxygenase (LOX) activity and oxylipin production 

in the mesocosrns. Of interest were variations between different mesocosm treatments and 

also changes within one treatment over time. The aim was to correlate these data to the 

hatching success of Calanus finmarchicus in the different treatments. Furthermore, 

variations of LOX activity and oxylipin production were of interest for understanding 

metabolic variations during the development and decline of a bloom. As described in the 

previous chapter, oxylipins have been suggested as potentially important factors in shaping 

and possibly even terminating diatom blooms, based on laboratory studies (Vardi et al. 

2006; Vidoudez and Pohnert 2008). This hypothesis was therefore tested in a controlled 

field situation. 

Mesocosm experiments allow carrymg out controlled experiments m a semi-natural 

environment. One factor can be varied, while others are kept as close to natural conditions 

as possible. For example, nutrient- or CO2-concentrations (Egge et al. 2009) can be varied 

while light and temperature are kept at environmental conditions. Temperature m our 

set-up for example was kept at ambient conditions by emerging mesocosrns in the 

surrounding seawater. Also light conditions were natural as the mesocosrns were set up 
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outside and the employed polyethylene bags let pass -90% of photosynthetic radiation. 

These semi-controlled experiments can be very useful in bridging laboratory studies and 

field observations. Especially when studying the toxic effect of diatoms, laboratory studies 

have been criticized for not being ecologically relevant (Jonasdottir et al. 1998). Although 

mesocosms are not equivalent to field studies, they still manage to provide a closer 

approximation to natural systems, increasing complexity. Still they allow the specific 

manipulation of one or multiple factors in a closed off environment to predict the possible 

effect of those factors e.g. of iron fertilization on phytoplankton growth (Takeda et al. 

2000). 

Mesocosrns have become interesting for following the development and decline of 

phytoplankton blooms and identifying possible triggers for bloom development as well as 

reasons for bloom decline. Phytoplankton blooms in general are triggered by increasing 

surface irradiance and nutrient availability in spring (Amone et al. 1993). In fact, 

phytoplankton blooms in mesocosms are usually triggered by the addition of nutrients 

(Egge et al. 2009), but also the role of irradiance has been studied (Agusti et al. 2009). 

More interesting are the factors for bloom decline. It is still not clear whether 

phytoplankton blooms end because of nutrient depletion (Saito et al. 2006), grazing 

pressure (Riebesell et al. 1995; Anderson and Rengefors 2006), bacterial or viral attack 

(Bratbak et al. 1993; Gastrich et al. 2004; Simis et al. 2005), cell-cell signalling (Vardi et 

al. 2006; d'Ippolito et al. 2009), aggregation and subsequent sinking ofphytoplankton cells 

(Kiorboe et af. 1996; Boyd et al. 2005), physical advection (Tester and Steidinger 1997) or 

a complex interaction of several of these factors. 

In this experiment, the goal was to create a homogeneous bloom of just one diatom 

species. S. marinoi. By controlling the nutrient load of the mesocosm, one can control 
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phytoplankton composition. For example, adding silica in addition to nitrate and phosphate 

results in a predominance of diatoms (Egge and Aksnes 1992; Egge and Jacobsen 1997; 

Sommer et al. 2004). To create a specific diatom bloom, apart from adding nutrients 

including silica, varying concentrations of S. marinai were added in this experimental 

set-up. This way it was also hoped to gain further knowledge on the necessary starting 

conditions for creating a mono-specific bloom. In a pilot experiment it had been 

determined that an initial concentration of 1000 cells mrl of S. marinai resulted in a 

specific bloom of this alga, whereas a ten times lower concentration did not result in a 

mono-specific bloom. Therefore in this experiment an intermediate concentration of 400 

cells mrl was also tested. The following results will focus on oxylipin metabolism of 

S. marinoi during the bloom and on its effects on the secondary consumer C. finmarchicus. 

The possible role of oxylipins in bloom termination will also be discussed. 

7.2 Materials and Methods 

7.2.1 Experimental Set-up 

Mesocosms consisted of polyethylene bags with a circumference of I m and a depth of 5 m 

tor a total volume of 30 m3
. Bags were suspended on a floating mesocosm facility 

immerging them in the surrounding seawater at about 200 meters from shore in a protected 

bay 0 f the Raunefjord. Six different treatments were set up (Table 7-1). All bags were 

filled with post-bloom nutrient poor seawater pumped up from 40 m depth. A bubbling 

system guaranteed mixing of the water column. Bag A contained only seawater to control 

tilr a possible "bag effect". It was assumed that this treatment would behave as the 

surrounding sea. Bag B was enriched with the macronutrients nitrate and phosphate. Here a 
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mixed phytoplankton bloom was expected. Bag C was additionally enriched in silicate to 

promote a mixed diatom bloom. In bags 0, E, and F, additionally to nutrients, varying 

concentrations of Skeletanema marinai were added to promote a mono-algal bloom of this 

species. Cell concentrations given for S. marinai refer to the initial cell concentrations after 

inoculation (Table 7-1). All bags were inoculated with the same exponentially growing 

culture of the local strain of S. marinai grown in bulk in the laboratory. 

Table 7-1: Mesocosm bag treatments (Bags A-F) (cell counts in D-F refer to the initial 
concentration of Skeleton em a marinoi upon inoculation) and the parameters analyzed in the 
various treatments (oxylipin production and reproductive success). 

Bag Treatment Oxylipin Reproductive 

production success 

A None 

B + Nitrate + Phosphate X 

C +Nitrate + Phosphate +Silicate X X 

0 +Nutrients + 100 cells mr l 

E +Nutrients +400 cells mr· X 

F +Nutrients + 1000 cells mr l 
X X 

7.2.2 Sample Analysis 

Three of the treatments were analyzed for oxylipin production (Table 7-1), the treatment 

inoculated with just nutrients (mesocosm C), which was used as a control, and the two 

treatments inoculated with 400 and 1000 cells mrl initial S. marinai cell concentrations 
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(mesocosms E and F), in which blooms of S. marinoi were expected. These treatments 

were sampled on the following days after inoculation (Table 7-2). 

Table 7-2: Sampling days (days after inoculation) for analysis of oxyUpin production in 
mesocosm bags C, E, and F. 

Day 4 5 6 7 8 9 10 11 12 

C X X X X X 

E X X X X X 

F X X X X X X X 

7.2.2.1 Sample Collection 

Phytoplankton samples were to be collected by filtering onto a submerged phytoplankton 

net (20 J.lm) to avoid damage to cells. This, however, was not successful because algae 

passed through the net. After trying several means of filtering phytoplankton samples 

direct ly onto filters, a method was established in which 4 x 100-250 ml were filtered 

separately onto 1.0-J.lm polycarbonate filters (GE Water & Process Technologies) with a 

vacuum pump for a total of 400-1 000 ml filtered of mesocosms C, E, and F per sampling 

day. These filters were folded into Eppendorf tubes, frozen in liquid nitrogen and kept at 

-80°C until shipping to SZN in dry ice. 
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7.2.2.2 Method Development 

Since samples were usually analyzed as diatom pellets, methodological tries were carried 

out to detennine how to best analyze filters, especially as sample amounts on filters were 

low, only 83±72 mg corresponding to about a million cells of Skeletonema marinoi. To 

estimate how many of the four filters needed to be combined for the different analyses, a 

culture of the Skeletonema strain used in the mesocosm experiment and grown at SZN was 

filtered onto the same filters used during the mesocosm experiment (l.O-llm 

polycarbonate). 100 ml of culture was filtered onto each filter, which corresponds to about 

20 mg of sample or 4.7* 1 06 cells. The discrepancy in filter weights compared to cell 

amounts between the mesocosm samples and the culture samples was due to the fact that 

the latter filters consisted of a pure Skeletonema culture, whereas mesocosm samples were 

mixed phytoplankton samples. Filters were folded into Eppendorf tubes and frozen, 

analogous to mesocosm samples prior to analysis. 

The usual analysis consisted of suspending diatom pellets in I ml H20deionised per g sample 

(2.2.2.2). Filters in Eppendorf tubes were suspended in 1 ml H20deionised (Milli-Q), which 

was the minimum amount required for sonicating and handling of the sample. This, 

however, resulted in a dilution of 1 :50 compared to standard procedure (20 mg in 1 ml 

instead of 1 g). The sample was sonicated (2*30 s on ice at 20% output, Branson sonifier 

250) with the tilter still inside the Eppendorf tube, because filters were not damaged by 

sonication. This way as many cells as possible were removed from the filters before 

removing them with tweezers and rinsing them several times with the cell lysate. Filters 

checked under the microscope resulted relatively free of cell residue. 

Analogous to other culture studies, adding 200 III of cell lysate corresponding to about 4 

mg sample in the colorimetric assay gave a good reading of absorbance in the 
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spectrophotometer (Table 7-3). Values were readily distinguishable from the solution 

blank. 

Table 7-3: Absorbance at 598 nm of Skeletonema marinoi cell lysate corresponding to varying 
amounts of peDet wet weight [mg) in the colorimetric assay. 

Pellet wet weight (mg) Absorbance (598 nm) 

Solution blank 0.013 

0.4 0.020 

0.8 0.026 

4.0 0.126 

Oxygraph measurements with one of these filters showed rapid oxygen consumption of the 

cell lysate, especially considering the very low sample amount added. However, the 

increase in oxygen consumption rate upon the addition of eicosapentaenoic acid (EPA) to 

the cell lysate was minimal (Table 7-4). Possibly, the cell lysate was consuming oxygen in 

part due to lipoxygenase (LOX) activity, but was not using exogenous EPA. 
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Table 7-4: Oxygen consumption after 5 min (J.lmol) in the polarographic assay at pH=8.15 in 
Skeletonema marinoi cell lysate corresponding to varying amounts of peDet wet weight (mg) 
incubated without (lysate) and with eicosapentaenoic acid (Iysate+EPA). 

,..mol 02 consumed after 5 min 

Blank 0.002 

Pellet wet weight [mg] Lysate Lysate+EPA 

0.005 0.009 0.012 

0.010 0.024 0.026 

For protein analysis, samples were usually diluted 1:5 for a concentration of 0.2 mg J.1rl 

sample solution. By not diluting further, concentrations in the present samples were ten 

times lower at 0.02 mg Ilr1, which gave a satisfactory reading with aliquots of 10-100 III 

(0.2-2.0 mg sample wet weight) in the assay for protein determination (Table 7-5). 

Absorbance values were linear to the amount of pellet wet weight added, even though the 

relationship was not 1: 1 (Figure 7-1). However, since protein content was calculated via a 

standard curve carried out with BSA (2.2.6), this was oflittle importance. 

Table 7-5: Absorbance at 655 nm of Skeleton em a marinoi cell lysate corresponding to varying 
amounts of pellet wet weight (mg) in the assay for protein determination. 

Pellet wet weight [mg] Absorbance (655 nm) Absorbance (Sample-Blank) 

Blank 0.21 

0.2 0.24 0.03 

0.6 0.26 0.05 

1.0 0.28 0.07 

2.0 0.34 0.13 
I 
! 
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Figure 7-1: Linear relationship of absorbance of cell lysate (655 nm) to Skeleton em a marinoi 
pellet wet weight (mg) in the assay for protein determination. 

Chlorophyll measurements were carried out directly on a sample from the mesocosm and 

turned out to be more problematic. Although chlorophyll a amount determined was linear 

to the amount of sample added, there was no I: I relationship (Table 7-6, Figure 7-2). Since 

no standard curve was available for chlorophyll measurements, chlorophyll determination 

was abandoned for mesocosm samples. 

Table 7-6: Chlorophyll a (ng) determined in Skeleton em a marinoi cell lysate, depending on 
pellet wet weight used in the assay (mg). 

Pellet wet weight [mg] Chlorophyll a [ng] 

1.0 0.25 

2.0 0.32 

4.0 0.47 
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Figure 7-2: Linear relationship of chlorophyU a amount [ng) to various amounts of 
Skeletonema marinoi peUet wet weight [mg). 

Extraction of the trial filters for aldehyde analysis (two replicates) showed no detectable 

aldehydes, whereas oxylipins other than aldehydes could be detected without difficulties 

and values calculated per cell were quite high (4.5 pg celrl). Assuming that the lack of 

detectable aldehydes may be due to low sample amounts, all four filters collected from 

each mesocosm per day were pooled and extracted for quantification of oxylipin 

production, including subsampling for protein. For calculation purposes, chlorophyll a 

values measured independently in the mesocosms were used. Although detection of LOX 

activity was feasible for the filter samples, analysis of aldehydes and other oxylipins was 

judged more important and sample amount was not sufficient to allow also the 

measurement ofLOX activity. 
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7.2.3 Culture Samples 

The strain of Skeletunema marinai used for inoculation of the mesocosms had been 

originally isolated from the Bergen fjord. A culture was brought back from Bergen and 

cultured at SZN, keeping culture conditions as similar as possible. Cultures were kept in a 

climate chamber on a 12h:12h light:dark cycle (100 J.1mol photons m-2 s-') analogous to the 

Adriatic S. marinoi, but at a temperature of 10°C. 

Two culture samples of S. marinoi were collected in Bergen, one from the actual culture 

used for inoculation of the mesocosms, which was in exponential phase at the time of 

sampling and the other from a culture grown in parallel, which was in stationary phase at 

the time of sampling. Both samples were collected by centrifugation, frozen and analyzed 

at SZN together with two samples from the culture grown directly at SZN. Culture samples 

were analyzed for lipoxygenase (LOX) activity and oxylipin production as described in 

Chapters 2 (2.2.3, 2.2.4) and 3 (3.2.2). 

7.2.4 Copepod Reproduction 

Copepod incubation experiments to determine daily egg production rates and egg viability 

were carried out for mesocosms B (+N, +P), C (+N, +P, +Si), and F (+N, +P, +Si, 

+Skeletollema) (Table 7-1). Ca/anus finmarchicus females were sorted from zooplankton 

samples collected from the fjord. 15 females for each mesocosm treatment were incubated 

individually in 50-ml Falcon culture flasks filled with water from the respective 

mcsocosms. Flasks were kept in a temperature-controlled room at in situ temperature 

(1 O°C) at dim light. Females were transferred daily with a wide-mouthed glass pipette into 

new flasks with fresh mesocosm water from that day. The water sample from the previous 
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day was gently poured into 100-ml crystallizing dishes and eggs as well as faecal pellets 

produced in 24 h enumerated under an inverted microscope (2.5x) in the 

temperature-controlled room. After counting, the sample was poured gently back into the 

flask and eggs left to hatch for 72 h in the temperature-controlled room after which they 

were fixed with buffered formalin (4% final concentration) before counting the number of 

hatched nauplii, abnormal nauplii, and non-viable eggs. Nauplii were analyzed for 

apoptosis by the TUN EL-staining kit (Roche) after fixation in 1 % PBS and 0.02% sodium 

azide. 

7.2.5 Data Analysis 

Oxylipin production was normalized for cells to observe changes in cellular oxylipin 

production during the course of the bloom. However, to have an idea of the possible effect 

of oxylipins on the zooplankton population, the contribution of oxylipin-producing 

Skeletonema marinai to the total phytoplankton biomass was also taken into account. To 

this end. oxylipin production was normalized for chlorophyll a and carbon determined 

independently in the mesocosm samples and compared to reproductive success of 

copepods. 
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7.3 Results 

7.3.1 Mesocosm Samples 

7.3.1.1 Bloom Development 

A bloom of Skeletonema marinoi developed in both mesocosms inoculated with higher 

initial concentrations of this alga (mesocosms E and F) (Table 7-1, Figure 7-3). No bloom 

of S. marinoi developed in the mesocosm inoculated with the lowest concentration of this 

alga (mesocosm D). Peak cell concentrations were reached on day 7 in mesocosm F 

(60,000 cells mrl) and on day 8 in mesocosm E (17,000 cells mr!). Higher maximum cell 

concentrations were reached in mesocosm F, which had been inoculated with higher initial 

cell concentrations (a calculated value of 1000 compared to 400 cells mr!) (Table 7-1). 

Also in mesocosms Band C, Skeletonema abundance increased slightly during the course 

of the experiment. However cell concentrations remained low at -600 and -1000 cells mr! 

in mesocosms B and C, respectively. 
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Figure 7-3: Cell concentration [cell mJ-I ] of SkeLetonema marinoi in mesocosms B, C, D, E, 
and F during the cour e of the me ocosm experiment (days after inoculation). 

7.3.1.2 Lipoxygena e Activity 

Only one sample from the mesocosm was analyzed for lipoxygenase (LOX) activity in the 

colorimetric a ay (me oco m F day 10) (Figure 7-4). 
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Figure 7-4: Mean concentrations (+SEM, n=2) of fatty acid hydroperoxide (FAH) normalized 
for protein I"mol (mg protrl] determined with the colorimetric assay in blanks (0 min), in 
cell lysate of a mesocosm sample (mesocosm F, day 10) (20 min), and in cell lysate upon 
EPA-addition (+EPA). 

This sample collected from the declining phase of the bloom showed an apparently strong 

increase in fatty acid hydroperoxide (FAH) concentration from the blank (0 min) to the 

sample (20 min) (Figure 7-4). Upon addition of EPA, there seemed to be a decrease in 

FAHs. 

7.3.1.3 Oxylipin Production 

Except for in one sample (mesocosm F, day 6), which corresponded to the day before the 

peak of the bloom in the mesocosm with highest Skeletonema concentrations, no aldehydes 

were detectable in the samples by the extraction method used. Particulate and dissolved 

aldehydes were, however, detected by a different method in this experiment (Vidoudez, in 

preparation) and these data were used for comparative purposes (Figure 7-6). 
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Figure 7-5: Production of oxyUpins other than aldehydes (n=1) normalized for cells [pg cell·I
) 

in me oco m bag C, E, and F during the course ofthe experiment (days after inoculation). 

When oxylipin other than aldehydes were normalized for cells, values were relatively low 

during the entire experiment and only increased towards the end (Figure 7-5). This trend 

was ob erved in all three me ocosms examined for oxylipin production (C, E, and F) with 

maximum alue of 6.5, 5.7, and 11.5 pg ceU-1 respectively, reached on day 12 after 

inoculation. In mesocosm C, which had low cell concentrations of Skeletonema marinoi, 

oxylipin value reached a similar peak production as in mesocosm E and there were no 

ignificant differences between the treatments (repeated measures ANOVA: p>0.05). 

A aldehyde data were available as molar concentrations, data for oxylipins other than 

aldehyde were al 0 converted to molar concentrations to allow for comparisons (Figure 

7-6). 
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Figure 7-6: Production of aldehydes and oxylipins other than aldehydes (n=1) normalized for 
cell Ifmol celr') in me oco m bags C, E, and F during the course of the experiment (days 
after inoculation). 
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A similar trend of cellular production was observed for aldehydes and other oxylipins. 

Also the cellular production of aldehydes increased towards the end of the bloom in 

mesocosms E and F (Figure 7-6). Values for the production of aldehydes and other 

oxylipins were in the same range. Mesocosm C behaved differently in regard to aldehydes 

with per cell values decreasing during the run of the experiment. However, aldehyde 

production did not differ significantly between mesocosm treatments (repeated measures 

ANOV A: p>O.05). 

7.3.2 Nutrients 

Nutrient measurements demonstrated that towards the end of the bloom in all mesocosms 

inoculated with nutrients, the concentration of phosphate and nitrate had returned to 

pre-inoculation values (Figures 7-7 and 7-8). Silica was more variable and was lowest 

during the bloom in mesocosms E and F, increasing again towards the end (Figure 7-9). 

204 



Figure 7-7: Concentration of phospbate [/-lg rl] (n=l) in mesocosm bags C, E, and F during 
the cour e oftbe experiment (days after inoculation; surrounding sea measured as control). 

Figure 7-8: oncentration of nitrate [/-lg rl] (n=l) in mesocosm bags C, E, and F during the 
cour e of the experiment (day after inoculation; surrounding sea measured as control). 
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Figure 7-9: Concentration of silicate [p.tg r'] (n=1) in mesocosm bags C, E, and F during the 
cour e of the experiment (days after inoculation; surrounding sea measured as control). 

7.3.3 Effects of O xylipins on Copepods 

Oxylipin other than aldehydes normalized for chlorophyll a showed a continuous increase 

toward the end of the experiment (Figure 7-10). Maximum values were reached on day 12 

in me oco m C (0.91 nmol (!lg chI art), E (1.8 nmol (!lg chI art), and F (1.2 nmol 

(!lg chi art). There were no significant differences between treatments (repeated measures 

A OVA: p>O.OS). When aldehydes were normalized for chlorophyll a, on the other hand, 

aldehyde production was significantly lower in mesocosm C compared to mesocosms E 

and F (repeated measures ANOVA: F=9.7S, r =0.47, p=0.0009 and Tukey's posttest: 

p<O.Ol). 
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Figure 7-10: Production of aldehydes and oxylipins other than aldehydes (n=1) normalized 
for chlorophyll a Inmol (Jig chI arl\ in mesocosm bags C, E, and F during the course of the 
experiment (da) after inoculation). 
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Figure 7-11: Production of aldehydes and oxylipins other than aldehydes (n==l) normalized 
for carbon [nmol (mg C).I] in me ocosm bags C, E, and F during the course ofthe experiment 
(day after inoculation). 
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When oxylipins other than aldehydes were normalized for carbon, peak: concentrations 

were found slightly after the peak: of the bloom, on day 8 in mesocosm F (6.9 nmol 

(mg CrI) and day 10 in mesocosm E (5.6 nmol (mg CrI) (Figure 7-11). Maximum values 

were shifted in respect to peak: Skeletonema concentrations. There were no significant 

differences between treatments (repeated measures ANOV A: p>0.05). 

Aldehydes showed a similar pattern as other oxylipins with highest concentrations, when 

normalized for chlorophyll a at the end of the bloom and highest concentrations, when 

normalized for carbon during the peak: ofthe bloom (Figures 7-10 and 7-11) (Vidoudez, in 

preparation). When aldehydes were normalized for carbon, aldehyde production in 

me oco m C was significantly lower than in mesocosm E (repeated measures ANOV A: 

F=4.64, f =0.34, p=0.024 and Tukey's posttest: p<0.05). 
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Figure 7-12: Mean faecal pellet production rates (FPR) (±SEM, n=12-15 depending on day 
and treatment) (fp (fern drl) of Calallllsjinmarchiclls females collected from mesocosm bags 
B, C, and F during the cour e ofthe experiment (days after inoculation). 
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Faecal pellet production rate (FPR) was significantly higher in mesocosm F compared to B 

(repeated measures ANOVA: F=6.23, r2=0.4l, p=0.0088 and Tukey's posttest: p<O.Ol) 

(Figure 7-12). 

Hatching success and the percentage of abnormal nauplii, on the other hand, did not differ 

significantly between treatments (repeated measures ANOVA: p>0.05). Although diatoms 

were producing oxygenated fatty acid derivatives, hatching success remained high 

(Figure 7-13), whereas the production of abnormal nauplii was continuously low 

(Figure 7-14). 
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Figure 7-13: Mean hatching succe of eggs (±SEM; n=6-1S depending on day and treatment) 
[% I produced from Calami jillmarc/riclIs females collected in mesocosm bags B, C, and F 
during the cour e of the experiment (days after inoculation). 
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Figure 7-14: Mean percentage of abnormal nauplii (±SEM; n=8-15 depending on day and 
treatment) [%] hatched from eggs produced by Calanusfinmarclticus females collected from 
mesocosm bags B, C, and F during the course ofthe experiment (days after inoculation). 

Although no abnormal nauplii were observed under the light microscope, TUNEL-staining 

showed that naupliar tissue was highly apoptotic (Y. Carotenuto, pers. comm.; Figure 

7-15). 
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Figure 7-15: aupliu of Calanus finmarchicus from the mesocosm experiment stained 
po itive for apoptosis with TUNEL. 

7.3.4 Culture Samples 

The growth rate of the Skeletonema marinoi strain brought back from Bergen was 

0.37±0.11 d-I . 

7.3.4.1 Colorimetric A ay 

In the colorimetric a ay there was an increase of fatty acid hydroperoxides (FAHs) after 

20 min compared to the blank in all cultures (Figure 7-16). 
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Figure 7-16: Mean concentrations (+SEM, n=2) of fatty acid hydroperoxide (FAH) 
normalized for protein (Ilmol (mg protr l

] determined with the colorimetric assay in blanks 
(0 min), in cell lysate of the Skeleton em a marinoi strain used for inoculation of the mesocosms, 
cultured in Bergen and at SZN (20 min), and in cell lysate upon EPA-addition (+EPA). 

However. there seemed to be no difference in lipoxygenase (LOX) activity measured with 

the colorimetric assay between the cultures grown in Bergen and at SZN. 

7.3.4.2 Polarographic Assay 

Only the two samples cultured at SZN were analyzed for lipoxygenase (LOX) activity also 

in the oxygraph. The first replicate showed lower oxygen consumption than the second 

(Figure 7-17). 
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Figure 7-17: Mean oxygen consumption rate (n=l) (",mol O2 (mg prot min)"'] of cell lysate 
(lysate) and cell lysate upon EPA-addition (lysate+EPA) in both replicates of the mesocosm 
strain of Skeletonema marinoi cultured at SZN determined at pH=8.1S in the polarographic 
assay. 

However, the response seemed to be the same in both replicates with no increase in oxygen 

consumption observable after the addition of exogenous EP A. 

7.3.4.3 o.,ylipin Production 

Oxylipin production seemed to be higher in the samples cultured at SZN (Figure 7-18). 
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Figure 7-18: Production of aldehydes and oxylipins other than aldehydes (+SEM, n=2) 
normalized for cells [fg celrl] in the mesocosm strain of Skeletonema marinoi cultured at SZN 
and in Bergen. 

This appeared to be mainly due to an increased aldehyde production, which was ten times 

higher in the cultures grown at SZN (l06±28 fg per celrl) than in the same strain cultured 

in Bergen (I 0±2 fg per celr l). Production of oxylipins other than aldehydes did not seem to 

differ greatly between the two culture conditions. 

As the negative effects on copepod reproduction during the mesocosm experiment were 

weak, the low aldehyde production in the Bergen cultures was examined more closely. 

Examining the different culture conditions at the two stations, it was discovered that 

different culture medium had been used. At SZN, diatoms were cultured on £12 medium 

(Guillard 1975) prepared from natural filtered seawater. However, in Bergen Conway 

culture medium was used (Tompkins et at. 1995) which was prepared with slightly 

different nutrient concentrations (Table 7-7). 
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Table 7-7: Comparison of Conway culture medium used in Bergen and fl2 medium used at 
SZN in respect to macro- (N03, P04) and micro- (Fe, Mo, Zo, Co, Mo, Cu) nutrient final 
concentrations (IlM). 

Cfinal IJ.lM I Conway (Bergen) f/2 (SZN) 

NO) 1176 882 

P04 167 36 

Fe 5 18 

Mn 1.8 0.9 

Zn 0.015 0.077 

Co 0.008 0.042 

Mo 0.001 0.026 

Cu 0.013 0.040 

The Conway medium was richer in nitrate and phosphate compared to fl2, whereas fl2 

contained higher concentrations of micro nutrients, including iron, with the exception of 

manganese. 

7.4 Discussion 

In the two mcsocosm bags inoculated with higher initial cell concentrations (Bags E and 

F), a bloom of Skeletonema marinoi developed. However, the initial inoculation was not 

quite successful. Cell counts showed that the initial concentration of S. marinai in 

mcsocosm F was -500 instead of 1000 cells mrl. Also in mesocosm E, initial cell 

concentrations differed slightly from the calculated cell concentrations. Actual measured 

cell concentrations were -300 instead of 400 cells mrl. Therefore, starting conditions in 
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mesocosms E and F were actually quite similar. Although the bloom in mesocosm F 

developed earlier and peaked at higher cell concentrations, bloom development in both 

mesocosms was indeed comparable. 

S. marinoi produced fatty acid derived oxygenated metabolites in all mesocosms analyzed, 

even in the mesocosm bag in which S. marinoi cell concentrations remained low (Bag C). 

Aldehydes were not detected. A possible explanation for the lack of detectable aldehydes 

can obviously be lack of aldehyde production by the alga. This hypothesis was supported 

by low aldehyde production measured in culture samples of the strain used for inoculation. 

However, the same strain cultured at SZN showed high aldehyde production. The potential 

for aldehyde production was evidently present in this strain and possibly depended on 

nutrient conditions or other culturing parameters. Considering that particulate and 

dissolved aldehydes were indeed detected by a different method in this experiment, the 

extraction method applied in my case was probably not sensitive enough. As other 

oxylipins apart from aldehydes could be detected without problems, it is also possible that 

the long filtering necessary for obtaining the samples resulted in cell damage and loss of 

aldehydes which are less stable and more volatile than other oxylipins. 

Cellular oxylipin production increased sharply during the demise of the bloom. Compared 

to values for oxylipin production obtained in culture with this strain of S. marinoi 

(O.2±O.06 pg celr l
), values for cellular production in mesocosms at the end of the 

experiment were very high (6.5-11.5 pg cell-I). As suggested in Chapter 6, it is possible 

that lipoxygenase (LOX) enzymes continued to be active in seawater, although cells had 

lysed, leading to an overestimation of cellular production. Alternatively, higher cellular 

production in tield compared to culture samples may have been due to an increased 

availability of substrate in field samples. Since all cells in the sample were lysed upon 
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sonication, fatty acid substrate from other sources apart from S. marinoi may have been 

available to LOX enzymes (Wichard et al. 2007). Another possible alternative source for 

oxylipins was other phytoplankton. In the mesocosms, Phaeocystis sp. in general was 

present in low amounts, but increased greatly towards the end of the bloom in mesocosm 

C. Samples from mesocosm C indeed showed high oxylipin production on day 12, even 

though S. marinoi was practically absent. Phaeocystis pouchetii (Hariot) Lagerheim has 

been found to produce aldehydes (Hansen et al. 2004) and therefore Phaeocystis sp. may 

have been contributing to the production of oxylipins in the mesocosms. 

The modular production of oxylipins in Pseudo-nitzschia delicatissima during the different 

growth phases in culture with increases during the stationary and declining phase has been 

suggested as a regulatory mechanism (see Chapter 6). A similar pattern has been observed 

for the release of PUAs into the culture medium, which takes place in S. marino; 

exclusively in the late stationary phase prior to culture decline (Vidoudez and Pohnert 

2008). The increase in oxylipin production during the decline of the bloom in the present 

mesocosm experiment demonstrates for the first time, that a similar modulation of oxylipin 

production can be found in the field. Also in the mesocosm experiment, oxylipin 

production normalized for cells and chlorophyll a increased during the decline of the 

bloom. The similar pattern observed when normalizing oxylipin production for cells or 

chlorophyll can probably be explained by the fact that at least in mesocosms E and F 

chlorophyll was due mainly to Skeletonema, so that normalizing for chlorophyll gave again 

an indication of cellular production of oxylipins. This increase towards the end of the 

bloom suggests that oxylipins are involved in bloom termination, as has been suggested by 

Vardi et £11. (2006). 
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The triggers for bloom termination are still under discussion and these results support the 

hypothesis that cells are regulating bloom termination themselves through cell-cell 

communication mediated by secondary metabolites (Vardi et al. 2006). Other possible 

explanations for the crash of the bloom in the present study include nutrient depletion, 

although only nitrates and phosphates were depleted at the end of the experiment, not 

silica, which may be more important for terminating diatom growth (Saito et al. 2006). 

Silica concentrations were lowest during the peak of the bloom and increased again 

towards the end, probably due to lysis of diatom cells. Cells at the end ofthe bloom were 

therefore most likely limited in nitrogen and phosphorus, but not silica. Sedimentation in 

the mesocosrns cannot have been determining for bloom termination (Kiorboe et al. 1996), 

because in the 5 m deep water column, mixing was guaranteed by bubbling and no 

significant sedimentation was observed on taking down the mesocosms. Degradation by 

bacteria or viruses is a possible explanation for decreasing phytoplankton numbers in the 

present experiment because both bacterial and viral numbers increased in the mesocosms 

towards the end of the experiment (Bergkvist, in preparation). However, it is not clear if 

bacteria and viruses were the cause for cell lysis or merely profited from an increased pool 

of dissolved organic carbon due to cell lysis. Another possible explanation for a reduction 

ofphytoplankton numbers could have been a top-down control due to grazing, even though 

the decline in cell numbers was quite sharp, making it questionable whether micro- or 

mesozooplankton grazing could have been that efficient in diminishing algal biomass. 

Modulation of oxylipin production was found in all mesoco srns, independent of 

Skeletonema concentration. LOX metabolism was apparently not affected by cell 

concentrations. but seemed to depend on the progression of the experiment. An increase in 

oxylipin production over time was found also in Skeletonema cells from the mesocosm 

inoculated only with nutrients (mesocosm C), in which no bloom of Skeletonema 
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developed. Ribalet et al. have demonstrated that S. marinai increases aldehyde production 

under phosphate and nitrate limitation (Ribalet et al. 2007b). In all mesocosms, nitrates and 

phosphates were depleted at the end of the experiment. Therefore, the increase in oxylipin 

production may have been due to nutrient stress encountered by cells at the end of the 

bloom, possibly inducing a decline in cell numbers under unfavourable conditions. 

The effect of oxylipin production by S. marinai on copepod embryonic development was 

weak in the mesocosm experiment. Even though S. marinai abundance was lOO-fold in 

mesocosm F compared to C or B, this had neither an impact on hatching success of 

copepod eggs nor on naupliar development. The only parameter demonstrating a toxic 

effect of S. marinai on copepod reproduction was the occurrence of apoptosis in naupliar 

tissue. Apoptotic tissue was an indication of internal lesions due to toxic metabolites 

(Romano et al. 2003), even though the effect was not strong enough to induce 

abnormalities in nauplii. One explanation for the weak effect on copepod reproduction may 

be that copepods were feeding on alternative foods. However, copepods tend to produce 

large amounts of faecal pellets when feeding on S. marinoi (personal observations) and 

therefore the high faecal pellet production observed in females fed phytoplankton from 

mesocosm F suggests that copepods were indeed feeding on S. marinai. This also seems 

likely considering that S. marinai was the main phytoplankton species available for 

grazing. Another explanation for continuing high reproductive success may be the short 

duration of the bloom. This short duration may have been enough to induce apoptosis, but 

was too short to decrease hatching success of eggs. Also in the laboratory, it can take days 

up to weeks to establish a deleterious effect of oxylipin-producing diatoms on copepods 

(d'lppolito et al. 2002b; Ceballos and Ianora 2003). Furthermore, it is possible, that the 

population of Calanusfinmarchicus females used in the incubation experiments was rather 

insensitive to oxylipins, because the response of different copepod species to the same 
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diatom speCIes can vary (Paffenhoefer et al. 2005) and high reproductive success of 

C. finmarchicus during diatom blooms has been observed previously in the field (Ban et al. 

1997; Koski 2007). 

Laboratory studies on the S. marinai strain used for the present mesocosm experiment gave 

interesting indications as to the variability in oxylipin metabolism between strains and 

those due to culture conditions. Growth rate in this strain (0.3 7±0.11 d- I
) was about half of 

the growth rate determined for the Adriatic S. marinai (0.76±0.04 d- I
), which was 

presumably due to the lower cultivation temperature (lODC instead of 20DC). Interestingly, 

oxygen consumption rate in this strain was not increased by the addition of 

eicosapentaenoic acid (EPA) to the cell lysate, even though oxygen consumption of the cell 

lysate was high. This high oxygen consumption rate of the cell lysate was presumably due 

to LOX activity on endogenous fatty acids, but LOX enzymes were apparently not using 

exogenous EPA. Therefore, in the present samples the polarographic assay could not 

demonstrate LOX activity, at least not how originally defmed as the increase in oxygen 

consumption rate upon EPA-addition to the cell lysate (see Chapter 3). Apart from these 

apparent peculiarities of the Norwegian S. marina; strain, there also seemed to be an 

influence of culture conditions on oxylipin production. Although there were no significant 

ditTerences in fatty acid hydroperoxide production detected with the colorimetric assay, 

oxylipin production was apparently greater in the culture grown at SZN compared to the 

onc grown in Bergen. This may have been due to the different culture media used with 

lower concentrations of the macronutrients nitrate and phosphate used at SZN. 
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7.5 Conclusions 

In the present mesocosm experiment, a mono-specific bloom of Skeletonema marinoi was 

successfully induced in the two mesocosm bags inoculated with higher initial 

concentrations of S. marinoi. S. marinoi was producing aldehydes as well as oxylipins 

other than aldehydes in all mesocosrns examined with a peak at the end of the bloom when 

values were normalized for cells. This indicates an involvement of oxylipins in bloom 

demise and gives some of the first field evidence for the role of oxylipins as growth 

regulators. Oxylipin production normalized for carbon was highest during the peak of the 

bloom. However, there was only a weak effect of oxylipin production on copepod 

reproductive success. Although there was some indication for a detrimental impact in the 

form of apoptotic nauplii, hatching success of copepod eggs remained high. A possible 

explanation may be the short duration of the bloom, which succeeded in inducing apoptosis 

in hatched nauplii, but was not strong enough to significantly impact copepod 

reproduction. 
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8 Conclusions 

In this thesis, lipoxygenase (LOX) activity and oxylipin production in several diatom 

species, with special emphasis on Skeletanema marinai, were examined in different 

systems. Oxylipin metabolism in diatoms was studied in laboratory cultures, under 

semi-controlled conditions in a mesocosm and in the field. Furthermore, the influence of 

different factors, such as nutrient-stress and different growth phases, has been examined. 

An interesting aspect that has emerged from all of these studies is the lack of correlation 

between LOX activity assays and oxylipin production. 

8.1 Methodological Aspects 

The original aim of the thesis to develop an easy-to-use, simple assay for oxylipin 

production in phytoplankton samples based on lipoxygenase (LOX) activity has not proved 

feasible. In part this was due to a pH-dependency of the involved enzymatic reactions. 

Especially in S. marinai, LOX activity was often low or absent in the cell lysate at the pH 

of the colorimetric assay (pH=6.0), which precluded using this assay for accurately 

determining LOX activity. However, also LOX activity measured at pH=8.1S in the 

polarographic assay showed no continuous correlation with oxylipin production. These 

findings underline the importance of unifying protocols, making it best to carry out 

extractions for oxylipin quantification at pH=8.15 to be able to compare oxylipin 

production more easily with LOX activity as determined with the polarographic assay. One 

may also carry out extractions at pH=6.0 to compare oxylipin production to LOX activity 

measured with the colorimetric assay, but presumably LOX enzymes will be active at 

pH=8.15 in nature and therefore extracting at this pH should give a more ecologically 

relevant value. Additionally, in S. marinoi suspending cells at pH=6.0 led to lower 
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production of oxylipins compared to suspending cells at pH=8.15, thereby demonstrating 

that carrying out extractions at pH=6.0 may underestimate oxylipin production in certain 

diatom species. 

Although the oxygraph was more applicable to detailed physiological studies in diatoms, 

being a direct measurement of LOX activity, it was limited by its lack of specificity. The 

polarographic assay could only demonstrate LOX activity on the exogenous fatty acid used 

in the assay, in this case eicosapentaenoic acid (EPA). In the diatoms Pseudo-nitzschia 

delicatissima and Chaetoceros ajJinis, adding only EPA to the cell lysate did not 

underestimate LOX activity because these species seem to use only C2o-fatty acids as LOX 

substrate (Fontana et al. 2007b; d'Ippolito et al. 2009). However, since Thalassiasira 

routla and Skeletonema marinai metabolize C1 6- as well as C2o-fatty acids (d'Ippolito et al. 

2003; d'Ippolito et af. 2005), it would be wise to carry out the polarographic assay with 

both ofthese substrates to evidence the entire LOX metabolism in these diatom species. To 

this end, it is important to determine the composition of oxylipins in the diatom species to 

evaluate the relative contribution of each pathway to total oxylipin production. The 

polarographic assay with cell lysates of S. marinai would be best carried out with a 2:1 

mixture of C20- to Cl6-fatty acids, as this would correspond to the relative relationship of 

oxylipins deriving from these precursors in this species. 

As the polarographic assay was more time consuming with 15 mm needed for one 

replicate, the colorimetric assay was preferred for a rapid screening of LOX activity in 

samples. However, certain improvements should be taken into consideration in the future, 

such as establishing the range of linearity before reading samples and developing an 

alternative tor reading blank values of the cell lysate. Furthermore, it should be examined 

more closely. whether the colorimetric assay can be applied to dosing fatty acid 
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hydroperoxide (FAH) concentrations in phytoplankton samples, even in the absence of 

LOX activity at pH=6.0, by respecting only the 5 min necessary for colour development 

(Anthon and Barrett 200 I). 

8.2 Uncorrelated Lipoxygenase Activity and Oxylipin Production 

The lack of correlation between lipoxygenase (LOX) activity and oxylipin production gave 

interesting insights into oxylipin metabolism in diatoms. Although the oxidation of fatty 

acids by LOX enzymes is surely an important step in the formation of oxylipins, it is 

apparently not the only determining reaction. Enzymes responsible for the conversion of 

fatty acid hydroperoxides (F AHs), e. g. lyases, peroxidases, and allene oxide synthases 

(Andreou et al. 2009) and their differential expression may be just as important in 

determining the quantitative and qualitative production of oxylipins, as the initial oxidative 

reaction. Enzymatic systems for converting FAHs into other oxylipins should therefore be 

considered more closely in further research, because these may be determining in the 

production of end-metabolites, such as aldehydes, hydroxy-acids and epoxyalcohols. Also 

non-enzymatic reactions need to be taken into consideration, which may be involved in the 

transformation processes, e. g. in the reduction of F AHs to hydroxy-acids (Andreou et al. 

2009). Another possible explanation for a lack of correlation between FAH and oxylipin 

production would be the presence of a bifunctional LOX, which directly converts fatty 

acids into secondary oxylipins without releasing intermediate F AHs. Such an enzyme has 

been suggested for diatoms (Pohnert 2005) and may explain a lack of FAH detection in the 

presence of oxylipin production. 
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The present results also strongly indicate that there exist still other secondary metabo lites 

deriving from the oxidative metabolism of fatty acids in diatoms which need to be 

characterized in order to correlate the oxidation of fatty acids, hence LOX activity, to the 

production of oxylipins. The lack of correlation between the production of FAH 

intermediates, measured in the colorimetric assay, and the production of known 

end-metabolites, the oxylipins, cannot be due just to changing LOX activity between the 

pH of the colorimetric assay (pH=6.0) and the pH of extraction for oxylipin quantification 

(pH-7.0). As F AHs are instable and are therefore rapidly transformed into secondary 

oxylipins, the lack of correlation between FAH production and oxylipin production 

strongly indicates the presence of unknown metabolites. Apparently, the production of 

aldehydes and other oxylipins as end-metabolites of oxidative fatty acid metabolism does 

not yet allow for a complete picture of the mode of action of Skeletonema marinai. 

However, the production of FAHs, measured in the colorimetric assay, did seem to 

correlate directly with copepod hatching success during the diatom bloom in the Northern 

Adriatic Sea in 2005 (see Chapter 2). This direct effect may be mediated by a toxic effect 

ofFAHs, but another explanation is also feasible. Depending on the specificity of the assay 

for F AHs, the colorimetric assay may be more appropriate for demonstrating a general 

oxidative burst triggered by cell damage. If the negative effect of fatty acid oxidative 

metabolism on copepod reproduction is due rather to a general increase in oxidative stress 

than to the action of specific metabolites (Fontana et al. 2007b) or if other metabolites are 

still involved in this effect, the colorimetric assay could give us a more general view ofthe 

potential impact of diatoms. It therefore seems useful to continue using the colorimetric 

assay for the analysis of field phytoplankton samples, especially if it can be adapted to 

dosing FAH concentrations in samples, as this assay may give a more general view of the 

potential impact of diatoms due to the oxidative metabolism of fatty acids. 
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Whether LOX activity correlates to oxylipin production may also depend on the 

complexity of oxylipin metabolism. In Pseuda-nitzschia delicatissima, only one LOX 

activity has been described so far, a 15(S)-LOX which oxidizes C2o-fatty acids, leading to 

the production of hydroxy-acids, epo xyalcoho Is, and (J)-oxo-acids (see Chapter 6). In this 

diatom species, there was a good correlation between LOX activity determined in the 

polarographic and colorimetric assays and the production of end-metabolites. The 

applicability of the colorimetric assay was due to LOXs being active at pH=6.0 and the 

good correlation between LOX activity and oxylipin production observed in this species 

was possibly due to a simpler, more straight-forward oxylipin metabolism in this species 

compared to e. g. S. marinai. 

8.3 Diversity ofOxylipin Metabolism among Clones 

Clones of Skeletanema marinai were isolated during the diatom bloom in the Northern 

Adriatic Sea during different years and analyzed for oxylipin metabolism in the laboratory 

(see Chapter 4). The strong reduction in hatching success observed in the field in 2003 (see 

Chapter 2) may have been due to a strong production of fatty acid hydroperoxides (FAHs) 

observed in the S. marina; clone iso lated in that year. However, strong FAH production 

was not observed in the isolate from 1997, even though there had been a comparably 

strong eITect on hatching success in that year (Miralto et al. 1999). Strong reduction of 

hatching success in 1997 seemed to correlate instead to strong oxylipin production in this 

clone. This clone seemed to produce the largest amount of aldehydes of all the clones 

analyzed. The stronger toxic eITect of aldehydes compared to other oxylipins (Fontana et 

af. 2007b) may explain the strong reduction in hatching success observed at sea during the 

diatom hloom in that year (Miralto et al. 1999). The low aldehyde production in the clone 
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isolated in 2005 also seemed to correlate to the low aldehyde production observed in the 

phytoplankton samples collected in that year (see Chapter 2). However, oxylipin 

production did not differ greatly between the isolates from 2003 and 2004, whereas 

hatching success was impacted more strongly in 2003 than in 2004. 

Apparently, no direct comparisons can be made between the oxylipin metabolism analyzed 

in the laboratory ofa specific clone and the oxylipin metabolism of the bloom from which 

the clone has been isolated. Isolating single cells from the bloom does not guarantee 

isolating the most abundant clone responsible for the bloom of that year. Additionally, 

recent studies demonstrate large genetic diversity within blooms (Medlin et al. 1999; 

Rynearson and Armbrust 2000), making it unlikely that one clone will represent an entire 

bloom. Therefore, it is more realistic to analyze field phytoplankton samples from a given 

year, as was done in Chapter 2, rather than rely on culture studies of isolated clones. 

Another interesting possibility would be to carry out incubation experiments in the 

laboratory with different clones to validate whether differences in lipoxygenase (LOX) 

metabolism are the causative agents for variations in copepod reproductive success 

between different years, as was indicated by Pohnert et al. (2002) when two strains of 

Thalassiosira roflila with different potentials for aldehyde production were fed to 

copepods. 

The ecological significance of oxylipins is still under discussion and may lie in defence 

from grazers (Miralto et al. 1999; Fontana et al. 2007b), in the ability to outcompete 

bacteria (Ribalet et al. 2008) or other phytoplankton (Casotti and Mazza 2005; Ribalet et 

at. 2007a), on the possibility to induce programmed cell death under unfavourable 

conditions (Vardi et at. 2006) or on a multitude of these factors. Independent of the mode 

of action of these metabolites, variations in LOX activity or oxylipin production may 
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therefore impart an evolutionary advantage to certain clones of the same species which 

may be preferentially selected for. 

8.4 Functions ofOxylipins in Marine Ecosystems 

The different functions suggested for oxylipins in the marine ecosystem may shape 

interactions between trophic levels (Miralto et al. 1999), within trophic levels (Ribalet et 

a/. 2007a) and even within populations (Vardi et al. 2006). The possible regulatory role of 

oxylipins in bloom termination is an interesting new concept (Vardi et al. 2006), which 

merits further study as the reasons and triggers for the decline ofphytoplankton blooms are 

still under discussion. The hypothesis that oxylipins may trigger bloom decline is based on 

observations obtained in the laboratory from culture studies as in Chapter 6 (Vardi et al. 

2006; Vidoudez and Pohnert 2008). The results obtained from the mesocosm study in this 

thesis indicate that the same phenomenon can be found in nature, even though increased 

oxylipin production towards the end of blooms could not be verified in the field during the 

Skeletonema bloom in the Northern Adriatic Sea. On the contrary, in that study, increased 

production of oxylipins was observed at the beginning of the bloom period. Producing 

large amounts of oxylipins at the beginning or shortly before the bloom may be beneficial 

for diatoms. Overwintering copepods rising to the surface and beginning to feed in late 

winter may be impacted by these oxylipins produced by diatoms during this time period, 

leading to reduced hatching success and a decreased next-generation grazer population. 

This way grazing pressure may be reduced during the following bloom period. Field data 

on oxylipin production during diatom blooms are still scarce and it will be interesting to 

sce. whether modulated oxylipin production is relevant in the field and whether increased 

production may be beneticial at the beginning of blooms, supporting the hypothesis of 
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oxylipins as grazer defence, or whether high oxylipin production at the end of blooms may 

be involved in bloom termination. A possible trigger for initiating increases in oxylipin 

production leading to bloom demise may be nutrient limitation, as indicated by laboratory 

studies (Ribalet et al. 2007b) and by the nutrient depletion in the mesocosm experiment 

(see Chapter 7). This way, a co-ordinated decline in cell numbers may be triggered by 

unfavourable conditions. An increased oxylipin production due to nutrient stress could not 

be verified for phosphorus-stress in this thesis. However, this may have been due to control 

cultures being close to phosphorus (P)-limitation or to P-limitation being a weak stress 

inducer. 

The results obtained for S. marinoi grown under P-limitation in continuous culture 

validated the strong deleterious effect of this diatom species on calanoid copepods, which 

was also observed for the S. marinoi-dominated bloom in the Northern Adriatic Sea in 

2005. These results support the hypothesis that oxylipins act as defence molecules, 

negatively impacting grazer reproductive success in the laboratory, as well as in the field. 

However, the results obtained from the mesocosm experiment also highlight, that the 

extent of negative effects induced by maternal diatom diets on copepod reproduction may 

depend on numerous factors, such as the duration of a diatom bloom. The results obtained 

from the Northern Adriatic Sea also suggest that individual cellular oxylipin production of 

diatoms is more important for copepods than the overall potential for oxylipin production 

of the phytoplankton assemblage. Another important point to consider is the variable 

sensitivity of different copepod species, which may be due to differential expression of 

antioxidant enzymes such as catalases and glutathione-S-transferases (Lee et al. 2007; 

Souza et al. 2007). Some indications for a molecular response to oxidative stress by 

increased expression of antioxidant genes have been found in Calanusfinmarchicus 

(Hansen et at. 2008). Possible "detoxification" mechanisms of copepods against oxidative 
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stress need to be examined further, as these may substantially contribute to understanding 

variability of copepod response in the field. 

8.5 Closing Remarks 

In short, there is much we still need to learn about oxylipin metabolism in diatoms. Further 

studies should be carried out to better understand the discrepancy of fatty acid 

hydroperoxide (FAH) production and oxylipin production and the possible presence of 

unknown secondary metabolites should be taken into consideration to close this gap. 

Therefore, lipoxygenase (LOX) activity assays cannot substitute oxylipin analyses. Both 

assays, the colorimetric and the polarographic assay, are valid for determining LOX 

activity, if certain considerations are taken into account and if the assays are adapted to the 

various systems. Analysing LOX activity and oxylipins is complementary, highlighting 

different aspects of oxylipin metabolism. Whereas oxylipin analyses are very specific, the 

colorimetric assay may provide a broader view of the oxidative potential of diatoms, also 

because oxylipin analyses are limited by the identification and characterization of oxylipin 

compounds, thereby not taking into account unknown metabolites. Whereas diatoms 

undoubtedly negatively impact the reproductive success of calanoid copepods, many 

factors need to be taken into account to understand diatom-copepod interactions in the field 

and diversity of oxylipin metabolism is an important aspect for understanding these 

interactions. Evidently, we do not yet have the complete picture of fatty acid oxidative 

metabolism in diatoms, which is turning out to be much more complex than originally 

envisioned. 
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