
Open Research Online
The Open University’s repository of research publications
and other research outputs

Objectworlds : a class of computer-based discovery
learning environments
Thesis
How to cite:

Sellman, Royston (1994). Objectworlds : a class of computer-based discovery learning environments. PhD
thesis The Open University.

For guidance on citations see FAQs.

c© 1994 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

1)X\~S~~,

t...:> ~ fl-e. ~-r Lt t:-"" £b

Objectworlds:
A Class of Computer-Based Discovery Learning

Environments

Royston Sellman .

Thesis submitted for the degree of Doctor of Philosophy in Educational
Technology

Institute of Educational Technology

The Open University

UK

December 1994

Av~~or """"M.W ;)...i,o, 3Zb4
b~~ o~ ~~$$';O~: a bL~~'etq'L
b~ .. ~ ~~~ : '2... be.("tt~~ lqq I.#-

Abstract

It is possible to discern a class of Computer-Based Discovery
Learning Environments which centre on novel, concept rich,
simulated objects and which include simple but general functions
with which the objects may be manipulated. This thesis provides

a history of this class of environments, which we call

objectworlds, and we also give them a strict definition. We
describe Gravitas, a new objectworld we have built, which allows

learners to work with objects that behave like gravitating masses

moving in a two dimensional space.

Gravitas contains a powerful programmable interface to the
objects, in the form of a set of Logo commands, and a functionally

equivalent but easier to use graphical interface which is controlled
by the mouse. We show that the combination of interfaces helps
learners to explore the world of these objects more effectively.

We contrast the educational experiences learners are afforded by

objectworlds with those offered by two closely related kinds of

Discovery Learning Environment: Simulations and Modelling

Systems. We also describe a psychological framework which

provides a useful way of thinking about the construction of

computer simulated objects for discovery learning applications.

Acknowledgements

Mark Elsom-Cook and Tim O'Shea supervised this research. At an early
stage Mark corrected my naive view that the progress targets set in our
meetings were simply private jokes between us. As is traditional for Mark's
students, my thesis plan was worked into a feasible structure during an
evening "tutorial" and recorded on a damp de-laminated beermat. Tim offered
invaluable criticism and advice at many points. He also read every chapter at
least once and acted as an incisive reality check.

My interest in the field was originally stimulated by David Squires, a
colleague at King's College London. In particular, he encouraged my
conversion from Logo sceptic to zealot, ensuring that I learned to see beyond C,
so to speak.

Crucial planning sessions of my work occurred at another traditional
Open University venue: the Ml motorway. Diana Laurillard's Excellent Taxi
Tutorials take place on the Northbound carriageway most weekday mornings,
and Progress Reports are discussed, Southbound, between 5 and 6pm. They are
to be recommended for all London-based postgraduates, especially (in view of
the very reasonable fare) the impecunious. I am grateful to Diana for her
positive reaction to some of my better ideas, and her gentle de-construction of
the others.

Many other people have helped my research in one way or another. My
friend and fellow student Magnus Moar provided key references and generous
hospitality in equal measure. Josie Taylor helped me to obtain the hardware
which made Gravitas feasible. Peter Whalley made valuable recommendations
about the early Gravitas interface which was, to say the least, user hostile. Ben
du Boulay asked difficult questions at the right time and suggested the name.
Maria Yannissi and Simeon Yates made comments on sections of the thesis.
Ann Blandford did a superb job on my first draft, checking it rapidly,
thoroughly and at very short notice. She found some bad mistakes.

Finally, of course, I would have been completely unable to finish this
work without the dedicated support of my partner. Thanks Angie.

Preface 13

The Aims of this Thesis 13
Chapter 1 16
Chapter 2 16

Chapter 3 17
Chapter 4 17

Chapter 5 18

Chapter 6 18

Chapter 7 18

1 The Origins of Objectworlds 20

1.1 Overview 20
1.2 Turtle Geometry 22

1.3 Turtle Biology 27

1.4 Dyna turtles 29

1.5 Objectworlds and Dynamic Objects 31

1.6 Mindstorms and Microworlds 33

1.7 Abelson and diSessa: Turtle Geometry 36

1.8 Sprites 39

1.9 Microworlds that are not Objectworlds 41

1.10 diSessa and White 44

1.11 Groen 47

1.12 Squires and McDougall 50
1.13 Boxer: Dynamic Objects, Definable Behaviour. 52

1.14 The Logo Culture 57

1.15 Robert Lawler 61

1.16 Thompson's Mathematical Microworlds 63

1.17 LEGO/Logo 65

1.18 Definition 67

1.19 Notes on the definition 68

1.20 Summary 69

2 Gravitas 71

2.1 Overview 71

2.2 General Description of Gravitas 73

2.2 Massobs 77

2.2.1 Attributes and Values 77

2.2.2 The Computational Nature of Massobs 78

2.2.3 The Boost Commands 79

2.2.4 Dynamic Behaviour 83

2.2.5 Massobs as Transitional Objects 85

2.3 The Space 88
2.4 The Programming Interface to Gravitas 90

2.4.1 The Command Sets 90

2.4.2 Gravitas and Turtle Geometry Programming Interfaces 91

2.4.3 Notes on the Programming Interface Commands 92

2.4.4 Example uses of the Programming Interface 94

2.5 The Graphical Interface 95

2.6 The Direct Manipulation Interface 97

2.7 The Utility of Multiple Interfaces 99

2.8 Alternative Syntonic Commands 101

2.9 Summary 104

3 Gravitas in use 106

3.1 Overview 106

3.2 Constructing a System 108

3.2.1 The Task 108

3.2.2 Creating a Massob System: Transcript 1 110

3.2.3 Discussion 117

3.2.4 Creating a Massob System: Transcript 2 118

3.2.5 Discussion 121

3.2.6 A Second Look at Surprises 122

3.3 Constructing a Program 124

3.3.1 The Task 124

3.3.2 A Mission to the Moon: Transcript 3 126

3.3.3 Discussion 140

3.3.4 Two Other Moon Trips 141

3.4 Summary 145

4 Gravitas and the School Curriculum 146

4.1 Overview 146
4.2 Gravitas and the National Curriculum for Science 147

4.2.1 Level 2 147

4.2.2 Level 4

4.2.3 LevelS

4.2.4 Level 6

4.2.5 Level 7

4.2.6 Level 9

4.2.7 Level 10

4.3 Sample programs

4.3.1 The Massob Spiral

150

151

152

154
155

155

156

156

4.3.2 The Evaporating Planet 158
4.3.3 A Star Cluster 161
4.3.4 Collision Detection and Planet Formation 163

4.4 Tools 166

4.5 Summary 169

5 Objectworlds and other Educational Computing Systems 170

5.1 Overview 170
5.2 Classification of Educational Computing Systems 171
5.3 Simulations 174

5.3.1
5.3.2

5.3.3

5.3.4
5.3.5
5.3.6

SOPHIE
STEAMER
SMITHTOWN

The Alternate Reality Kit

NEWTON

ROCKET

174

175
176

177
178

181
5.4 Modelling Systems 184

5.4.1 The Dynamic Modelling System 185

5.4.2 STELLA 186
5.4.3 IQON 188
5.4.4 Spreadsheets 190

5.4.5 DYNLAB 192

5.5 Synthesis 196

6 Transitional Objects and Syntonic Commands 200

6.1 Overview 200
6.2 Papert's Concept of Computer-based Transitional Objects 202
6.3 Papert's Concept of Syntonic Commands 207

6.4 Synthesis 210
6.5 Winnicott and Transitional Objects 213

6.6 Hodgkin: Transitional Objects and Play 218

6.7 Summary 222

7 Contributions and Further Work 223

7.1 Introduction 223
7.2 Contribution 1: The Identification of the Objectworld Class 224

7.2.1 History of Objectworlds 224

7.2.2 Establishment of Definite Meanings for Vague Terms 224

7.2.3 Objectworlds and other Discovery Learning Environments225

7.3 Contribution 2: A New Example of the Class - Gravitas 226

7.3.1 A New Transitional Object 226

7.3.2 Complex Behaviour 226

7.3.3 A Graphical Interface 226

7.4 Contribution 3: An Initial Study of Learning Activities

Supported by Gravitas 227

7.4.1 Surprises 227

7.4.2 Programming Gravitas 227

7.4.2 Interface Synergy 227

7.4.3 Gravitas and the Science National Curriculum 228

7.5 Further work - Theoretical Issues for Objectworlds 229

7.5.1 Transitional Objects and Intuitive vs. Formal Knowledge 229

7.5.2 Alternative Syntonic functions 229

7.5.3 How Useful are Dual Interfaces? 230

7.5.4 Visual Programming Languages 230

7.6 Further work - Practical Experiments with Gravitas 231

7.6.1 A Gravitas Physics Curriculum 231

7.6.2 Constructing qualitative explanations for surprises 231

7.6.3 Connecting Gravitas to an Intelligent Tutoring System 231

7.7 Concluding Notes 234

Appendix A - Dynamical Astronomy 235

A.l The N-Body Problem 235

A.2 Fundamental Limitations 236

A.3 Aarseth's Basic Method 236

A.4 Choice of Integration Method

A.5 Previous Force Evaluations

A.6 Individual Time Step

A.S Heuristic Methods

References

237

237

238

239

240

Table of Figures

Figure 1.1 Two Logo programs and their effects 24

Figure 1.2 A simple Turtle Biology procedure 27

Figure 1.3 A more realistic Turtle Biology procedure 28

Figure 1.4 A procedure to create a Dynaturtle 29

Figure 1.5 A typical sprite, enlarged and approximate actual size 39

Figure 1.6 The polyspi procedure 41

Figure 1.7 (a) after first kick (b) expectation after right 90, kick 45
(c) actual motion after right 90 kick

Figure 1.8 The Newtonian corner strategy 45

Figure 1.9a The Definition 50

Figure 1.9b An Example - Turtle Geometry 50

Figure 1.10 A typical Boxer screen 53

Figure 1.11 A molecule objectworld 55

Figure 2.1 Gravitas showing two active Massobs 73

Figure 2.2 The effect of a near collision with Moon2 74

Figure 2.3 Logo code for the session represented by figures 2.1 and 2.2 75

Figure 2.4 An example of the Turtle's coordinate independent commands 80

Figure 2.5 The effect of the four boost commands on a Massob 81

Figure 2.6 How the four boost commands alter the velocity of a Massob 82

Figure 2.7 10 and Europa orbiting Jupiter 84

Figure 2.8 Separate windows for procedure definition and Turtle drawing 91

Figure 2.9 Programming interfaces for Gravitas and a typical 92
implementation of Turtle Geometry

Figure 2.10 The Terran Planets 95

Figure 2.11 Direct Manipulation Equivalents for Massob adjuster commands 98

Figure 2.12 The alternate boost commands used in a prototype of Gravitas 101

Figure 2.13 The standard boost.right and a speed conserving 102
version used in a Gravitas prototype

Figure 2.14 Logo code to implement a fuel using boost 102

Figure 3.1a A typical orbital system 108

Figure3.1b An empty space 108

Figure 3.2 Orbital Procession 109

Figure 3.3 Earth-Moon system with no orbital velocity 111

Figure 3.4 Moon with initial x-velocity 2000ms-l 111

Figure 3.5 Initial x-vel l000ms-l ,y-vel -25Oms-l 112

Figure 3.6 Moon's initial position wrong 113

Figure 3.7 The orbital procession 'surprise' 114

Figure 3.8 Resolving the 'surprise' (the first quarter) 114

Figure 3.9 Resolving the 'surprise' (clockwise orbit) 115

Figure 3.10 Getting Earth's y-velocity right 116

Figure 3.11 Equilibrium conditions 117

Figure 3.12 Simon's encounter with Orbital Procession 118

Figure 3.13 Earth at 6 o'clock position 119

Figure 3.14 Earth's x-velocity close to zero 119

Figure 3.15 Earth almost stationary 120

Figure 3.16 Earth orbiting the Centre of Mass 120

Figure 3.17 Close-Up of Earth orbiting Centre of Mass 121

Figure 3.18 The inspi procedure 122

Figure 3.19a A Rocket falling back to Earth 124

Figure 3.19b A Rocket boosted at apogee 124

Figure 3.20 Launching the rocket 127

Figure 3.21 Boosting the rocket 127

Figure 3.22 First try at Earth orbit 128

Figure 3.23 Second try at Earth orbit 129

Figure 3.24 Joe and Oan's first program 130

Figure 3.25 A program to get the rocket into orbit 130

Figure 3.26 Planning the transfer to Moon orbit 131

Figure 3.27 First try at transfer orbit 132

Figure 3.28 Trying an earlier transfer boost 133

Figure 3.29 Trying more boosts 133

Figure 3.30 6 boosts at 32,000 seconds 134

Figure 3.31 7 boosts at 34,000 seconds 134

Figure 3.32 5 back boosts at 216,000 seconds 136

Figure 3.33 Transfer boost at 34,500 seconds 136

Figure 3.34 5 back boosts at 214,000 seconds 136

Figure 3.35 2 more back boosts at 230,720 seconds 137

Figure 3.36 4 boosts at 250,000 seconds 138

Figure 3.37 1,156,720 seconds 139

Figure 3.38 6 boosts at 1,137,520 seconds 139

Figure 3.39 10 back boosts at 1,497,520 seconds 140

Figure 3.40 Ben's mission to the Moon and back 141

Figure 3.41 Simon's trip to the Moon 143

Figure 4.1 Accelerating and decelerating a massob with boosts 148

Figure 4.2 Earth and Moon orbiting the Sun 149

Figure 4.3 Close up of a segment of the Moon's path 150

Figure 4.4 The solar system with all planets at their average 152
distance from the sun.

Figure 4.5 An illustration of gravity diminishing with distance 154

Figure 4.6 The effect of continuous boost right 157

Figure 4.7 Orbit of Mercury as the Sun "evaporates". 158

Figure 4.8 Orbit of Mercury as the Mercury "evaporates". 159

Figure 4.9 A star cluster. 161

Figure 4.10 200 planetesimals orbiting the Sun. 165

Figure 5.1 Guided Discovery Tutoring (after Elsom-Cook (1990) p11). 172

Figure 5.2 SOPHIE 175

FigureS.3 STEAMER and the Feedback minilab 176

FigureS.4 SMITHTOWN and the objectworld criteria 176

Figure S.5 ARK and the objectworld criteria 178

FigureS.6 NEWTON showing the control panel and a single particle 179
with friction

FigureS.7 NEWTON and the objectworld criteria 180

Figure 5.9 DMS being used to model projectile flight 185

FigureS.10 DMS and objectworld criteria. 186

Figure 5.11 STELLA model of planetary motion 187

Figure 5.12 STELLA and the objectworld criteria 188

Figure 5.13 An IQON model of the Sahel 189

FigureS.14 IQON and the objectworld criteria 190

FigureS.1S A typical spreadsheet 191

FigureS.18

Figure6.1

Figure 6.2

Bridging between learning situation and technological artifact

The Turtle Geometry circle.

The cycle of creativity

198

207

220

Preface

The Aims of this Thesis

The focus of this thesis is a description of a novel computational

environment, called Gravitas, which allows learners to explore the behaviour

of objects that obey Newtonian laws of motion and gravitation. These

gravitating objects, which we call Massobs, are a unique feature of the system

and they have been designed so that users can manipulate them in very

natural ways. In particular, it is easy to create new Massobs, position them on

the screen, set them in motion, and then watch their trajectories evolve.

In the thesis we describe the various functions of Gravitas, and the

underlying mechanisms which give Massobs their special behaviour. We also

show what is special about the learning activities the system can support.

However, the thesis has a broader aim. We wish to make some general

comments, not just about Gravitas but about systems like it, in order to help

others to build similar systems. These remarks though, need a context, and to

provide this we have to do two things. First of all, we must show that a distinct

class of such environments actually exists, and that it is possible to decide

whether a particular system belongs to the class or not. Secondly, we must

provide a description of their educational character, to convince other

developers that building these kinds of system will be worthwhile.

We use the name objectworlds for Gravitas and the other systems in the

class. They have two main characteristics: a simulated object which is visible

on the screen, and a programming language containing commands with

which the object may be manipulated or inspected in very general ways. A well

known example of an objectworld is Turtle Geometry (Papert, 1972; Papert,

Watt, diSessa and Weir, 1979; Papert 1980) - the combination of a small stylised

'Turtle' which has a clearly visible position and heading, and a programming

language, usually Logo. Turtle Geometry has been used extensively in

mathematics education and it still has a wide following among practising

teachers and academic researchers.

We should explain the name objectworld, which we have chosen for this

class of environments. Another name we considered was microworld, as this

is the term that Papert uses on many occasions to describe Turtle Geometry

13

and, by extension, other systems based on a programming language and

"manipulable computational objects" (Papert, 1987a). However, over the last

twenty years or so, the name microworld has been applied to many other

systems, some of which contain neither objects nor programming language,

and which are therefore fundamentally different from Turtle Geometry or

Gravitas. The name objectworlds emphasises that the systems we are

considering are based on objects and also hints at a link to Object-oriented

Programming (see for instance Cox, 1986), which is appropriate as we have

found the Object-oriented metaphor to be very useful in their

implementation. Furthermore, 'world' implies a place for exploration and

action, which is exactly what these environments are: "a simplified piece of

reality, which you can explore, and [in which] there's no right or wrong"

(Papert, 1987a).

With regard to their educational character, objectworlds offer users a

variety of discovery learning together with an opportunity to build things. For

example, a child using Turtle Geometry may explore the behaviour of the

Turtle and discover how to build a program which draws a triangle. Then,

with guidance, the child might generalise this discovery into a program which

draws polygons. In a similar progression, a user of Gravitas could discover

how to make one Massob orbit another and then be led to construct a program

which automatically creates planetary systems. From these two examples it

should be clear that the character of the central objects defines the particular

knowledge domain to which an objectworld applies, while the language, at the

cost of learning how to program, offers users flexibility and the possibility of

generalising from their discoveries.

We said at the beginning that our main aim is to make some general

observations about objectworlds and to provide guidelines for those who wish

to build their own. One source of motivation for this wider task is the work of

Seymour Papert. Papert has frequently emphasised (see (Papert, 1987a) or the

preface to (Papert, 1980)) that he believes the construction of objects like the

Turtle, which he calls a transitional object because it connects both to a child's

sensorimotor knowledge and to deep mathematical ideas, is the most

profound possibility that computers can offer education:

" ... an entirely new kind of object - a transitional object between the ones that you

can touch and push (like tables and wooden blocks) and the kind of objects that

14

you know in science, in philosophy, and in mathematics ... This ability to create

transitional objects gives us a way of closing the gap between intuitive and

formalleaming." (Papert, 1987 p88)

We will discuss Papert's notion of transitional objects in more depth in

chapters 1 and 6. Briefly, they may be thought of as objects which help to bridge

the gap between a child's personal, intuitive knowledge and the abstract

concepts of science and mathematics taught at school. Thus a lever or a set of

gear wheels, which can be held and manipulated and which display the idea of

ratio in a physical form, might be viewed as transitional objects for

multiplication and division. Papert believes, furthermore, that a computer -

"the Proteus of machines" can be used to engineer them. Recognising that the

Turtle itself is not a universal answer, he urges people to build other

transitional objects:

"My concept of how to create a curriculum (and by this word I mean a coherent set

of materials to aid learning through the whole school period - and before and

after, as well) is to create a network of microworlds, each focussing on different

areas of knowledge." (Papert 1987a)

For one reason or another this has not happened. Perhaps a cause is that

few educators share Papert's confidence in transitional objects. However, we

believe a more powerful deterrent has been a shortage of serious attempts to

show how it may be done. This thesis is not just a description of a new

objectworld, Gravitas, and its related transitional objects, but is intended to be a

source of practical advice and theoretical justification for the approach.

According to Papert, (1987b) the educational benefits of objectworlds will not be

made apparent purely through the scrupulous examination of one or two

examples. We need to see many more of them in use, forming Papert's

curriculum network, to properly judge their worth. Nevertheless, if this thesis

stimulates an interest in objectworlds on their own merits, without necessarily

convincing the reader of the need for Papert's curriculum network, then we

will judge it a success. The important thing is that more objectworlds are built.

Gravitas is joined to Logo so that users may write programs which control

Massobs. So the question arises as to whether Gravitas is intended for use in

the teaching of programming. The short reply is no, but a proper answer

requires a digression. We are aware that many studies have been made of

children learning to program in Logo, and that some of these studies have

15

used programming the Turtle as a central activity. All that has changed in

Gravitas is the central object. The language is still there and so clearly Gravitas

could be used to teach programming. However, it was not built specifically for

that purpose, but was designed to give children the opportunity to play and

work with objects which are easy to position, move and accelerate and yet

which connect to profound concepts from physics.

For the most part this thesis avoids the issues which attach to learning to

program. In fact, in our studies of Gravitas in use, none of our subjects had any

prior experience of Logo, and only two had done any programming at all. We

found that the programming component of the tasks the subjects were set was

simple enough for them learn lion the fly". For more advanced work with

Gravitas though, knowledge of programming becomes an issue, but one which

takes us beyond the scope of this thesis. The examples we give in chapter 3

show that even simple Gravitas programs can be educationally rich.

We will finish this preface with a short description of each chapter in the

thesis. Overviews will also be found at the beginning of each chapter, and the

main conclusions of the research will be summarised at the end.

Chapter 1

The purpose of this chapter is to describe the history of objectworlds, that

is, educational computing systems which combine simulated objects of some

sort with a programming language equipped with commands to control them.

We begin with Logo and the Turtle in the late 1960s and move on to highlight

the essential developments which have taken place, such as the introduction

of dynamic objects like Dynaturtles, which contrast with the ordinary Turtle

that lies static between commands. Particular emphasis is put on the difference

between two kinds of implementation of dynamic objects. Those which, like

diSessa's original implementation of Dynaturtles, remove concurrent access to

the programming language, and others, such as the various sprite Logos,

which do not. At the end of the chapter we present a strict definition of

objectworlds.

Chapter 2

In this chapter we describe a new objectworld, called Gravitas, which

extends the concept by building on the examples of the past. In particular,

Gravitas supports a new kind of dynamic object, called a Massob. Like sprites,

16

these move across the screen continuously, and may be controlled by Logo

commands which the user types in. Massobs however, go beyond sprites by

adding a second layer of behaviour: they obey the laws of gravity so that as they

move, their trajectories curve in response to the presence of others.

Gravitas also extends the objectworld concept by adding to the

programming commands a second method of controlling and inspecting the

objects of interest. This is called the graphical interface and it combines screen

based buttons and meters with elements of direct manipulation, making it

possible to work with Massobs using only the mouse.

Chapter 3

Here we describe Gravitas in use with real subjects, aged between 13 and

18. The purpose is not to show how good Gravitas is for teaching the concepts

of physics compared, say, to conventional methods. We believe this would be

premature. Our contention is that Gravitas, the combination of Logo and

Massobs, opens up a new space of possibilities for discovery learning in

physics. Accordingly, the chapter is a report on studies which illustrate the

character of this educational space.

We stress two main points. First of all, we have found that users of

Gravitas are often surprised by the behaviour of even quite simple systems of

Massobs, which they have themselves constructed. We show that learners are

strongly motivated to resolve these surprises, a process which requires them to

think hard about the physical concepts involved. Secondly, we show that the

combination of the programmable and graphical interfaces allow students to

take on more complex tasks than would otherwise be the case.

Chapter 4

In this chapter we survey the Science National Curriculum to identify

areas for which Gravitas based activities seem appropriate and easy to

construct. In particular we examine the Statements of Attainment dealing with

concepts such as Force, Momentum, Energy and Gravity, and with broader,

descriptive knowledge of astronomical bodies and satellites.

We also examine the extent to which the programmable nature of

Gravitas opens up wider educational possibilities, such as longer term

investigations of a particular concept.

17

Finally, we describe the way in which Gravitas may have its basic

functionality augmented through the addition of procedures written in

standard Logo.

Chapter 5

We devote this chapter to setting objectworlds in context. There are many

kinds of educational computing systems and over the years researchers have

produced several schemes of categorisation. After a survey of some of these

schemes we compare objectworlds with the programs we consider to be their

closest relatives: Simulations and Modelling Systems. We show what is

different about the kinds of learning they support and, in a synthesis at the end

of the chapter we suggest that each kind of system is suited to different stages

of concept acquisition.

Chapter 6

Seymour Papert has described the Logo Turtle, and objects like it, as

transitional because they lie conceptually between the things of everyday

experience, like tables, chairs, stones and bicycles, and the formal objects, like

differential equations and point masses, which science is built upon. He goes

on to describe the means by which we manipulate them (forward, back, right

and left in the case of the turtle) as syntonic commands. However, his

comments on both of these topics are spread across several books and papers.

In this chapter we bring together in one place Papert's comments about what

transitional objects and syntonic commands can offer education. We also look

at what two other researchers - Donald Winnicott and Robin Hodgkin, have

had to say about transitional objects.

Chapter 7

The seventh chapter of this thesis is where we summarise the main

contributions of our research. Principally these are:

(i) The definition of a particular class of educational computing systems,

called objectworlds. (Chapter 1)

(ii) The construction of a new member of the class, Gravitas, which

instantiates a new kind of transitional object, the Massob. (Chapter 2)

18

(iii) A study of the learning activities Gravitas can typically support, with

an emphasis on the surprising behaviour of Massobs and the scope of simple

programs which control them. (Chapter 3)

(iv) A group of example systems and programs which illustrate Gravitas'

applicability within the framework of the National Curriculum for Science

and which also indicate its wider scope. (Chapter 4)

(v) A comparison of objectworlds with their near neighbours in the

spectrum of educational computing: Simulations and Modelling Systems.

(Chapter 5)

(vi) A discussion of the psychological foundations of transitional objects

and syntonic commands, upon which objectworlds are, in part, based. (Chapter

6)

(vii) A survey of the mathematical techniques which have been used to

generate the gravitational behaviour of Massobs. (Appendix A)

In chapter 7 we also outline several directions which future research

could take, in terms both of empirical studies to be carried out with Gravitas as

it stands, and improvements which could be made to the system.

19

1 The Origins of Objectworlds

1.1 Overview

This chapter is concerned with describing a class of educational

computing systems whose members share two essential characteristics. First, a

simulated object, and second, a programming language with commands which

allow the object to be manipulated or inspected in interesting and general

ways. The attributes of the simulated object are of key importance as they

determine the educational nature of the system. For instance, in one example

of the class, Turtle Geometry, the central object has the attributes of position

and heading, and it supports investigations into many of the mathematical

concepts we might wish children to learn.

At the same time, the object must have a behaviour with which the

learner can readily identify, like the turtle's ability to turn and move. This

requirement comes from the Constructivist view of learning (Forman and

Pufall, 1988), which considers it important to present new knowledge in a way

that learners may easily integrate with what they already know. One might say

that these simulated objects are 'engineered' in such a way that they connect

both to intuitive knowledge, which the learner already has, and to formal

concepts we consider to be important parts of a curriculum.

The importance of the programming language will be highlighted in

chapters two, three and four of this thesis but we should make some

explanatory comments here. Fundamentally, the issue is about how learners

can manipulate the objects of interest in a system. Obviously, computers are

not the only places where we can engineer an object to aid the learning of

concepts. As another author has written about systems (which he calls

microworlds) analogous to those with which we are concerned:

"Microworlds need not be on a computer ... Cuisenaire rods, multibase arithmetic

blocks, fraction bars, and Miras and tracing paper, all with their respective rules

of manipulation, can also be thought of as examples of microworlds" (Thompson,

1985a)

The learner can configure the objects of these learning tools into arbitrary

states, each of which can be thought of as representing a mathematical

expression, such as 3x2=12. Furthermore, they can carry out sequences of

20

reconfigurations, obeying the rules, to achieve the solution to a particular

arithmetic or algebraic problem, as in x=2. All these operations are carried out

by hand.

The point is that we can engineer different objects on the computer,

perhaps ones which cannot have physical analogues, made from wood or

plastic or anything else. But how do we allow the learner to manipulate,

inspect and work with them? In chapter two we will see that a so-called Direct

Manipulation Interface (Shneiderman, 1982; Shneiderman, 1983; Hutchins et

aI, 1986) can be useful. And at some point in the future, given advances in the

domains of Virtual Reality and Visual Programming (Myers, 1986), we may be

able to generate realistic illusions of handling computational objects. But for

the time being, a practical medium that offers the learner a comparable facility

to set up configurations, and then to build sequences of reconfigurations, is a

programming language, such as Logo.

Our task then is to describe the history of those systems which have two

essentials: an object and a programming language. Before starting, we should

agree on a name for these environments. As we noted above, the name

microworld has been used for this class of system and indeed, it is the term we

would have preferred to use throughout this thesis. However, we will see that

microworld has also been used for many other systems, some of which lack the

characteristics mentioned above and which do not, therefore, belong in our

discussion. In fact, the term has even been used to describe phenomena

unconnected with software, such as cognitive states in a child's mind (Lawler,

1979), so there is clearly the need for a new name, to cover our specific area of

concern.

The name we will use for environments that do have the essential

characteristics is Objectworld. Towards the end of this section we will present a

definition for the term, a definition that will make sense in the light of the

historical notes we give below. Many of the systems we will describe are called

microworlds by their designers and we will retain the original terms but, to

repeat: not all the programs that have been called microworlds qualify as

objectworlds under our criteria.

21

1.2 Turtle Geometry

The genesis of Turtle Geometry really starts with JOSS and Lisp, and their

associated groups of researchers, in the late 1960s. Researchers at the Rand

Corporation in the US were working on the interestingly named Johnniac

computer. The letters 'ac', standing for 'automatic calculator' were a popular

suffix for machines of that era, and the hardware development team had been

led by the famous mathematician, John von Neuman. The software team

produced JOSS, the Johnniac Open Shop System (Baker, 1981). JOSS was a

simple, general purpose programming language, which was interpreted. This

meant that users could type programs into the computer in human readable

form and run them immediately, while the interpreter concealed the

mechanisms by which the human code was converted into machine

instructions. Like its contemporary, Basic, JOSS was able to support

computations on both numbers and text, and the Johnniac could handle

several JOSS users simultaneously by a process known as time-sharing. JOSS

differed from Basic by offering what were, for the time, friendly responses to

the user's errors.

Wallace Feurzeig was shown JOSS by one of the original Rand researchers

in 1965, and within a short time his own company, Bolt, Beranek and

Newman, had their own version running. BBN were unsuccessful in their

efforts to sell time on the JOSS system to engineers but Feurzeig had another

plan (his early work is described in Feurzeig, 1969 and 1984). Inspired by the

ease of use which interpreters brought to computing, he installed a number of

terminals in a school and set out to see if, through programming, children

could learn some powerful mathematical ideas. Encouraged by the preliminary

results Feurzeig obtained funding to continue his research. He wondered if the

children, who had made good progress with a programming language

designed for professional scientists and engineers, could do much better with a

language designed specifically for education. At this point he was joined by

Seymour Papert, from the Artificial Intelligence laboratory at the

Massachusetts Institute of Technology (MIT), and the two of them collaborated

on developing the new language, which they called Logo.

Naturally, Feurzeig wanted Logo to be conversational (that is, interactive

and interpreted), just like JOSS. What Papert brought to the design was the

influence of the MIT laboratory, where a group of computer scientists,

22

mathematicians and programmers had developed a powerful language called

Lisp, which was equally suitable for computations involving either symbolic

or numeric data. From Lisp, Logo inherited lists, a particularly powerful

method of ordering data, and recursive functions, that is, functions that can

call themselves. These two features set Logo (and Lisp) clearly apart from the

popular languages of the time like Fortran, Basic and CaBaL, and although

there are excellent reasons for including lists and recursion in a language (see

Abelson and Sussman, 1985, Chapter I), a large part of the computer science

community considered itself to be doing quite well without them.

Consequently, although Logo quickly attracted devotees, both in the United

States and abroad, it also came in for a measure of criticism.

Feurzeig and Papert continued their research into children learning

mathematics through programming. Around 1969, a graduate student at MIT

called Mike Paterson suggested that the addition of a small robot, driven by

extensions to the Logo language, might make Logo more attractive to children.

The robots were quickly built at both MIT and BBN and incorporated into the

studies. Small electric stepper motors allowed them to move forwards and

backwards, and turn right or left, and a pen was attached so that the device

could leave a trace on the surface over which it moved. The robots were given

the name 'turtle', according to Papert "in honor of a famous species of

cybernetic animal made by Grey Waiter, an English neurophysiologist" (Papert

and Solomon, 1971).

These floor turtles were very popular with the children, and the

researchers began to think about meaningful mathematical activities to use

them for. At the same time, advances in computer display technology allowed

the Turtle to be simulated on a graphics screen where it was less likely to be

trodden on or get its wires tangled. This screen Turtle inherited the same

coordinate independent relative move commands from its floor-based

ancestor (Papert and Solomon, 1971), but it also gained the attribute of absolute

position, based on the coordinate system of the display. In the context of our

history it was an important event. The first objectworld, Turtle Geometry, had

been born.

Turtle Geometry was the name given to the realm of activities opened up

by this combination of Logo and a small object that could turn and move.

Papert and his co-workers continued to investigate the use of the system with

23

schoolchildren. Its appearance, and some typical activities are shown in Figure

1.1.

(a)

to peace
peIIdown
fozvar.s 100
back 100
right 120 ""'"
fozvar.s 100 ...,
back 100
right 120
fozvard 100 -peace

(b)

to pol)'1lpi •• tep :_le
~orward : .tep
right ._le
po1)'11pi :.t:ep+10 '&Dll1e -po1)'11pi 10 '0

Figure 1.1 Two Logo programs and their effects (After Papert. 1972).

Although the programs shown in figure 1.1 are very simple, they show

some of the important features of Turtle Geometry. First of all we can see from

figure 1.1a that Logo allows the user to define independent procedures, which

are then referred to by name. The definition of the procedure is the block of

text which starts with to and ends with end. This new procedure is then

invoked by typing its name, and it causes the Turtle (represented on the screen

by a small triangle) to draw the image shown. We can also see that the Turtle

commands forward, back and right all take inputs which determine how

much of each movement the Turtle will make. In figure Llb we see that Logo

makes it possible for the user to define new procedures which also take inputs.

polyspi also illustrates the use of recursion (as the term is used in Logo),

making a call to itself in the fourth line. What happens when polyspi 10

90 is typed is that the procedure carries out a step, then calls itself with its first

input incremented by 10 and carries out the same step. This process is repeated

ad infinitum, producing the growing "squiral" shown, until the user

interrupts the procedure.

If Papert had been a conventional computer scientist things might have

proceeded in the same way as many other educational computing systems. A

typical pattern would have been an initial surge of interest within the

development group, followed by experiments using the system within existing

school curricula. Upon publication of the results, the original developers

move on to more interesting things, and slowly, as advances in the hardware

leave the system behind, or the programmers who keep the software running

get other jobs, it becomes obsolete and dies. With luck, the expertise gained in

building it is passed on to the next generation.

Papert, however, had an unusual background. He had originally trained

as a mathematician, but in 1959 he had gone to Switzerland to work with the

24

famous developmental psychologist, Jean Piaget. Here, for five years, he

researched into the nature of children's thought processes. Then, in 1964, he

took up a post at MIT. As he puts it:

"In 1964 I moved from one world to another. For the previous five years I had

lived in Alpine villages near Geneva, where I worked with Jean Piaget. The

focus of my attention was on children, on the nature of thinking, and on how

children become thinkers. I moved to MIT into an urban world of cybernetics and

computers. My attention was still focussed on the nature of thinking, but now my

concerns were with the problem of Artificial Intelligence: How to make

machines that think?" (Papert, 1980 p208)

Obviously, the Turtle is not a thinking machine, but in Papert's view it

could have a great deal to do with the way children learn to think about

concepts. He began to construct a psychological framework to support his

contention that Turtle Geometry, and environments like it, represented an

unprecedented opportunity for education:

"l believe with Dewey, Montessori and Piaget that children learn by doing and

by thinking about what they do. And so the fundamental ingredients of

educational innovation must be better things to do and better ways to think about

oneself doing these things.

I claim that computation is by far the richest known source of these ingredients.

We can give children unprecedented power to invent and carry out exciting

projects by providing them with access to computers, with a suitably clear and

intelligible programming language and with peripheral devices capable of

producing on-line real-time action." (Papert, 1970)

He believed he could construct a new mathematics curriculum around

Turtle Geometry that would present the accepted mathematical primitives,

which many children find alienating, in a much more appealing way.

Furthermore, this new presentation of important formal mathematical

concepts such as points and lines, vectors and differentials, would also involve

the learner in thinking about the neglected informal concepts, like the very

notion of a mathematical system, or problem solving methods. Referring to

this he wrote:

"[We] will describe a new piece of mathematics with the property that it allows

clear discussion and simple models of heuristics that are foggy and confusing for

25

beginners when presented in the context of more traditional mathematics."

(Papert, 1972 p252)

Papert was putting forward quite a radical thesis - a reconstruction of the

way mathematics is taught, which would render it less intimidating to

beginners and which would, along the way, be teaching them how to make

their own discoveries. His 1972 paper was titled, rather polemically, Teaching

Children to be Mathematicians Versus Teaching About Mathematics. This

attitude attracted other workers in the progressive atmosphere of MIT's

Artificial Intelligence laboratory and soon a permanent MIT Logo Group was

formed.

The Logo group began to investigate Turtle Geometry in two

complementary ways. First of all they explored the range of topics,

mathematical and non-mathematical, that Turtle Geometry was capable of

supporting (see for instance (Papert and Solomon, 1971), (Abelson, diSessa and

Rudolph, 1975)), and secondly they studied children using the system in the

laboratory and in computer equipped classrooms (Papert, 1970, Solomon and

Papert, 1976). Both strands gave rise to fascinating research but for our present

purpose, which is to sketch out the history of objectworlds, we will concentrate

on the first line of investigation.

26

1.3 Turtle Biology

At a very early stage members of the Logo group added to the attributes of

the Turtle and effectively made a new objectworld. They did this by attaching

touch sensors to the sides of the Turtle and adding extra commands to Logo to

deal with them. Specifically, these four extensions to Logo - fronttouch,

backtouch, right touch and lefttouch return the Boolean value

t rue when a sensor is in contact with something. They then wrote small

recursive procedures which gave the touch Turtle new behaviours. Papert

called this new domain Turtle Biology (Papert and Solomon, 1971) and

showed how procedures could be developed to model animal behaviour.

Figure 1.2 shows a very simple example which uses touch, an amalgam of all

the sensor extensions mentioned above, added to a screen turtle.

to explore
fd 1
rt 1
if touch [rt 120]
explore
end

Figure 1.2 A simple Turtle Biology procedure.

The explore procedure in figure 1.2 behaves something like an animal

navigating around an object by feel. The touch Turtle moves forward one step

and turns one degree to the right. It will repeat this process forever unless it

runs up against an obstacle, in which case it simply turns almost back on itself

and then carries on. The effect is that the touch Turtle tends to follow edges. In

between encounters the touch Turtle is actually describing a circular path. In

fact, without the fourth line (if touch [rt 120]) explore is simply the

classic Turtle Geometry definition for a circle (Abelson and diSessa, 1980). It is

unrealistic of course, but the procedure can easily be extended. For instance, if

we make the touch Turtle wander randomly, but with a bias to one side, what

will happen? Figure 1.3 shows a procedure to do just this:

27

to explore2
fd 1
rt (random 30) - 10
if touch [It 150]
explore
end

Figure 1.3 A more realistic Turtle Biology procedure.

The path taken by the touch Turtle looks a little more realistic: it crosses

and re-crosses its own path and even gets lost. And of course, the procedure

may be further modified and experimented with. The second chapter of the

book Turtle Geometry (Abelson and diSessa, 1980) is devoted to these kinds of

activity, and it only begins to show the possible scope of Turtle Biology. Just

like Turtle Geometry, it is different to the kind of biology we are used to being

taught in schools but strong arguments can be made for its relevance. For

instance, biologists believe that wood-lice gather together in moist places not

out of an affinity for the wet but because wetness causes them to move more

slowly. A conventional examination of this hypothesis requires mathematics

of a level too high for many young children, but a few simple Turtle Biology

procedures can be the basis of a serious investigation.

28

1.4 Dynaturtles

In the latter half of the 1970s researchers at MIT began to experiment with

another object which they called the Dynaturtle (Papert, 1980; diSessa, 1982;

diSessa and White, 1982). These are made by giving an ordinary Turtle the

extra attribute of velocity. A small behaviour procedure, similar to explore

above, is then used to animate the Dynaturtle. It is a simple matter to add a

Dynaturtle to most Turtle Geometry systems. All that is needed is a variable in

which to store the velocity (in fact it is better to call it speed since the velocity is

actually formed from this value and the turtle's heading) and a recursive

animation procedure. A typical implementation is shown in figure 1.4. The

procedure moves the Turtle forward by a step equal to the value of speed and

then looks to see if a key is pressed. If the plus or minus keys are pressed then

the Dynaturtle is respectively accelerated or decelerated by a small amount.

Pressing Ir' or 11' changes its heading by 10 degrees. The procedure shown

assumes readchar returns a null value if no key is pressed. In some versions

of Logo readchar waits until a key is pressed and the procedure would not

work.

make "speed .1

to dynaturtle
forward : speed
make "key readchar
if equalp : key " + [make "speed : speed + 0 • 1)
if equalp : key " - [make " speed : speed - 0 • 1)
if equalp :key "r [right 10)
if equalp :key "1 [left 10)
dynaturtle
end

Figure 1.4 A procedure to create a Dynaturtle.

Papert (1980, Chapter 5) describes an evolving sequence of Dynaturtles:

The velocity Dynaturtle moves smoothly across the screen and continues in a

particular direction until a key is pressed (or a function is invoked) to give it a

different velocity. An acceleration Dynaturtle is similar in that its state is also

completely described by its position and velocity. The difference is that this

time the operators can only change the turtle's velocity by an amount x. The

procedure in figure 1.4 effectively creates an acceleration Dynaturtle. The final

step in the progression adds the attribute mass and takes us to a physics

Dynaturtle which behaves "like a Newtonian particle" (Papert, 1980. p.128) and

which responds correctly to "kicks" - impulsive forces - that are applied to it.

29

Andrea diSessa of MIT carried out research using Dynaturtles with

children and found that they could be used in an attempt to counter their

"Aristotelian" ideas about motion (diSessa, 1982). He observed that most

students hold tenaciously to the belief that an object will move in the direction

it was last pushed.

"In view of the striking differences in abilities and style which the students

exhibited in their other work, we were greatly surprised to see how uniform

their responses to the dynaturtle were. Students seemed to have definite non

Newtonian expectations which were contradicted by the behaviour of the

dynaturtle." (diSessa, 1982)

diSessa describes protocols of students using acceleration Dynaturtles

which show them confronting their naive ideas and moving towards a

"Newtonian" conception, that is, a belief that the velocities of objects are

modified by external forces according to Newton's laws of motion.

In another paper (Abelson, diSessa and Rudolph, 1975) some of the scope

of the Dynaturtle as an educational tool for physics is indicated. In fact the

authors do not mention Dynaturtles at all in this paper, but the theoretical

framework used to treat planetary orbits is equivalent. Using "kicks" and

velocity vectors (which could be swapped for acceleration Dynaturtles) they

prove several of the theorems considered fundamental to orbital mechanics,

such as orbit closure and conservation of angular momentum. Admittedly,

their treatment is not powerful enough to cover everything important about

orbits but, using no more than trigonometry, they are able to derive the

standard orbital equation, a result which usually requires some calculus. They

contend that achieving such important results without calling up the

heavyweight mathematical machinery of the usual analytic approach can give

a wider range of students a glimpse of "what doing physics is really like".

30

1.5 Objectworlds and Dynamic Objects

There is a more subtle point that we should try to make clear now. By our

convention, when new attributes are added to the geometry Turtle new

objectworlds are created. After all, we have said that an objectworld is the

combination of a visible object and a programming language which can

control it. Therefore a new or augmented object, like a touch Turtle, implies a

new objectworld. But there is a problem. The interesting nature of touch and

Dynaturtles is generated by the procedures that give the new objects their

dynamic behaviour. It is this behaviour, rather than the static attributes of the

Turtle, that we have shifted our attention to. We are no longer interested in

what the touch Turtle is capable of at each step, but in its long term actions.

The trouble is, while the procedure which gives the object its new behaviour is

running we cannot use the programming language for anything else. Most

versions of Logo (in fact, most languages) can only execute one procedure at a

time. To run another we would have to interrupt the procedure which is

generating the behaviour.

At first sight this might seem unimportant. After all, surely we can

arrange it so that any other computations we require, for instance the printing

out of the distance travelled by the touch Turtle, are added to the body of the

behaviour procedure. But suppose a user wished to add more pieces of

program, such as a display of the touch turtle's distance from a fixed pOint, or a

set of controls with which the touch Turtle can be nudged in a particular

direction. Soon the behaviour procedure, with its jumble of purposes, will

grow large and unclear. To modify the behaviour we would have to search

through a procedure cluttered with separate functions. It is better to keep

procedures simple:

"A well written procedure, like a clear, concise paragraph, is devoted to a single

topic. You can write procedures that are as small or as large as necessary for the

conceptual structure of your program. The important point is that a procedure

should perform exactly one identifiable action." (Tatar, 1987 p38)

There are other good reasons for wanting to avoid losing the

programming language while a dynamic object is in existence. Imagine, for

instance, that we have created an "insect" Turtle whose level of activity

depends on the temperature (stored in a variable) of its environment. One

could set the temperature variable, as one might set the speed of a velocity

31

Turtle (see figure 1.4), and observe the results. But it would probably be more

interesting to write a second, environmental procedure which simulated the

changes in temperature over a typical day. Again, this could be done in the

object's behaviour procedure, but at the cost of clarity. Ideally the environment

procedure would be separate, and we would ask Logo to run it while the insect

turtle's behaviour was maintained independently. Objectworlds are learning

environments and clarity is a vital asset. We should avoid forcing learners to

understand unnecessary detail.

In this sense, Turtle Biology and the Dynaturtles are restricted

objectworlds, because while the dynamic objects are active we lose access to

Logo. Later on we will encounter other objectworlds with dynamic objects,

some of which continue to allow access to the programming language. In an

ideal situation it would be possible to create the dynamic behaviour as a

concurrent process, with some means of turning it on and off, and then forget

about it. This, as we will see, is just the solution that some systems have

adopted.

32

1.6 Mindstorms and Microworlds

As we said above (in section 1.1), objectworlds and microworlds are

closely related. Indeed, many of the systems described in this historical survey

were called microworlds when they were built. It is only because the term has

come to be used for an ever more diverse range of systems, including almost

any environment which is not overtly didactic, that it is necessary to introduce

the new name. The range of systems we are concerned with in this thesis is

quite narrow.

The first people to use the term microworld in an educational context

were probably Marvin Minsky and Seymour Papert in 1972 (Minsky and

Papert, 1972) although they did not coin the word. At first, their use of the term

had little to do with software but instead referred to individual segments of a

problem solving domain and the cognitive schemata that students interacting

with that domain might build. During the 1970s the word continued to be used

both for these psychological notions and the pieces of software (turtles, touch

turtles, Dynaturtles and so on) that experimenters were using with students.

However, with the publication of the book Mindstorms (Papert, 1980) the

notion of a computer-based microworld was made firmer.

At this time, around 1980, Papert had in mind a "world with its own set of

assumptions and constraints" (Papert, 1980 pl17). Discussing the concept he

writes of 11 a computer based interactive learning environment where the

prerequisites [for learning] are built into the system and where learners can

become the active, constructing architects of their own learning" (Papert, 1980.

p122). In the context of Mindstorms the verb "construct" has two important

connotations. First it indicates Papert's belief in the Piagetian idea that learners

construct their own understandings by assimilating new information and

accommodating it within their existing knowledge. Second, it emphasises that

he sees the construction of procedures and programs as the central activity for

children using microworlds.

Papert goes on to stress the importance of progressions of microworlds,

such as the sequence mentioned above in section 1.4, which starts with the

geometry Turtle and moves via the velocity and acceleration turtles to the

Newtonian Turtle. In fact, this progression is central to Papert's concept of

microworlds - it accords with two of his "mathetic principles" (Papert, 1980

p.120). First, each new environment is clearly built on something already

33

learned, and second, each environment is explorable. The idea is to allow

children to explore and build in simpler versions of "official" maths, physics,

or biology.

Papert's book Mindstorms is also where he introduces the term

'transitional object', a concept which we will see later is of great relevance to

objectworlds. He explains that an early childhood fascination with gears gave

him a hook onto the mathematical ideas he was taught at school. The gears

acted as a transitional object which helped him on the way to an

understanding of the abstract objects of arithmetic and algebra. We will have

more to say on the nature of transitional objects in chapter 6 but some words of

explanation are in order here.

In Papert's view a transitional object acts as a stepping stone between a

child's personal, intuitive knowledge and the formal concepts we expect her to

learn. Papert believes that this gap between a child's sensorimotor schemata

and the abstract concepts of science can be bridged by the right transitional

objects. Furthermore, he believes that the computer - "the Proteus of

machines" can be used to engineer them. As an example of a transitional

object Papert cites the Logo Turtle: the commands which make it turn and

move are easily apprehended by children, yet they nevertheless connect to

powerful mathematical ideas. Similarly, the Newtonian Turtle is manipulated

by functions which mirror our everyday experience of pushes and shoves, but

it shares important properties with the formal concept from Newtonian

physics called a mass particle.

So, it is in fact the combination of transitional objects and easily

understood commands to control them which is crucial. Papert recognises this.

The right combination can foster the kind of learning which he calls syntonic

a term "borrowed from clinical psychology" (Papert, 1980 p63). An example he

gives is the Turtle circle:

"Sooner or later the child poses the question: "How can I make the Turtle draw a

circle?" In LOGO we do not provide "answers" but encourage learners to use their

own bodies to find a solution. The child begins to walk in circles and discovers

how to make a circle by going forward a little and turning a little. Now the child

knows how to make the Turtle draw a circle: Simply give the Turtle the same

commands one would give oneself. Expressing "go forward a little, turn a little"

comes out in Turtle language as REPEAT [FORWARD 1 RIGHT TURN 1]. Thus we

34

see a process of learning that is both ego syntonic and body syntonic." (Papert,

1980 p206)

The relative move commands of the Turtle - forward, back, right

and left are body syntonic in contrast to say setxpos lOO, or

setheading 270, which require an understanding of ideas of coordinate

and angle. We will find more syntonic commands in the objectworlds we

describe in the rest of this chapter.

The paragraphs above represent a brief and selective summary of some of

the ideas in Mindstorms, and we will expand on them in chapter 6. However,

before we move on, we should make some general comments about the book,

as it achieved great popularity and was influential in keeping interest in Turtle

Geometry and Logo programming alive. First of all, Papert presented his views

in a deliberately iconoclastic style. He did not want to compromise with

existing practice for the use of computers in education:

"Much of the book is devoted to building up images of the computer very

different from current stereotypes. All of us, professionals as well as laymen,

must consciously break the habits we bring to thinking about the computer ... It is

not true to say that the image of a child's relationship with a computer I shall

develop here goes far beyond what is common in today's schools. My image does

not go beyond: It goes in the opposite direction." (Papert, 1980 p.5)

Secondly, anyone who took up Papert's opinions had to do so as

something of an act of faith. He did not provide any of the usual statistical

evidence for his claims, just examples and a few verbal protocols. This is not to

detract from the book, for it was done intentionally. Papert strongly believed

that the usual methods were too slow for the introduction of so radical an

approach. To sum up his position he once gave an interesting metaphor:

"This paper is dedicated to the hope that someone with power to act will one

day see that contemporary research on education is like the following

experiment by a nineteenth century engineer who worked to demonstrate that

engines were better than horses. This he did by hitching a 1/8 HP motor in

parallel with his team of four strong stallions. After a year of statistical

research he announced a significant difference. However, it was generally

thought that there was a Hawthorne effect on the horses ... the purring of the

motor made them pull harder" (Papert, 1970).

35

1.7 Abelson and diSessa: Turtle Geometry

Another important book to be published in 1980 was Turtle Geometry

(Abelson and diSessa, 1980). Harold Abelson and Andrea diSessa had worked

with the MIT Logo group since the early 1970s and their book was both a

synthesis and an extension of that work. In effect they present a mathematics

course unlike any other. A practical working out of the vision for a new

approach to mathematics teaching which Papert first put forward in his paper

Teaching Children to be Mathematicians Versus Teaching About Mathematics

(Papert, 1972). Abelson and diSessa shared Papert's two main beliefs: that the

best way to introduce the computer to education is as part of a radical change

rather than as a new way of doing the old things, and that computers can give

learners the experience of doing science rather than just learning about it:

"This book is a computer-based introduction to geometry and advanced

mathematics at the high school or undergraduate level. Besides altering the

form of a student's encounter with mathematics, we wish to demonstrate a

curriculum that shows the computational influence in its choice of ideas as well

as in its choice of activities ... Most important in this endeavor is the expression

of mathematical concepts in terms of constructive, process-oriented formulations,

which can often be more assimilable and more in tune with intuitive modes of

thought than the axiomatic-deductive formalisms in which these concepts are

usually couched" (Abelson and diSessa, 1980 pxiv).

In fact the book is pitched at quite a high level, aiming more at the first

year undergraduate than the high school student. Also, many of the topics one

would expect to see in a traditional mathematics course, such as differential

calculus or trigonometry, are missing, and less common areas such as the

mathematics of growth and the topology of curved surfaces are included. We

have already touched on an example of how different the techniques they

employ within these topics are: the touch Turtle and its associated behaviour

procedures described in section 1.3. In chapter two of their book Abelson and

diSessa expand at some length on the subject of modelling animal behaviour.

Another example of their approach is worth discussing here, as it

concerns a topic that is a component of most university mathematics or

physics curricula: Einstein's Theory of Relativity. A standard course on

relativity (for instance Gettys, Keller and Skove, 1989) begins by setting up the

mathematical machinery of four-vectors (that is, vectors which have

36

components in four dimensional space-time: the three spatial dimensions of

everyday experience, combined with the dimension of time) and then uses it

to construct a set of transformation equations which accord with Einstein's

fundamental postulates: that the laws of physics are the same, and that the

speed of light, c, is a constant, for all observers, regardless of their relative

motion. These transformation equations form the basis of special relativity

and they allow the derivation of a number of quantitative results, such as the

equivalence of mass and energy (the famous relation E=mc2
), and the slowing

down of clocks, which hold in cases where the relative motion of observers is

uniform. Next, a new mathematical apparatus, called tensor calculus, is

introduced and used to extend the theory to the general case, where observers

may be accelerating with respect to one another, or may be situated in non

uniform gravitational fields. Again, important quantitative results can be

derived, such as the amount by which light rays are bent near massive objects.

Finally, to include gravitation between masses we are led to the notion of

curved space-time:

"To give an objective description of the effects which had hitherto been

attributed to a force of gravitation, Einstein found it necessary to think of

spacetime as curved ... There is a special curvature in the presence of matter,

although we must not say that the matter is either the cause or the effect of the

curvature." Geans, 1947)

Under this picture we are led to an enormous conceptual shift. Instead of

explaining that the Earth, for instance, is constrained to move in an elliptical

orbit around the Sun by the force of gravity, we say that it is simply travelling

along the shortest possible path between points in the curved space-time

associated with the Sun.

The concepts of relativity, especially curved space-time, are very difficult

to understand, and the exposition we have just given is too brief to be much

help. However, the important point is that it does show the structure of the

story that is usually told about relativity. In contrast, the approach taken in

Turtle Geometry begins with the construction of a new Turtle which behaves

as though it is moving not on a flat plane but on the surface of a sphere. Some

trigonometry has to be introduced to do this, but the authors quickly move on

to explore the behaviour of the new Turtle, and thereby the geometry of

curved surfaces. The next step is the introduction of metaphors to give

37

learners a handle on the concept of curved space, and these metaphors are

used in the construction of an object which moves as though its containing

space is curved. The student is allowed to get a feel for curved space by

manipulating this relativistic Turtle.

Abelson and diSessa do not claim that their approach renders the concepts

of General Relativity easier to learn. They are still difficult and somewhat

counter-intuitive. Nor is it particularly important that the amount of

mathematics used by the Turtle Geometry method is smaller. Sooner or later

the mathematics would have to be introduced to allow the derivation of

important quantitative results, although perhaps many would agree that

postponing the heavyweight analysis may mean that less students are deterred.

The main innovation of Abelson and diSessa's course is that from the outset it

involves the learner in building new computational objects (in the book they

are called 'simulators') which behave relativistically, and then uses these

objects to explore the major qualitative features of particle motion in curved

space.

38

1.B Sprites

Toward the end of the 1970s small personal computers began to appear on

the market and find their way into the educational system. One of these

computers, the Apple 11, had the facility for graphics and before long a version

of Logo was developed for it. This was quite a breakthrough as for the first time

Turtle Geometry could be used by ordinary educators who, unlike the Logo

pioneers, had no access to powerful computers.

The Apple 11 was designed as a machine for computer hobbyists. There

were however other affordable computers which owed their existence to the

market for computer games and this circumstance led almost by chance to

another objectworld.

Two computers in particular, the Texas Instruments TI 99/ 4A and the

Atari XL, contained extra circuitry designed to handle the animation of small

graphics on the screen. This circuitry was included to make it easier for

programmers to create the fast moving alien invaders that were deemed

essential for a popular game. When, to broaden the appeal of their machines,

the manufacturers decided to produce versions of Logo for them, it was

natural to include commands in the language that could control these

graphics. They became known as sprites .

• Figure 1.5 A typical sprite. enlarged and approximate actual size.

One set of commands built into TI Logo allows users to define the shape

and colour of up to 25 sprites using a grid based editor. Other commands set

the heading and the speed of the sprite. The extra electronics take care of the

animation, moving the sprites smoothly across the screen, while the

computer's main processor is left to run Logo unhindered. Sprites plus Logo,

therefore, form a new objectworld with dynamic objects and continuous access

39

to the language. In fact, a sprite's behaviour is just like that of the velocity

Turtle described in section 1.4, but since this behaviour is independently

maintained as a concurrent process, the user retains access to Logo. Sprite cards

soon began to appear for other machines, notably the Apple 11, and extra

facilities evolved such as the ability for sprites to detect collisions with one

another.

An early member of the Logo community, Robert Lawler, describes an

environment built within a sprite objectworld which he calls the Beach

microworld (Lawler, 1982). This system, using procedures written in Logo,

allows the user to construct on the computer beach scenes containing named,

dynamic, manipulable objects which resemble things like the sun, clouds, a

sailboat and a rider on a horse. They are continuously visible and can be

controlled through simple commands like paint, turn and zoom, which set

their colour, direction and speed. These objects are implemented as sprites, and

Lawler gives some details of the Beach microworld's use as a reading aid for

very young children. The main point he makes is that a young child, a pre

reader, can learn to type in the commands that control the sprites without at

first understanding them. Then, as action is matched with result, the learner

gains a vocabulary. Lawler reports what happened when he allowed one of his

own children to use the Beach microworld:

"For Peggy, the learning of reading and the learning of writing have been

synchronized (as speaking and interpreting speech are for the toddler). She

learned to read her 30 word vocabulary by learning first to "write", i.e., key the

words on the computer terminal. Writing was an essential part of controlling the

computer microworld that engaged her." (Lawler, 1982 pl46)

Lawler's findings are mainly anecdotal but they do indicate some of the

scope for sprite objectworlds. However, as the computer market diverged into

games machines and machines for business and education, sprites began to die

out.

40

1.9 Microworlds that are not Objectworlds

By the end of 1980 the word 'microworld' was closely linked to the work

of Papert's Logo group at MIT, but it was being used in quite a loose way. For

instance, Papert himself uses it to mean both the discovery rich environments

created by programmers and teachers, such as Turtle Geometry and

Dynaturtles, and the smaller constructs built by children playing within those

environments:

"Working with computers can make it more apparent that children construct

their own personal microworlds. The story of Deborah at the end of chapter 4 is a

good example. LOGO gave her the opportunity to construct a particularly tidy

microworld, her 'RIGHT 30 world."' (Papert, 1980 p162)

Besides the Beach microworld mentioned above, Lawler also discusses

two other pieces of software which he calls microworlds (Lawler, 1982 p146).

The first, called polyspi, deals with the well-known Logo procedure (already

shown in figure 1.1) which produces an infinite variety of spiral patterns as it

is executed with different inputs (see Figure 1.6). The patterns are drawn by the

Turtle (hidden in the diagram) moving in response to the forward and right

commands. The recursive call at line 4 causes the procedure to carry on

drawing indefinitely or until the user interrupts the process.

Figure 1.6 The polyspi procedure.

The other piece of software described by Lawler is a system for graphing

functions and parametric equations. Inputs to the Plotting microworld are

41

equations which the system then scales over a range of the independent

variable(s) and plots on the screen. Arbitrarily complex functions may be used

and Plotting demonstrates a neat way to support mathematical modelling

activities. Its simplicity illustrates the power of the Logo language.

At the same time as Lawler was writing, Paul Goldenberg (Goldenberg,

1982) gave a rather vague definition of microworlds. So vague, in fact, that it

could include almost any piece of interactive software. He writes - 11 ••• a

microworld is a well defined, but limited, learning environment in which

interesting things happen and in which there are important ideas to be

learned." Such a definition would not help anyone wishing to build a

microworld but the otherwise interesting article does point out some links to

the domain of Artificial Intelligence - Goldenberg describes the SHRDLU

program (Winograd, 1972) in which a set of different shaped blocks can be

arranged in relation to each other through the use of natural language-like

commands. SHRDLU's ability to understand commands given in English is

impressive and was obtained through a substantial programming effort, but

was only rendered possible by inventing an extremely simple domain about

which discourse can take place. SHRDLU can accept sentences such as "Place

the sphere on the block that is next to the pyramid" but its conversational

repertoire is by most standards limited.

The point we wish to make is that by our standards, neither Polyspi or

Plotting are objectworlds in themselves, but rather they are activities within

the objectworld called Turtle Geometry. Similarly, SHRDLU does not meet our

criteria, since although it is based on objects (the different shaped blocks) the

vocabulary and grammar which it understands is not equivalent to a

programming language.

There is a good reason for making these fine distinctions. As we noted in

the Preface, Papert's vision for these environments requires there to be a

multitude of them, for as many corners of the curriculum as possible:

liMy concept of how to create a curriculum (and by this word I mean a coherent set

of materials to aid learning through the whole school period - and before and

after, as well) is to create a network of microworlds, each focussing on different

areas of knowledge." (Papert 1987a)

42

One of the aims of this thesis is to offer guidance to those educators who

will build these systems and this requires a clear notion of what they are. What

we are trying to do is show that although the term 'microworld' has been

diluted over the years, there does exist a discernible family of environments,

containing objects and a language, for which various researchers have made

special educational claims. If we get the terms and definitions right, as we

intend to by the end of this chapter, our task will be made easier.

43

1.10 diSessa and White

We briefly mentioned diSessa's experiments with Dynaturtles in section

1.4. In a set of papers published in the early to mid 1980s Andrea diSessa and

Barbara White describe various implementations of Dynaturtles and they

report their experiences of using them with students. diSessa gives their

research a context by describing as 11 Aristotelian" the students' preconceptions

about motion: "One might characterize early stages of students' work as the

confrontation of an essentially Aristotelian theory of physics with a

Newtonian reality." (diSessa, 1982) He goes on to explain his use of the term

Aristotelian:

"In using the term Aristotelian physics, we generally mean to impute a definite

but non-Newtonian stance to our subjects. More specifically, Aristotle's theory of

'violent' (forced) motion is very close to the expectations exhibited by our

subjects, specifically with respect to the lack of concern for the effect of previous

motion in predicting the results of a force." (diSessa, 1982)

In their empirical work, (diSessa and White, 1982; diSessa, 1982) they use

an acceleration Dynaturtle controlled by a kick command, and the

environment they give their students, in the terms of our discussion in

section 1.5, is a restricted objectworld. The Dynaturtle is driven by a recursive

procedure, analogous to that of figure 1.4, which moves it smoothly across the

screen. The user is able to apply kicks, which act in the direction of the turtle's

heading, and which modify the turtle's velocity. The tasks put to the subjects

take the form of a series of games, each of which involves guiding the

Dynaturtle towards a target using turns and kicks. Figure 1.7 shows one of the

simplest games and illustrates a conflict between expectation and reality which

diSessa and White found typical of most of their students.

44

I Starting point I
11

Figure 1.7 (a) after first kick

1> ® ®

(b) expectation after right 90, kick (c) actual motion after right 90 kick

The students tried various strategies to solve this problem. The one

shown in figure 1.7, which obviously fails, is called by diSessa the 11 Aristotelian

corner" strategy, since it seems to be based on the assumption that objects

travel in the direction they were last pushed. They found that "With time and

practice, the feedback from the microworld allowed the students to gain a

better understanding of how forces should affect the motion of an object"

(diSessa and White, 1982). One successful technique, which was discovered by

several students, diSessa calls the "Newtonian corner" strategy (figure 1.8). In

this, the Dynaturtle is started with a single kick, then turned through 180

degrees and stopped with another single kick. Finally, the Dynaturtle is turned

through 90 degrees to point at the target and then sent to its goal with one

more kick.

I Single kick
11

®

J Single kick I
11

®

Figure 1.8 The Newtonian corner strategy (diSessa, 1982)

45

I Single kick I
11

®

White concludes that games such as these have a significant positive

effect on students' ability to solve simple force and motion problems and that

this implies an improved intuitive understanding of "both the implications

and the applications of Newton's laws of motion." (White, 1984)

46

1.11 Groen

In 1984, an educational psychologist, Guy Groen addressed what he

considered to be "some problems due to the lack of an adequate theory that

arise in attempting to evaluate current research on Logo." (Groen, 1984). To

appreciate the relevance of Groen's remarks to our history of objectworlds we

must review his comments on the Logo based research of that time. His

complaint is that although Papert's discussion of microworlds, and what they

can do for education, is radical in nature, it is also descriptive and anecdotal.

On the other hand, the traditional evaluative techniques applied in some

research on Logo lack a theoretical framework through which their results

may be interpreted. He puts it quite clearly:

"Most studies have tended to fall into two extreme categories. The first consists

of extensive observations which are then used, in an informal fashion, to provide

anecdotes that illustrate some aspect of the Logo approach. The second consists

of studies in the tradition of educational evaluation, in which some hypothesis

about the outcome of students' interaction with the Logo environment is tested by

collecting behavioral measures and subjecting them to appropriate statistical

analyses. In both cases, the problem is that we do not know why the observed

results occurred. This can only be done in terms of a theoretical framework."

(Groen, 1984 p49)

Groen proposes that the rather vague notions in Mindstorms should be

forged into something precise and testable - a theory of microworlds. His

programme for achieving this begins by formalising some relevant parts of

Piagetian theory (in particular the notion of structure, that is, the network of

states and transformations that for Piaget characterise a knowledge domain)

and combining them with a frame notation for modelling the knowledge that

students are expected to use. The frame concept is due to Minsky:

11 A frame is a data-structure for representing a stereotyped situation like being in

a certain kind of living room or going to a child's birthday party. Attached to

each frame are certain kinds of information. Some of this information is about

how to use the frame. Some is about what one can expect to happen next. Some is

about what to do if these expectations are confirmed." (Minsky, 1975)

Groen goes on to complement the psychological aspects of his design for a

theory by prescribing some desirable features of the computational

47

environments which he, in the same sense intended by Papert, calls

microworlds and which we would call objectworlds:

11 A microworld is a structure with certain additional properties. The two most

important are:

1) A transformation can be undone to go back to the previous state.

2) There should exist mappings (in the precise mathematical sense of the term)

to other structures that are representations of concrete actions in the real world."

(Groen, 1984)

This is where Groen's work has most relevance to the design of

objectworlds. His definition of microworlds is interesting for several reasons

(not least of which is his recognition that they actually require defining). The

first of his "properties" however, seems to be a derived feature of our concept

of objectworlds. Because we insist that the programming language contains

commands which can both read and alter the state of the central object, it is

easy to arrange that the state before any operation is preserved in a variable

and restored at will. It could be, however, that Groen is thinking of the

symmetry of the normal Turtle Geometry operators. Here, forward 100 is

negated by back 100, and right 30 is cancelled out by left 30. But

many useful operators, for instance setposition, do not have inverses, and

our general method of achieving the first property, which Vri Leron calls

conjugacy (Leron, 1985), is therefore a more powerful notion.

Groen's second property concerns the nature of the central objects. He is

saying that the attributes of the microworld object should correspond exactly to

the formal theories about the real world that we want children to learn. This is

an important point because it implies that we should not present learners with

"broken" objects, for instance a mass particle that obeys an inverse cube force

law. Some designers have done this in other types of environment (Spensley

et aI, 1990; O'Shea and Smith, 1987), reasoning that by showing users the

consequences of incorrect laws or theories, they will discover and appreciate

the correct ones. While not ruling out this approach for all kinds of learning

environment, Groen is saying that it is inappropriate for microworlds. In fact,

common sense leads to a similar conclusion: The central object is engineered

so that learners may identify with it easily, and we provide syntonic

48

commands to assist this process. It would be recondite to go to such lengths for

something which is formally wrong.

Groen's work represents a definite step forward towards principled design

of the environments we call objectworlds. However, it still leaves the

prospective system builder short of guidance on what the software should look

like and what functionality it should possess. Furthermore, despite his claim -

11 A definition along these lines is sufficient to distinguish between

microworlds and non-microworlds" (Groen, 1984), the definition is not

powerful enough to distinguish between an objectworld and, for instance, a

simulation program such as Interactive Physics (Knowledge Revolution, 1989).

So, when we come to our own definition we will take Groen's

recommendations on board but strengthen them to meet this demand.

49

1.12 Squires and McDougall

Two other researchers of this period, intent on providing useful methods

for microworld designers, were David Squires and Anne McDougall. They

present what they term an operational definition:

11 A computer based microworld is a conjunction of clearly stated primitives

enabling transformations of the state of an object (or objects) whose attributes are

derived from a fundamental concept, and a set of programming constructs."

(Squires and McDougall, 1986)

This formulation has influenced our own definition of objectworlds, as

will become apparent in section 1.18. To illustrate their definition Squires and

McDougall give two figures:

Figure 1.9a The Definition Figure 1.9b An Example - Turtle Geometry

Although they are very positive about the microworld approach in

general, Squires and McDougall do urge caution: "Many of the concept areas

we have considered, while being rich in interesting ideas, imply microworld

objects which are extraordinarily difficult to implement on currently available

computing equipment." (Squires and McDougall, 1986) What they have in

mind is the fundamental limitation, which we have already mentioned, that

to create an object with dynamic behaviour usually means giving up

continuous access to the programming language.

It is easy to think of examples: for instance, imagine a group of "molecule

turtles" which have the same behaviour as the perfectly elastic spheres

postulated by the Kinetic Theory of Gases (Jeans, 1967). A molecule Turtle

moves with a constant velocity until it collides with another molecule, or the

sides of their container. All the collisions are supposed to be perfectly elastic,

that is, they preserve both momentum and kinetic energy. We can build this

behaviour into an ordinary Turtle by the use of a procedure analogous to the

Dynaturtle of figure 1.4. If our version of Logo offers multiple turtles (as many

versions do) then we can have a group of molecules. But to get them all to

50

move at the same time we need to arrange for all the behaviour procedures to

be run at the same time. In Logo there are 'tricks' we can use to achieve this

rudimentary parallelism, but these tricks are far from straightforward and they

require that the behaviour procedure can be broken down into simple steps.

One such method, called execute. together, is described in Turtle

Geometry (Abelson and diSessa, 1980 p70).

But now imagine that we wish to write a program that takes the

molecules through some interesting thermodynamic process, say an

isothermal compression followed by an adiabatic expansion. Obviously, it

would be possible (though hard) to include the procedure to do this in the

execute. together process, but once again we have drifted far away from

the clarity that must be one of our goals in the design of an educational

environment. A better solution to this problem is needed, one which takes us

closer to the understand ability of objects like sprites. As we shall see below,

there are examples of systems which have moved in this direction.

Squires and McDougall go on to describe the application of their

operational definition in the building of two exemplar microworlds (also

described in Squires and Sellman, 1985). The second of these is of particular

note. It is centred around two objects which are continuously represented on

the screen: a grid of cells which each contain a numeric value, and an

augmented Turtle, called a Field Turtle, which moves over the grid and is

sensitive to the cell values. The behaviour of the Field Turtle is governed by a

user defined rule, which can be set up to mirror a conservation law or a

polarity rule, or some other interesting concept from Physics.

The Field Turtle represents a new dynamic object but, as with the

Dynaturtle, it gives rise to a restricted objectworld since the behaviour

procedure removes access to Logo from the user while it is running.

51

1.13 Boxer: Dynamic Objects, Definable Behaviour.

In the early 1980s, members of the Logo group at MIT began to develop a

new system called Boxer (diSessa, 1986a; diSessa and Abelson, 1986; diSessa,

1986b), which offers the user a computational environment that is radically

extended with respect to most other interactive systems. Boxer is rather

difficult to describe in a document, but the effort we make here will be

worthwhile because the system is such a clear step forward in the evolution of

objectworlds

In Boxer the preparation of interactive texts and graphics is seamlessly

integrated with the construction and execution of programs. The environment

is built upon the organising metaphor of boxes, which are rectangular

windows on the screen within which the user may read and edit text or

programs, or watch computations get carried out. Boxes can be any size and

will normally be contained by other boxes. The only uncontained box is called

the world, and its size equals the whole of the screen. To complement the box

metaphor the system holds to another organising principle: that everything

that is in the Boxer world is always on the screen. To do this the various boxes

are sized, either by the user or by Boxer's intelligent redisplayer to reveal the

appropriate amount of detail.

diSessa and Abelson call the two principles described above naive realism

and the spatial metaphor:

"Naive realism is an extension of the 'what you see is what you have' idea that

has become commonplace in the design of text editors and spreadsheets, but not

for programming languages. The point is that users should be able to pretend that

what they see on the screen is their computational world in its entirety."

(diSessa and Abelson, 1986 p861)

"The spatial metaphor encourages people to interpret the organisation of the

computational system in terms of spatial relationships. Using a Boxer system is

like moving around in a large two-dimensional space. All computational objects

are represented in terms of boxes, which are regions on the screen that contain

text, graphics, or other boxes." (diSessa and Abelson, 1986 p860)

On one level, Boxer can be viewed simply as a hypertext system (Nelson, 1967),

but one in which the task of navigating around the hyperdocument is made

52

easier by the fact that the whole of the hyperdocument is on the screen all the

time.

Graphic's----------,

*
tell minnie star SIZE:40 ANGLE:60
tell mickey star SIZE:40 ANGLE:60

Run the box above to draw figures
in the Graphics box

Figure 1.10 A typical Boxer screen (after diSessa and Abelson. 1986)

input size
forward size
right 135
forward size
left 135

But to view Boxer only in this way is to miss an entire side of its character.

The hierarchy of boxes can also be seen as a visual metaphor for the scoping

mechanisms of structured programming languages, and if the text in the boxes

conforms to the appropriate syntax rules (Boxer's syntax is very similar to

Logo's) then they can be run as a program. In this sense, Boxer is an innovative

and powerful new objectworld.

Figure 1.10 shows the description of a Boxer computation and its result.

The images shown in the top left box were created by running the commands

that appear in the box beneath it. In turn, these commands rely on the

processes and parameters contained in the other boxes. It is possible, and

perhaps enlightening, to use familiar programming terminology to describe

the various items in figure 1.10. For instance some of the boxes have an

italicised label interrupting the top left of their frame. These labels mean that

the boxes are typed, that is they can only contain certain kinds of things. Thus

the box labelled Graphi cs can only contain drawings. Some of the boxes, like

star, have names in the black tags at their top left, and these correspond to

the named procedures (in Boxer named procedures are called DOlT (i.e. do it)

boxes) and variables of a conventional language. Other boxes are unnamed,

53

which makes them rather like anonymous procedures or blocks. Finally, as we

hinted above, the nesting of boxes has a meaning too. For instance, the box

named shape is defined inside the sprite object mickey which means that is

mickey's private procedure. Nobody else can use it, except indirectly by

telling mic key what to do.

From our present point of view however, the most interesting thing

about Boxer is the way it implements sprites. The first thing to note is that

Boxer sprites are also geometry turtles at the same time. In fact the sprites

mickey and minnie in figure 1.10 have a SPEED equal to zero and are only

being used as geometry turtles.

The next feature to notice is the ease with which it is possible to define the

sprites' static behaviour. For instance, mickey has a private procedure which

describes what he will do when asked to take a step. The other sprite,

minnie, has a different set of actions for the same command. Also, mickey

has had his shape redefined to a five pointed star, using exactly the same kinds

of commands - Turtle graphics - that are used to make drawings. What Boxer

gives us is a particularly neat way of building new objectworlds by allowing us

to add new, private, attributes and behaviours to objects.

But the most important innovation is that the sprites can be programmed

to respond to events - they can be given private procedures which will only

execute when a particular action occurs in the Boxer system. For example, in

figure 1.10 minnie has a (rather simple) box called m-click which tells her

what to do if somebody clicks the middle mouse button (Boxer systems rely on

a three button mouse) over her. There are several kinds of event which sprites

can be programmed to respond to - mouse clicks, collisions with other sprites,

and collisions with the sides of their box. A second kind of event sensitive

processing in Boxer is handled by triggers (Klotz, 1989 plO) which are simply

boxes that are run when a variable, such as a sprite's speed or heading, is

changed.

Together, these features mean that it is possible for a programmer to

implement the molecule objectworld used as an example in section 1.12,

without disconnecting the user's access to the programming language. Figure

1.11 gives an illustration.

54

Graphic's----------.

0 0

0
0

0
0 2 * HEADING - 3

0 2 * HEADING -

2 * HEADING -

0

0
0

Figure 1.11 A molecule objectworld.

The objectworld shown in figure 1.11 contains fourteen sprites. Ten of

these are 'molecule sprites' and the workings of one of them are shown

expanded. There are four event processing DOlT boxes, which tell the

molecule what to do when it hits the walls. In this simple example there are

no collisions between molecules. The walls are actually four more sprites with

rectangular shapes whose speeds are set to zero (for simplicity we have omitted

their descriptions from the graphics data box).

Now we can see that our hypothetical thermodynamics experiment could

be carried out by writing another procedure which operated on the position of

the 'wall sprites'. A simulated pressure reading could be taken by arranging for

a wall sprite to print out the number of collisions it encounters in a given

period.

The significance of these features is that Boxer and its sprites offer

designers powerful ways to build objectworlds with new dynamic behaviours,

and which preserve the user's access to the programming language. Better still,

because Boxer is intended for naive users, that is "people who are not

programmers but who need to use a computer with more processing ability

than word-processing and graphics design" (Klotz, 1989 plO), the designers

might be teachers. Members of the Boxer group have carried out research into

the ease with which naive users have learned to program the system (diSessa,

55

1990; Adams, 1989; Ploger and Carlock, 1991). Their findings lend support to

the idea that Boxer could open the design of objectworlds up to non experts.

However, at present, Boxer implementations exist only for rather

powerful computers. Boxer requires several megabytes of dynamic memory

(RAM) to run in, a powerful processor, and a large screen - typically around

1000 by 1000 pixels. Adequate machines are still relatively uncommon even in

university departments. No doubt it will be several years before they are

common in schools.

56

1.14 The Logo Culture

There is something artificial about our analysis so far. We are looking

back over two or three decades of research and sifting out the things that slot

into a narrow category which we have defined with the benefit of hindsight.

This suits our purpose, which is to show that objectworlds have a proper

heritage, but it leaves out an important human dimension: the culture which

grew up around the thousands of teachers and researchers who used Logo and

Turtle Geometry in classrooms and laboratories.

Two important themes which ran through the Logo culture in the late

1970s and 1980s were (i) studies performed by educational psychologists to

identify specific cognitive changes in students using Logo, and (ii) research into

microworlds (where it is to be remembered that this term covers a very wide

range of systems). We will deal with each of these themes in turn.

The majority of the cognitive change experiments (e.g. Clements and

Gullo, 1984; Pea, Hawkins and Sheingold, 1983; Cathcart, 1990; Swan, 1991)

have been concerned with the effects of Logo programming purely on the

problem solving abilities of children and have little direct relevance to the

school curriculum. However, a group led by Jim Howe at Edinburgh

University's Department of Artificial Intelligence was carrying out a broader

program of Logo-based research. Howe's team made great efforts to keep their

work relevant to the classroom, even going to the trouble of creating their own

version of Logo which would run on a microcomputer that was (just)

affordable by schools.

Some of the hyperbole surrounding Logo in its early days had remained a

source of mild contention in the education community and the Edinburgh

group set out to carefully examine the evidence. Citing Feurzeig et al (1969),

they identified four main claims:

"(i) that programming provides some justification for, and illustration of,

formal mathematical rigour.

(ii) that programming encourages children to study mathematics through

exploratory activity.

(iii) that programming gives insight into certain mathematical concepts,

and

57

(i v) that programming provides a context for problem solving, and a language

with which a pupil may describe his own problem solving." (Ross and

Howe, 1981)

For claim (i) Ross and Howe conclude there is not much evidence - a

study by du Boulay (1978) showed that some primary school teachers who were

taught Logo programming came to appreciate the value of making

explanations explicit. Another study, by Howe, O'Shea and Plane (1979)

reported that teachers judged children in a class which had been taught Logo

better able to argue about mathematical issues, although this result was

clouded by the fact that the experimental group did extra work compared to

their peers.

The second claim fares better. Ross and Howe point to abundant evidence

for the use of programming as a laboratory for experimental mathematics. One

Edinburgh study (Howe, Ross, Johnson, Plane and Inglis, 1982) was carried out

over two years and involved two groups of 11 to 13 year old boys. Worksheets

were prepared and support software was built (in the form of Logo procedures)

for exploratory mathematical activities in the areas of multi-base arithmetic,

geometric transforms and algebra. Both the experimental and control groups

were tested on their mathematical ability several times during the two years.

The researchers conclude that the Logo work had significant benefit, and that

the positive effects were especially marked for the less able pupils.

The third claim is also judged by Ross and Howe to have only fairly weak

support. They survey four studies which had set out to investigate whether

learning Logo had any effects on children's acquisition of mathematical

concepts such as variable and function. Although these studies all reported

some improvement for children taught Logo, Ross and Howe question the

results, noting that the experimenters were unable to eliminate all the factors

other than Logo which may have influenced their performance.

Finally, Ross and Howe look at programming as a context for problem

solving. Again, they conclude that the evidence is fairly weak, pointing out

that positive findings by Statz (1973) in a study of sixteen 9 to 11 year olds, are

flawed by her experimental technique, and an investigation by Papert and

Goldstein into children's arithmetic problem solving is of dubious worth

because the experimenters neglect the fact that failure in some of the tests they

gave children could be due to a lack of background knowledge rather than low

58

problem solving ability. Overall then, Ross and Howe are equivocal about all

but the claim for Logo that it can be an excellent place for children to do

exploratory mathematics and investigate the behaviour of mathematical

entities.

We now turn to the second theme identified at the beginning of this

section. As we have already indicated, the term microworld came to be used

very loosely, and during the 1980s this state of affairs continued. For an

example take the proceedings of a large Logo conference of the period

(Palmgren, 1985). Of twenty authors purporting to describe microworlds more

than half are actually talking about systems for which perfectly adequate names

already exist. One is clearly a simulation program, written in Logo (Newcombe

and Stewart, 1985). Another is a sophisticated text editor and idea processor

(Sinclair and Colton, 1985). Still others are about curricula and cognitive states.

Many of these papers describe interesting work, but to call them all

microworlds almost deprives the word of meaning.

This confusion is not necessarily a problem, in fact a workable consensus

has evolved around the term to the extent that many Logo workers feel they

agree about what they mean when using it. It is worthwhile describing some of

the sorts of ideas which contribute to this consensus. As we noted above (in

section 1.5), its origins lie partly with Seymour Papert's book Mindstorms

(Papert, 1980), where he offers several descriptions of his concept, calling them

"incubators for knowledge". He characterises them as worlds with their "own

set of assumptions and constraints" and as places "where certain kinds of

mathematical thinking could hatch and grow with particular ease" (Papert,

1980 p125), but his descriptive explanations give scant assistance to educators

who might want to build their own. Furthermore, with a little imagination

almost any piece of interactive software could be interpreted as a microworld

in Papert's terms.

Fortunately, a few common strands can be discerned in the different

things that have been labelled microworld. Typically, a microworld is an open

ended program, with little or no internal curriculum, but with opportunities

for the user to learn by discovery. One example is the friction microworld

developed at the Open University (Spensley et aI, 1990) which allows users to

explore the motion of bodies over different surfaces. Another common trait is

for the microworld software to be open as well, in the sense that its workings

59

are visible and modifiable. Lawler's function plotting microworld (Lawler,

1982) exemplifies this kind of feature. Neither of these two systems, though,

qualifies as an objectworld. The former has no programming language, and the

latter no objects. Clearly, objectworlds form only a small part of the

microworld spectrum.

However, a vague consensus and a range of disparate examples are not a

great deal of help to an educator who hopes to build something comparable in

scope to Turtle Geometry. A firmer basis is needed for this task, one built on

more precise definitions and a careful analysis of what is special about such

systems. That is the aim of this chapter, and by its end we will arrive at a clear

definition of what we have come to call objectworlds. Meanwhile, we have

already mentioned the attempts by Groen (section loll), and Squires and

McDougall (section 1.12), to lay the foundations of a theory of microworlds. In

the latter half of the 1980s, several other researchers recognised the need for a

more analytic approach and we will now consider some of their work.

60

1.15 Robert Lawler

In 1987 Robert Lawler devoted a book chapter to the topic of microworlds

(Lawler, 1987 pp1-25). In it he identifies two main features as being the

possession of a transitional object (see section 1.6) and the capacity for "creative

action" by the user. On the subject of transitional objects Lawler writes:

"What permits their engaging character is the quasi-concrete instantiations of

computational objects which can be taken as symbols by a person." (Lawler, 1987)

That the essential centrepiece of a microworld should be a transitional

object is hinted at several times by Papert in Mindstorms (Papert, 1980).

Unfortunately, Lawler does not give a particularly thorough characterisation of

transitional objects or any new examples to complement the Turtle. And while

describing creative action he is still rather vague:

" ... the essence is to create an environment in which other people can exercise

their own creativity ... When the microworld is created with enough structure, it

will indicate what objectives and activities are possible." (Lawler, 1987)

Lawler is right to remind us how novel the idea of building a

computational environment in which students can be creative is, but his

assertion that structure can provide goals and strategies seems too hopeful. If

we take Turtle Geometry as a well structured example of a microworld it is still

hard to imagine goals and strategies such as those presented in the book Turtle

Geometry (Abelson and diSessa, 1980) simply dropping into our laps. He goes

on to criticise the ubiquitous terminology:

""Microworlds" has served as a passable label, but the term does little work for

us, because it stands in isolation, unrelated to other ideas in conjunction with

which the notions could be better understood." (Lawler, 1987)

He might also have added that the label had been stuck onto too many

different things. In his attempt to straighten things out Lawler introduces a

new word - "Miniworld". A miniworld is a piece of software which

instantiates a transitional object and which permits creative action on the part

of the learner. For Lawler microworlds then simply become activities within

miniworlds. However, we can see now that it was too late to do anything about

the usage, and Lawler's new terminology was not taken up.

61

A useful distinction made in Lawler's 1987 chapter is his use of the term

"microview" to describe the localised cognitive structures or schemata that

learners build for parts of a problem domain. Some authors of the period were

still using the word microworld to describe such structures as well as pieces of

software. In fact, the 1987 chapter is not where he first introduced the new

term. In (Lawler, 1985) he gives an extended account of a child building up

such microviews and uses a chapter to sketch a kind of cognitive theory based

on them (Lawler, 1985 p193-209).

62

1.16 Thompson's Mathematical Microworlds

At around the same time another educational researcher, Patrick

Thompson, prompted by his interest in conceptual development and

mathematical problem solving, began investigating the possibilities of

microworlds. However, he found that the use of the term in the literature had

been rather arbitrary: he writes - "It is unfortunate that the generic term

"microworld" has been used so many different ways"- but instead of trying to

reclaim the word he chooses another course - "Rather than attempt to create a

new name, I use the qualifier "mathematical" to distinguish systems described

here from what have been called microworlds by others" (Thompson, 1987).

Thompson's own definition is interesting:

"l will use "mathematical microworld" to mean a system composed of objects,

relationships between objects, and operations that transform objects and

relationships. This characterisation is meant to capture the idea of a

mathematical system as constructed from primitive terms and propositions,

where the full system exists only potentially but includes features that allow

students to expand that potential." (Thompson, 1987)

The microworld he goes on to describe is called MOTIONS and deals with

the domain of Transformation Geometry. Specifically, it is intended to be a

learning environment for isometric transformations of the plane

(transformations which do not change the distances between points). The

software is built in a principled way from his definition and his own theory of

conceptual development (Thompson, 1985b). The object in the system is the x

y plane, labelled by a small flag. The area containing the flag is continuously

visible on the screen and state changes (of position, heading, orientation) are

completely described by the flag's appearance. A set of commands to effect

these state changes is provided and there is the facility to group and name

commands, through a function called DEFINE. By our standards MOTIONS is

a fully fledged objectworld.

Thompson describes the objectives behind his system:

"MOTIONS was designed with a set of cognitive goals in mind. These, briefly,

are that students understand motion geometry as a mathematical system, and

that they develop concepts of multivariate mappings, invariances under

63

mappings, and of composition as an operation on mappings." (Thompson, 1987

p86)

Thompson draws on his experience of building and using his system with

students as the framework for a methodology of mathematical microworld

design. He elucidates some interesting principles: For instance he emphasises

that a microworld should be oriented around functions and stresses that there

should be /la clear correspondence between the change in the display effected by

a command and the mathematical meaning of the command." (Thompson,

1987). However, his methodology is somewhat tailored to the domain,

transformation geometry, and it would be difficult to generalise it to other

areas of the curriculum. The simplicity of the two dimensional x-y plane leads

him to undervalue the central importance of the object, its representation and

its depiction.

Also in his 1987 paper, Thompson describes some 'problem sets' he found

it useful to introduce in classes and shows how the need for such sets affected

the overall design of Motions. Thompson examines some of the problems

students had when using his mathematical microworlds, such as a failure to

explore them in a meaningful way or an inability to generalise some of the

ideas they contain. These are, of course, two of the traditional problems

associated with discovery learning (see for instance Shulman and Keislar, 1966,

chapter 15). Thompson suggests lines of attack on these difficulties and in

particular he looks forward to the addition of an artificially intelligent tutor

component to the system which would attempt to analyse what the user is

doing and offer guidance. He warns that such a component should preserve

the passive, non judgmental nature of microworlds by allowing the student to

decide when the tutor is invoked.

64

1.17 LEGD/Logo

In the latter half of the 1980s, in what might appear to be a step back to the

early days of Logo, researchers at MIT began connecting computers to real

objects again. This time, however, the objects were not single purpose robots

like turtles but flexible, modifiable machines constructed from special battery

powered electronic LEGO bricks:

"LEGO /Logo combines LEGO building materials and the Logo programming

language. Children begin by building machines out of LEGO pieces - including not

only the familiar LEGO blocks, but also LEGO gears, motors, and sensors. Then

children write Logo computer programs to control the machines that they have

built." (Martin and Resnick, 1990)

Unlike the Turtle, these new robots do not have to be connected to a

computer by wires. Instead, the computer, in the form of a special Logo

programmable brick, can be incorporated into the machine. The programmable

brick is essentially a miniaturised Apple 11 computer running a version of

Logo with extensions which allow it to control external devices. There are

three other types of Logo brick: Actuator bricks, such as motors, lights, and

bleepers, are the components which "create interactions with the outside

world" (Martin and Resnick, 1990). Sensor bricks detect features of the

environment, such as sound, light, and touch. Finally, logic bricks allow the

outputs of sensors to be combined and processed before they are passed to

actuators or a programmable brick. For example, the designer may want a

machine to respond only when both sound and light are present. To do this

the outputs of two sensors may be passed through an AND brick, and then to

an actuator brick. Simple machines can be built using just actuator, sensor, and

logic bricks, but the addition of the programmable brick means much more

complex behaviours may be investigated.

The researchers who developed LE GO /Logo describe it as a Science land

for the classroom, and they claim that it can make school science more

relevant for students:

"By working on LEGO /Logo projects, children deal with scientific concepts and

methods in a natural and meaningful context. Children don't just learn about

science. They do science." (Resnick and Ocko, 1990)

65

Learners building LEGO /Logo devices have to make many different kinds

of decisions about overall plans, choice of components, and programming the

bricks. Resnick and Ocko characterise the typical activities of children using the

system as learning through design and learning about design.

In our established terms, LEGO /Logo seems to be a new objectworld. After

all, they have objects and a language with which to manipulate them.

However, there is an important difference between LEGO/Logo and the

systems we have been discussing. The fact is that LEGO /Logo machines are

real, and a whole world of constraints unavoidably act on them. Motors and

gears have friction, wheels slip, and batteries run down. Because of this

LEGO/Logo is less suitable for engineering the transitional objects of section

1.6. An important feature of transitional objects is that they are part concrete

and part abstraction, and they can therefore help to form a link between what

the learner already knows and the formal concepts they have to acquire in

school. As Papert puts it :/I ... an entirely new kind of object - a transitional object

between the ones that you can touch and push (like tables and wooden blocks)

and the kind of objects that you know in science, in philosophy, and in

mathematics" (Papert, 1987a p88). Of course, a child who has built some

machine in LEGO /Logo may internalise the experience and use it as a

transitional object later on. This is like the experience with gears Papert

describes in the foreword to Mindstorms.

It is important to recognise that this is not a negative criticism of

LEGO /Logo. In fact the real world considerations, which are missing from an

objectworld such as Turtle Geometry, are valuable parts of the LEGO/Logo

experience. It simply puts the LEGO /Logo approach into a different,

complementary category, which is appropriate to different kinds of learning.

66

1.18 Definition

We now present a definition of objectworlds, which is intended to be of

use to designers who would like to build a system of this class for their own

domain of interest. The definition is part of our wider goal, mentioned in the

preface, of encouraging the construction of many more objectworlds. In turn,

this goal derives from one of Papert's beliefs about computers in education,

that for their effect to be felt, there is the need for a multitude of such systems,

connected together to form a curriculum (Papert 1987a). At first sight the

definition may seem rather abstract so we will follow it with some explanatory

notes.

A computer based objectworld is the combination of a simulated object (or objects)

and an interactive programming language. The object should be continuously

visible and its attributes should derive from, or be a representation of, some

fundamental concept. The language should contain a set of commands that allow

the inspection and manipulation of the object's attributes, and must support data

types corresponding to those attributes. At least some of these commands should

act on the objects in ways that we would expect learners to grasp with little

difficulty.

67

1.19 Notes on the definition

(0 As we have said, the pairing of a simulated object and a programming

language was inspired by Turtle Geometry. The constraint that the objects

should be continuously visible is a feature of Turtle Geometry too, but the idea

also draws support from the field of Human Computer Interaction (HCI). For

instance, Shneiderman emphasises its importance for Direct Manipulation

(DM) interfaces:

liThe object is displayed so that actions are directly in the high-level problem

domain. There is little need for decomposition into multiple commands with a

complex syntactic form. On the contrary each command produces a

comprehensible action in the problem domain that is immediately visible."

(Shneiderman, 1983 p66)

(ii) The "fundamental concept" on which the object is based obviously

defines the knowledge domain to which the objectworld will apply, but there

is an implicit limitation to the objectworld approach here: while many basic

scientific and mathematical ideas seem easy to represent on a computer, it is

not difficult to think of things, such as the concept of irony, which might be

more problematic.

(iii) The language we have in mind is Logo or something of equivalent

power. That is, it should be possible to build independent procedures, and it

should support structured data types. For instance, a position is usually

represented by two numbers. Logo lists allow us to define a single variable

which holds two numbers.

(iv) There needs to be a pair of commands for each attribute of the objects

- one to set and one to inspect the values. For example the Turtle has

setxpos number, which sets the x position, and xpos , which returns it. In

addition, the Turtle has commands that are easier for children to understand,

forward, back, right, and left. Papert calls these body syntonic

commands (Papert, 1980 p63) because they connect to knowledge that the

learner already has about moving and turning.

68

1.20 Summary

We have described an evolving family of computer-based discovery

learning environments which began with the invention of Turtle Geometry

in the early 1970s. The family has relatively few members compared with, say,

the number of educational simulations that are in existence. However, this

class of environments is distinct enough to warrant its own name, and we

have chosen objectworld.

Turtle Geometry, and therefore objectworlds, arose out of the

development of conversational programming languages in the late 1960s.

These systems allowed users to see the results of computations immediately,

without the delays of compilation and batch processing. The genesis of

objectworlds was the decision of Wallace Feurzeig and Seymour Papert to

design a conversational language specifically for children and link it to a small

object, the Turtle, capable of moving and turning.

Impressed by the success of Turtle Geometry, Papert formed a group of

Logo researchers at MIT. Investigations into the use of Turtle Geometry by

children were carried out, and new objectworlds, such as those based on

biology and physics turtles, were created. We indicated that in some cases these

new turtles had time-dependent dynamic behaviours, generated by simple

recursive Logo procedures. Since most versions of Logo are capable of running

only one procedure at a time these dynamic objects came at the expense of

continuous access to the programming language. We call systems such as these

restricted objectworlds.

In the late 1970s, Papert began to develop ideas which led to a firmer

psychological basis for objectworlds. In particular he began to view entities like

the Turtle as transitional objects which, when equipped with syntonic

commands to control them, can serve as stepping stones between a child's

personal, intuitive knowledge and the formal concepts we expect her to learn.

The Turtle is a transitional object because it turns and moves in ways children

readily identify with, and yet it also connects to higher level mathematical

concepts. The degree to which this simple "cybernetic animal", the Turtle, can

be a vehicle for profound mathematical investigations is illustrated by the

contents of the book Turtle Geometry (Abelson and diSessa, 1980).

69

diSessa and White used objectworlds based on Dynaturtles to investigate

children's ideas about motion. In particular, they were able to get learners to

reconsider some of their incorrect intuitions, such as the "Aristotelian" belief

that an object will move in the direction it was last pushed.

We have shown that another evolutionary step was made with the

introduction of sprites to some versions of Logo in the early 1980s. Sprites are

dynamic objects but they do not interrupt the opportunity for learners to write

programs. A separate, background process keeps them moving smoothly across

the screen at a velocity that is under the control of the user. We have argued

that for reasons of clarity and understandability, it is desirable for dynamic

behaviour procedures to be run in parallel with the general processing ability.

We have also shown that during the 1980s several researchers voiced

their concern at the indiscriminate way in which the term microworld was

being applied to different learning environments. In particular Groen (1984)

and Squires and McDougall (1986) present definitions of the term which

incorporate what they see as the essential features of these systems. Groen

emphasises the need for reversible operations in microworlds, while Squires

and McDougall concentrate on the combination of operators (acting on the

state of the object) and a programming language. Thompson (1987) also notes

the confusion surrounding the microworld label and adds the qualifier

"mathematical" to it for discussions of MOTIONS, the objectworld he has built

for the domain of Transformation Geometry. The definition we presented in

the last section has been influenced by these and other authors.

The next stage in the development of objectworlds was made with Boxer

(diSessa and Abelson, 1986) which offered users a range of ways to create new

objects with independent attributes and behaviours. These are set in an

innovative programming environment which extends the familiar "What

You See Is What You Get" notion to the description of computational

processes. Furthermore, Boxer has a mechanism which allows the definition

of new dynamic behaviours for sprites, without interrupting access to general

processing.

The historical survey outlined above is intended to provide a context for

Gravitas, the objectworld at the centre of this thesis. The next chapter contains

an in-depth description of its design, construction, and capabilities.

70

2 Gravitas

2.1 Overview

Towards the end of the last chapter we presented a definition for an

evolving class of educational computing systems which we call objectworlds.

Our practical working out of this definition (which builds on the notes of

section 1.19) may be taken as follows:

To build a new objectworld, think of an entity which embodies the

concept (or concepts) you wish to let students explore. Next, devise a

simulation of the entity (in our terms this means a representation of its

attributes, the algorithms which generate its behaviour and a depiction to

make it visible on the screen) which can be executed on a computer. Now

connect the object to a programming language with a set of commands which

allow each of its attributes to be set or inspected. Finally, add another set of

commands which act on the object in intuitive ways. That is, in ways it is

reasonable to expect the learners to comprehend immediately.

In this chapter we will show how the above formula led to the design of

Gravitas, a new objectworld for physics education which also introduces

several innovations. Gravitas allows learners to build systems of gravitating

masses in a two-dimensional space and observe their dynamics. Users can

create as many objects as they like and may freely manipulate their attributes,

which are position, velocity, mass and radius. Gravitas displays the objects in a

space whose size may also be defined by the user. Gravitas is attached to a Logo

interpreter so that learners may write programs which manipulate the objects

and the space.

The central objects of Gravitas are called Massobs and, like Turtles, they

can be controlled and inspected by a set of Logo commands. Among their many

commands Turtles always have four special ones, called forward, back,

right and left, which move them around the screen but which are

especially easy for novices to appreciate because they do not require any

understanding of coordinate systems or angles. In the same way, Massobs have

four simple commands which affect the rate at which they move around the

screen but which do not use coordinates or angles. We will describe the origins

of these and the other Massob commands in the sections which follow.

71

From the beginning we decided to make Gravitas similar, in both its

overall structure and its modes of use, to Turtle Geometry. We believed it

would help new users if they could relate Gravitas to something they have

already learned, and Turtle Geometry has been a very popular system. This

chapter will attempt to make the similarities explicit.

We will also cover a major difference between Gravitas and Turtle

Geometry. Massobs are more complex objects than Turtles, in the sense that

they have more attributes, and therefore they are more difficult for young

learners to appreciate. To alleviate this problem, we have given Gravitas a

mouse-driven graphical interface which is quick and easy to use, compared to

typing in commands. This interface is described towards the end of the chapter.

72

2.2 General Description of Gravitas

The overall design of Gravitas is clearly similar to Turtle Geometry, with

its basic pairing of objects and Logo. Just like that system, the objects of interest

may be controlled by simple commands, and the commands can be assembled

into procedures which encapsulate more complex effects. However, it differs

from Turtle Geometry in several important respects. First of all, the central

objects of Gravitas, which we call Massobs, are dynamic: they move

continuously across the screen leaving a visible trace. Secondly, the trajectory

of each Massob is affected by the presence of others: they interact through the

force of gravity. Thirdly, Gravitas allows users to construct as many Massobs as

they wish. Most versions of Logo restrict users to one or just a few Turtles.

To begin our description of Gravitas we will look at a typical session. The

user was interested to see how two objects, in similar orbits around a third,

would interact.

[startll SlOp 11 Sl4lp I [Reset I [Set-» I TIa. It., (.... wl ~ Em c:.:::::J

Space MassObs INew l~
8k.ofJI·"("~"'1 D~ ~ [Set-»I • PI ... t _

=----:, ITeJ UJOiii?J rzoom inl (Zoom outl ~===
CWfOf"Pos*:iol. ~ [""""Mi,iQ ff1 __

[Boost I
[BOC>tt blOCk I
[Boo.tlert I
I B oo.t I1chtJ

Figure 2.1 Gravitas showing two active Massobs, with a third under construction

73

In figure 2.1 a user has already built two Massobs, Planet and Moonl, and

they can be seen orbiting one another. A third object, Moon2, is being

manufactured in a small window at the bottom right of the screen, and is ready

to be dragged into the space where it will interact with the others. The dark

area of the window they inhabit represents a space 3x108 metres across. This

size, roughly the distance travelled by light in one second, was defined by the

user, who has also set the size and the velocities of the individual Massobs.

The Planet is roughly two and a half times the diameter of the Earth.

In figure 2.2 the user has dragged Moon2 out of the "factory" and into the space,

to a position quite close to Moonl. Of course, if this really happened it would be

a cataclysmic event, but with Gravitas, it is easy to watch the consequences.

Figure 2.2 The effect of a near collision with Moon2.

BOOS1

!500stbtOkJ

! Boo .. left J

!500.1 richtJ

The traces for Moonl and Moon2 clearly show disturbed orbits, and in

fact, one of the moons eventually escaped Planet's gravity.

74

The session was carried out using Gravitas' sophisticated graphical

interface, which allows users to begin constructing and exploring such systems

after just a short period of familiarisation. Using mouse clicks and drags

learners can create Massobs in the factory and set their masses, sizes and

velocities. Gravitas automatically pauses the simulation while Massobs are

dragged out into space, so that they may be positioned accurately with respect

to others. Once they are in space the Massobs obey Newton's laws of gravity

and motion, tracing out their trajectories on the screen. The simulation may

also be turned on or off by clicking on buttons at the bottom of the window.

However, the graphical interface is not the only means of operating the

system. Gravitas is an objectworld, and from our definition that means it must

have a programming language. Consequently, Massobs, and the space they

exist in, may be controlled by programs. Gravitas contains a version of Logo

which has been extended with commands dealing with these new entities. For

example, the session described above could be generated by a few lines of code,

as shown in figure 2.3.

create.space 3.0B8
create.massob nPlanet 0 0 0 0 1.SB7 8B2S
create.massob "Koonl lB8 0 0 7500 3B6 7.SE23
go.until.time 63400
reset
create.massob nKoon2 1.2B8 0 0 5000 3B6 7.SE23
Igo. until. time 49600

Figure 2.3 Logo code for the session represented by figures 2.1 and 2.2.

As we can see from figure 2.3, using the programming interface means

that the learner must supply numeric values for sizes and positions which the

graphical interface allows simple mouse operations to control. On the other

hand, the programming interface offers repeatability and greater precision,

mouse operations being accurate only to the nearest pixel.

The principal advantage offered by programmability however, is that it

allows the user to build up more complex sequences of operations, such as

rocket launches, interplanetary flights, or even the birth of a solar system. In

chapter 3 we will describe our studies of users carrying out activities such as

these. Programmability also makes possible the construction of extensions to

Gravitas, for example a function to measure the kinetic energy of a system of

Massobs, in Logo, a standard and popular programming language. In chapter 4

we will present some example extensions.

75

The overall structure of Gravitas, therefore, parallels Turtle Geometry in

that the objects of interest may be controlled by programs. A deeper similarity

between the two is the provision in Gravitas of simple to understand

commands which newcomers to the system can use to manipulate Massobs.

Novice users of Turtle Geometry begin by using coordinate independent

commands like forward 100 and right 90 to control the Turtle. These

are often called the Turtle's body syntonic commands (Papert, 1980 p206)

because they can be understood in terms of sensori-motor knowledge about

moving and turning that even young learners are bound to have, and they do

not require an appreciation of concepts like coordinates and angle. Similarly,

Gravitas supplies four body syntonic commands for use with Massobs. These

commands - boos t, boost. back, boost. right and boost .left,

accelerate Massobs forwards, backwards, to the right, or to the left, without

requiring the learner to think about the Massob's current velocity, or position,

or mass. We will discuss the boost commands in more detail in section 2.2.3.

Gravitas runs on Apple Macintosh 11 computers alongside the Logo

interpreter which may be used to program it. The number of Massobs which

users may create is limited only by available memory, but the amount of

computation which Gravitas has to perform rises in proportion to the square

of the number of objects defined. Inevitably, there comes a point when the

system response slows below the level of acceptability.

In the next section we will describe Massobs in some detail: how they are

implemented, how their behaviour is generated, and how they may be

programmed. Then we will move on to discuss the two interfaces: first the

programming interface, and then the user-friendly graphical interface.

76

2.2 Massobs

Throughout this thesis we have defined Turtle Geometry as the realm of

activities that are opened up by the combination of a programming language,

usually Logo, and an object, the Turtle, which can move and rotate and leave a

trace of its movements on the screen. Similarly, Gravitas gives access to a new

range of activities, which we call Massob Physics, through its joining of Logo

and Massobs. It is therefore natural to consider Massobs as counterparts to the

Turtle, and throughout this section we will draw parallels between them to

illustrate important points.

2.2.1 Attributes and Values

Turtles and Massobs both have a state. For the Turtle this is represented

by three attributes: a position, represented by two numbers, a heading,

expressed as an angle, and a pen, which may be up (in which case the Turtle

leaves no trace as it is moved) or down. A Massob's state, on the other hand, is

composed of five attributes: position, velocity (also stored as a number pair),

mass and radius, and finally a name. Like Turtles, Massobs leave a trace on the

screen as they move.

Massobs follow Turtles in that they attempt to make the values of these

attributes apparent from their appearance on the screen. For instance, a

Turtle's depiction, commonly as a small isosceles triangle, makes its attributes

immediately visible: position is obvious, the heading is roughly indicated by

where the triangle seems to be pointing, and a dot at the base of the triangle

indicates whether the pen is up or down. The same is almost true of Massobs.

Looking at figures 2.1 and 2.2 it can be seen that their positions and names are

obvious, and from the traces (or simply by observing them for a few moments)

we can see the directions in which they are moving. Their relative sizes are

also easy to see. The exception is mass. If all the Massobs in a system have the

same density then their relative masses can be inferred from their size

(actually, from the cube of their size). However, the user is free to alter the

density of Massobs by independently varying their mass and size, which means

that a small Massob does not necessarily have less mass than a large one.

Of course, the values of attributes cannot be read with much accuracy

from their appearance on the screen, either for Turtles or Massobs. However,

Turtle Geometry has a pair of commands for each attribute - one to inspect and

77

one to set the value. Gravitas has an analogous set of paired commands to read

and set the exact values of Massob attributes. These commands, which take the

form of extensions to Logo, form part of what we call the programming

interface to Gravitas, which we will be describing in section 2.4. For example,

the command x. pos takes a Massob as its input and returns the x-component

of its position. Thus typing pr int x • pos : moon1 into the Logo interpreter

running alongside figure 2.2 would produce the result 1. 53906E7 (Le.

1.53906 x 107).

Additionally, Gravitas has another separate but completely equivalent

means of setting and inspecting Massob attributes, which we call the graphical

interface. This feature allows the user to set and inspect the precise values of

the attributes using only the mouse. The graphical interface will be described

in detail in section 2.5.

2.2.2 The Computational Nature of Massobs

Before proceeding, we should clarify a rather technical detail concerning

the computational nature of Massobs. So far we have discussed Massobs in an

informal way. We introduced them by their names, such as Moon1, then

showed that they could be created with a command such as create .massob

"Moon1 1E8 0 0 7500 3E6 7 .5E23. Subsequently, Moon1 was referred

to in a procedure call as :moon1. There is some scope here for confusion.

First of all, when we create a variable in Logo, we are associating a symbol

with a value. Thus make "foo 3 associates the symbol foo with the value 3.

We can retrieve the value placed in "foo by typing thing "foo, which is

usually shortened to : foo.

Similarly, create .massob "Moon1 1E8 0 0 7500 3E6 7. 5E23

creates a variable, Moon1, whose value is a new Massob, and it sets the

attributes of the new Massob, in the order name, x and y position, x and y

velocity, radius and mass. This Massob can be retrieved in the same way as any

other value by typing : Moon1, and since Logo is not concerned about case in

variable names : moon1 works just as well. It is important to note that the

name of the variable and the name displayed by the Massob on the screen are

the same. This is a great convenience as it is natural to refer to a Massob in a

program by the same name it displays on the screen. However, it does make it

inadvisable to include space characters in names as they make the variables

difficult to use.

78

But what are Massobs in a computational sense? They are not simple

numeric values, like 3 or 5.748, nor are they Logo lists of data such as [Moonl

lEa 0 3E6 7. 5E23 0 7500]. In fact, they are objects in the sense defined

by the discipline of Object-oriented Programming (Goldberg and Robson, 1983;

Cox, 1986; Drescher, 1987; Graham, 1991). In this paradigm an object is usually

described as a collection of private instance variables and methods. Thus a

Massob like Moon1 is composed of instance variables, containing its attributes

as private data, and methods which are its personal copy of the procedures that

allow it to do things, such as display itself, gravitate with other Massobs, and

leave a trace on the screen.

Furthermore, Gravitas was not only built using an Object-oriented style of

programming; the Logo interpreter which runs alongside it is also Object

oriented. The result is that users may, if they wish, program the system in an

Object-oriented way. For most users of Gravitas this feature will not be

significant, since only those with relatively strong programming skills will be

able to exploit it. However, we considered it to be important for the future of

the system, as it opens up a very clear path for future development: Gravitas is

a prototype-based Object-oriented system rather than a class-based one

(Drescher, 1987) and Massobs can be used as prototypes for new, more complex

objects which inherit all their ancestors' properties, and then add some of their

own. It is possible to envisage descendants of Massobs which have spin, or a

different appearance, or a magnetic field.

2.2.3 The Boost Commands

As we mentioned in section 2.2.1, Turtles and Massobs have commands

which set their attributes directly. For instance, setposi tion [50 50]

moves a Turtle towards the top and right of the screen, while set .velocity

[10 10] sets a Massob moving in the same direction. However, these are not

normally the commands to which learners are first introduced. Novices

usually begin Turtle Geometry by using the coordinate independent

commands forward, back, right and left. In view of this, at an early

stage in the development of Gravitas, we decided to provide Massobs with

coordinate independent commands for controlling their velocity. The

commands we developed are named boost, boost. back, boost. right

and boost .1eft.

79

The boost commands accelerate Massobs forwards, backwards, to the right

or to the left, with respect to the direction the Massob is already travelling in.

They take a single input - the name of the Massob to be boosted. The size of the

velocity change they produce is set with another command, called

set. boost. strength. These commands are so important to Gravitas that

we should examine them in some detail.

Coordinate independent commands do not act directly on the position

attributes of an object. Rather, they use intermediate procedures to modify

them. For the conventional Turtle these procedures are quite simple. The

conversion of the Turtle's heading is straightforward: the commands r i gh t

and left simply add or subtract their arguments from it, under the constraint

that it is kept in the range 0 to 360 degrees. Figure 2.4 shows how forward

and r i gh t are turned into a change of the Turtle's position and heading by

some basic trigonometry.

The user types the commands below and
the turtle's internal procedures carry
out the calculations necessary for the
transformation o/the state:
x => x + <Ix; dx = 50sin(60)
y => y+dy; dy = 5Ocos(6O)
heading => heading + 30

Old turtle state:
x-position = 25
y-position = 35
heading =30
pen = down

+ (0,0)

right 30 forward 50

y

New turtle state:
x-position = 68.3
y-position = 60
heading =60
pen = down

---- cb.---~'"

dy

l
~--------------~- x

Figure 2.4 An example of the Turtle's coordinate independent commands right and forward.

The boost commands operate like 'kicks' which instantaneously change a

Massob's velocity in one of four directions, as illustrated in figure 2.5. The

amount by which the velocity is changed does not depend on mass - for a

given boost strength (which the user may vary) the increment is the same for

any Massob. Also, the velocity changes take place instantaneously. For this

reason it is better to describe the effects of the boost commands as velocity

increments rather than accelerations.

80

Figure 2.5 The effect of the four boost commands on a Massob

Papert describes Turtle Geometry's forward, back, right and left

commands as being body syntonic. The term is given some prominence in

chapter 3 of his book Mindstorms (Papert, 1980). According to Papert, syntonic

learning takes place when the knowledge to be communicated is firmly related

to intuitive knowledge the learner already possesses. Thus forward, back,

right and left are body syntonic because we already know what it is like to

move and turn. This contrasts with the commands that directly affect the

Turtle's attributes, which require that the user already understands the formal

concepts of coordinate systems and angles.

Gravitas' commands boo s t, boo st. back, boo st. r i gh t and

boost .left are syntonic on one level, in that everyone has sensori-motor

knowledge of what it is like to be pushed around. But they are also

problematic, in that human intuitions about pushing are formed in an

environment which contains friction and where gravity always acts

downwards, whereas Massobs exist in a frictionless space where the force of

gravity acts between mass centres. This is a very important point, because it

shows that there is a crucial difference in understand ability between Turtle

Geometry and Gravitas: novices usually have no trouble with the idea of a

Turtle command like forward 100, nor are they surprised by its effect - a

line on the screen 100 units long. However, although the ideas of the boost

commands are also grasped without difficulty, their effects - Massobs which

continue moving indefinitely, and perhaps at unexpected angles - come into

conflict with som common misconceptions children hold about motion.

81

These are the same misunderstandings noted by diSessa in his work with

Dynaturtles. As we noted in chapter 1, he calls them Aristotelian

preconceptions (diSessa, 1982), because they accord with some of Aristotle's

beliefs about motion, such as the idea that a body moves in the direction it was

last pushed. This equivalence means that Gravitas could, like Dynaturtles, be

used to help learners develop a Newtonian understanding of dynamics

although our studies of the system in use (which we will describe in the next

chapter) investigated different possibilities for Massobs. However, because of

this possibility for misunderstanding it is more accurate to call the boost

commands semi-syntonic. In fact, we will stick with the shorter form in the

rest of this thesis but it should be borne in mind that the boosts do carry this

extra complexity.

Y booSI Yrew

J'"~
J

T
Iboost I

I
Y booSI

Void Y boosl

1~ 6 v~ Vrew . i v_

[boost . righ t r+ ~boost . left r-

I
Iboost .backl ..

Y hooSI

V

J Y"-'W

~ cb
Figure 2.6 Ilow the four boost commands alter the yelocity of a Massob

Figure 2.6 shows the detailed effect of the boost commands as they are

implemented in the version of Gravitas used in our formal studies. It should

be understood that this is not the only way we could have implemented

syntonic commands for Massobs. In fact, we tried other schemes in different

versions of Gravitas, and we will describe some alternatives in section 2.8. An

important d cision was to make the boosts act as velocity rather than

momentum increm nts. This was done because masses can range over many

82

orders of magnitude and therefore an appropriate momentum boost for one

object might be negligible or unreasonably large for another. Behind the

scenes, Gravitas actually computes a "reasonable" default value for the velocity

increment used by the boosts, where reasonable means a visible change of one

or two pixels per frame of the animation.

However, there is another reason for the current behaviour of the boosts.

Early informal studies of Gravitas with a number of users had already pointed

to a line of investigation for the formal studies which we decided to carry out.

Consequently, we made sure that the boost commands installed in Gravitas

were well suited to the class of tasks we envisaged: experiments in orbital

mechanics. In particular, it is very useful to be able to apply a boost in exactly

the direction a Massob is travelling, even if its trajectory is being curved by the

presence of others. As we will see in the next chapter, Gravitas may be used to

simulate the journeys of space probes between planets. To do this the probe

must be launched and boosted into a stable orbit, then boosted into a transfer

orbit toward its target and so on. These orbital boosts, or injections, as they are

called in astrodynamics, are easiest to understand and control (both from a

theoretical and a practical point of view - see (Baker, 1967 chapter 5» if they are

tangential to the vehicle's course. This is just the behaviour boo stand

boost. back provide.

2.2.4 Dynamic Behaviour

The most striking feature of Massobs is that they are dynamic objects

which move continuously, leaving a trace across the screen. In this sense they

are descendants of Dynaturtles (diSessa and White, 1982) and sprites (Papert,

1987a). However, like sprites, and unlike all known implementations of

Dynaturtles, their dynamic behaviour is not generated at the expense of access

to the programming language. Massobs continue to move even while the user

writes and runs Logo programs which may affect them, and as they move

Gravitas keeps track of the elapsed time. This contrasts with the conventional

Turtle which remains stationary between commands and for which time has

no meaning. Gravitas makes sure that Logo is always available for use, in a

separate window, and the language has been extended with all the commands

needed to create, control and destroy Massobs.

The second aspect of their dynamic behaviour is that Massobs interact

with each other gravitationally. It is this feature which clearly sets them apart

83

from sprites. Figure 2.7 shows 10 and Europa moving around Jupiter leaving a

trace of their orbits. They were not specifically programmed to orbit Jupiter, but

were created with the appropriate initial conditions (a certain distance from

Jupiter and a tangential velocity) and they are obeying the law of gravity. All

Massobs 'know' how to feel the gravitational attraction of all other Massobs, in

the sense that they have a method which can compute it. In general there are

no workable analytic solutions to the equations of motion for systems

composed of three or more bodies, so we have equipped Massobs with a

numerical method which they use to compute their trajectories. The technique

we have employed comes from Celestial Mechanics, and is known as the

Method of Special Perturbations (Roy, 1978). Briefly, this involves integrating

the equations of motion over a suitably short time increment, updating the

position and velocity, and then repeating the process for as long as desired.

Figure 2.7 10 and Europa orbiting Jupiter

Like most numerical techniques, the Method of Special Perturbations is

subject to inherent inaccuracies. In effect, this is the price we pay for obtaining

any answer at all to a question - the so called n-body problem (Roy, 1978

chapter 5) - for which there are no general solutions. These errors are scarcely a

problem in situations where the velocity increments of Massobs are modest.

For instance, the error is insignificant in orbits of low eccentricity, where 'low'

would include all the orbits of the planets in the solar system. Furthermore,

84

when the orbits the user is interested in do become eccentric or highly curved,

the size of the errors can be reduced by shortening the time step on which the

integrations are based. This may be done by hand but Gravitas can also be asked

to perform the task automatically.

Beyond this, there are a number of strategies and heuristics which can be

used to minimise the problem of numerical errors. Many of these are to be

found in standard texts on Celestial Mechanics and Astrodynamics (e.g. Roy,

1978; Baker, 1967) and in the literature of Astrophysics. We have tried some of

them in prototypes of Gravitas but they are not included in the present version

because the gains in accuracy were not felt to outweigh the performance

penalties of the extra computation. However, this situation will certainly

change in the future, with faster computers and more efficient

implementations. With this in mind we provide a survey of the relevant

techniques in Appendix A.

Two final aspects of Massob dynamic behaviour concern what happens

when they move off screen and when they collide. On its default settings

Gravitas simply allows Massobs to move off the screen unhindered, but an

option may be selected under which objects going off screen trigger a zoom out

(see section 2.3 below) which brings them back into view. The default

behaviour in a collision is for the Massobs to coalesce to form a new object

with the combined mass and momentum of the originals. This behaviour was

chosen because it is the most physically realistic: Fragmentation is a rare

phenomenon in real collisions of planetary objects.

2.2.5 Massobs as Transitional Objects

In chapter one we introduced the term transitional object. This is Papert's

name for objects like the Turtle which, on the one hand, are easily understood

by children, and yet connect to powerful ideas. He points out that many

students have trouble in crossing the gulf between their personal, intuitive

knowledge about the world and the things in it, and the formal, theoretical

objects they are expected to learn about in school. As he puts it:

"Science is full of stuff like electrons, genes, and quasars. Mathematics is full of

the square root of minus one, or even the number 562. These are not really things

you can touch. Many children and older students have trouble when they first run

across objects like these." (Papert, 1987a, p88)

85

In Papert's view, transitional objects are rather like stepping stones which

bridge the gap between the concrete and the formal. We may help ourselves by

building our own transitional objects: in a well known passage in the foreword

to Mindstorms, Papert describes how his childhood fascination with gears

helped him grasp the formalisms of arithmetic. But in Papert's opinion, a

profound possibility offered to education by computers is that we can

"engineer" transitional objects, like the Turtle, sprites, and Dynaturtles, to suit

more tastes and situations.

However, computer engineered transitional objects seem to be thin on

the ground, a state of affairs regretted by Robert Lawler in a 1987 book chapter

(Lawler, 1987). He offers a few reasons why this may be the case, such as the

lack of a sound theory and confusing terminology. What he doesn't say

though, is that they might be very difficult to build. The Turtle seems so

simple, its workings so straightforward, that we might be excused for

overlooking this. However, in the light of our experience it seems likely that

the implementation of transitional objects for some concept areas will be a

large undertaking. For example, although Massobs appear outwardly simple,

they actually have some quite intricate machinery supporting them, and a

substantial effort went into their design and construction. Even the ordinary

sprites found in some versions of Logo are implemented by far from trivial

mechanisms which are often taken for granted.

Massobs can be thought of as transitional objects because although they

connect to the formal concepts of massive bodies from Newtonian physics, at

the same time they can be manipulated in ways that may be appreciated by

children. It is sensible to make the cognitive effort required of a learner

working with a transitional object as small as possible. In Gravitas, this effort is

reduced because the learner does not have to think too hard about the

direction of the boosts - they are consistently either co-linear or perpendicular

to the direction of travel.

Initially, a novice can be given a very simple system to look at, perhaps a

single Massob, and be encouraged to investigate the effects of the syntonic

boost commands. Later, as the learners become familiar with Massobs, they can

take more control over them. Using the mouse, children can create new

Massobs and give them names. They can vary their size and mass, and give

them a velocity. Then they can drag them around the screen, watch them

86

bump into each other, and make them go into orbits. Finally, they can write

programs which affect the behaviour of their creations. Two essential qualities

of transitional objects are that they may readily be identified with and that they

can continue to be useful, even as the learner's knowledge becomes more

sophisticated. In the next chapter we will describe some of our studies of

children using Gravitas, and they strongly suggest that learners can indeed

make this kind of progression.

87

2.3 The Space

There are a number of features of Gravitas which provide the

environment for the Massobs to exist in. We call this environment the space

and, rather like a Massob, it has a number of attributes and also a role in the

special perturbations method. Strictly speaking, the graphical interface also

belongs to the space but we will discuss it separately.

Three obvious attributes of the space are its size, the time step, and the

total elapsed time, and they are all on continuous display at the bottom of the

screen. The size is actually two things: a size on the screen and a "real" size the

space is supposed to represent. In computer graphics these are often called the

screen and problem coordinate systems respectively (Foley and Van Dam,

1982). For Gravitas the screen coordinate system is square and only a few

hundred pixels on each side. The problem coordinate system though, is as

large as the user requires for the task in hand: as big as a laboratory, or the

earth, or the solar system, and so on. Gravitas maintains a mapping between

these two coordinate systems which defines where a Massob appears and how

large it seems on the screen.

The time step is of fundamental importance to the dynamic behaviour of

Massobs. The product of the time step and a Massob's velocity yields a distance,

which Gravitas scales to the space. This becomes the distance the Massob

moves across the screen at each step of the animation process. Successive time

steps are accumulated into the total elapsed time which Gravitas maintains.

The time step also governs the evolution of a Massob's trajectory: at any

instant a Massob will be experiencing an acceleration due to the gravitational

field of all the other Massobs. This is multiplied by the time step to give a

velocity increment at each animation step.

As we mentioned in section 2.2.4, each Massob knows how to calculate

the acceleration it will experience from the gravitation of other Massobs in a

system. In fact, this capability is only half of the method of special

perturbations, as it is realised in Gravitas. The other half requires that each

Massob does the calculation exactly once per animation step. This task of

synchronisation is carried out by a special method which belongs to the space.

Of course, the synchronisation procedure has to run continuously, in tandem

with the animation process, to maintain the smooth motion of the Massobs

across the screen. But one of the basic design goals for Gravitas was that it

88

should be an unrestricted objectworld, in the sense defined in section 1.6 of

chapter 1. This means the user must have uninterrupted access to the

programming language, even while the behaviour generating mechanisms are

working. Consequently, the animation and synchronisation procedures are

run as a background task. In other words, the computer keeps them going

independently of normal processing.

Just like Massobs, we have given the space a set of commands which

operate on its attributes and control its behaviour. Thus we have time. step

and set. time. step, which respectively access and alter the value of the

time step. The command pair elapsed. time and set. elapsed. time do

the same thing for the elapsed time. The commands space. size and

set. space. size allow the user to examine and change the size, in metres,

of the space. The pair zoom. in and zoom. out also allow the space size to be

altered, but without the user having to think about actual dimensions. Finally,

the animation system is controlled by the commands start. animation

and stop. animation, and may be single stepped with the command

step. animation.

All of these commands, together with those for Massobs, will be listed and

described in a little more detail in the next section. As a whole, they form the

programming interface to Gravitas.

89

2.4 The Programming Interface to Gravitas

We have already mentioned, in the previous two sections, many of the

commands which make up the programming interface to Gravitas. Here we

will give a complete list, together with any inputs the commands require, and

say something about the way in which they may be used in programs. This

section is not a comprehensive manual for the system, but it is intended to

highlight the similarities and differences between programming in Gravitas

and in Turtle Geometry.

2.4.1 The Command Sets

For the most part, the command set for Massobs or, indeed, any other

objectworld object, derives logically from its attributes. The definition

presented in chapter 1 requires /la set of commands that allow the inspection

and manipulation of the object's attributes". This stipulation ensures that it is

possible to write a procedure for any conceivable operation on a Massob, rather

like having a set of spanners and gauges for every job on a car engine. In the

case of Turtle Geometry this has led to command pairs like setxpos and

xpos, which respectively set and return the value of the Turtle's x position.

As we will see below, we have also constructed a command pair for each

Massob attribute. Thus we have set .mass and mass, and so on.

The rest of the Massob command set comes from the definition's demand

that at least "some of these commands should act on the objects in ways that

we would expect learners to grasp with little difficulty". These are the four

coordinate independent, or body syntonic boo s t commands which we

described in section 2.2.3.

The complete programming interface is formed by the addition of the

command set for the space which the Massobs inhabit. This is logically derived

from the space's attributes, which are its size, the constant of gravitation, the

time step (which regulates the animation speed), and the elapsed time since

the system was started, plus the animation controls start, stop, step and

reset.

The commands of the programming interface are used in the Logo

interpreter which runs alongside Gravitas. This version of the language, Object

Logo (Paradigm Software, 1990), allows users to define and execute procedures

90

in one window, and observe the results in another. Figure 2.8 shows some

Turtle geometry being done in this way.

end

circlej

Figure 2.8 Separate windows for procedure definition and Turtle drawing

A conventional programming environment for Turtle Geometry is

somewhat simpler. The computer's screen switches between two modes: one

allows the construction of procedures, while the other shows the Turtle and its

actions.

2.4.2 Gravitas and Turtle Geometry Programming Interfaces

Figure 2.9 below shows the complete programming interface to both

Gravitas and, for comparison, a typical implementation of Turtle Geometry.

The greater size of the Gravitas interface reflects the fact that Massobs (and the

space they move within) have more attributes than Turtles (and the screen

they exist in).

The important thing to notice about figure 2.9 is the similar structure of

the interfaces. At the top level they both divide into a group of commands

which deal with the central objects of the systems - Massobs or Turtles, and

another group which controls the environment in which the objects are

situated - space or screen. Beneath this categorisation we can make another

distinction between commands which affect some attribute of an object and

commands which return information about an attribute. As we hinted at the

beginning of section 2.4.1, these paired commands allow for very neat

programming solutions to a host of problems, some examples of which will be

found in Appendix B. After giving some explanatory notes about the

commands of the programming interface we will finish off this section with

one or two illustrative examples.

91

I MassOb commands I
Alijuster commands

c~ input

boolt ma •• ob

boost .back mauob

boost • left mauob

boost. right IMssob

•• t.booat. •• tr.agth number

•• t. ataDdard. boost number

•• t..po. _ •• ob li.t

•• t.zpoa ma.sob number

•• t.VPOa ma •• ob number

•• t.Yel IM •• ob list

•• t.~l IMs.ob nlJlllb.r

•• t.yYel ma •• ob number .. t._.. ma •• ob n~r

•• t.. r.41u.1 ma •• ob number

.. t.~ ma •• ob name

creat ob n4lN nl .. . n6

_ ott nama

~._ •• ob ma •• ob

•• leot I@ ma •• ob

Accessor commands

boolt .ltreDgth => number

Itan4u'4. boolt => number

"". ma •• ob => list

",,0' IMs.ob => number

wo· mas.ob ~ number

".1 ma.sob => list

mol ma •• ob => number

yn1 ma •• ob => number

mot •• ob => number

red!". mas.ob => number

ma •• ob => n

I !'1Nl ... 001 1JIlllIld. I
Alijuoter commands Acce180r commands
o~ input o~ ~r.turn.d value

• tart ... ~t1OD

Itop.aa1M.t.10D

.t.ptaatloa

•• t •• l.p tt.. nwrab.r

•• t. apace •• 1.. nW!lb4tr

•• t .big.V number

soaa.1D

soca.out.

.1q __ .t~ ... nWftbe;r

lpaC •• I.t... =t n~r

bier. er .. number

OUZ'lor.pol =t list

.... obe =t list

I Turtle COIIlIIUUlds I
Adjuster commands AA:ce.uor COIIlIIUUlds
c~input

f number -
baok number -
left number -
ri,bt number -
•• txpo_ number

_.
=t number

•• typoa number WO·
_ nunJbeor

... boMl.q number
_110 .. Hat

-up -
~ -
•• tpeDColOGZ' number _1ou ~ number

I ~n commands I
Adjuster commands AcmIl80r commands
o~input c~ ~r.turnttd value

cl.aracreea -
-op -
" op -
•• tbackp'oaDdoolOQ.Z' number Mc:~oloar => nwraber

NeM: Real Turtle Geometry imDlementatiOllll normaJly contain
more rommande than _ have listed above. For instance U,e
turtle may be able to oet ite pen pattern or be asked to move
towards a particular coordinate. The commands we have given
ars simply a repreoentetive core oet .

Figure 2.9 Programming interfaces for Gravitas and a typical implementation of Turtle Geometry

2.4.3 Notes on the Programming Interface Commands

Before moving on, there are a few things we should say about the

commands which make up the programming interface shown in figure 2.9.

The boost commands have already been covered but the boost strength needs a

comment. The user can set this to any value in units of metres per second

(remembering to think of the boost as a velocity increment rather than an

acceleration) using the set. boost. strength command. Alternatively,

Gravitas can be asked to calculate a "reasonable" boost, where reasonable

means a value that will produce a visible effect on Massobs, given the current

size of the space and the time step. The command which does this is called

set. standard. boost, and it is used to set a default value when Gravitas is

first loaded, so that the whole issue of boost strengths may be ignored when

learners first meet the system.

The next feature of note is that the position and velocity may be set either

by separate x and y commands, or by the single commands, set. pos and

92

set. vel, which take a Logo list as their second input. The corresponding

accessor procedures, pos and vel, return a list when called. These functions

are simply an extra convenience and they parallel similar commands which

are part of most Turtle Geometry implementations.

The pair of commands set. name and name can be used to alter (and

inspect) the name a Massob displays on the screen. set. name should be used

with circumspection because it can break the correspondence between a

Massob's variable name and its displayed name, making programs less clear.

new. m ass 0 b is the primitive command which underlies

create .massob. It simply creates a new Massob without setting any of the

attributes. Normally, users would not find any need for it. However,

remove .massob which, as its name suggests, removes a Massob may well be

useful. The final Massob command select .massob, determines which

object has its attributes printed in the displays of the graphical interface.

The space commands, start. animation, stop. animation, and

step. animation, are mostly unproblematic, but reset deserves

explanation. All Massobs remember the values of the attributes they were

created with. When asked to reset they restore these values and redisplay

themselves. The next command, set. time. step, is straightforward, but a

glance at set. auto. time. step shows it to have two inputs - number and

when. Gravitas can be asked to control the time step to ensure that Massobs do

not immediately fly off the screen. set. auto. time. step examines every

Massob to find out which is moving fastest. It then calculates a time step which

will cause that Massob to move number pixels at each step of the animation

process. If the second input, when, is set to "now, the process is carried out just

once. If it is set to "always, the calculation is performed every step, which can

be useful when a system contains Massobs which are experiencing large

accelerations. However much the time step is altered, Gravitas continues to

keep an accurate record of the total time a system has been running and this

may be set or examined with the set. elapsed. time and elapsed. time

commands.

By default, Gravitas uses the accepted value of 6.673 x 10·n Nm2kg-2 for the

Universal Constant of Gravitation, and it is stored in the command big. g.

However, this may be changed with set. big. g if users wish to experiment

with other values. The size of the space may be controlled by two more

93

commands set. space. size and space. size. For novices to the system

though, zoom. in and zoom. out which respectively halve and double the

dimensions of the space, are easier to use. Finally, the command massobs

returns a list of all the currently defined Massobs, which Gravitas keeps up to

date as objects are created and removed.

2.4.4 Example uses of the Programming Interface

As an example, imagine we want to build a procedure which doubles the

velocity of a Massob. The following code performs the operation:

to double.velocity
set.xvel :massob
set.yvel :massob

end

:massob
2 * xvel
2 * yvel

:massob
:massob

The procedure double .velocity takes a single Massob as input. Its

first action is to use the adjuster command set .xvel to set the x component

of the Massob's velocity to twice its existing value. The process is then carried

out for the y component.

For a second example we will consider the phenomenon of escape

velocity. If a projectile leaves the surface of a planet with sufficient speed it will

never return, no matter how long we wait. The lowest speed at which this

occurs is called the escape velocity and it is given by the formula: v. = -V 2~m ,
where G is the gravitational constant, m is the mass of the planet, and r is its

radius. We can translate this into a Logo procedure using Massob and space

accessor commands:

to escape.velocity :massob
output sqrt (2 * big.g * (mass :massob) I radius :massob)

end

A couple of tries with Massobs we have already seen (in Chapter 1):

print escape.velocity :io
1807.49

print escape.velocity :jupiter
59580.7

So, the escape velocity for 10 is less than 2 kilometres per second, or about

three times the speed of Concorde. Jupiter, much more massive, has an escape

velocity of almost 60 kps. For comparison, the Earth's escape velocity is about

11 kps.

94

2.5 The Graphical Interface

We have described the programming interface first in order to highlight

the structural resemblances between Gravitas and Turtle Geometry. However,

newcomers to the system are normally introduced to the graphical interface

first, as it is far easier to learn.

The graphical interface to Gravitas duplicates the functionality of the

programming interface, in that it provides controls and numeric displays for

each of the items listed in figure 2.9. These can be seen in figure 2.10. The work

of the adjuster commands is done by buttons which allow each attribute of the

space, and the Massobs within it, to be set. The accessor commands are replaced

by small' data windows' which show the values of the attributes.

~~~fi):::tl ~ Tu .. ""( ....... , ~to 
~~~~~""iii!i ~ 

Space MassObs INewl ~emoveJ

I'" of.,,,. (a~ ' [1' In fJGiO!i!J ~ ISet-»1 ~ __ 1 Boo" J
.... r==:I

=---:.-' Nor,., ~ IBoootbICkJ
rzoommJ s.
'---c"-''''.stl'' ~~ 1 BOO.,len J

I!l 1 Boootl1chlJ

Figure 2.10 The Terran Planets

The strip which runs immediately underneath the space contains buttons

which control aspects of the animation: the first three start, stop and step the

animation process. The Reset button clears the screen and sends all the

95

Massobs back to their original positions. Next, a data window showing the

current value of the time step is flanked by two buttons, one for setting the step

directly and another for invoking the automatic mechanism described in the

last section. Finally, a button and a data window allow the total elapsed time to

be set and read.

At the bottom left of figure 2.10 are the buttons which control the size of

the space. The current value is shown beside the Set button. Another data

window displays the position of the cursor in space coordinates when the

mouse button is held down. This feature allows the user to measure things on

the screen, such as the diameter of an orbit or the position of an impact.

To the right of the space buttons is the Massob controller. The currently

defined Massobs are all listed in the scrolling window on the left which is the

analogue of the accessor command massobs. Clicking on a Massob in the list

selects it, and in figure 2.10 the Earth is the se 1 e et e d . ob j e et.

Consequently the values of the Earth's attributes are displayed in the six

numeric displays immediately right. Each numeric display has a corresponding

button which allows the relevant attribute to be set.

The New button allows new Massobs to be created, which then appear in

the square data window underneath until all of their attributes have been set

and they move into the space. The Remove button erases the currently

selected Massob. Finally, at the far right lie the cluster of four Boost buttons,

which also act on whichever Massob is selected.

In the present implementation of Gravitas, some of the functions of the

programming interface do not appear in the main window. Instead the button

equivalents of set. boost. strength, set. standard. boost,

set. name, and set. big. g, and their corresponding accessor commands

appear in a concealed auxiliary control panel which can be brought into view

by a menu operation. The original reason for this separation was to protect

novices from some of the complexities of the system. However, our

experiences of using Gravitas with children indicate that this is probably

unnecessary and so this is a feature which may change.

96

2.6 The Direct Manipulation Interface

We now describe a third and final way of operating Gravitas. This last

interface is not a complete substitute for either of the others, but it does render

the construction of Massobs even easier than pressing buttons. It allows users

to set the six physical attributes of a Massob directly, without recourse to

buttons and with no need even to type in numbers.

Shneiderman, (1982) introduced the term Direct Manipulation to describe

interfaces which allow the user to operate on a convincing representation of

the material of interest, using straightforward actions rather than indirect

commands. The obvious examples are 'What You See Is What You Get' editors

which present an image of a document on the screen that is as close as possible

to the printed appearance, and which allow editing to be carried out with the

mouse. In this sense, Gravitas has a Direct Manipulation interface to Massob

attributes.

First of all, the position of a Massob can be set by "picking it up" with the

mouse and dragging it around the screen. Next, while a Massob is in the square

data window at the bottom right of the control panel, its velocity may be set by

"rubber banding" a vector with the mouse. That is, while the mouse button is

held down a line is drawn from the centre of the Massob to the cursor position

and the length and direction of this line are used to compute a velocity. Lastly,

if the option key is held down at the same time as the mouse button, then

instead of setting the velocity it is the Massob's radius which is varied. The

Massob grows and shrinks as the mouse is moved away from and nearer to its

centre. Doing this also varies the Massob's mass, using its current density to

calculate the value.

The Direct Manipulation interface does not replace the buttons and data

windows, it augments them. It is acknowledged (Hutchins et aI, 1986) that

Direct Manipulation interfaces have their limitations, the most serious of

which, for Gravitas, is the problem of representing variable quantities with

precision. The attributes of Massobs can range over many orders of magnitude,

from a tiny particle to a giant star. For example we may wish to define a

satellite weighing a few tens of kilograms and a planet whose mass is around

1025 kilograms, and both of these quantities may be known with great precision.

This kind of situation is unwieldy for the Direct Manipulation approach, and

whenever accuracy is required in Gravitas, users will employ the buttons of

97

the graphical interface or the programming commands. Figure 2.11 shows the

Massob commands which do have Direct Manipulation equivalents.

I MassOb commands I
Adjuster commands Direct Manipulation Equivalent

boost -
boost.back -
boost. left -
boost.right -
set.boost.strength -
set.standard.boost -
set.pos } set.xpos MassObs may be dragged into

position with the mouse.
set.ypos

set.vel } While a massOb is in the small
set.xvel window, a velocity vector for it

set.yvel may be drawn with the mouse.

set.mass } In the small window, the radius
may be set with the mouse. This

set.radius indirectly sets the mass because

set.name
density is held constant. -

create.massob -
new.massob -
remove.massob -
select.massob Clicking on a massOb selects it.

Figure 2.11 Direct Manipulation Equivalents for Massob adjuster commands.

98

2.7 The Utility of Multiple Interfaces

Why, it is reasonable to ask, have we gone to the trouble of installing two

functionally identical ways of managing the system? The proper answer to this

question will be given in chapters 3 and 4, but we will summarise it here.

Originally, there was no graphical interface to Gravitas. The system was

operated entirely through programming interface commands typed into the

Logo interpreter just like conventional Turtle Geometry. It was understood, of

course, that this mode of operation placed a hurdle in the way of novices, and

the relatively large number of commands together with the need to consider

the inputs to those commands was seen to have a deterrent effect on users of

the prototype. In fact a similar, though less severe, phenomenon has been

observed for Turtle Geometry, and in consequence various attempts have been

made to "lower the threshold". For instance the researchers on the Craigmillar

Logo Project (Hughes and MacLeod, 1986) provided young children with a

system called STARTER. This allowed them to drive a Turtle with single

presses of the keys F, for forward a set amount, B for back, L for left 90

and R for right. After a few familiarisation sessions the researchers added

more features to STARTER until the children were, in effect, programming

the Turtle. They stopped short, however, of actually getting the children to

define true procedures.

Inspired by examples such as the above, we decided to create an easy to

use, "instant" interface for Gravitas, and the present graphical interface is the

result. We envisaged that this would be the medium for a user's initial work

with the system but that it would give way to the construction of programs as

confidence increased.

However, we have discovered that while the amount of programming

does rise with familiarity, there is little or no reduction in the use of the

graphical interface. In fact there seems to be a synergistic effect between the two

interfaces which allow students to take on more complex projects than would

otherwise be the case.

For example, we have studied children developing Logo programs that

control the system (via the programming interface) to achieve a long term

goal, such as getting a rocket from the Earth to the moon and back. There is no

practical analytic formula for this journey, but, with appropriately timed

99

boosts, Gravitas can carry it out. In principle, the mission could be developed

using either one of the interfaces on its own, but in practice it would be very

difficult. The reason for this is that the journey has to be split into stages: a

launch phase, then a boost into a circular orbit, a transfer orbit to the moon,

and so on. The boosts which control these stages have to be accurately

controlled both in their strength and their timing. Used together, the graphical

interface allows the rapid testing of varied boost strength and timing at the

various critical points in the mission, while the concreteness of programming

allows correct sections of the mission to be "frozen" into procedures so that the

complete solution may be approached incrementally.

100

2.8 Alternative Syntonic Commands

As we hinted in section 2.2.2, the boost commands boost, boost. back,

boost. right and boost .1eft are not the only way syntonic commands

could have been implemented for Massobs. They do permit a simple

explanation: boosts always act either along the line of, or at right angles to a

Massob's trajectory. This means the learner does not have to think so hard

about the direction they are applying accelerations. A further reason they were

selected was because they proved very useful in orbital mechanics.

However, in other settings, for instance a system where gravitation may

be considered insignificant, other syntonic commands might be thought

appropriate. One such set of commands installed in Gravitas added another

attribute to Massobs - a boost heading indicated by a small arrow pointing from

the Massob's centre - which is independent of the direction in which the

Massob is travelling. Naturally, this new attribute had commands to set and

inspect it: set .boost .heading and boost. heading. But the relative

commands rotate .boost .1eft and rotate .boost. right were also

added. With this arrangement, Massobs behave like the Dynaturtles described

by diSessa and White (1982) although Gravitas allows them to be programmed

while still moving and, of course, if there are two or more Massobs, and they

are massive enough, then gravitational forces will visibly affect their motion.

Figure 2.12 illustrates the simplest case.

MassOb's

'. '. '.

Boost heading
and strength

'. '. '. '. '. '. '. '.

New velocity
afterbooBt

....... . '. . '. . '. .#' ,.'

'. '. '.

Figure 2.12 The alternate boost commands used in a prototype of Gravitas

'. '. '. '. '. '. '. '.

Another version of the boost commands which we tried out differed

slightly in the implementation of boost .1eft and boost. right. Figure

2.13 below (based on a magnified detail of figure 2.6) shows that the standard

perpendicular boosts actually increase the speed of a Massob as they rotate its

velocity vector. In other words, the velocity vector gets longer:

101

Vboost
Voldi """,,,

Vboost

a Vnew
VoId"

• Vnew

Figure 2.13 The standard boost. right and a speed conserving version used in a Gravitas prototype

The right hand diagram shows a modified boost. right which actually

leaves the speed unchanged. Due to lack of time, we did not try this form of

the commands in any of our formal studies. However, a comparison of the

different schemes might be an interesting experiment for the future.

A key feature of Gravitas is that anyone who is reasonably proficient in

Logo can implement other kinds of boost, or entirely different syntonic

commands, because they are built on top of the general commands for

manipulating the attributes of Massobs. In this sense, Gravitas is an open

system. For instance, imagine we want to arrange that a Massob uses up "fuel"

with each boost, like a real space vehicle. This could be accomplished:

make "boost.mass 100
make "minimum 1000

to new.boost :vehicle
if mass :vehicle < :minimum [print [Out of fuell]

stop]
boost :vehicle
set.mass :vehicle (mass :vehicle)

end
Figure 2.14 Logo code to implement a fuel using boost.

:boost.mass

The constants boost .mass and minimum state how much fuel a boost

uses and how much the empty vehicle weighs. Once the procedure

new. boost is defined it can be used just like any other command.

Not all users of Gravitas would be able to extend it in this way because of

the level of programming required. In the same context, Smith (1987)

identifies two classes of user for his system, the Alternate Reality Kit. - "The

applications-level user might typically be a student carrying out a simulated

lab. At a lower level the simulation builder is the creator of a particular

application". Clearly, Smith hoped that people would be able to build their

102

own components and systems within ARK. However, the obstacles in the way

of this were quite severe: prospective simulation builders would need to be

relatively skilled Smalltalk-80 (Goldberg and Robson, 1983) programmers and

would have to concern themselves with the detailed implementation of ARK

objects. These difficulties are much reduced in Gravitas, where the

programming language, Logo, is popular and well known, and the well

defined programming interface means that implementation details of Massobs

can be ignored.

103

2.9 Summary

We have described Gravitas, a Discovery Learning Environment for the

topic of Newtonian Gravitation which allows students to examine the

dynamics of gravitating objects called Massobs, which move within a two

dimensional space.

Massobs are completely defined by the values of their attributes: position,

velocity, size, mass and name. Users are free to alter these attributes directly

but another set of commands, which apply boosts to Massobs and thereby

change their state indirectly, have been installed in Gravitas. These syntonic

commands are intended to provide links to sensori-motor knowledge about

pushing which even young learners will bring to the system. They parallel the

well known Turtle Geometry commands for which Papert has provided a

similar justification.

Massobs also possess mechanisms which generate their particular

behaviour. Specifically, they have a method by which they can compute the

effect on their trajectory of the gravitational pull of all other Massobs. The

Method of Special Perturbations, as it is known, is a numerical technique

which allows us to circumvent the lack of general analytic equations of motion

for systems composed of three or more masses.

Papert has often described the Turtle as a transitional object which can

help children cross the gulf between their personal everyday knowledge of the

world and the formal systems we expect them to learn. We have followed his

example and characterised Massobs as transitional objects for some of the

concepts of Newtonian physics. In this sense, Massobs are partners for the

Turtle.

Gravitas has been equipped with two functionally equivalent interfaces.

The first is a straightforward programming interface consisting of Logo

extensions which are analogous to the commands of Turtle Geometry. The

second interface is purely graphical, operated by mouse clicks and drags. It

combines the Direct Manipulation of Massobs, for ease of use and speed, with

buttons and numeric displays for precision. Although the graphical interface

was originally added to Gravitas purely to increase its ease of use, during

practical studies we have found indications that a synergy between the two

104

interfaces allows learners to make better progress than would be the case were

only one present. We will have more to say on this in chapter 3.

Finally, we have shown that Gravitas is an open system, which anyone

proficient in Logo programming may augment or modify. For example, new

syntonic commands, which replace the standard boosts, may be installed with

little difficulty.

105

3 Gravitas in use

3.1 Overview

In this chapter we describe observations we have made of learners using

Gravitas. To date, we have carried out studies of six school students aged

between 13 and 18. The subjects were video taped as they worked at the

computer assisted by the researcher. In two of the studies the students worked

alone, while the other four students worked in pairs. Each study typically

lasted five to six hours.

We have also made informal studies of seven adults. These subjects each

used Gravitas for about two hours. Notes were taken during their sessions and

the system transcript of their actions was preserved, but they were not

videotaped.

These studies were not intended to measure cognitive changes in

learners, or to contrast the "Gravitas way" of learning a physical concept with a

traditional approach. While many such experiments have been carried out for

Turtle Geometry, (for instance (elements and Gullo, 1984) and (diSessa and

White, 1982» it was felt to be premature for such a programme to be tried with

Gravitas. We wished to begin by examining the nature of the educational

activities Massobs could support. We knew that Massobs could be manipulated

by hand or by Logo programs, and that they could be assembled into gravitating

systems. These were the aims of the design. But we wanted to find out what

kinds of systems learners actually could build, and what sort of programs they

could write.

In many ways this aim parallels some of Papert's earliest investigations

with the Turtle. For instance in Twenty Things to do with a Computer (Papert

and Solomon, 1971), the authors describe a range of possible uses for the

Turtle, many of which have been the departure points for subsequent research.

Although the paper contains anecdotal information about children engaged in

these exercises, there is no discussion of cognitive effects and no formal

comparison with traditional methods of teaching. Rather, Papert and Solomon

set out to show the scope of the new computational object.

Our approach differs from Papert and Solomon's in that we will be

describing relatively few activities, but in greater depth. In fact, we have chosen

106

to transcribe, with detailed annotations, video recordings of just three different

activities: The construction of Massob systems, the explanation of their physics,

and the writing of programs to manipulate them.

However, at an early stage of the studies we began to notice two

phenomena which shaped the investigations thereafter: first of all, we found

learners were often surprised by the long term behaviour of Massob systems of

their own construction. Second, we observed that users were taking advantage

of a synergy between the graphical and programmable interfaces, which

enhanced the human-computer interaction and allowed the users to take on

more complex tasks than would otherwise have been the case. The annotated

transcriptions which follow will highlight these phenomena.

107

3.2 Constructing a System

3.2.1 The Task

Subjects were videotaped as they used Gravitas to work on tasks set by the

researcher. As an introduction to the system the subjects were shown a pre

defined orbital system (see figure 3.la) and they were given between 5 and 10

minutes to familiarise themselves with the various buttons and displays. They

were then presented with an empty space and asked to construct a system

representing the Earth being orbited by the Moon. Figure 3.lb shows the

appearance of the empty Gravitas space they were given.

Figure 3.1 a A typical orbital system Figure 3.tb An empty space

From previous experience we expected the subjects to be surprised by the

behaviour of the system they constructed. The reason for this lies in the

method people commonly choose to build orbital systems. They put one

stationary Massob at the centre of the space and then position the second

Massob some distance away, with a velocity tangential to the first. When,

either by trial and error or by calculation, they get this tangential velocity

correct, the result is a circular orbit. Or so it seems at first. Sooner or later,

depending on the mass ratio of the two objects, this orbital system begins to

move through space, in the same direction as the second Massob's initial

velocity. The central Massob, which was created to be stationary, has taken on a

108

velocity. Figure 3.2 shows an example of this orbital procession, which usually

surprises even those users with a solid background in school physics.

Figure 3.2 Orbital Procession

The procession occurs because of the initial conditions the subjects give to

the two bodies they create. The initial momentum vector of the system is due

entirely to the second Massob. In the absence of external forces the Law of

Conservation of Momentum tells us the system's total momentum must

remain the same at all times. Therefore, as the second Massob swings around

the first, rotating its momentum vector, there must be a compensatory change

in the momentum of the central object. At any point in time these two

momentum vectors must add up to the original quantity.

The resolution of this surprise formed the second part of the task set to

the subjects. We were not looking for a clear, formal explanation along the

lines we have given above, because some of our subjects were not very

familiar with the Law of Conservation of Momentum. Furthermore, those

subjects who had learn d about the Conservation Law had done so in rather

abstract, r ctilin ar c ntexts where there are no forces acting. Instead, we

wished t if they c uld construct an initial state such that procession no

longer occurr d.

109

To help them start the task, subjects were given a brief table of relevant

astronomical data - the mass and radius of the Earth and the Moon, and their

average separation. Also, the size of the space they were given was deliberately

set to that of the Moon's orbit. All of the subjects, including those with very

little background in maths, were familiar with the idea of x and y coordinates

for position, although as we will see some confusions arose when they tried to

consider the x and y components of a velocity.

The researcher's role in the studies was not passive. Guidance was given

at several points with the intention of encouraging the subjects to make the

major insights for themselves. In the transcripts which follow, all the

important remarks and hints offered by the researcher are included.

We begin with a transcript of a pair of users carrying out the task. The pair

chosen are those who had the most difficulty in completing it, a sixteen year

old male and a female of eighteen, both of whom are taking predominantly

arts subjects at school.

3.2.2 Creating a Massob System: Transcript 1

After a ten minute introduction to Gravitas the subjects were asked to

begin the task. They quickly found the New button and used it to create a

Massob which they called "Earth". This was dragged out of the factory into the

centre of the space. The New button was used again to create another Massob

called "Moon" and this was also dragged onto the screen, up and across from

the Earth.

Tim: "Do you have to do it like real life?"

Researcher: "Yes, they have to be the real numbers."

Tim: "So we have to work out the radius on these? [points at the
buttons] We click on the radius and type it in?"

At this point they decide that one of them, Tim, will control the mouse

and that Nicola will operate the keyboard. Tim clicks on the Radius button,

Nicola reads the value for the Moon from the table and types it in. They repeat

the process for the Moon's mass:

110

Nicola: "So we do the same for the Earth

now?"

R: "Yes, just the same."

They set the radius and mass of the Earth then

Tim clicks on the Start button. The Massobs

begin to move. Figure 3.3

N: "They're heading straight for each other!"

R: "50 why do they do that?"

T: "It's the gravitational force pulling them

together."

R: "But the Moon doesn't fall in real life.

What keeps the Moon up there?"

T: "Oh dear, what's it called when it goes

round ... so, do we have to put the force in Figure 3.3 Earth-Moon system with no orbital velocity

there?"

R: "Not a force."

They decide to put in a velocity of 2000 metres

per second in the x direction (i.e. away from

the Earth) believing this will balance the

Earth's attraction. The Moon flies rightwards.

Figure 3.4

N: "It's going off the page isn't it? Stop it."

R: "So what do you think about 2000?"

N: "A bit big."

R: 11 But what about the direction?"

T: "Ah, we haven't set the y one have we?

We've got to t both of th m. It's got to be

the same hasn't it, I guess. No, that'U do a

squar . If they're both zero that'll keep

the same distance, er ... "

Figure 3.4 Moon with initial x-velocity 2000ms- 1

111

They appear to be rather confused about what velocities to try so the

researcher makes a suggestion:

R: "If you point on the screen where you think

you want it to go then it's easier to work

out what the velocities should be."

T: [Points out a tangent] "X about lOO, go down

about 150. No, we want -150."

They start the system. Moon falls toward

Earth again after a small wiggle.

R: "What conclusion do you draw from that?"

N: "We need the number going that way

bigger. The x number."

They set x vel to 250, y to -150. It falls in.

IN: "It's a bit better."

They set x vel to 1000, y to -250. Figure 3.5

N: "That's a good circle, if not big enough. It's

L---=:b.,::e..:.,:tt.,::er:..:.._" ___________ -.I Figure 3.5 Initial x-vel lOOOms- 1 • y-vel -250ms- 1

At this point it becomes apparent that Tim is confusing velocity and

position so the researcher points this out to him. Tim quickly realises his

mistake. The researcher also gives them another hint:

R: "Can you think of a way to make your job simpler? You have
the Moon up and away from the Earth at an angle so you
have to set two velocities all the time."

N: "So if we moved the Moon down next to the Earth ... "

R: "How does that help you?"

N: "Then we don't have to do the x."

T: "We could also do it there [points to 12 o'clock] and wouldn't
have to do the y one."

They use the Y Position button to set the Moon's y coordinate to 0, level

with the Earth. Both subjects begin to feel that there should be a better way of

proceeding than trial and error:

112

T: "Is there a formula?"

R: "Yes ... "

N: "Has it got something to do with the distance from the Earth
to the Moon?"

T: "And its mass?"

R: "Yes, but you also have to know how long it takes for the
Moon to go round the Earth."

T: "Do we have to work out pi?"

N: "I think we should try working out the formula ... "

T: "What's pi?" [he is having trouble attracting the researcher's
attention]

N: "The circumference is ... "

R: "The formula for the circumference is 21tr."

T: "We're going to have to work out the radius. Oh, the radius is
the distance [looks at the table of data] ,4 x 108."

Nicola uses the calculator to work out 2 1t X 4 x

108: the circumference of the Moon's orbit

R: "That's the distance around the Moon's

orbit and it takes 28 days."

T: "50 it's 28 days divided by that."

R: "That divided by 28, but we want it in

seconds."

Nicola uses the calculator to work out 28 x 24 x

60 x 60, the Moon's orbital period in seconds,

then divides the circumference by it to get

1038.8864ms-1.

T: "So w '11 put that in the y-velocity."

N: "Round it up b cause it won't all go in

The Moon move in an anti-clockwise ellipse

~CY2El -OEJ~ I!I _-
around th Earth. Figur 3.6 Figure 3.6 Moon's initial position wrong.

113

R: "Can you imagine why it's not right?"

T: "We haven't set the distance between

Earth and Moon!"

They set the distance to the correct value and

get a circular orbit. At this point they are

surprised to find that the system they have

built moves up the screen. Figure 3.7.

T: "The Earth is moving. It shouldn't be

moving at all!"

N: "Why is the Moon doing that? Why is the

Moon going different circles?"

They continue to express their puzzlement as

the Earth and Moon progress up the screen.

Figure 3.7 The orbital procession 'surprise'.

After allowing them some time to ponder the unexpected phenomenon,

the researcher begins an attempt to lead them to an understanding:

R: "Think about what's going on as the Moon

goes from the three o'clock position to the

twelve o'clock. Imagine you were swinging

a bucket around on your arm, what would

you feel?"

T: "Pressure ... getting heavier at the bottom

and lighter at th top."

R: "But there is no bottom or top. This is space.

It helps to think of quarter turns."

R: "What is causing the Moon to move like

this [indicates its curved orbit]"

T: "Gravity."

N: "So is the Moon's pulling the Earth?"

R: "Yes, that's part of it."

Figure 3.8 Resolving the 'surprise': the first quarter.

114

T: "So the Earth isn't big enough?"

R: [Laughs] "Well, if the Earth was infinitely big it wouldn't
move."

N: "We can't change its mass though."

The dialogue hints at the problem of applying sensori-motor knowledge,

which is learned on the Earth's surface, where gravity acts downwards and our

feet are solidly placed, to motion in space. The researcher begins to lead them

to discover a way of stopping the system from processing up the screen.

R: "Can you think of a way of keeping them in

the same place?"

T: "Make them further apart?"

R: "No, that won't work."

They decide they want the Moon to orbit

Earth clockwise so they reverse the initial y

velocity.

R: "Go from 3 o'clock to 6. Now where do you

think it will be pulling the Earth?"

T: "Downwards." [Figure 3.9]

N: lilt's moving in a little circle on its own."

[points at the Earth]

R: "It's not actually a circle. Can you think of

a way of turning that into a circle?"

N: "Setting its value so it goes round in a

circle. "

R: "Which particular value?"

N: liThe Earth's velocity."

Figure 3.9 Resolving the 'surprise': clockwise orbit.

115

T: "Earth's velocity. The Earth's velocity is

not very strong so the Moon is taking it. It

should have a higher velocity."

N: "So its velocity ... "

T: "The Earth's velocity should be the same as

the Moon."

R: "But look how fast the Moon is going."

T: "Let's try 100."

They give the Earth a y-velocity of lOOms-I.

It travels upwards. Figure 3.l0a.

IN: "That's totally wrong."

They decide to try lms-l.

IN: "No ... same as before ... "

The motion is almost the same as their

original try. Figure 3.l0b.

They decide to try lOms-l.

N: "Tiny little circle ... "

R: "That's pretty much it. [Figure 3.l0cr

lOms-1 is quite clos to the actual value of 12.7

which will produc quilibrium.

Figure 3.10 Getting Earth's y-velocity right.

116

The researcher explains to them that it is

possible to calculate the required velocity

(
vmmmJ using the formula ve = - fie

They use the calculator to do this and create a

system in equilibrium. Figure 3.11.

R: "Can you explain in your own words why it

is staying in one place?"

T: "It's staying in line. Its like two little

circles and when the Moon is on that side

the Earth is on the other.

3.2.3 Discussion

Figure 3. 11 Equilibrium conditions.

The session we have describe above took around one hour and fifteen

minutes to complete. In a sense the subjects have "solved" the problem.

However, their solution is very different from the kind we are used to in

physics. By trial and error (and with some assistance) they found a way to fix a

"bug". Of course, a traditional, formal explanation would use mathematics

and, like our discussion at the beginning of this section, be expressed in terms

of momentum conservation and the system's initial conditions. Nicola and

Tim have not made the insight that the total momentum of a system remains

constant over time, and therefore only an initial momentum of zero can give

rise to a stationary centre of mass. On the other hand, they have constructed a

system wh r such is (almost) the case.

Neith r Nicola or Tim took school physics to GCSE level and this showed

in their confusion of terms such as position, velocity, force and gravity.

Although the opportunity was not taken in the study, Gravitas does provide

an environment for correcting these kinds of misconception, in the context of

systems which the subjects have constructed themselves.

117

3.2.4 Creating a Massob System: Transcript 2

Our second transcript is of an 18 year old school student who specialised

in physics and mathematics at A level. This subject has a strong interest in

astronomy and he already knew the radius of the Earth and the distance to the

Moon. Because of this he found the construction of the Earth and Moon

Massobs and the setting of their values quite straightforward. He was also quite

familiar with Conservation of Momentum, within the contexts treated in

school physics. Nevertheless, he was quite surprised when he noticed the

orbital procession. His efforts to explain the motion to himself were successful,

and he went on to discover how he could modify the initial conditions in such

a way that the centre of mass remained stationary. It is the transcript of his

explanation and discovery that we will concentrate on here.

The subject Simon, has already constructed the Earth and Moon Massobs

and has noticed that the system as a whole moves down the screen:

R: "Can you think why they are moving down

like that?" [Figure 3.12]

5: "You've actually got it so that the gravity

of the Moon is affecting the Earth?"

R: "That's certainly true. A 11 the

gravitational forces are computed by

Gravitas."

5: "There's nothing else causing it to move?"

R: "No."

Figure 3.12 Simon's encounter with Orbital Procession

l18

R: "I'll talk you through it and get you to

explain it to your own satisfaction. What

are the initial conditions, of the Earth?"

s: "Zero."

R: "And the Moon?"

s: "Minus 1000."

R: "Let the Moon go from 3 o'clock to 6 ... What

will the Moon have been doing to the

Earth?" [Figure 3.13]

s: "It will have pulled the Earth by an

amount equal to the ratio of the masses."

R: "What has it done to Earth's velocity?"

s: "Increased it."

R: "Take the Moon to 9 o'clock. What will

that have done?"

s: "I'm not sure exactly. The across velocity

from 3 to 6 will have been cancelled out?"

R: "Right, what about the pull on the Earth

during the whole of that semi-circle?"

s: "It'll have given it a downwards velocity.

The x-compon nt is balanced out." [Looks

at Earth's value on the displays and sees

that th x-v locity is indeed very small.

Figure 3.14

Figure 3.13 Earth at 6 o'clock position.

Figure 3.14 Earth's x-velocity close to zero

119

s: [Takes Moon to 12 o'clock] "This will have

the effect of slowing it but giving it greater

negative x."

S: [Takes Moon to 3 o'clock] "This should

reduce the y to zero and take it back to

rest. Well, sort of rest anyway." [He

checks the values and finds the Earth is

almost stationary. Figure 3.15]

R: "Good. You've just talked through the

forces that have acted on the Earth ... But

now think about the initial conditions

again. What velocities are there in the

system?"

S: "Zero and 1000."

R: "What could we do so that we got things

running on the spot?"

S: "Spin the Earth?"

R: "We can't have spin."

S: "It wouldn't work would it? Giving the

Earth a sort of negative momentum?

Opposite to the one you've got for the

Moon?"

R: "How about trying that?"

S: "1 need to figure out the values. It's 1000 and

the mass [of Moon] is that, so it needs to be

7.353E25 divided by that [mass of Earth],

5.98E24 ... "

H uses the calculat r and obtains 12.296. Sets

Earth's v locity and tarts the ystem. The

orbit no long r pro

Figur 3.16.

es down the screen.

Figure 3.15 Earth almost stationary

Figure 3.16 Earth orbiting the Centre of Mass

120

R: "Why not try zooming right in ... " [Figure

3.17]

s: "Oh, it's a circle ... "

R: "And what is interesting about the centre of

that circle?"

s: "It's the centre of mass."

R: "Yes, and it is beneath the surface of the

Earth."

3.2.5 Discussion

Figure 3.17 Close-Up of Earth orbiting Centre of Mass

Simon spent just over forty minutes on the sequence described above. As

the transcript shows, he found it quite easy to think his way through the

Orbital Procession Surprise even though he was not expecting it. His intuition

about giving the Earth a momentum equal and opposite to the Moon to create

a stationary system was swift and accurate, suggesting that he already had a

good grasp of the formal concept. In this instance, Gravitas was giving Simon

the opportunity to apply his prior knowledge to construct the solution of a

problem. Examining the transcript now, it seems regrettable that the line of

investigation wa not continued, to examine Simon's understanding of the

physics more d eply. For example, the path of the Earth around the centre of

mass is not actually a perfect circle but an ellipse, and he may have been led to

discover this. However, in the event, Simon was asked to undertake a

different task, and time restrictions meant we could not return to the Moon

Earth system.

121

3.2.6 A Second Look at Surprises

We have shown that both scientifically naive and experienced learners

can construct simple gravitating systems and then be surprised by their

behaviour. What Gravitas provides is a new medium for thinking about and

playing with such situations. One of our hopes for Gravitas is that this way of

looking at physical problems can be a useful preparation for the more abstract,

mathematical treatments. Investigation of this possibility is obviously an

important line of research for the future, as we will make clear in chapter 7,

but there are also grounds for believing this "concrete" method of dealing with

difficult concepts has its own intrinsic worth. In fact, such a belief has been a

common thread in Papert's work and he has recently made a strong plea that

educators should assign equal value to both concrete and formal "ways of

knowing" (Turkle and Papert, 1990). This discussion is of relevance to Gravitas

and we will return to it in chapter 6.

We have another reason for being interested in "surprises" like the

orbital procession described in the dialogue above. In the early days of Turtle

Geometry researchers discovered that even quite simple programs could cause

the Turtle to produce strange and beautiful patterns. Abelson and diSessa

(1980, p20) refer to the "surprising" behaviour of a small procedure called

inspi. Figure 3.15 gives two illustrations of this procedure (translated from

Abelson and diSessa's notation into modern Logo).

~.Pi 3 10

to :s
forward :side right :angle
inspi :side (:angle + :inc) :inc
end

Figure 3. 1 The inspi procedure (Abe\son and diSessa, 1980, p20)

Far from being just trivial squiggles on the screen, patterns like those in

the figure are used by Abelson and diSessa as the gateway to a host of theorems

about the mathematics of Turtle Geometry. In fact, Abelson and diSessa's book

presents a substantial mathematics curriculum in which conventional proofs

and lemmas are mixed with innovative procedural demonstrations (Logo

122

procedures, that is) of important theorems. In view of this, we wondered if

Gravitas could exhibit analogous surprises which could form a basis for

investigations into physics with Massobs. The orbital progression surprise, and

others we have found, show that it can. The development of a programme of

Massob centred physics, comparable to the mathematics curriculum of Abelson

and diSessa's book, is beyond the scope of this thesis. We have demonstrated,

however, that Gravitas does have the potential to support such a project.

12

3.3 Constructing a Program

3.3.1 The Task

As we noted in chapter 2, Gravitas did not originally have a graphical

interface. This was added later, with the intention of making Gravitas easier to

use. We expected that learners would at first rely upon the graphical interface

and then, as they became used to the system, carry out more of their work

through programming, leaving the buttons behind. A similar progression is

often encouraged in Turtle Geometry: children are at first taught to drive the

Turtle around the screen using single Logo commands or "instant keys" but

they soon advance to write programs which create more complex drawings.

However, with Gravitas we discovered that although the amount of

programming did rise with familiarity, there was little or no reduction in the

use of the graphical interface. In fact there seemed to be a synergy between the

two interfaces which allowed the students to take on more complex projects

than would otherwise have been the case.

Figure 3.19a A R ket falling back to Earth Figure 3.) 9b A Rocket boosted at apogee

To examin how learners could actually exploit this synergy, we decided

to inv nt a task which would be difficult to perform without using both

interfac . In an arly study we had observed users launching a "rocket"

Mass band b ting it int rbit around a Massob representing the Earth. This

124

task can be carried out using just the graphical interface. First the two Massobs

are created and given appropriate masses, then the rocket is given a velocity

which takes it to a substantial height above the Earth (Figure 3.19a). Finally the

user must discover that to achieve circular orbit a specific boost must be given

to the rocket at its apogee (Figure 3.19b).

We realised that a sequence of such manoeuvres could be combined to

form a journey to the Moon and back, similar to the Apollo missions of the

late 1960s. However, we also saw that the construction of the sequence would

be difficult using the graphical interface alone. The difficulty arises because

each new stage in the journey must be built onto a "debugged" prior stage. A

boost which sends the rocket towards the Moon must be preceded by a boost

which successfully sets the rocket into circular orbit around the Earth. In turn

this must be preceded by a successful launch. The boosts which initiate each

stage of the journey must be accurate in their strength and timing, and as there

are no straightforward mathematical formulae to help plan such a mission,

the easiest way for learners to determine the correct values is by trial and error.

To try a particular boost at one of the later stages of the mission requires the

learner to "replay" each of the previous stages correctly.

There are several ways around this problem. With Gravitas in its present

version the user can save a system to disk at any point, so a sequence of

debugged stages could be created, saved, and finally replayed. A critical

drawback to this approach is that the construction of the mission is not always

linear. Sometimes the success of a late stage can only be achieved by the

modification of one much earlier (a possibility offered by Gravitas but not

available to the Apollo astronauts) which would force the user into some

contorted file handling.

Another possibility would be to add a scripting button to Gravitas'

interface, which the user could press to record a correct stage. However, to

overcome the problem of non-linearity we would also have to add a means to

edit the scripts, and therefore some kind of executable notation for them.

The clearest and most natural solution is to write a program to control

Gravitas via the programming interface. The programming medium is

standard Logo and debugged stages can be encapsulated in procedures. Used in

tandem, the graphical interface allows the rapid testing of varied boost strength

and timing, while the repeatability of the programming interface allows the

125

overall solution to be approached incrementally. The user can incorporate

zooms into the program to control the detail of what is visible on the screen,

and the time step may be manipulated to control the rate at which the mission

replays. At the end, the user is left with a single definite item, a program,

which controls Gravitas to produce a moving picture of the mission. Later, the

user can return to the program and modify or extend it. The transcript we

present below is a detailed record of two subjects creating such a program,

using the graphical interface at critical points.

3.3.2 A Mission to the Moon: Transcript 3

Joe and Dan are 13 year olds who take a broad range of subjects at school

and have not yet specialised in science or the humanities. Although they do

not use computers at school, Joe and Dan both have home computers and are

familiar with keyboards, mice, and graphical interfaces. However, neither of

them had any prior experience of Logo or programming. Nevertheless, they

took only a few minutes to learn how to operate Gravitas. As with the two

studies described above, they began work by constructing Earth and Moon

Massobs and discovering the correct orbital conditions. As usual, they were

surprised by the orbital procession, but eventually explained it to themselves

satisfactorily once the researcher had led them to consider the forces acting

over each quarter revolution. They were then asked to begin the task described

above: launch a rocket from the Earth and fly it out to orbit the Moon.

Although they have no particular interest in astronomy, Joe and Dan

were aware of some relevant details of the Apollo missions to the Moon. For

instance, they knew that the journey to the Moon started from an orbit around

the Earth rather than directly from a ground based launch. Accordingly, they

decided to create a rocket, place it at the twelve o'clock position on the Earth's

surface, and experiment with different values for its launch velocity. Using the

buttons of the graphical interface they set the mass and radius of the rocket to

reasonable values (1000 kilograms and 10 metres) and began to think about

values for the x and y velocity components.

After a short discussion they decided to give the rocket equal velocity

components because then it would "go at 45 degrees". We begin the transcript

at this point. Figure 3.20 shows the rocket having been launched with x and y

velocities of 7000 metres per second.

126

They press Start. As the rocket travels away

from the Earth the researcher asks what they

imagine will happen.

R: "What's it going to do?"

foe: [as the rocket passes Point A of figure 3.20]

"Whiplash round the Earth." [He

indicates an orbit]

J: [as the rocket passes Point B] "It's going to

crash back to Earth."

R: "Which?"

Dan: [at Point C] "We'll go for crash back to

Earth."

The rocket falls back to Earth.

R: "Have you any plans for how to get it to

orbit the Earth?"

J&D(to~ether): "Boost it!"

They Reset the system and Start again. After

the rocket has travelled some distance away

from the Earth they Boost it. The rocket still

falls back to Earth, but in a different place.

Figure 3.21.

J: "That boost has made it go more wide, hasn't

it. "

R: "Where do you think is the best place to

boost it to g t it into orbit?"

J (to D.): "Well, w boo t d the Moon right?

W il, t it going and it wa in orbit, so you

Figure 3.20 Launching the rocket.

boost th rbit when it' in the right flight Figure 3.21 Boosting the rocket.

path. [h d crib a tang nt to the apogee

of the rocket' fli ht]

127

R: "OK. Start again and point to the place you think you want to
boost it."

J: "1 want to boost it when it's running parallel to the Earth."

R: "Right, how would you find out when that point is? Have
you got any smart ideas?"

J: [Points roughly at the right spot] "Should do all the boosts at
once, when it's parallel to Earth."

R: "There's a clever way to find out when you should boost it.
I'll give you a clue: you should launch it and let it crash back
to Earth."

They Reset the system and Start again, allowing the rocket to fall back to

Earth, with no extra boosts.

R: "How long did that take?"

J: [Examines the elapsed time counter] "14,240

seconds."

D: "Half that!"

J: "It's like you're throwing a ball up. You

should get a peak halfway"

They Reset the system and Step it until 7,120

seconds have pas ed. Then they Boost the

rocket 6 tim s. Jo has already realised this is

a way to stack several boo ts at a single instant.

Figure 3.22.

R: "I want it to b th same distance from Earth

all th way round."

D: "Shall we do th ame beginning move

again?"

J: "Yes."

Figure 3.22 First try at Earth orbit.

128

Still using the buttons, they Reset the system

and Step it until 7,120 seconds have passed.

Then they Boost the rocket 6 times, Start the

system and allow it to run until the rocket comes

back around to the same point and Boost it 3

more times. Figure 3.23.

D: "That's it."

R: "That's good enough. OK, how would you get

it to do that straight off?"

J: "Boost it 9 times."

R: "Yes."

Figure 3.23 Second try at Earth orbit.

They have obtained a satisfactory orbit for the rocket, using the buttons.

The researcher now guides them to write a program to do the same job:

R: "Right, now I'd like you to write a program."

D: "Alright then, go on."

J: "To do what?"

R: "To do this, instead of using buttons all the time."

There is a program editor alongside Gravitas:

R: "Try typing res e t in that window and then pressmg
Command -R."

They do it and the system resets just as if they had pressed the button.

R: "Can you guess any other commands?"

0: "We can't use Step can we?"

J: "Boost?"

0: "No, we want it to get there first, don't we?"

J: "Yeah."

R: "So you want it to go untiL."

J: "Right, until 7,120 seconds."

R: "Yes, right, there's a command called go. until. time and
after it you put a number and it will go until that number of
seconds." [explains that go. until. time is all one word]

129

They type go. un t i 1 . time 7120 after the reset and run the program

to produce a launch. The system is running slowly however, with an

animation step of 20 seconds and they ask if they can speed it up:

IR: "You can use set. time. step, followed by the seconds."

They now have a three line program for the rocket launch:

reset
set.time.step 40

Igo.until.time 7120

They run it. Figure 3.24.

D: "We want to boost it. Is it just like boost?"

R: "It's just boost, but you have to put the name

of the object you want to boost."

J: "Boost rocket? Just do it nine times?"

R: "Well, there's another command called

repeat..." [Explains how repeat works]

R: " ... then you put what you want to do inside

square brackets."

J: "Boost rocket."

R: "I'm afraid you have to put a colon before

rocket in there." [They don't ask why!]

They run it and g t a launch followed by nine

boosts. Then nothing happens.

R: "What do you need now?"

J: "Start?"

R: "Actually, it's start. animation."

Their program is hown below. They run it.

Figure 3.25.

reset
set.time.step 40

go.until.time 7120
repeat 9 [boost :rocket]
start.animation

Figure 3.24 Joe and Dan's first program.

Figure 3.25 A program to get the rocket into orbit.

130

R: "I think that's a great success."

D: "Yes, it's a circle ... "

J: "It's following that line exactly." [The rocket is moving along
its second orbit]

R: "We better save your program." [Shows them how to save the
program to disk]

R: "Next I'd like you to get the rocket to go out to the Moon and
orbit it. How are you going to do it?"

J: "Boost out. Scan out so we can see the moon."

R: "When?"

J: "We want to boost out so powerful that we get rid of the pull."

D: "Yes, but it's going to do a circle and

actually join that." [Indicates a realistic

transfer orbit to the Moon]

J: [Quickly agrees with Dan's plan] "We want

to boost it here." [He points to a boost

where the rocket is opposite the Moon

with respect to the Earth]

Figure 3.26. This is quite surprising. They have

both seized on the idea of a semi-circular

transfer orbit rather than the simpler (but

ultimately incorrect) direct boost at the moon. Figure 3.26 Planning the transfer to Moon orbit.

The semi-circular transfer orbit is indeed the method used in Moon shots

(Baker, 1967). This is because it is relatively insensitive to boost errors and is

the most fuel efficient way to travel between two bodies. However, it is

somewhat surprising that our subjects should follow this less obvious "Apollo

mission" method, and not the ballistic or "Jules Verne" tactic of heading

straight for the Moon (In his novel, From the Earth to the Moon, the lunar

vehicle is fired from a huge gun aimed ahead of the Moon). It would perhaps

have been interesting to ask the subjects how they got the idea for the transfer

orbit, but at th time the researcher thought this might interfere with the task.

In other studi s f the same task, two subjects chose the same course, both

because of th ir knowledge of the Apollo missions. Another pair had to be

steered toward th Apollo method after trying a direct shot with no success.

131

R: "OK. Run the program and look for the time to boost."

D: "If we make it go up here we need quite a few more boosts."
[He points at the transfer orbit again]

]: "We don't want to boost it too much because as it breaks away
it gets less pull."

D: "Will the Moon pull it?"

R: "The Moon will pull it, but only when it gets really close."

]: "We've got a perfect circle here, so we only want it to break out
of it because once it's out it should accelerate away."
[Indicates the transfer orbit again]

D: [to J.] "Where do you mean? Like over there? [Indicates 11
o'clock]

J: "Just slightly diagonally." [Points at about 1 o'clock]

Joe decides to boost at 35,000 seconds.

R: "How many boosts?"

J: "We don't want to boost it too much or it will

just break away."

D: "Four."

Using the buttons, they Step the system to

35,000 seconds, th n Boost the rocket 4 times

and observe the r suIts. Figure 3.27.

The boost is clearly insufficient to reach the

Moon butJoe and Oan are more concerned with

the aiming, which they f I is faulty:
Figure 3.27 First try at transfer orbit.

132

D: "Remember, I said you had to do it there

[he points at 11 o'clock again] because then

it will come round."

R: "Earlier or later?"

D: "Earlier."

J: "32,000 seconds."

This time they add the new boost time to the

program and run it. Figure 3.28.

reset
set.time.step 40
go.until.time 7120
repeat 9 [boost :rocket]
go.until.time 32000
repeat 4 [boost :rocket]
start.animation

D: "The Moon's moving, it's not enough."

J: "Shall we change the boosts? Or shall we

concentrate on where we do it?"

D: "Give it 10."

They edit the program to 10 boosts at 32,000

seconds and run it. The rocket flies out of the

system, almost without deflecting. Figure 3.29.

J: "It's going to br ak out."

D: "Change the program to 6 boosts."

Joe does thi and al 0 adds a line to increase

the time step so that th ystem runs faster.

Figure 3.28 Trying an earlier transfer boost.

Figure 3.29 Trying more boosts.

133

D: "That's good."

J: "Not far off, that."

Figure 3.30. Using a combination of button

presses and program alterations they have got

quite close to the Moon. The actual transfer

orbit is rotated compared to their original

plan because of the orbital motion of the Moon

but it can be seen that the concept was sound.

They now have to fine tune the transfer orbit.

Their program reads as follows:

reset
set.time.step 40
go.until.time 7120
repeat 9 [boost :rocket]
set.time.step 200
go.until.time 32000
repeat 6 [boost :rocket]
start.animation

J: "Let's make it 34,000."

D: "Try 7 boosts."

The rocket passes very close to the Moon. As it

gets close they use the Step button to take over

from program control and watch what happens

in detail. Figure 3.31:

J: "Do we want to meet it [the Moon] on the

inside or the outside?"

R: "The Apollo missions met it on the outside."

D: "Shall we boost back?"

Figure 3.30 6 boosts at 32,000 seconds.

J: "No, just step it b cau e we don't know what Figure 3.31 7 boosts at 34,000 seconds.

will happen."

They now d cide it is tiresome running the program from the initial

positions ach time, and as each run takes about one and a half minutes they

have a point.

134

J: "Can we set it so we carry on from that point? [indicates a
position just before the rocket crosses the Moon's orbit]
About 216,000 seconds?"

R: "Yes. Just replay it and save the system at that point."

Having done this, they are in a position to do quick trials with the

buttons, around the point of interception.

J: "To orbit the Earth we need 9 boosts, so we need about 1, so we
need to take it back 15 boosts."

Joe's line of thought seems to be that 9 boosts got the rocket to orbit the

Earth; the Moon is much smaller so it will need say 1 boost; there have been 16

boosts altogether so far, therefore giving it 15 back boosts will do the job. This is

quite ingenious, but flawed: It neglects the initial velocity of the rocket and the

energy used up climbing out of Earth's gravity well. Dan does not agree:

D: "Try about 10 back boosts."

J: "To work it out accurately, you'd need to know the
gravitational equivalent of a boost."

They press the Boost back button 10 times and Start the system.

J: "Oh no, it's stopped dead ... It's falling back to Earth."

D: "Try 5 back boosts."

Dan also begins to rethink the timing of the transfer boost. This is an

example of the non-linearity which can arise in the construction of programs:

The subjects were concentrating on braking at the Moon but have skipped back

to an earlier stage:

I D: "I say we do it at 35,000."

This time they modify the program rather than press buttons. They alter

the transfer boost timing, add go. unt i 1 . time 216, 000 and give the

rocket 5 back boosts (having asked the researcher for the name of the

command):

135

Their program now reads:

reset
set.time.step 40
g o.until.time 7120
repeat 9 [boost :rocket]
set.time.step 200
go.until.time 35000
repeat 7 [boost :rocket]
g o . until.time 216000
repeat 5 [boost.back :rocket]
start.animation

They run the program. Figure 3.32. The figure

is actually the state of affairs at 436,000

seconds. The rocket passes in front of the Moon

and carries on a short distance outside the

Moon's orbit. It starts to fall back to the Earth

after picking up some momentum from the

Moon which causes the small loop. Joe and

Dan realise this is not entirely wrong:

J: "Back boosts are OK though. I'm going to try

34,500."

Again, they modify the program.

J: "We've landed on the Moon!" [Figure 3.33]

R: "At about 10 times the speed of sound!"

D: "You need to drop the go.until.time."

Jo edits the program so that the back boosts

occur at 214,000 s onds. The rocket passes very

close to th Moon, but ha to much residual

velocity and fli off. Figur 3.34.

J: "That's good. W ne d another back boost

just after r ndezvou ."

R: "That's a go d word for it. The correct

word."

Figure 3.32 5 back boosts at 216,000 seconds.

Figure 3.33 Transfer boost at 34,500 seconds. The rocket
has collided with the Moon (overwriting their names).

Figure 3.34 5 back boosts at 214,000 seconds.

136

At this point Joe and Dan save their program and finish their first session

with Gravitas, which has lasted just under two hours. Before leaving they

make a short note to themselves for the next session: "Try a back boost after

216,000."

At the beginning of their next session, 5 days later, they read their note

and run th program to remind themselves of where they had got to. They

start to make more changes to their program:

J: "Yes, we n d to back boo t once more, just

after there ." [h indicates a point just

outside the Moon's orbit]

Joe Steps the system through the rendezvous

point and d cides to apply the back boost at

230,720 seconds.

J: "How many back boost hall we try?"

D: "Two?"

Joe pr sses th Boo t back button twice and

then Starts the sy t m again. Howev r, the Figure 3.35 2 more back boosts at 230,720 seconds.

rocket crash into th Moon at 287,000

seconds. Figur 3.35.

Dan indicat a pint wh re the rocket is travelling next to the Moon,

before it cra h . Still using th buttons, Joe tries a Boost at 260,000 seconds.

The rock t till hit th Mo n, but quite a bit further on.

I D: "It' t n d a boost at the same time."

Jo r play t m and Boosts the rocket twice at 260,000. Now the

rock t cap again. J and Dan conclude that 1 boost is too few and 2 is too

many. Th r arch r plain that they can control the boost strength with a

new c mmand: set.boost.strength.

r second."

0: " 105"

137

This does not work either. Dan has miscalculated: 5 times 105 is more

than 2 times 250. He realises this and they decide to try 4 boosts at 100 metres

per second. Joe wants to alter the timing as well:

IT: "I reckon we've got to change it here."

Joe edits the program which now reads:

reset
set.time.step 40
go.until.time 7120
repeat 9 [boost :rocket]
set.time.step 200
go.until.time 34500
repeat 7 [boost :rocket]
go.until.time 214000
repeat 5 [boost.back :rocket]
go.until.time 230720
repeat 2 [boost.back :rocket]
go.until.time 250000
set.boost.strength 100
repeat 4 [boost :rocket]
start.animation

D: "That's it."

Figure 3.36 4 boost at 250,000 seconds. The rocket is
orbiting the Moon.

R: "Congratulations. You have got the rocket to the Moon. Now,
can you get it back again?"

138

First of all though, they try to get the rocket

to orbit a little closer to the Moon. They

experiment, using the buttons, with back boosts

as the rocket is overtaking the Moon and settle

on a single back boost at 686,720 seconds. The

period of the rocket's orbit around the Moon

reduces slightly. Figure 3.37.

Iv: "It will be like a flower soon."

They return to the task of getting the rocket

back to Earth.

J: "You know those peaks? If we get on one of

those and just shoot back to Earth ... "

This is pretty much the right idea. It is not too

surprising that Joe should guess this straight

away: As one watches the system running

there are times when the rocket clearly seems

to be heading towards Earth. It is intuitively

appealing to boost at this point.

They replay the system looking for the time at

which the "peaks" occur and choose 1,137,520

seconds.

If: "OK. 6 boosts at 1,137,520 seconds"

They run the program from the beginning again

and watch as it do s indeed fall back to Earth:

Figure 3.37 1,156,720 seconds.

...--________________ , Figure 3.38 6 boosts at 1,137,520 seconds.

J: "The Earth's going to get a really good hold

of it in a minute"

However, the rocket has gained a large velocity and travels past the Earth

(Figure 3.38). Jo and Dan have two ideas: First reduce to 5 the number of

boosts at the "peak" and then to brake the rocket with back boosts as it gets near

the Earth. Using the buttons they experiment to find a suitable time for the

back boosts:

D: "Bo st it back at 1,497,520." [He reads the time display]

J: "How many?"

139

R: "How many did it take you to get away from the Earth?"

J: "Yes, 9. Let's do S."

D: "That's less than last time. Do 10."

Joe modifies the program and runs it. The

rocket travels back and brakes into an orbit

around the Earth. Figure 3.39. Joe and Dan

have completed the mission. Their program is

shown below:

reset
set.boost.strength 250
set.time.step 40
go.until.time 7120
repeat 9 [boost :rocket]
set.time.step 200
go.until.time 34500
repeat 7 [boost :rocket]
go.until.time 214000
repeat 5 [boost.back :rocket]
go.until.time 230720
repeat 2 [boost.back :rocket]
go.until.time 250000
set.boost.strength 100
repeat 4 [boost : rocket]
go.until.time 686720
repeat 1 [boost.back :rocket]
go.until.time 1137520
repeat 5 [boost :rocket]
go.until.time 1497520
repeat 10 [boost.back :rocket]
start.animation

3.3.3 Discussion

Figure 3.39 10 back boosts at 1,497,520 seconds.

Joe and Dan have constructed a simple 22 line program which

accomplish sac mpl x task: the launch and navigation of a rocket from the

Earth to the M n. They worked with Gravitas for less than five hours,

including th tim spent on the orbital procession phenomenon. Their

solution is not particularly efficient - the rocket arrives at the Moon with

exc ssiv sp d and th y have to make more corrective boosts than is strictly

necessary. H w v r, th lunar transfer problem is an advanced topic in

astrodynamic (Bak r, 1967) and their solution works and could be improved

at a lat r dat - th pr gram is a permanent record of their efforts.

140

The principal feature we wish to emphasise is the synergy between the

two interfaces. There are eight boost sequences in their mission, and in each

case Joe and Dan used the buttons of the graphical interface to tryout different

values of strength and timing. The programming interface allowed them to

collect the boosts into a sequence which they could replay and edit at will.

Joe and Dan's program is, nevertheless, quite simple. It uses only seven of

the fifty programming interface commands, and it does not use Logo in any

complex way. Even at this level, we can see that programming is a useful tool,

but in Appendix B we will see some of the more sophisticated purposes to

which it may be put.

3.3.4 Two Other Moon Trips

To finish this chapter, we will summarise two other programs written to

carry out the same mission.

to bon
O""e<It • . space 3 1~7
crea t. ,.a..sob • ec:r t.h 0 0 6 , 38ee 5
O""e<Ite ,.a.sob "aoon ... 0 1 738e6
cr.a t • . .a-sob -r"'OCk. t 0 6 , 31002.&
.. Lt.I tep :K)
•• t . • tandard boot: t.
90 \11 ti .. 6800

r epea l t I (boost , r"'OCkatJ
9O .unlll tl .. 3OCI(X)

repeat 4 Iz.ooa out. I
• • l. l l ... tep 1000
9O .untll \1 .. 72000

r-epeot 7 (boost rock.t)
9O .untll \I .. 364000
.--t. lboost bad< rockoll

9O .untll tl .. O7eOOO
.--t. lboostrockell

9O .untll \I .. 1000Il00
repeat 4 I~ 1nl
OO tll tl .. 1023000
r"'epe<I t 7 I boo.- t bode. rock. t J
90 . un \11 . \I.. 10:l3000
ropoat 15 lboost bad< rockell
QO tll . U .. 1100000
onc!

bon

MassObs

~ .in 011,,,, (.ttl'ts) u' @)
~: inlfT.oom ."'1::: ~

CWSOf' Postloa '-!..I

Figure 3.40 B n' mi ion to the Moon and back.

141

I New I p>emovel
1 hlooir 1 12Y~"~lo<~.r~1 ;;;;; I Boost

1 X lO' tlo> 11 y 10,.10> 1 --1 R .. b , 11 Mu, 1 --
I Boost beck I
I Boostloft I
I Boost J¥ht)

Figure 3.40 shows the program (and the mission it generates) developed

by a 14 year old school student called Ben. He took roughly the same time to

produce it as Joe and Dan, about five hours, but had a slight advantage in that

he had done some programming before (in Basic rather than Logo).

Ben's mission looks quite similar to Joe and Dan's, as can be seen by

comparing figures 3.39 and 3.40. However, there are some important

differences. First of all, his program is expressed as a Logo procedure called

ben. The procedure is invoked by this name so that when the code in the

editor at the left of figure 3.40 is run, ben is re-defined and then executed. This

is a minor difference but it does mean that his procedure could be called by a

higher level program which, for example, went on to take the rocket on a tour

of more planetary objects.

Ben's procedure also creates the space and the three Massobs from scratch

each time it is run. In contrast, Joe and Dan's program used Massobs which

they created with the graphical interface and then saved as a system.

It is noticeable that Ben has the rocket orbit the Moon more closely, and

with a shorter period, than Joe and Dan. He also managed to accomplish the

mission with only six boost sequences, two fewer than Joe and Dan.

Furthermore, although figure 3.40 does not show it, his mission ends with the

rocket landing (heavily!) back on the Earth. In fact Ben was quite intent on

making each set of boosts as accurate as he possibly could. Consequently, at

each critical point, he made even greater use of the graphical interface than Joe

and Dan.

A further difference cannot be seen in the snapshot represented by figure

3.40. By using the zoom. out and zoom. in commands at lines 11 and 20,

Ben's procedure controls the size of the space so that the launch and return

phases of the rocket's journey can be seen in detail.

142

In section 3.2.4 we gave the details of Simon's encounter with the orbital

procession surprise. Here we describe his version of the voyage to the Moon.

:': ' 101 lIPPlI:Roll' ton :l oqo:O
: i: ~ c:reo le ,space 6E7
;::' creol • . .ossob "Ecrlh 0 -6 .38E6

n~~ ~:~ :== :=·!E~ ~ , ~~
:::: •• l.lI l~ 30
:: : : •• " .boost . st.rw'M;th 250
;::: 90 II'1I1 tl .. 7.,0
:;:; repeal Q lboost , Rocket)

:::: •• \ . ll \1Ip 200
:;:: go . \IIlIl tI .. 3S7OO
:::: repeat 6 (boost :Aoc:k.U
:::: repeat 3 (zooe .outJ
:::: •• t . tI ... tlP SOl)
;;;: QO . un\l1 \I .. 423310
::;: ~t 3 (boost bad<rockotl

HH ~~~1"~~'0
:::; 9O . ",tll tl .. le2310

HH ~~I~ ~=·~I~·lI
:;:; repeat ~ (boost.bock rockotl

HH ~!I~ !~:-~
HH ~~----------~~:

Space MassObs I New I 'Aemovel
'''ol" ... (.~ .. ,) LJ~ 1 hi."', 11 hlo<k, 1 ISet-»1 _ .1 __ I Boos.)

E.,t~
C:---;.-. 1 x ro'kie> 11 y ro,klo> 1 I BOO3' beck) [Zoom 101 [loom outl __

ew. .. Posklo, 1 ~.. 1 I Mos, 1 I BOO3' loll)
(!) _ _ IBOOS'~htJ

Figure 3.4 1 Simon's trip to the Moon.

There are a few points to note about Simon's mission. First of all, his

journey is the most efficient of the three we have seen, in that it uses the

lowest amount of b ost. In practice this would mean his rocket would use less

fuel. His bo st t the Moon is only just strong enough, so the rocket requires a

smaller d celeration b ost for the Moon to capture it. Similarly, he then drops

off the M n and back to Earth with the smallest possible boost. In fact, if we

remov th diff r nc s in launch velocity and final orbit from the missions we

can compar th amount of boost used:

Simon 6500ms-1

B n 6864ms-1

J and Dan 7750ms-1

143

We should stress that efficiency in the use of boosts was not an element of

the task set by the researcher, but was a self imposed aim for Simon, and to a

lesser extent Ben.

Returning to Simon's mission, a result of his minimum boost lunar

transfer is that the transfer trajectory is more curved and therefore more like

the actual Apollo missions. Again, this was not a requirement of the task, but

Simon, who had seen diagrams of the Apollo Moon shots, was pleased to

obtain a realistic course. He also made a corrective boost to the rocket, at line 17

of his program, to make its orbit around the Moon less eccentric. Like Ben, he

used zooms to control the size of the space so that the Earth orbits filled the

screen.

144

3.4 Summary

In many ways, the studies we have described raise more questions than

they answer. What sort of physics knowledge are the subjects applying? What

do they gain from Gravitas? What could they accomplish without the

assistance of an expert? However, this was always the intention. Massobs are

new entities and we wanted to carry out a serious examination of their scope

for the exploration of some physical concepts. The studies put us in a position

to pose questions such as those above, and we have found contexts in which to

research them.

We have shown that using Gravitas is primarily a constructive activity.

Learners can build systems of Massobs and programs which control them, and

see what they do. We have seen that users are frequently surprised by the

things they have built, and these surprises may be gateways to profound

physical insights.

The Lunar Journey demonstrates a useful synergy between the two

interfaces. It indicates that tasks which are beyond the scope of a single mode

interface may be rendered feasible. Gravitas is not the only kind of system

where such an enhanced interaction is fostered. HyperCard for the Apple

Macintosh is a system which may be controlled with its graphical interface and

by programs written in its embedded language, HyperTalk. The point about

Gravitas is that the graphical interface makes Massobs easier for learners to

comprehend, since they can be picked up and boosted by simple mouse actions,

while their interface to a standard and popular programming language, Logo,

opens a realm of educational possibilities.

145

4 Gravitas and the School Curriculum

4.1 Overview

The previous chapter showed Gravitas being used for tasks which,

although educationally meaningful, were suited to the specific purposes of our

investigation. In this chapter we wish to examine the possibilities for uses of

Gravitas in more realistic settings. A reasonable question to ask is "How could

Gravitas be used to illustrate topics in school science courses"? In the United

Kingdom the government has set down a National Curriculum for Science

(Department of Education and Science, 1991), and although this curriculum is

currently under review we will employ it as a guide to illustrate how Gravitas

might be used. We will then move on to show that Gravitas' programmability

opens a door onto a range of more open-ended projects for the science

classroom. Finally, we will emphasise that programmability also makes

Gravitas extensible in that its in-built functionality can be augmented with

proced ures written in Logo.

146

4.2 Gravitas and the National Curriculum for Science

In this section we will we survey the National Curriculum for Science

(Department of Education and Science, 1991) and point out the areas where

Gravitas based activities seem particularly natural. In its 1991 form the

curriculum is broken into four Attainment Targets - AT1: Scientific

Investigation; AT2: Life and Living Processes; AT3 Materials and their

Properties; AT4: Physical Processes.

AT4 is the component for which Gravitas has the most relevance and is

therefore the section we will concentrate on. Within the Attainment Target

there are 10 Levels, each of which contains several Statements of Attainment

and some corresponding suggested activities. Together with a brief discussion

of the aims and general nature of the programme of study, these Statements of

Attainment make up the curriculum content. There is an additional layer of

complexity added by the structuring of the curriculum into four Key Stages

which define the level within the Attainment Targets that average children of

certain ages should be expected to reach. However, this division need not

concern us in this survey since it does not affect the overall curriculum

content. Our suggestions are pitched at children of age 13 or 14, the ages of

most of our subjects in the chapter 3 studies, although practical testing is

necessary to check their feasibility. We begin at Level 2, the lowest level at

which we believe Gravitas could be of use.

4.2.1 Level 2

Statement C

"Pupils should understand that pushes and pulls can make things start moving,

speed up, slow down or stop."

If we explain Gravitas' boost commands as 'pushes' and 'pulls' then there

are many ways to demonstrate this statement, both interactively and

programmatically. For instance, simply by holding down the boost button a

user will see the selected body accelerate. Figure 4.1 was produced by doing this

until Massob A reached the centre of the screen and then holding down

instead the boost back button. The spacing of the dots clearly shows the

increase and decrease in speed, which is almost symmetrical because boost and

boost back are of the same magnitude.

147

re;:;::) ... ~ •• tl.""'IIIi(·.""''')
~.

r-=-..,.....,..--, '-'0--:-"'-' I New I ~emovel
..... re:J I X .. lMiI, 11 Y"lod, I ==~ r--::----. __ I Boo" I

!ZOOm inl tzOOm outl
C'wJer , •• lia.

Figure 4.1 Accelerating and decelerating a massob with boosts

I BOO"b""kJ
I Boo>llItI I
I Boo" rtchl I

The same image could be produced by two lines of Logo:

repeat 120 [boost :A step. animation]

repeat 120 [boost.back :A step. animation]

--
Statement E

"Pupil hould know that the Earth, Sun and Moon are separate spherical

bodi ."

This may b w 11 illustrated by Gravitas~ but of course, only in two

dimensi n in th curr nt ver ion. In fact, although for technical reasons the

imag s in thi th h w massobs as flat white discs, on colour screens they

are rend r d (wh n larg nough for it to make a difference) to look like

spher s.

148

Figure 4.2 shows the Earth, Sun and Moon, and makes the important

point that if we zoom out far enough to see the whole system then the Earth

and Moon are almost impossible to separate.

Spac MassObs ! New I ~emovel
lu. oC I)'" (a) D'" ~ 1 X ""-, 11 hlN_, 1 :::=-: r--;:-:--.--, !Set-»I ... 1 _ _ I Boost I

r=----:-. =----, ... [iiOii!2J 1 y,.._Io. 1 I Boost boclt I tzOOm inl tloom outl __
Con ti.. 1 RoAlv 11 1&" 1 I B_lloft I

(!) _ _ I BOOotrtcht)

Figure 4.2 Earth and Moon orbiting the Sun

This leads to the question of the moon's path, which we cannot make out

at this range. However, it is a simple matter to zoom and pan (there is a pan

command in th Programming Interface) Gravitas until we can examine a

segment of th path in greater detail. Figure 4.3 overleaf shows an example.

149

Space MusObs I New Hjemovel

ISet-»1 _ _ I Boost) ft • .rq ... (.....) O"'@) CE5:lffiEiU ==;J..--:~--.
r=----:, ~ I Yr··I .. I I BoostbICkJ fZoom inl tzoom outl __

ew..,P...... ~ I Mu.) I Boostleft)
[!) _ _ IBoostIicbt)

Figure 4.3 Cia e up of a segment of the Moon's path

--

4.2.2 Level 4

Statement C

"Pupils should know that more than one force can act on an object and that forces

can act in differ nt directions."

This conc pt can be demonstrated in many ways with the current version

Gravitas. irstly, it is a natural occurrence once two or more massobs have

been created - the gravitational forces and any boosts have a combined effect.

Secondly, if, as was found to be a good idea in the studies of chapter three, the

user is introduc d to th idea of 'stacking' boosts while the system is paused

then several f rces can be applied at the same instant. A plain boost and a boost

right add up ta' diagonal' boost.

150

However, for this kind of concept, and for younger children, it could be

more effective to add a directed boost command which takes an extra

parameter: the heading along which the boost is to act. This would bring

Gravitas, which is tuned at present for investigations in orbital mechanics,

into line with systems such as diSessa's Dynaturtles (diSessa, 1982) and Bma's

ROCKET (Brna, 1989). Since the programming interface has a complete

window onto the state of any Massob, such commands would be

straightforward to implement. An example is given below for a scheme where

the boost heading is given in degrees, zero degrees pointing up the screen.

to aim. boost :massob : heading
set.xvel :massob (xvel :massob)

+ (boost. strength * sin :heading)
set.yval :massob (yval :massob)

+ (boost.strength * cos :heading)
end

4.2.3 Level 5

StatementG

"pupils should be able to describe the motion of planets in the solar system."

As we saw in chapter 3, users are able to save the systems they create in

Gravitas. Since building Gravitas we have created and saved many example

systems in which the Massobs represent real astronomical objects. One of these

is a model of the solar system. Students can load this system and examine it in

detail. They can zoom in and out, move around the system, make

measurement of distances and orbital periods, all with a few mouse clicks. In

fact, we have constructed several solar system models in Gravitas, two of

which are particularly interesting. The first is a snapshot of our solar system as

it stood in March 1991 (constructed from ephemeris tables) when an early

Gravitas prototype was finished. This is an interesting view as it shows Pluto

closer to the Sun than Neptune, an infrequent occurrence. The second version

shows all the planets in a line at their average distances from the sun. Such a

configuration never occurs in nature but it does permit some interesting

comparisons of relative distances and orbital velocities. Figure 4.4 shows an

example of this system. The inner (or Terran) planets have been told not to

show their labels and Mars is just about to complete an orbit. This represents

about 654 days of simulation.

151

Space
rc;:;::J lilt M I)'" (aMI)

~---
MassObs I New I ~emovel

PlC. ~ ~ I y .. lodr I ~~~ r--;;-:-:-:~ No..... __ I Boost

u.." "' ...
MorI
E.oI<l
VU"

~I Mu. I 1Yl __

Figure 4.4 The solar sy tern with all planets at their average distance from the sun.

--

4.2.4 Level 6

Statement B

"Pupils should understand that energy is conserved."

The law of Conservation of energy is of course fundamental to physics. It

also has huge scope and there are many ways in which it may be applied

within the fram w rk of Gravitas. However, some especially interesting lines

of investigation are pened up by two of Gravitas' tool procedures -

potential. energy and kinetic. energy. These two procedures, which

are describ d in m re d tail later in this chapter, take a list of Massobs as their

input and pr duc the total gravitational potential energy and the kinetic

energy of th li t r sp ctively. Of course, these concepts move this suggestion

beyond th und rstanding most 13 or 14 year olds and into the last two years of

GCSE. N v rth 1 ,an important manifestation of the conservation law can

152

be seen in orbits. A student can create an orbital system in Gravitas and

examine the kinetic energy of the bodies by typing p r i n t

kinetic. energy [A B] at intervals as the orbit progresses. But this

quantity will be seen to vary in an eccentric orbit - energy is apparently not

being conserved. The explanation is that it is the total energy in an orbit which

is conserved - the sum of potential and kinetic energy. Typing the command

print kinetic. energy [A B] + potential. energy [A B] at

intervals around the orbit will verify this.

StatementG

"Pupils should know that the solar system forms part of a galaxy which is part

of a larger system called the Universe."

Gravitas can offer a new approach to the task of introducing students to

the huge scale of the Universe. The distances involved range over many

orders of magnitude and can be difficult to appreciate even when a child

understands the units and the scientific notation of the numbers used to

represent them. In contrast to the static methods such as diagrams and

metaphors (eg. Consider the Sun as a football in the centre of a pitch. The

Earth then, would be a lentil on the edge of the penalty area.) Gravitas can

depict a Universe which the user can zoom in and out of dynamically.

Of course, not all the objects in the Universe can be stored, at present

Gravitas can handle only a few hundred Massobs. Nevertheless, we have

created one example which contains the solar system, then a few nearby stars,

then a hundred or so stars to represent our galaxy and finally several galaxies

(each represented by a few Massobs). The user can begin with the Sun almost

filling the screen and then zoom smoothly out to watch the planets come into

view. By the time Pluto is on the screen the inner planets seem almost on top

of each other and the Sun is just a dot. A few more zooms (each one doubles

the size of the space) and the solar system has receded to a single dot just as the

nearest star comes into view. It takes another 15 zooms to get the whole of our

galaxy onto the screen, and we are now looking at a region about 100,000 light

years across. Five more zooms bring our nearest neighbour galaxies into sight.

In this mode, Gravitas is simply being used as an animated star map and

not even an accurate one as the galactic stars are illustrative rather than real.

However, we believe the journey described above is another way to

communicate astronomical distances to learners.

153

4.2.5 Level 7

StatementG

"Pupils should know that gravity acts between all masses and the magnitude of

the force diminishes with distance."

Gravitas is well suited to the illustration of this concept. All the Massobs

created by users interact gravitationally and it is possible to set up situations

which show the truth of the second part of Statement G. Figure 4.5 shows an

example:

Space Mu Obs [New 1 ~emovel
..... 11' ... (...... 1 ,.... !!) 1 X-"y 11 yftlody 1 ==~ r-::---:----,

[Set-»I.l ! Boost J

~ ~IYI'dlo' J !Boostbl<kJ tzOOm in] tloom outl D __

igur 4.5 An iIIu tration of gravity diminishing with distance

! Bowtleft J

I Boonncht J

The Mas b A, E, C, D and E are all light enough that we can ignore their

gravitati nal ff et n aeh other. Their trails show that acceleration is greater

the nearer th Mas bs ar to the planet.

154

4.2.6 Level 9

Statement E

"Pupils should be able to relate the theory of gravitational force to the motion of

satellites ."

One important concept in this area is the idea of geo-synchronous satellite

orbits, that is, satellites which orbit the Earth in exactly the time it takes the

Earth to rotate on its axis. With Gravitas, students can be shown that the Moon

takes 28 days to go round us, but that a low orbit satellite can take just a few

hours. Somewhere in between then, there must be a position which has an

orbital period of 24 hours. This point can be found by trial and error with

Gravitas as a precursor to the mathematical formula for orbital period which

they will be taught.

4.2.7 Level 10

StatementC

"Pupils should understand the concept of momentum and its conservation."

We showed one novel manifestation of momentum conservation in

chapter 3 - the orbital procession surprise. It is also illustrative to create

systems of stationary Massobs and let the accelerate towards each other. With

the help of procedures such as those below, students can verify that the total

momentum of such systems is always zero.

to x.momentum :massob
output (x. vel :masBob)
end

to y. momentum I massob
output (y.vel Imassob)
end

*

*

(ma88 :massob)

(mass :massob)

Since momentum is a vector quantity the components must be added

separately.

155

4.3 Sample programs

This section explores a few more of the possibilities opened up by

Gravitas' programmability. The ideas discussed here do not map neatly onto

statements or targets from the National Curriculum but could be used as

discussion material for many of its concepts or as starting points for longer

term projects. Our intention is to show that programmability gives Gravitas

the potential for greater educational utility. In chapter 3 we showed user

programs which navigated a rocket between the Earth and the Moon. In this

section we wish to hint at wider possibilities.

4.3.1 The Massob Spiral

The following procedure was written by a user who was shown Gravitas

at an early stage of its development. This user was quite familiar with Turtle

Geometry and Logo and he began by thinking about the well known procedure

for a circle (see, for example Papert, 1980 p58):

to circle
forward 1
right 1
circle
end

When this procedure is run the turtle draws a circle on the screen and

moves around it forever. The user tried building an analogous procedure in

Gravitas, thinking naively that perpetually boosting a Massob on one side

would make it draw a circle too:

to circle
step.animation
boost.right :fred
circle
end

In fact, the Massob generated the pattern shown in figure 4.6, a spiral.

156

/'
Original velocity

Figure 4.6 The effect of continuous boost right

+New velocity vector
is longer i.e. tbespeed
has increased.

The user was rather surprised by this at first, until, in conjunction with

the system's designer, he considered exactly how boost. right works.

The command boost. right acts at right angles to a Massob's direction

of travel and has no effect on the velocity in that direction. But in adding a

new, orthogonal component to the old velocity, the command inevitably

increases the Massob's speed. The boost. strength however, is constant,

so a subsequent boost will rotate the velocity vector through a smaller angle

and increase the spe d by a smaller amount. The net effect is that the Massob

traces out a spiral. The procedure immediately raises several questions: What

is the gap between successive orbits? Is the spiral equiangular or logarithmic?

Will it go on for ever? Is it possible to make a Massob travel in a circle with a

simple program?

157

4.3.2 The Evaporating Planet

What would happen to a planet orbiting a star if the star began to lose

mass? In fact, our own Sun is doing just that - the nuclear processes which fuel

it result in a continual loss of mass. With a simple Gravitas program we can

investigate this situation:

Space ~~bs

B· .tlI}Mt (a 1 D@J
;: ... I~mo.q ~ ~

C'wMf,...... ~

to ntup
create . space lEll

[New) ~emove)
~ r:1 y::-,,-:-lot-::-.,-'I
__ (Boost

~~ --
crea te . lIIassob .. Sun 0 0 6 . 96e8 1. 9ge30 0 0
create . lllassob "Mercury 0 5 .7gel0 2 .44e6 3 .3e23 47864 . 1 0
set . t i llle .step 80000
evaporate . sun
end

to evaporate . sun
forev r [set . radlus :sun (0 . 999 • radius :sun)

set . lllass :sun (0 .999 • 0 .999 • 0 .999 • mass :sun)
step . animatlon]

igure 4.7 Orbit of Mercury as the Sun "evaporates".

As w can

situati n i highly

I M rcury spirals away from the Sun. Of course, the

agg rat d. The Sun is actually losing mass at a rate that is

158

tiny compared with that in the program. The way that evaporate. sun is

set up, the Sun loses one tenth of a percent of its mass every 80,000 seconds.

This is about t n orders of magnitude faster than is the case! Nevertheless, the

procedure is inter sting, and it does prompt a complementary question: What

happens if it is the planet which is evaporating?

create . space lEll
create . Massob "Sun 0 0 6 . 96e8 1. 9ge30 0 0
create . assob "Mercury 0 5 .79.10 2 .44e6 3.3e23 47964 . 1 0
set . tiMe .step 80000
v~w~w w\v. vu ~
end

to evaporate .mercury
forev r [set . radius :mercury (0 .999 * radius : mercury >

set .mass :mercury (0 .999 * 0.999 * 0.999 * mass : mercury >
step . anlmatlon)

igur 4. rbit of Mercury a the Mercury "evaporates".

Th an w r 1 that v ry littl happens. Mercury continues In the same

circular

can m a ur th

qu nc lads n atly into a key astronomical insight: if we

rbit f a atellite - its radius and period - then we can

159

calculate the mass of the object it is orbiting. In other words, the orbital

components of a satellite are independent of its mass, provided that its mass is

small with respect to the object it is orbiting.

This result is a mathematical consequence of Newton's Theory of

Gravitation, which astronomers have long known about. However, we have

shown that Gravitas gives learners the opportunity to discover this important

fact for themselves.

160

4.3.3 A Star Cluster

Imagine we wished to examine the dynamics of a cluster of stars. It would

be tedious to create fifty or a hundred Massobs by hand. A straightforward

procedure can accomplish the task without fuss:

to random .stars : names
If emptyp :names [stop)
localmake "radius (random 10) • le8
create.massob first : names

<random 1000> • 1.5e8 • <1 - ~ • random 2>
(random 1000) • 1.5e8 • (1 - 2 • random 2)
:radius
le4 • : radius • : radius • : radius
(random 10) • le4. (1 - 2 • random 2)

_ (random 10) • le4. (1 - 2 • random 2)
random .stars but first :names
end

to star .cluster
create .space 2ell
random .stars [si s2 53 54 55 56 57 58 59 510

511 512 s13 s14 515 516 s17 s18 519520
s21 s22 s23 524 525 526 s27 s28 529 530
531 s32 533 534 535 536 537 538 539 540
541 542 543 544 545 546 547 s48 549 550)

r-=---,-,..--,INew I ~emoveI
"',..--..., @ ~ I hla4iy) ==~r-;;=-=:,...., ,49 _ _ I Boo.t

14. =-_....,....., ,41 I X,.'iln) I VI.dln) floom inI rzoom outl ::: __
,44 I Roll..) I Mu,)
L;..,4",'_--,l!) __

igurc 4.9 lar clu ler.

161

! Boost blOk I
! Boostleft I
! Boo.tnc:ht I

The procedure, s tar. cl u s t er, calls a "manufacturing" procedure,

random. stars, which takes a list of names as its input. random. stars

then creates a Massob for each name and gives it a random position, size, mass

and velocity. These "stars" are up to five times as massive as our own Sun.

A cluster such as this could be used to illustrate quite sophisticated

astronomical concepts, such as relaxation time and the virial theorem (Roy,

1978).

162

4.3.4 Collision Detection and Planet Formation

When two Massobs collide they coalesce to form a single new Massob

which travels on with the combined momentum. This behaviour can be

altered because the collision handler is a public procedure which users are free

to edit or replace. In this way, Massobs could be made to bounce off each other,

or fragment. The default behaviour though, can lead to interesting situations.

For example, two of the pioneers of dynamical astronomy, Myron Lecar

and Sverre Aarseth, decided to examine a theory of the formation of planets

around a star (Lecar and Aarseth, 1986). They used a computer model similar

to the mechanism which gives Massobs their behaviour to predict what would

happen to 200 Moon sized objects orbiting the Sun in a belt stretching from 0.5

to 1.5 Astronomical Units (1 A.U. is equal to the radius of the Earth's orbit).

They found that after a period of 50,000 years, coalescent collisions between

planetesimals resulted in the formation of six planet sized bodies. We decided

to apply Gravitas to this same experiment. First of all we built procedures to

create the Sun and the planetesimals:

to setup

create. space 3e11

create.massob ·Sun

0

0

6.96e8

2e30

0

0

I I

generate.planete.imals , ,
end

IIX position

IIY position

1 ,radius

"mass

200

IIX velocity

IIY velocity

This procedure creates a Massob to represent the Sun and places it

stationary at the centre of coordinates. It then calls a sub procedure -

generate. planetes imals - to create 200 planetesimals, randomly

positioned within the belt mentioned above.

to generate.planete.imals anum

it equalp anum 0 [stop)

generate.one anum

generate.planetesimal. anum - 1

end

163

generate. planetesimals is a tail recursive procedure which calls

generate. one the number of times specified in its input and then stops.

to generate. one :num

loca1make Rtheta random 360

loca1make Rr 7.5e10 + (1.5e9 * random 100)

loca1make Rname word Rp : num

create.massob : name

:r * cos :theta

:r * sin :theta

2e6

2e23

o
o

standard. orbit Isun massob : name

end

setup

genera te • one calculates a random position in the belt, in polar

coordinates (which are easier to understand in this context). It then "invents" a

name for the new planetesimal by appending the index to the letter lip". The

call to create. massob actually creates the new Massob, converting the polar

coordinates to Cartesian and setting the radius and mass to those of the Moon.

Finally, the new Massob is given the velocity for a standard (Le. circular) orbit

around the Sun by a call to the standard. orbit tool procedure (described

in the next section). Running setup produces a space like figure 4.10.

Unfortunately, Gravitas cannot run this configuration of Massobs quickly

enough to actually duplicate Lecar and Aarseth's experiment. The best it can do

on a Macintosh lUx, while retaining reasonable accuracy, is accelerate real time

by a factor of around 50,000. So Lecar and Aarseth's simulation would take

about a year of full time running! However, all is not lost. First of all, just

running it for a few days produces perhaps 3 or 4 collisions, from which an

overall result could be extrapolated. Second, Lecar and Aarseth give details of

the optimisation techniques they used to get adequate performance on their

computer (which was about 10 times as fast as ours) and these could, with

some work, be incorporated into Gravitas. And of course, faster computers are

appearing all the time!

164

[Start] [Stop] I Step] IReset] I Set-») Timt Sttp (mow)

Space MassObs I New] [Remove]

B
Sizt of s,a.et (Ilttru) pI @ [X Vtloeity) [Y Vtloeity)

Se~» ~ [
p3

Boost

p4 [X poSitioll) [Y ,ositioll I
rZoom in) floom out) pS t p6

Cwsor POSillOll p7
I.:..p_a __ -.l ~

igure 4.10 200 pI n l im 1 orbiting the Sun.

165

[BOOstback J

[Boost left J

[Boost right J

4.4 Tools

During the development of Gravitas we have built many tools, small

procedures which carry out some useful task. There is no need for a great deal

of specialist knowledge to build tools, as the medium for the extensions is a

standard and common language - Logo. We will illustrate this with some

examples.

During one videotaped session a user became interested in the speed of

one of the Massobs he had created. But speed is not part of a Massob's

representation, only the x and y velocity components. Of course, a simple

mathematical relationship exists between speed and the velocity components:

speed is equal to the square root of the sum of the squares of the components.

The programming interface contains commands that access a Massob's velocity

components and so it was a simple matter to construct a 'speed meter' in Logo:

to speed :lIassob
output aqrt «xvel :lIa88ob) * (xvel :ma88ob) +

(yvel :ma88ob) * (yvel :mas8ob»
end

Another extension was built onto Gravitas to make a common feature of

user's programs less clumsy. The interface procedures start. animation

and stop. animation can be used to turn the system on and off from Logo,

but if the user wanted the animation to run until a given time it was necessary

to calculate how many time steps it would take and then call

step. animation the required number of times. This process was liable to

error and also made the user's program less readable, so the go. unt i 1 • time

procedure was added:

to go.until.tille :tille
start.animation
while (elap.ed.tille < :time) [l 11 Do Nothing
stop. animation
end

This procedure first checks that the terminating condition is not already

met and then starts the animation. The procedure then does nothing until the

condition is satisfied when it wakes up and stops Gravitas.

Two concepts which are important to the physics of gravitating systems

are the kinetic and potential energy of the ensemble. We have constructed

tools which calculate each of these quantities for any list of Massobs:

166

, , , , , 1 1 , 1 1 1 1 1 , , , 1 1 , 1 1 , 1 1 , , 1 1 1 1 , 1 , 1 , , 1 I I , I , I , 1 ; ; , I 1 ,"

1 ,Returns the total kinetic energy in a group "

110f Massobs

, , , , , 1 , , , , , 1 , 1 1 , , , , , ; , 1 , , 1 1 1 1 1 1 1 1 1 1 1 1 , 1 , , , , , , ; 1 1 1 1 ,,,

to kinetic.energy :massobs

if amptyp :massobs lop 0]

if objectp :massobs lop .5 * (mass :massobs)

* «xvel :massobs) A 2 +

(yvel :massobs) A 2)]

op .5 * (mass first :massobs)

end

* «xvel first :massobs) A 2 +

(yvel first :massobs) A 2)

+ kinetic. energy bf :massobs

This recursive procedure works with either a single Massob or a list as its

input. Thus kinetic. energy massobs would return the total kinetic

energy of the current system. Another tool procedure, potential. energy,

works in the same way.

In the previous section we saw the use of a standard orbit calculator.

Given two Massobs as input, it sets the velocity of the second to a value which

gives it a circular orbit around the first.

, , , , , 1 , , , 1 , 1 , , , , , , , , , , , , , , , , , , , 1 1 ; , 1 , , , , 1 , , 1 , ; 1 1 1 ; ; ; ;

"Givas m2 tha velocity for a circular

"orbit around ml

;;

" , , , , , , , , 1 1 , , I , , , , , , , , , , , , , , , , , , , 1 1 , , 1 , ; ; ; 1 1 1 1 1 1 ; , , 1 ; ;

to standard. orbit :m1 :m2

localmaka -r

localmaka -rx

localmake -ry

set.xvel :m2

separation :m1 :m2

(xpoa : m2) (xpos :m1)

(ypos :m1) (ypos :m2)

(xvel : ml) +

(aqrt «big.g * mass :m1) I :r» *
try I :r

set.yvel :m2 (yvel :m1) +

end

(aqrt «big.g * mass :ml) I :r» *
:rx I :r

However, a heavy planet will not orbit a light one, so this procedure gives

strange results if the second Massob is not much less massive than the first.

167

Something most of our subjects asked during the "moon shots" of chapter

3, was "Do the boosts use up fuel?" In Gravitas as it stands, they don't, but it is

not difficult to construct new ones which do:

to refuel

make Nfuel.load 100

end

to new.boost :massob

if : fuel. load < 1 [print [Out of Fuell l] stop]

boost :massob

make Nfuel.load : fuel. load - 1

end

The procedure new.boost will only allow 100 boosts before refuelling is

necessary. However, this constraint applies globally, so any boost of any Massob

depletes the fuel load. Fortunately, the dialect of Logo attached to Gravitas

allows variables to be personally allocated to Massobs. This means we can give

individual Massobs their own fuel:

to refuel :massob

ask Imasaob [havemake Nfuel.load 100]

end

to new.booat :masaob

if (ask I maaaob [: fuel. load]) < 1

[print liat (name :massob) [is out of Fuelll]
atop]

boost :massob

ask :maasob [make Nfuel.load :fuel.load - 1]

end

The ask and havemake constructs allow us to define private variables

for each Massob. Of course, these can be used in any context, not just fuel using

boosts and they provide a very powerful general means of extending Gravitas'

capabilities.

168

4.5 Summary

In this chapter we have shown that there are a number of areas in the

Science National Curriculum for which it is possible to devise Gravitas based

activities. The Statements of Attainment for which Gravitas seems particularly

well suited are those concerned with concepts such as Force, Momentum,

Energy and Gravity, and with more general knowledge of astronomical bodies

and satellites.

We have also indicated that the programmable nature of Gravitas opens

up wider possibilities. First, it makes it possible to build Logo procedures

which, although simple, can be the vehicle for longer term investigations.

Although this possibility was also described in chapter 3, in this chapter we

have shown that it applies to more than just orbital transfers.

Secondly, we have described the way in which Gravitas may have its basic

functionality extended through the addition of Logo procedures which take

advantage of the programming interface's complete window onto the state of

Massobs and the space.

169

The University of Sheffield

Department of Psychology

Or J P Frisby (Head of Department)
Prof K J Connolly
Prof J EW Mayhew
Prof P K Smith

Dear Mrs Robinson,

PO Box 603 Psychology Bldg
Western Bank Sheffield
S10 2UR UK
Phone 0742 826558
Fax +44 (0) 742766515
Telex 547216 UGSHEFG
E-mail PC1AC@UK.AC.Shef.PA

17th August 1994

I have finally had chance to get some information copied for you regarding early
signs of dyslexia. The information which I enclose comes from the literature I have built up for the
"Eraly Identification" project, but I am afraid it may not be too useful to you as there is very little
clear information on early diagnosis, as nobody has really found a way of going about it yet.

So I have included 3 articles written by Jean Augur, the first is taken from a copy of "Dyslexia
Co'ntact" from June 1990, the second is from a book called "Children's Written Language
Difficulties" edited by M.J.Snowling (1985). The third piece is a leaflet from the B.D.A.
Jean Augur was the Education Officer for the B.D.A., but she sadly died a short while ago. She
seems to have had a very good understanding of the characteristics of dyslexia - she actually had 3
dyslexic sons herself. A talk that she gave at the beginning of 1991 was the major inspiration for
my early identification project.

The other pieces of information come from research and other more academic aspects of dyslexia.
The frrst is a chapter from a book called "Children's Reading Problems" written by Peter Bryant and
Lynette Bradley. It has information regarding the development of reading skills. The other section
is 3 chapters from a book by Peter Pumfrey and Rea Reason called "Specific Learning Difficulties
(Dyslexia): Challenges and Responses". It is the result of a national inquiry about dyslexia with
researchers and educational psychologists.

I hope some of this info':Ilation is of use to you. Please let me know if you want me to look out for
more. My new address IS :

The Department of Psychology
University of Manchester
Oxford Road
Manchester
M139PL

I hope things go well for you. I will send you a copy of the findings of the study when I have them.
I would be really grateful if you could send me a copy of the diagnostic reports for Thomas.

Regards.

Sue Pickering.

5 Objectworlds and other Educational Computing Systems

5.1 Overview

In chapter one we defined a particular class of learning environments,

and named them objectworlds. In the second chapter we described a new

member of the class, called Gravitas, and in the third and fourth we showed

what kind of educational activities it can support. In this chapter we wish to set

objectworlds in context by contrasting them with other kinds of systems. One

underlying reason for doing this is to provide some help for teachers who

must choose software to use with their students.

In the interest of brevity, it makes sense to compare objectworlds with

their close relatives among the family of educational computing systems. To

this end we will begin the chapter with a short classification, concentrating on

programs which, like Gravitas, offer their users varieties of discovery learning

in scientific domains.

The two main categories we identify as close to objectworlds are called

Modelling Systems and Simulations, and, after clarifying these terms, we will

use most of the rest of the chapter to describe some well known examples,

emphasising the differences in the kinds of activities each can foster. We will

round the chapter off with a synthesis of the ideas covered and some

speculation about the places in the learning process at which each type of

system might be appropriate.

170

5.2 Classification of Educational Computing Systems

Many authors have sought to classify the uses of computers in education.

For example, Bork (1979) proposed a scheme based on the amount of

interaction a program engendered between student and computer. Others have

focused on the nature of the part played by the computer in any interaction

which takes place: Taylor (1980) identifies three different roles for the

computer: Tutor, where the computer presents subject material to the student,

Tool, where the computer is used by the student to assist in a task, and Tutee,

where the student programs the computer to carry out a task. Papert (1987a)

echoes this classification, seeing computers used first as "mechanized

instructors" for delivering tutorials, then as "tools for doing something else: as

calculators, word processors, simulators, or whatever", and finally as

"microworlds", of which Turtle Geometry is an example, and where

programming is central.

The field is also rich in acronyms for different types of software: CAI, CBT,

CAL and so on. However, as Adams (1988) points out, "common usage has

rendered many of these terms useless, since different authors will assign quite

different meanings to the more popular terms." Furthermore, in Adams'

opinion the classifications of these acronyms "tend to be about technical

aspects of software and hardware; what Papert regards as technocratic values."

Adams clearly favours categorisation based on educational values.

Another distinction can be made between educational computing systems

which include an Artificial Intelligence derived tutor, and those which do not.

Here, tutor has a different meaning from Taylor's use above. What is meant is

a piece of software which attempts to provide the student with some of the

things a human teacher would normally offer, such as guidance, hints,

thought provoking comments, and assessment of progress. The tutor runs

alongside the software providing the subject material (in practice the two

components are often tightly intertwined) and maintains a dialogue with the

student. The construction of such Intelligent Tutoring Systems is a highly

technical field, drawing on research from many different subjects including

artificial intelligence, cognitive science, knowledge engineering, and human

computer interaction. Surveys of the techniques involved may be found in

several texts, for instance: (Sleeman and Brown, 1982; Wenger, 1987; Frasson

and Gauthier, 1990).

171

Elsom-Cook (1990) identifies a class of Intelligent Tutoring Systems which

are especially relevant to objectworlds. He describes a new paradigm for

educational computing systems called Guided Discovery Tutoring. This brings

together Discovery Learning Environments and Intelligent Tutors to provide a

system in which students are free to explore a subject domain, while the tutor

provides guidance. Figure 5.1 illustrates the concept.

Figure 5.1 Guided Discovery Tutoring (after Elsom-Cook (1990) pll).

In the sections which follow we will describe a number of well known

educational computing systems, some with tutor components, some without.

What all the systems we will cover have in common is that they support

discovery learning in their domain of interest. Elsom-Cook's synthesis gives us

some justification for treating the learning environments separately from the

tutors and, following Adams, we will emphasise the educational differences

between systems, rather than the technical details. We will also try to avoid the

use of acronyms, preferring terms with a more definite meaning. In fact we

will restrict our comparison of objectworlds to two other classes of program:

Simulations and Modelling Systems. We intend to show that these are the

closest relatives objectworlds have in the range of educational software, yet

they still offer very different experiences to learners.

However, before we go on to describe actual systems we should clarify

our own use of terms. From our point of view, Modelling Systems,

Simulations and objectworlds are closely related because they all exploit

computer based models to convey their educational message. What differs is

the way these models are used. Although in many ways the differences

between the three systems are a matter of degree and the lines of demarcation

172

are somewhat indefinite, nevertheless we believe some general distinctions

can be drawn.

In a Modelling System, the educational activity involves students actually

constructing a model by some means. The facilities offered for model

construction vary widely. Some systems offer programming languages, others

allow the user to draw symbolic diagrams which represent the model and its

parameters or initial values. A third technique allows the user to work by

directly manipulating graphical components on the screen to build a model.

Whatever the method of construction, the computer converts the model into

an executable form and runs it, generating displays of its results so that the

user may inspect its behaviour. Far from finishing at this point, many systems

encourage the user to go back and explore the consequences of adjustments to

their model.

In contrast, most Simulations conceal their model from the learner and

simply offer an interface which allows them to vary parameters and observe

results. The focus is on the interpretation of these results and their comparison

with reality. As Bma (1991) puts it:

" ... simulations tend to emphasise the issue of the simulation's fidelity to the

real world whereas modelling emphasises the exploration of the consequences of

the model." (Bma, 1991)

Although we have drawn a sharp line between Modelling Systems and

Simulations, in actual use things can become a little blurred. A Modelling

System might be used just in its execute mode, with a preset and unexamined

model, thus shifting the emphasis onto the results; a Simulation could be used

purely to demonstrate how a particular model behaves. In practice however,

the design of systems tends to encourage the interaction styles described above,

as the next two sections (which describe well known exemplars for each

category) will illustrate.

173

5.3 Simulations

Once a model for a physical process or a state of affairs exists on a

computer it can be executed and observed while a range of initial conditions or

parameters are tried. When a reliable model is parcelled into a friendly

interface, which allows the user to vary the inputs and view results with

relative ease, then we call the system a simulation.

5.3.1 SOPHIE

One of the earliest Intelligent Tutoring Systems was the SOPHIE program

(Brown, Burton and Bell, 1975) which combined a tutor with a circuit

simulator to give a system that lets students practice their electronic circuit

debugging skills. The tutor is novel in that it maintains an English language

dialogue with the learner. Students can ask SOPHIE questions like "What is

the voltage across R23?" simply by typing them on the keyboard. Similarly,

SOPHIE can provide advice in English, such as "The base current of Q4 seems

to be incorrect." The educational intention of SOPHIE is actually to give

students the opportunity to fix a faulty simulated power supply unit. They are

free to vary the parameters of the model in the sense that they can set

component values. The output from the model is observed by making

"measurements" of voltages and currents in question form, as above. SOPHIE

has been the subject of a great deal of research and has been used with success

in real classrooms. The researchers devised a game in which one user inserts a

fault in the power supply which a second user must find.

liThe game was designed with two instructional goals in mind. First, we wanted a

self-motivating activity that promoted cost-effective troubleshooting. Second,

we wanted an activity that required the student to exercise his causal and

teleological understanding of the device." (Brown, Burton and De Kleer, 1982)

The underlying environment of SOPHIE is a simulation. SOPHIE is not

an objectworld firstly because there is no continuously visible object in the

sense we have developed in this thesis: learners refer to a printed schematic

which depicts the configuration of the circuit but not, for the most part, its

state. Indeed, SOPHIE must expressly conceal the state of circuit components or

else the central activity of finding faulty items would become trivial. Secondly,

the language of interaction, although flexible and robust, is a query language

rather than a programming language. Figure 5.2 summarises SOPHIE's status.

174

Figure 5.2 SOPHIE.

Nor is SOPHIE a modelling system, since ordinary users cannot alter the

circuits (that task is reserved for system programmers) or build their own.

Learners can, however, use commands to set and inspect certain circuit

parameters. Essentially, learners are being given the opportunity to build their

own detailed mental model of the device and its fault modes.

5.3.2 STEAMER

Hollan, Hutchins and Weizman (1984) describe STEAMER, a simulation

of the steam propulsion unit of a large ship. Such units are highly complex

and to aid novice engineers the authors have built an "interactive inspectable

simulation" with a sophisticated graphical interface. The physical machinery is

represented schematically on the screen and it is clear that the objectworld

paradigm, with its requirement that all the objects (and their state) are

continuously depicted, would cause an information overload. Furthermore,

the objects in STEAMER are so numerous (and disparate) that manipulating

and inspecting them via the objectworld strategy of operators and functions

would be unwieldy. The simulation approach is obviously the right one for

this domain.

However, there is an addition to STEAMER, the feedback minilab, which

lets the learner study components of the system in isolation. Within the

minilab objects and their state are continuously depicted and the direct

manipulation interface allows the inspection and manipulation of parameters.

But these devices are highly specific machines such as pumps and valves, and

the system defines allowable, correct, ways to use them. They cannot be

considered transitional objects in the sense we established in chapter two.

175

STEAMER -
Minilab -

Figure 5.3 STEAMER and the Feedback minilab.

Hollan, Hutchins and Weizman view the kinds of learning fostered in

the two environments as complementary: both are intended to help learners

form mental models of complex devices, but on different scales. Both the

simulation and the minilab contain limited tutorial capabilities to support this

aim.

5.3.3 SMITHTOWN

Another Intelligent Tutoring System based on a simulation is

SMITHTOWN (Shute and Bonar, 1986; Shute and Glaser, 1990). This program

presents a hypothetical town whose economic details (such as population size,

consumer preferences, average income, state of markets etc.) are displayed

continuously on the screen. These details can all be inspected and set by the

student. In these respects the system is conforming with our definition, and in

fact the authors refer to it interchangeably as a simulation and a microworld.

Nevertheless, as figure 5.4 shows, SMITHTOWN is in our terms a simulation.

First of all, the things displayed on the screen are the state of the town and not

the town itself (or even some stylised depiction of it). Secondly there is no

programming language made available to users - they set and inspect the state

of the town via the program's graphical interface.

Figure 5.4 SMITHTOWN and the objectworld criteria.

The designers' choice of the simulation paradigm is justified by the types

of learning they wish to promote. For instance, they want students to be able to

discover formal concepts, such as the law of supply and demand, which are

embodied in the system. Indeed, the tutor component of SMITHTOWN is

intended to guide students to just this sort of discovery.

"SMITHTOWN is a highly interactive program, allowing students to pose

questions and conduct experiments, testing, and enriching their knowledge bases

of functional relationships by manipulating various economic factors." (Shute

and Glaser, 1990)

Students are not expected to construct a model of the law, as they would

in a modelling system.

5.3.4 The Alternate Reality Kit

We briefly mentioned the Alternate Reality Kit (Smith, 1986,1987) in

chapter two. ARK was designed and built by Randall Smith at the Xerox Palo

Alto Research Centre. He describes it as 11 a system for creating interactive

animated simulations." ARK consists of a large set of graphical objects such as

switches, sliders, buttons and meters. The objects are continuously visible on

the screen and may be manipulated directly with the mouse. All objects can be

given a velocity and ARK animates them smoothly across the screen. A special

class of objects, called interactors, allow behaviours such as gravity, friction and

collision detection to be defined between objects. With these building blocks it

is possible to construct a wide range of simulated experiments. Smith has built

projectile launchers which show objects moving under the force of gravity.

Other applications built in ARK include a simulated bubble chamber, for

observing the paths of charged particles, and a factory manufacturing soft

drinks.

However, while ARK's friendly interface makes using these simulations

very straightforward, actually constructing them is very hard. Smith envisages

two classes of user: liThe applications-level user might typically be a student

carrying out a simulated lab. At a lower level the simulation builder is the

creator of a particular application. There may be a role for another layer below

that, populated by individuals who create tools for use by simulation builders"

(Smith, 1987). In practice, most users of ARK work at the applications level,

using exactly what they are given. To be a simulation builder, the user must be

177

able to program in ARK's implementation language, Smalltalk-80, and needs

to know a good deal about ARK's internal mechanisms. Smith reports having

observed SO application users against two simulation builders.

From an educational point of view then, ARK is what an applications

level user sees - a simulation. We should stress again that ARK simulations

are straightforward to use since they employ familiar metaphors. A parameter,

such as velocity, can be "attached" to a slider control and varied with the

mouse. Gravity may be turned on or off with a switch. Once again, the

emphasis is on leading the user to achieve an understanding of a concept, such

as one of Newton's laws of motion.

The ARK simulation builder though, has access to the programming

language Smalltalk. Therefore, by our definition it could be said that a

simulation builder is working in an objectworld. ARK's objects are

continuously visible (if they haven't fallen off the screen!), they may be

designed to embody some important concept (for example, Smith has built

Newtonian particles), and the programming language can certainly support

analogues of the command sets required by the definition. Nor would it be too

difficult to build syntonic commands (see chapters 1 and 2) in ARK and create

full blown transitional objects. Figure 5.5 summarises the situation for the two

classes of user.

ARK: application user

ARK: simulation builder

Figure 5.5 ARK and the objectworld criteria.

5.3.5 NEWTON

Another system we wish to discuss is based, like Gravitas, on simulations

of Newtonian objects. NEWTON (Teodoro, 1990) allows learners to subject

particles to forces and observe the affects on their motion as they move across

the screen. Unlike Gravitas, the number of particles is limited to two and nor

do they interact with each other gravitationally. However, as with ARK,

178

friction and gravity (as a simple acceleration acting down the screen) may be

turned on so that it is quite easy to observe the trajectories of 'real' projectiles.

Other features allow the user to display the velocity vectors of the particles and

plot graphs of chosen variables. Any run of the simulation may be replayed at

will making the detailed examination of particle motions straightforward.

NEWTON's particles are transitional objects because they are simplified

versions of the formal abstractions physicists call Newtonian particles, and

they are continuously visible. The system's control panel, shown on the left of

figure 5.6, also contains buttons which accelerate a particle in one of eight

directions. These force buttons are comparable to the syntonic functions of

Gravitas and Turtle Geometry.

., •.......

Figure 5.6 EWTON hawing the control panel and a single particle with friction.

Some of th designer's comments reinforce this view of NEWTON's

partic1 s as transiti nal objects. Certainly, the designers of the system seem to

have similar intenti ns to Papert in the sense that they wish to create new

computational bj ct for education to use:

"NEWTON i intend d to xtend the range of manipulable objects in the learning

of dynami , nam ly the ab tract physical concepts of velocity, force, momentum,

energy, tc. It al 0 allow the student to confront multiple representations of

mov m nt, in r al tim ." (T doro, 1990)

How v r, in c ntra t to Gravitas, the user must take account of a particle's

mass t und r tand th ff ct of a force, and they have to select a direction for

it. A w m nti n d in cti n 2.8 of chapter 2, Gravitas' syntonic commands

179

always act in (or perpendicular to) a Massob's direction of travel and the

accelerations are independent of mass. In other words, manipulating

NEWTON's particles is more cognitively expensive than manipulating

Massobs. On the other hand, NEWTON's particles have a less complex

behaviour since they do not gravitate with each other. If we assume that the

basic cognitive effort required to work with these kinds of object is a function

of their inherent complexity and the intricacy of their syntonic functions, then

particles and Massobs are probably on a par, and both a little more taxing than

Turtles. We should caution against reading too much into this assessment

though, as it does not compare the cost of doing educationally valuable things

with the objects.

Even if we accept NEWTON's particles as transitional objects, still there is

no programming language present in the system and so it cannot be an

objectworld by our definition (Figure 5.7).

Figure 5.7 NEWTON and the objectworld criteria.

The constructive possibilities offered by something like a Logo interpreter

are therefore not present, but the designers seem to have different goals

anyway:

"One of the assumptions in the design of NEWTON is that knowing and

understanding means 'becoming familiar with different representations of a

phenomenon'. With the program students can have the possibility to become

familiar with the effects of forces, with vectors that represent physical

constructs, and time (either in an analogical graphical representation or

property vs. time graph), etc." (Teodoro, 1990)

On the other hand, it does seem clear that the addition of a programming

facility could enhance NEWTON. After all, the particles are very similar to

Massobs with their gravitation turned off (a situation accomplished in

Gravitas by setting the universal constant of gravitation to zero). Furthermore,

180

NEWTON's control panel is similar in concept to Gravitas' buttons and

displays, and so it is reasonable to assume that the same synergy between

graphical and programming interfaces that we discussed in chapter three

would be generated.

5.3.6 ROCKET

The last system we wish discuss in this section is also designed to offer

learners experience of Newtonian objects. Bma (1989) describes ROCKET, a re

implementation and refinement of Dynaturtles (diSessa, 1982). Like diSessa,

Bma is interested in the idea that such systems can be lead students to confront

their misconceptions about Newtonian dynamics. ROCKET allows the

investigation of the motion of a body moving in two dimensions, free of

friction or gravitational forces. The body may be given 'kicks' (or instantaneous

velocity increments) of variable magnitude and the direction of the kicks may

also be varied by the learner. Like Dynaturtles, the user can drive ROCKET

interactively from the keyboard: a press of the L key rotates the rocket's kick

heading (indicated by an arrow) 10 degrees to the left. The R key rotates it right

by the same amount. Pressing a number from 1 to 9 applies a kick of that

magnitude to the rocket (the units are arbitrary).

The refinement added by Brna is a simple programming language which

allows the learner to pre-compose sequences of commands, then execute them

to try to achieve some goal. The point behind this addition is to make it easier

for a teacher to infer the students' plans as they try to carry out their tasks. Bma

contends that the purely interactive modality of TARGET (the name used by

diSessa for his Dynaturtle game) is too narrow a channel through which to

view their intent:

liThe language used by the students to communicate with the computer in

TARGET is so impoverished that it becomes very difficult to infer student's plans

and strategies reliably. I believe it is an improvement to provide a simple

programming language which allows the student to devise and communicate

game-playing strategies - whether or not a student has Newtonian conceptions

about dynamics." (Bina, 1989 p30)

In classroom trials Brna made extensive observations of students using

ROCKET in both interactive and programmed modes as they tried to hit a

target. (Figure 5.8)

181

o Target

t Rocket

Initial state of the system

Figure 5.8 A task and a program in ROCKET

1C 1

"4
R 18
1C 1
L 9
1C 1

Kick of I unit sets rocket moving up screen
Wait 4 units of time
Turn 180 degrees
Kick 1 unit. Rocket now stopped
Turn left 90 degrees. Now facing target
Kick towards target

Bma was especially interested in diSessa's idea of a learning path chart for

such problems. This chart is supposed to describe the possible paths a student

make take in their attempts to solve a particular task. Bma wished to:

" ... examine the claim that the game can be used in the classroom because the

learning path chart provides a sensible basis for a small part of the physics

curriculum. The justification for this is that the learning paths allow for a

'natural' development of the ideas needed for mastering the physics associated

with the game." (Bma, 89 p29)

Bma observed many strategies as his students set about the task but he

concluded that it was difficult to reliably infer that they were confronting their

own mistaken beliefs as a result of using the program. The Newtonian corner

strategy (see section 1.10 and figure 5.8 above), for instance, is equally

understandable from both Newtonian and Aristotelian points of view. He

notes that the addition of the simple programming language does make it

easier to diagnose students' misconceptions but still does not yield sufficient

reliability. Brna suggests that one way forward would be to add a more

powerful programming language, such as Logo or Smalltalk, with built in

primitives that better reflect the problem domain:

liMy conclusion is that the current language used for ROCKET is too closely

equivalent to mIlchine code to be useful. A better approach is to provide a higher

level language. An even more promising approach is to provide a language

which can be used by the students themselves to describe their beliefs about the

underlying physics." (Bma, 89 p29)

182

Since there are inevitably occasions where the teacher is attempting to

infer the depth of an objectworld user's understanding, Brna's comment has

great relevance to Gravitas and we will return to it at the end of this chapter

(in section 5.5). For the time being we note that ROCKET, interesting extension

of the simulation idea that it is, still does not fall into the objectworld category.

It does not implement a full set of state operators for the central object (after

all, a position operator would render the game trivial) and its programming

language is too restricted.

183

5.4 Modelling Systems

Modelling is without doubt one of the most important applications of

computers. As Howe et al (1979) point out "Perhaps the most versatile

modelling system is the digital computer." Governments use computer-based

models of the national economy; commercial operations model their finances

and production lines; engineers model bridges, engines, pipelines, and other

structures. Computer models of political and military conflicts have been built

and there are even models of legal systems, which can generate decisions on

actual court cases. The wide range of possible applications has led some

authors to try to capture what is common to the various kinds of model:

"A model is a representation of structure. There are many kinds of models: a

model might be a physical object, or it might be a structure of related ideas,

which might be expressed informally in words or diagrams, or which might be

expressed more formally." (Mellar, 1989)

Schecker expresses the same idea in a slightly different way, defining

model building systems as:

"Context-free software tools that support the user in representing a part of the

'touch-and-show-reality' in the form of an abstract, quantifiable system of

parameters and their relationships (the model), which predicts the behaviour

of the real system." (Schecker, 1990)

Models can be expressed in different ways: Perhaps as a set of

mathematical equations or a set of logical relationships. In some systems the

medium of expression is a programming language of some kind. Other

systems, as we will see, allow models to be built graphically, as diagrams or

schematics.

From an educational point of view modelling engages learners in two

valuable activities: first of all they must describe a process or state of affairs in a

form that the computer can evaluate. Once this is done they can turn their

attention onto the behaviour of the model, its predictions and limitations. As

we indicated in the previous section, at this point the learner is often led into a

cyclic process of modifying the model and observing the effect the

modifications have on the results.

184

The case for the inclusion of modelling activities in the school science

curriculum has been made in, for instance, Oke and Jones (1982), and

Millwood and Stevens (1989). As the latter point out, modelling is what

working scientists spend much of their time doing. In the sections which

follow we will describe a few of the better known modelling systems.

5.4.1 The Dynamic Modelling System

The Dynamic Modelling System, DMS, (Ogborn and Wong, 1984) was

developed for use on school microcomputers of the early to mid 1980s. It is

designed to deal with dynamical models - "that is, models which compute the

evolution of a system step by step. The British economy, a satellite in orbit or

the rabbit population on an island are all examples of systems for which such a

model can be constructed" (Ogborn and Wong, 1984). DMS presents the user

with an editor into which statements of the programming language Basic can

be entered to form a model. A second editor lets the user assign initial values

to variables in the model. The system will then loop around the model,

computing new values for variables and plotting the results on a graph.

Initial Values I
x = 0
y = 0
xvel = 15
yve1 = 60
9 = -9.8
dt = 0.1

Model I
x = x + xvel * dt
y = y + yvel * dt
yvel = yvel + 9 * dt

200- Y

", /,..-------......... "

100-

-+ ____________ ~ __ --------~_;x o I I

o 100 200

Figure 5.9 DMS being used to model projectile flight (This is a simulated image. In practice the Model, its
Initial Values, and the results are viewed separately).

The system is easy to use and although the model is limited to twenty or so lines

of Basic, some interesting topics can be investigated. However, if we examine

DMS from the point of view established in chapter one, we see that it is not an

objectworld. First of all, the learner's attention is focused on a set of equations

and parameters rather than a continuously visible object. Nor, in the terms we

185

have set out, can tables and graphs be thought of as transitional objects. They are

formal systems, rather than stepping stones to them.

Figure 5.10 DMS and objectworld criteria.

Without objects the concept of simple commands to inspect and adjust

attributes does not apply. Furthermore, the notation in which the models are

expressed is really too weak, most especially in its support of data types and

control structures, to be considered an objectworld language. Figure 5.10

illustrates the state of affairs.

Such a list of negatives is almost certain to give the impression we are

unimpressed by DMS. However, this is far from the truth. We are simply

concerned to stress the differences between objectworlds and other systems.

5.4.2 STELLA

Another system dealing with dynamic models is STELLA (Richmond et

aI, 1987). Here the user can build a model on the computer screen by

assembling a collection of graphical components. The kinds of components

available in STELLA are called stocks, flows, converters and connectors, and

the program is based on the observation that a large class of models can be

represented by systems of these objects. The user constructs a diagram from

the basic components and sets initial values for the stocks and flows. Then,

equations can be entered to define the detailed behaviour of components.

Schecker points out that this two step process can lead to an advantage for the

learner:

"Icon-oriented systems like STELLA force the students to engage in a qualitative,

principle oriented analysis of the problem before they can work on the equation

level. Prior to a definition of special functional relationships the relevant

quantities have to be defined and the structure, i.e. the conceptual features of the

model, must be formulated. The students are thus introduced to the strategy of

expert solvers." (Schecker, 1990)

186

Once the model is complete, STELLA can be asked to produce graphs of

selected quantities while the model is iterated over an independent variable,

such as time. Sophisticated models can be constructed in STELLA, and its

solving algorithm can be set to give almost any degree of accuracy. However, it

is important to note that although the basic components can be thought of as

objects, they often require users to think in terms of abstractions; for example,

the learner must adjust to the idea of representing distance as a stock.

In this sense, STELLA is not truly context-free. Its basic metaphors of flows

and stocks angle it towards certain kinds of problem. As Schecker puts it, the

system suffers from some "constraints for physics and chemistry which

originate from STELLA's orientation towards the social and economic

sciences" (Schecker, 1990). Nevertheless, in the same paper Schecker does

show STELLA being used to build working models in physics, such as the

diagram of figure 5.11, representing a restricted form of planetary motion (the

case where planetary mass is insignificant with respect to the mass of the Sun).

o o o o
initi~ I>inotion initi~ lYtlooitll musSun

Figure 5.11 STELLA model of planetary motion (After Schecker. 1990).

Schecker discusses the value of computer based modelling for students,

claiming that it "supports the user in an active process of applying mental

models formed in his mind to a new phenomenon. With the help of a

modelling system the modeller explores the consequences of his conceptual

assumptions about the phenomenon" (Schecker, 1990). It is implicit in this

view that learners need to have some formal understanding of the domain, at

187

least to a level that allows them to express ideas as algorithms or diagrams that

the system can execute.

Considering STELLA against our criteria, it is clearly not an objectworld.

As we said above, the flows, stocks and converters are continuously visible, but

they require the user to think in terms of abstractions. This reduces the

likelihood of them connecting to a novice's concrete experience and therefore

makes them less suitable as transitional objects. On the other hand, STELLA

has facilities functionally similar to Turtle or Massob commands, which make

it easy to examine or alter the values of the objects. STELLA's notation, like

that of DMS, is weak, being tuned to the expression of difference equations.

Figure 5.12 STELLA and the objectworld criteria.

However, it is interesting to note that STELLA's facility to combine

graphical components into systems by direct manipulation is in some ways a

substitute for the control constructs and procedure definitions of conventional

languages.

5.4.3 I(2()~

The next system we will examine tries to marry modelling and qualitative

(or more strictly, semi-quantitative) reasoning. In IQON (Miller et aI, 1990), as

in STELLA, the learner uses a Direct Manipulation interface to build a

diagrammatic model of a real-world system. The difference is that IQON's

models represent the qualitative relationships between special objects called

continuous-valued variables, or boxes for short.

The level in a particular box is affected by the level in others through

positive and negative links. A positive link implies that a rise in the source

box will produce a rise in the target box, while a negative link implies the

reverse. An underlying mathematical engine ensures that the model is

normalised, in the sense that the level in all boxes is constrained to lie between

188

plus and minus one. IQON can plot graphs of the levels in the boxes over

time.

IQ ON

depth of wells

food available

number of cattle

amount of disease

~~~1I11 
modern medicine amount of grassland 

Figure 5.13 An IQON model of the Sahel (After Miller et ai, 1990). 

For instance, there is a qualitative relationship between food and 

population: IF there is more food present THEN a larger population can be 

supported. If we add another variable, the complexity increases rapidly: IF the 

population increases THEN more water is consumed THEREFORE less water 

is left for agriculture. Nothing needs to be said about absolute values. Complex 

models can be built up in IQON and the authors report using lQON to 

simulate a wide range of real world situations: queue length at supermarkets, 

the atmospheric carbon cycle, illegal drug trafficking, and so on. They also give 

backing to the qualitative approach in education by pointing out that examples 

of qualitative thinking abound in the history of science. 

To use boxes and links to stand for different things requires a student to 

abstract the concepts of interest and to do this they must already have some 

level of formal understanding. The boxes and links are not, therefore, 

transitional objects although they are easy to examine and alter. lQON does not 

offer the user a programming language, but as it was developed in 5malltalk 

(Goldberg and Robson, 1983) this might be possible to arrange. So, as figure 5.14 

189 



shows, IQON is not an objectworld. However, compared to STELLA, the 

mechanisms which allow the computer to execute the user's graphically 

constructed model are more deeply hidden. 

IQON 

Figure 5.14 IQON and the objectworld criteria. 

The use of IQON (and other systems) in real classrooms is reported in 

(Bliss et aI, 1992). Some of the researchers' main findings are concerned with 

the ways in which children decide on the entities that will be variables for a 

given problem. They also find that when building models, children often 

invent other entities which do not really correspond to continuous-valued 

variables but which are represented as such because IQON offers no other way. 

Bliss classifies these extra entities into three types: objects, events and 

processes, according to the role the learners ascribe to them. With regard to 

links between variables, Bliss has the following to say: 

liThe pupil's description of links or relations can be either causal or non-causal, 

with causal links being seen as one variable having some sort of influence on 

another, whilst non-causal links are just co-occurrences of high or low values" 

(Bliss et aI, 1992) 

As we said above, variables and links are abstractions which can stand for 

very different kinds of real world situation, and to use them requires some 

formal understanding of the concepts they represent. In addition to this 

fundamental hurdle, Bliss reports that many children find it hard to cope with 

models as a whole. These two points suggest that a more appropriate role for 

modelling may be in the later stages of concept acquisition. 

5.4.4 Spreadsheets 

Another class of modelling system is the computer spreadsheet package. 

These are commonly used by companies (or individuals) to model stocks, 

production and cashflows and to carry out projections of costs, turnover, and 

profits. To do this, data is entered into cells on a grid and relationships between 

190 



them are set up. For instance a cell may be defined to be the sum of the column 

of cells above it, as is the case for cell DlO in figure 5.15. 

Although the facilities of spreadsheets are highly tuned to their primary 

purpose - the construction of an active data structure - several authors have 

reported positively on their teaching uses in topics as diverse as chemistry 

(Brosnan, 1990), geology (Holm, 1988), and mathematics (Eyler, 1990; Galizia, 

1990). 

Figure 5.15 A typical spreadsheet. 

Most recent spreadsheets have considerable power in terms of both basic 

operations and graphical features. In fact, Microsoft's Excel contains a 

command language which is a version of Basic extended with data types 

corresponding to groups of cells. By attaching commands to sequences of cells 

programs can be constructed. It is even possible to group commands together 

and refer to them by name. Furthermore, Excel has considerable graphical 

power for displaying results. 

To date the reports in the educational literature focus on topics which fit 

the spreadsheet paradigm, i.e. the construction of an active structure. Chemical 

lattices, rock strata, and mathematical series are examples. To our knowledge, 

no one has used a spreadsheet to construct a transitional object. Such a 

development cannot, however, be ruled out, and spreadsheets remain an 

interesting class of system. 

191 



5.4.5 DYNLAB 

In section 5.3.6 we noted Brna's conclusion that a simulation, even one 

augmented with a simple programming language, is not an ideal tool for 

forcing students to confront their misconceptions about the dynamics of 

Newtonian bodies. He points to two examples - TARGET (diSessa, 1982) and a 

variant of that system - ROCKET (Brna, 1989) which both simulate a body 

moving in a two dimensional space free of friction or gravity, and comments: 

It ••• it cannot easily be inferred from students' behaviour that they have 

confronted some non-Newtonian misconception and overcome it. They can evade 

the issue in a number of ways and they can utilize "non-Newtonian" tactics as 

part of their overall strategy even when they do not have misconceptions. The 

language by means of which the student communicates with the computer is too 

close to the phenomenological level to easily abstract the interesting 

information about how the student perceives the problem." (Bma, 1987) 

To tackle this shortcoming Brna created a modelling system called 

DYNLAB (Bma, 1989; 1991) which contains a high level language that students 

can use to describe dynamics problems involving one or two bodies. Users 

model these problems (or SITUATIONs as Brna calls them and which he 

presented to students on worksheets) in three stages: First they use the 

language to define a MAP - a description of the territory over which the body 

is to move. Secondly they describe the JOURNEY the object is to make, either 

in terms of a set of constraints or as a set of interesting events. Finally, the 

students are required to describe the FORCE that is needed to drive the object 

on its JOURNEY around the MAP. 

Brna gives an example use of the language to model an icecube sliding 

along a tabletop. Figure 5.16 shows the layout. 

Figure 5.16 The SITUATION to be modelled 

192 



A model of this SITUATION begins with the MAP definition: 

SLIDE:MAP:TABLETOP 
DISPLACEMENT BEGIN EOCE 10M 90 
DISPLACEMENT EOCE FLOOR 20M 180 

JOIN BEGIN EOCE 

JOIN EOCE FLOOR 

This definition is to be read as follows: (i) Begin the description of the 

MAP for a SITUATION named TABLETOP. (ii) Two points in the MAP, called 

BEGIN and EDGE, are separated by a distance of 10 metres along a bearing of 90 

degrees. (iii) EDGE and a third point, FLOOR are separated by 20 metres along a 

bearing of 180 degrees. 

The next step is the JOURNEY definition: 

SLIDE:JOURNEY:ICECUBE 

START BEGIN 

MASS 
VELOCITY 

2KG 
BEGIN 2M/S 90 

This may be read as: (i) In the SITUATION named SLIDE a JOURNEY is to 

be made by the object called ICECUBE. (ii) The START of the JOURNEY is at 

the point called BEGIN. (iii) The MASS of the ICECUBE is 2KG. (iv) The 

VELOCITY of the ICECUBE at the point BEGIN is 2M/S along a heading of 90 

degrees. 

The final stage of the model is the definition of the FORCEs that act on 

the bodies in the SITUATION. There is only one body here but two forces must 

be defined: 

SLIDE:FORCE:WEIGHT 

ACTS ICECUBE 

FORCE ONE 19.6N 180 

SLIDE:FORCE:REACTION 

ACTS ICECUBE 

FORCE ONE 19.6N 0 
DISPLACEMENT 10M 

These definitions state that (i) a force of 19.6 Newtons (ICECUBE's mass 

times the acceleration due to gravity) acts on ICECUBE along a bearing of 180 

degrees i.e. downwards. (ii) a force of 19.6 Newtons acts on ICECUBE along a 

193 



bearing of zero degrees (Le. upwards - this is the reaction of the tabletop to the 

object) but only over a displacement of 10 metres. 

Figure 5.17 illustrates how DYNLAB would run the SITUATION: 

• • • • • 
• 

• 

• 

Figure 5.17 The SITUATION being executed 

Brna used DYNLAB with a number of school students, setting them 

problems selected from the literature on children's misconceptions in 

dynamics. He notes that students were faced with conflicts between their 

expectations of behaviour and what DYNLAB produced: 

"Confrontations occurred and were resolved satisfactorily on a number of 

occasions. Those who took advantage of these confrontations were often the 

students who were eventually able to articulate their own beliefs. 

Encouragement of reflective thinking is one of the proposed advantages 

associated with the modelling approach." (Bma, 1987 p373) 

Brna also reports positively on the utility of the language with respect to 

one of his original aims - the widening of the channel between student and 

system to improve the teacher's chances of inferring interesting things about 

the student's understanding: 

"It was found that the use of DYNLAB had advantages over TARGET or 

ROCKET. In achieving a goal such as that posed for students using ROCKET... 

[see section 5.3.6] ... students often appeared to be debugging non-Newtonian 

beliefs. It proved much easier to discriminate between students with Newtonian 

beliefs making use of sensible problem solving strategies and students with some 

misconception." (Bma, 1987 p373) 

So, Bma concludes that the students' efforts in learning the formalism for 

programming situations into DYNLAB is worthwhile. The benefits are that 

the student is encouraged to reflect more deeply on the problems and there is 

194 



an increased opportunity for the teacher to diagnose faulty understandings. 

Although DYNLAB is not an objectworld (it lacks a complete set of state 

operators for the objects created by the user, and its language, tuned to the 

description of SITUATIONs, is not sufficiently powerful) this conclusion does 

have great relevance for systems like Gravitas, where deeper reflection by the 

student and better diagnostic opportunity for the teacher are just as important 

as within a modelling context. 

195 



5.5 Synthesis 

No system of categorisation is perfect, and no system produces exact 

divisions between the different kinds of educational software that have been 

developed. There may be programs which overlap the three areas identified 

here. If we have exaggerated the degree to which our categorisation is 

unambiguous, then it has been for the sake of one simple point: that computer 

models can make an important contribution to education but that the 

framework in which they are placed affords very different learning 

experiences. 

This statement is no longer a mere platitude. By clarifying terms and 

describing examples we have reached a point where it is possible to make 

succinct statements about the character of each type of environment we have 

been considering, and the corresponding educational experiences they offer. 

We believe that placing these descriptions in close proximity will lead to a 

clarification of the roles each can play in education. 

An objectworld is a system which instantiates on computers an object that 

can easily be apprehended by learners, which can be manipulated in intuitively 

natural ways, and which, through programming, can be a vehicle for the 

examination of rich conceptual areas. It is essential that the mechanisms 

which give the object its interesting behaviour are hidden from the user. 

A simulation takes a model of some process or state and allows the 

learner to vary parameters and inputs, and observe results and outputs. It is 

not necessary for the learner to comprehend the workings of the model, nor is 

such comprehension ruled out. 

A modelling system allows the user to capture a concept, process or state 

in a procedural algorithm or other executable notation, and run it on the 

computer to generate predictions. As far as education is concerned, there is 

value in both the construction and the execution of a model. It is essential that 

the learner has some understanding of the model and the mechanisms for its 

solution. 

Looking at the three types of system in this way suggests a progression. 

We speculate that each kind of environment is appropriate to different stages 

of concept acquisition. An objectworld gives learners the opportunity to 

explore and play with novel entities, whose specially designed behaviour 

196 



makes them concept-rich. Syntonic commands such as those of Massobs and 

the Turtle allow the learners to work directly with the objects and build up 

their fund of what Polanyi calls the "tacit component of articulate knowledge" 

(Polanyi, 1962). Our subjects in the studies of chapter three were developing 

their tacit knowledge of how objects move in gravitational fields as they 

manoeuvred the rocket to the moon. Typically, to explain their actions, 

learners draw on expressions which are not strictly applicable to the situation. 

For instance, Joe wanted to boost the rocket '(when it's running parallel to 

Earth". 

A simulation allows the learner to explore the limits of the behaviour 

generated by a particular mechanism, allowing them to build their formal 

understanding of the domain. The student knows there is a formal model 

driving the system and that the understanding of this model is one of the 

goals. SMITHTOWN, for example, contains a model of the economic law of 

supply and demand, which the students are intended to discover (with help). 

Finally, modelling systems give learners the chance use their formal 

understanding to construct their own behaviours, or at least see how they are 

generated. This process can lead students to refine their articulate knowledge 

as they fit the components of a model together, or as they try to map the basic 

objects of systems like STELLA and IQON onto their problem. They can then 

move on to see what their creation predicts. At this stage the educational 

experience becomes similar to the experience of a working scientist. 

Despite these distinctions between the learning experiences afforded by 

different classes of system it is wise to bear in mind the general consideration 

(touched on in section 5.3.6) pointed out by Bma (1987, 1989): In any system 

there will be many occasions when the teacher needs to be able to infer things 

about the student's understanding. To assist this process we need a broad 

channel of communication between student and computer. Brna suggests that 

a programming language one way to make an improvement and that a higher 

level language, with primitives that match the problem domain, is still better. 

Gravitas, as we have seen, is attached to a full strength version of Logo and so 

meets the first part of Bma's suggestion. Furthermore, Logo, in conjunction 

with the full set of state operators for Massobs (and the space they inhabit), 

should make it possible to experiment with a meta-Ianguage along the lines of 

the second part of his comment (although we have not done this). In 

197 



particular, predicates such as po in tin g _ at _ tar get? and 

pointing_at_right_angle_to_path? (Brna, 1989 p39) would be 

straightforward to implement. This represents important theoretical support 

for the language requirement in our objectworld definition, backing up the 

pragmatic justifications of chapters 3 and 4. 

At this point we should reiterate that the division between our three 

kinds of system can be indistinct, and often depends as much on the uses a 

teacher encourages students to put them to as on inherent design features. 

Likewise, the learning experiences we have just described blur at the edges. 

What we have been attempting is to indicate where each kind of system might 

be most useful. In a similar vein, Hammond and Trapp (1992) propose a 

methodology which teachers and designers can use to help them match 

educational tool to learning situation. Their scheme entails filling a matrix 

which pits software approach against learning scenario with values deriving 

from the three kinds of analysis shown in figure 5.18 below. Hammond and 

Trapp give a list of heuristics to assist in the interpretation of the matrix. 

Learning Situation 

Educational and 
psychological 

principles 
Learning needs 

analysis 

Claims anal sis 

Technology 

Figure 5.18 Bridging between leaming situation and technological artifact (Hammond and Trapp. 1992) 

The analysis of Learning Needs (the right hand sub-box) is beyond the 

scope of this thesis. Indeed, it depends on external factors such as curriculum 

198 



goals or course design, which are the concern of teachers. However, the 

critique in this chapter makes a contribution to knowledge of the Properties of 

the Approach (the bottom sub-box). In the next chapter, we give some 

consideration to the educational and psychological principles underlying 

objectworlds (the left hand sub-box). 

199 



6 Transitional Objects and Syntonic Commands 

6.1 Overview 

Transitional objects and their associated syntonic commands are 

obviously very important to the view of objectworlds we have put forward in 

this thesis. However, actually defining them in concrete terms is not really 

feasible; it would be rather like trying to define poems or sculptures. 

Consequently the definition of an objectworld given in chapter 1 does not 

mention them explicitly, but makes only general requirements. 

Nevertheless, it would be unsatisfactory to leave our comments on 

transitional objects and syntonic commands in this state. One of the aims of 

this thesis is to assist those who would like to build their own objectworlds. 

Accordingly, we have been quite specific about their essential characteristics. If 

we now have to abandon prescriptive definitions, then we must provide a 

substitute of some kind. 

In fact, there are important statements that can be made about transitional 

objects and syntonic commands but these statements are descriptive in nature. 

In this chapter we bring together a collection of such comments with the 

intention of providing a way of thinking about them that will be useful to 

future objectworld designers. The chapter sets the scene for the actual work of 

transitional object design. 

We begin with an analysis of the statements Papert has made over the last 

two decades or so, mainly in the context of his work with children using Logo 

and Turtle Geometry. For Papert the Turtle is a transitional object - it connects 

both to everyday experience and to formal mathematical ideas. 

Next we will examine the theories of the clinical psychologist Donald 

Winnicott, who used Freudian psychoanalysis to help with the treatment of 

emotionally disturbed children. The part of his work which concerns us began 

with the publication of his paper Transitional Objects and Transitional 

Phenomena (Winnicott, 1951) and continued into the 1970s. For Winnicott, a 

transitional object is some graspable thing that very young infants fix on at a 

critical, pre-perceptual stage in their development. For Winnicott this object, 

perhaps a toy or the corner of a blanket, is essential to the child's structuring of 

the world into 'me' and 'not me'. 

200 



Finally, we survey the contribution of the educationalist Robin Hodgkin, 

whose 1985 book Playing and Exploring (Hodgkin, 1985) seeks to unify the 

work of Winnicott and Papert in a theory of the ways in which transitional 

objects can encourage children to enjoy and be unafraid of discovery learning. 

201 



6.2 Papert's Concept of Computer-based Transitional Objects 

Soon after the construction of Logo and the first Turtles, Seymour Papert 

began to build psychological foundations for the novel approach to learning 

that the new systems offered. From the beginning his objective was to offer 

children a more concrete programme of school mathematics, with a shift in 

emphasis away from abstract formulae, which many learners find 

unmotivating, towards meaningful creative activities. The titles of some of his 

papers from this period reflect his intent - "Teaching Children to be 

Mathematicians Versus Teaching Children Mathematics" (Papert, 1972), and 

"Teaching Children Thinking" (Papert, 1970) for example. Papert viewed the 

Turtle as a vehicle for these new activities. 

Throughout the 1970s Papert and other researchers studied children using 

Logo with a variety of objects. We described some of these in chapter 1: 

conventional Turtles, velocity and acceleration Dynaturtles, sprites and so on. 

As a mathematician, Papert's instinct was to try to generalise this new concept 

of manipulable computational objects, but as a former colleague of the 

eminent psychologist Jean Piaget, he wished also to link them to 

psychologically plausible ideas about the learning mechanisms of children. 

Papert's unification of these twin aims grew from memories of a powerful 

learning experience he had as a child. In the preface to Mindstorms (Papert, 

1980) he describes his childhood fascination with mechanical gears and tells 

how later on gears became an important aid to his acquisition of the concepts 

of arithmetic and algebra: 

"Gears, serving as models, carried many otherwise abstract ideas into my head. I 

clearly remember two examples from school math. I saw multiplication tables as 

gears, and my first brush with equations in two variables (e.g. 3x + 4y = 10) 

immediately evoked the differential." (Papert, 1980 p vi) 

This last comparison is striking. The differential is a system of gears 

which allows the two wheels of a driven axle to rotate at different rates (the 

two terms on the left hand side of the equation) even though they are both 

connected to the same propeller shaft turning at a constant speed (the right 

hand side, 10). It is the differential which allows an automobile to travel 

around curves while still driving both wheels. Reflecting on these thoughts 

Papert was able to make a synthesis: 

202 



"Piaget's work gave me a new framework for looking at the gears of my 

childhood. The gear can also be used to illustrate many powerful "advanced" 

mathematical ideas, such as groups or relative motion. But it does more than 

this. As well as connecting with the formal knowledge of mathematics, it also 

connects with the "body knowledge", the sensorimotor schemata of a child. You 

can be the gear, you can understand how it turns by projecting yourself into its 

place and turning with it. It is this double relationship - both abstract and 

sensory - that gives the gear the power to carry powerful mathematics into the 

mind. In a terminology I shall develop in later chapters, the gear acts here as a 

transitional object." (Papert, 1980 p viii) 

The transitional object is not quite a tool (Papert does not suggest he used 

real gears to carry out an actual calculation) nor is it what a mathematician or 

philosopher would call a symbol, as it does not stand for a particular value or 

proposition but instead points at an idea. The object may take on one or other 

of these roles (tool or symbol) later, but they are not part of its initial purpose. 

It is associated with a cluster of meanings in the learner's mind; to use a term 

from clinical psychology, it has become cathected. It is Papert's contention that 

such transitional objects, inspired by real entities, are a natural and common 

feature of human learning. For some of us gears might do the job, for others a 

balance beam or the hands of a clock could be the device. Papert's insight was 

that the computer offers a new medium in which educators can build 

transitional objects for learners: 

"What the gears cannot do the computer might. The computer is the Proteus of 

machines. Its essence is its universality, its power to simulate. Because it can 

take on a thousand forms and can serve a thousand functions, it can appeal to a 

thousand tastes." (Papert, 1980 p viii) 

From this point of view the Turtle is the first example of a new breed -

computer-based transitional objects. In another paper Papert discusses other 

examples, such as the Sprites we touched on in chapter 1: 

"A sprite is something you can touch; it's there, it's an object. It has a colour and 

movement. You can give it a shape and you can change its shape. You can do 

something to it and it will change and it will act. So, in some ways, it's a little 

like these things we work with in the real world, and in some ways it's like 

those abstract ones. This ability to create transitional objects gives us a way of 

closing the gap between intuitive and formalleaming." (Papert, 1987a p88) 

203 



This quote also indicates more clearly the purpose of transitional objects. 

Papert sees them assisting young learners to make the jump from concrete to 

formal ways of thinking. To help them move from manipulating the things in 

front of them, to using their imagination to explore the space of possibilities 

the same things represent. 

"For Piaget, what makes up the formal stage is really symbol manipulations. 

Propositions that refer to propositions. Thinking that refers not to a concrete 

reality but to a representation of reality and to all the possible situations that 

could arise under given real constraints." (Papert, 1987a p93) 

This is a key feature of transitional objects in Papert's scheme, but in fact 

he has even grander plans for them. There are hints of this in Mindstorms but 

it is in subsequent papers that he makes clear his aim: he wants to rehabilitate 

concrete or intuitive ways of knowing from their Piagetian position of 

inferiority with respect to formal, analytic cognitive processes: 

"Where concrete approaches to learning have been recognized at all, it has most 

often been as inferior ways of knowing, the kinds of knowing adopted by necessity 

by those who have not yet mastered the canonical style. Thus Jean Piaget 

recognizes in young children ways of thinking that do not conform to the canon but 

that are too coherent and efficacious to be branded simply as "wrong." He casts 

children's concrete thinking as a stage in a progression to a formal style." (Turkle 

and Papert, 1990) 

Computer-based transitional objects are the means to this revaluation of 

the concrete. So it is not only that playing with the gears could help Papert, or 

anyone else, come to appreciate algebraic equations but also that they feed new 

insights into the topic: 

"[Piaget] talks almost entirely about cognitive aspects of assimilation. But there 

is also an affective component. Assimilating equations to gears certainly is a 

powerful way to bring old knowledge to bear on a new object." (Papert, 1980 p vii) 

The possibilities for getting our hands on many of the concepts of 

mathematics and science are quite restrictive. The learner first has to serve a 

lengthy apprenticeship working and practising with the written formalisms 

developed for the topic. Papert gives examples of the distortions this situation 

has lead to in education. For example: 

204 



"In physics, dynamics is traditionally taught after statics, even though this is 

obviously perverse. In the history of physics, it is clear that dynamics provides 

the fundamental driving force, the fundamental ideas about how things move 

... There are many obvious reasons for this ... the only time you formalize it 

satisfactorily is when you get into calculus - and to get into calculus you have to 

take this long complicated path ... " (Papert, 1987a p86) 

So, statics is taught first because it requires less sophisticated mathematical 

techniques, not because dynamics is based on it or because it is most important. 

In the opinion of Papert, computer-based transitional objects can help to 

change this situation: 

"One might say that the formal stage arrived so late precisely because there 

were no computers. Take the one aspect of manipulating symbols. You can readily 

manipulate blocks, or the technology of wood, but until now, you could only 

manipulate symbols in your head, or with the very abstracted means of pencil 

and paper. We didn't have any good way of externalizing the manipulation of 

symbols (and still don't apart from the computer), and certainly no way that's 

accessible to very young children." (Papert, 1987a p93) 

This theme - stressing that concrete ways of learning scientific concepts 

can in the age of the computer be as powerful as the formal, propositional 

approach which deters so many children - has been a connecting strand 

throughout much of Papert's work. As a recent paper puts it: 

" ... the computer has emerged as an important actor in the revaluation of the 

concrete, a privileged medium for the growth of alternative voices in dealing 

with the world of formal systems. The conventional route into formal systems, 

through the manipulation of abstract symbols, closes doors that the computer can 

open." (Turkle and Papert, 1990) 

But there is an obvious weakness in Papert's argument. He fails to stress 

that another important ingredient has to be present for a simulated 

computational object to become transitional. The manipulating of objects that 

we have been referring to is not so straightforward as it may seem. We want to 

stress, more explicitly than Papert has, that the ways we can manipulate the 

object are of equal importance to the object itself. Without forward and 

back, right and left, the Turtle would be of far less educational utility 

than it is. The Turtle, however, is something of a special case. Once one has 

205 



constructed an object with only position and heading as its properties, then the 

appropriate commands are fairly obvious. But as the attributes and behaviours 

of the object become more complex things get more difficult. In the case of 

Massobs, as we saw in chapter 2 (sections 2.2.2 and 2.8) the commands are 

harder to design, and there are more choices. We will consider this situation in 

a little more detail in the next section. 

206 



6.3 Papert's Concept of Syntonic Commands 

In chapters 1 and 2 we introduced the concept of syntonic commands. As 

we pointed out in section 2.2.3, our characterisation is a refinement of ideas 

Papert put forward in Mindstorms (Papert, 1980), in that Massob boost 

commands are a little more demanding than the Turtle commands he 

discussed. We now wish to examine Papert's ideas more closely. 

In Mindstorms he points out that it is possible to describe, in very simple 

terms, a method for drawing a circle: "move forward a little, turn a little, 

repeat the process." This description is easily translated into a Turtle Geometry 

procedure: 

c:lrc:l.j 

Figure 6.1 The Turtle Geometry circle. 

Papert characterises this in the following way: 

liThe Turtle incident illustrates syntonic learning. This term is borrowed from 

clinical psychology and can be contrasted to the dissociated learning already 

discussed. Sometimes the term is used with qualifiers that refer to kinds of 

syntonicity. For example, the Turtle circle is body syntonic in that the circle is 

firmly related to children's sense and knowledge about their bodies. Or it is ego 

syntonic in that it is coherent with children's sense of themselves as people with 

intentions, goals, desires, likes and dislikes... Turtle geometry is learnable 

because it is syntonic. And it is an aid to learning because it encourages the 

conscious, deliberate use of problem-solving and mathetic strategies." (Papert, 

1980 P 63-64) 

A critical flaw in Papert's position is that he fails to emphasise that the 

commands forward and back, right and left are as responsible for 

this syntonicity as the Turtle itself. The Turtle's state is its position and its 

heading. If children were left to manipulate it with the direct commands 

207 



setposition and setheading, there would not be the same 

opportunity for syntonic learning. Papert is no doubt aware of this, but he does 

not explicitly identify the separate contributions which attributes and 

commands make to the potential of transitional objects. We believe it is a 

point of key importance for designers of objectworlds. 

Most sprite implementations are actually flawed in this respect; they lack 

reasonable syntonic commands. The state of a sprite is comprised of its 

position, heading and speed, and the only commands that are usually supplied 

are setposition, setheading and set speed. These require an 

appreciation of vectors and coordinate systems for their use, mathematical 

ideas which are beyond most young children. Papert relates that first and 

second graders using sprite Logo at the Lamplighter school in Texas used 

sprites statically, simply editing their shape and colour because there were no 

appropriate syntonic commands (Papert, 1987a p82-83). Of course, as we 

outlined in section 2.8, it would be possible to implement suitable commands 

in Logo, perhaps similar to the Massob boost commands, and Lawler describes 

a syntonic scheme for sprites in his Beach microworld (Lawler, 1982). 

One suggestion Papert does make is that educators should critically 

examine the subjects they wish children to learn and find opportunities for the 

use of transitional objects: 

"But if we can find an honest place for scientific thinking in activities that the 

child feels are important and personal, we shall open the doors to a more 

coherent, syntonic pattern of leaming." (Papert, 1980 p 97) 

He also points out that syntonic learning, and by implication syntonic 

commands, can draw on different kinds of experience: 

"One of the most widespread representations of the idea of angle in the lives of 

contemporary Americans is in navigation. Many millions navigate boats or 

airplanes or read maps. For most there is a total dissociation between these live 

activities and the dead school math. We have stressed that using the Turtle as a 

metaphorical carrier for the idea of angle connects it firmly to body geometry. 

We have called this body syntonicity. Here we see a cultural syntonicity: the 

Turtle connects the idea of angle to navigation, activity firmly and positively 

rooted in the extra-school culture of many children. And as computers continue to 

208 



spread into the world, the cultural syntonicity of Turtle geometry will become 

more and more powerful." (Papert, 1980 p 68) 

These rather vague comments do not constitute a theory of transitional 

object design. However, they do indicate some of the directions educators 

should look in. It is important to realise that syntonic learning is not a new 

phenomenon, uniquely provided by computers and computer based 

transitional objects, but that it is a fundamental feature of human learning, 

given new form and possibilities by these devices: 

" ... it sounds as though ego-syntonic mathematics was recently invented. This is 

certainly not the case and, indeed, would contradict the point made repeatedly 

in this essay that the mathematics of the mathematician is profoundly 

personal. It is also not the case that we have invented ego-syntonic mathematics 

for children. We have merely given children a way to reappropriate what was 

already theirs." (Papert, 1980 p 206) 

209 



6.4 Synthesis 

We believe that the character of the object and the means provided to 

manipulate its state are of equal importance in an objectworld. In our view, 

Papert fails to make a proper separation between the two components. 

Furthermore, in view of the practical findings of chapter 3 and the curriculum 

survey in chapter 4, we have to emphasise that we see a wider role for 

objectworlds than simply as an accelerator for children who are moving from 

concrete to formal operations in some new topic. Papert places this role above 

all others. We see the gaining of new experience and the exercising of skills as 

being of at least equal importance. 

We also take issue with Papert on the central importance of using 

computers to rehabilitate concrete approaches to scientific topics. Certainly we 

believe this might be possible, but is it desirable? We feel it is risky to base 

much of the value of objectworlds on a radical new approach with an 

uncertain outcome. 

In the view of some educators, many of Papert's claims are weakened by a 

lack of empirical support. It is true that Papert has provided little evidence, of 

the traditional kind, for the efficacy of his systems. Most of his papers simply 

report anecdotal details of student learning experiences. Papert's defence to this 

criticism is that he has always distrusted traditional methods of measurement. 

This is illustrated by a quotation from one of his earliest papers (a quotation we 

have already given in chapter 1 but which it is appropriate to use again): 

"This paper is dedicated to the hope that someone with power to act will one 

day see that contemporary research on education is like the following 

experiment by a nineteenth century engineer who worked to demonstrate that 

engines were better than horses. This he did by hitching a 1/8 HP motor in 

parallel with his team of four strong stallions. After a year of statistical 

research he announced a significant difference. However, it was generally 

thought that there was a Hawthorne effect on the horses ... the purring of the 

motor made them pull harder" (Papert, 1970). 

Several years later he showed again that he has almost instinctive doubts 

about what psychological testing can tell us: 

" .. .I find myself frequently reminded of several aspects of my encounter with the 

differential gear. First, I remember that no one told me to learn about 

210 



differential gears. Second, I remember that there was feeling, love, as well as 

understanding in my relationship with gears. Third, I remember that my first 

encounter with them was in my second year. If any "scientific" educational 

psychologist had tried to "measure" the effects of this encounter, he would 

probably have failed. It had profound consequences but, I conjecture, only many 

years later. A "pre- and post_If test at age two would have missed them." 

(Papert, 1980 p viii) 

More recently, Papert has worked his doubts into a more general critique 

in which he claims that some researchers have fallen prey to what he calls 

technocentricity. For example, several studies in the 1980s set out to measure 

the "efficacy" of Logo (e.g. Pea, Hawkins, and Sheingold, 1983; elements and 

Gullo, 1984). The question asked is "What does Logo do to children?" The 

methodology used, the treatment methodology, has two components. First, 

Logo is introduced to a class, keeping everything else constant. Second, a 

single particular thinking skill is chosen, such as planning skills. The results of 

the Logo class in tests for this skill are compared against a control class. 

Papert argues that both components of this methodology (applied to 

education) are flawed. The first is ruled out because it would be 

"a self-defeating parody of scientism to suppose that one could keep everything 

else, including the culture, constant while adding a serious computer presence to a 

learning environment. If the role of the computer is so slight that the rest can be 

kept constant, it will also be too slight for much to come of it." (Papert 1987b) 

As for the second component, he argues that thinking skills cannot be 

singled out to any purpose and that a lower score in a particular test does not 

tell the story of a student's overall proficiency. 

According to Papert, these kinds of experiment are examples of 

technocentrism. They ask a question that ignores the cultural dimension: 

"If I built a house out of wood and it fell down, would this show that wood does 

not produce good houses? Do hammers and saws produce good furniture? These 

betray themselves as technocentric questions by ignoring people and the elements 

only people can introduce: skill, design, aesthetics." (Papert 1987b) 

211 



In place of these technocentric experiments and their various flaws Papert 

advocates something quite different: a new genre of appraisal which he calls 

computer criticism: 

"I am proposing a genre of writing one could call 'computer criticism' by analogy 

with such disciplines as literary criticism and social criticism. The name does 

not imply that such writing would condemn computers any more than literary 

criticism condemns literature or social criticism condemns society. The purpose of 

computer criticism is not to condemn but to understand, to explicate, to put in 

perspective." (Papert, 1987b) 

Unfortunately, before computer criticism can flourish, the culture 

holding it has to become fluent with the medium. Papert's proposal implies 

that designers of educational computing systems need to be computer literate 

to a much greater degree than is common at present, so that a popular 

discourse along the lines he envisages seems a long way off. However, Papert 

and his colleague Sherry Turkle have started the ball rolling with a couple of 

papers: Computer Criticism versus Technocentric Thinking (Papert, 1987b), 

which we have already referenced, and Epistemological Pluralism: Styles and 

Voices Within the Computer Culture (Turkle and Papert, 1990). 

Of course, Papert's discussion of technocentricity will not satisfy 

everybody. It does not require excessive cynicism to wonder just how many 

dubious educational philosophies could be advocated if we were to exempt 

them from scientific examination and his proposed genre of computer 

criticism has yet to flourish. Furthermore, his criticism of the treatment 

methodology is really saying that it is simply very difficult, not impossible, to 

do good testing of computer assisted learning. However, from the point of 

view we have developed in this thesis it is as if Papert is tilting at windmills: 

most of the experiments he is so critical of (there are many more examples, for 

instance Bums and Hagerman, 1989; Cathcart, 1990; Swan, 1991) are simply 

investigations of Logo programming rather than enquiries into the properties 

of transitional objects or objectworlds. 

So, in the present context, the important questions are "What can we do 

with objectworlds?" and "Can meaningful things be said about the nature of 

transitional objects?" In chapters 3 and 4 of this thesis we made a start on the 

first question (as it relates to Gravitas). In the remainder of this chapter we 

consider the second. 

212 



6.5 Winnicott and Transitional Objects 

5eymour Papert was not the first researcher to write about transitional 

objects. In fact, the paediatrician and psychoanalyst Donald Winnicott 

introduced the concept in 1951, and he was followed by others, such as the 

psychotherapist]. C. Solomon (1962). It is difficult to know whether Papert was 

directly influenced by their work when he wrote Mindstorms in the late 1970s. 

So far as we can ascertain he does not make any reference to Winnicott until 

1990 (Turkle and Papert, 1990). Furthermore, their areas of concern are 

somewhat different: Winnicott's interest is in the world of the very young 

human infant, in particular the development of awareness, while Papert 

focuses on human learning. Nevertheless, there are some striking similarities 

between the two concepts, and we feel that the psychoanalyst's approach may 

provide some useful insights to the educational exploitation of transitional 

objects. 

To understand Winnicott's concept of transitional objects we first need to 

describe some of the psychological assumptions from which his ideas spring. 

One of the starting points for Winnicott is an expanded view of human 

nature. It is generally accepted by psychoanalysts that a description of human 

nature purely in terms of interpersonal relationships is not adequate. Any 

discussion of normal or pathological behaviour needs to recognise the 

existence not just of an external reality and an individual's interactions with it, 

but also an inner reality - "an inner world that can be rich or poor and can be at 

peace or in a state of war." (Winnicott, 1971 p2) 

This was received opinion at the time of Winnicott's writing. However, 

he took things a stage further by urging an appreciation of 

"the third part of the life of a human being, a part that we cannot ignore ... an 

intermediate area of experiencing, to which inner reality and extemallife both 

contribute." (Winnicott, 1971 p2) 

When Winniccott put his thesis forward it was considered novel, and 

subsequently it has had great influence (see for instance Eichenbaum and 

Orbach, 1982 p112). In some ways, it is easier now for us to accept his idea. We 

can draw on computational metaphors, for example by comparing the 

"intermediate area of experiencing" to the interfaces that sit between a central 

processor and the various peripherals and sensors which might be connected 

213 



to it. But it is still a problematic area of human nature to discuss, especially 

since the vocabulary of psychoanalysis is still adapting to it. Winnicott's 

fundamental point is that this faculty, like any other, requires stimulation and 

nurturing for its proper development: 

"At the theoretical beginning a baby can be said to live in a subjective or 

conceptual world. The change from the primary state to one in which objective 

perception is possible is not only a matter of inherent or inherited growth 

process; it needs in addition an environmental minimum. It belongs to the whole 

vast theme of the individual travelling from dependence towards 

independence." (Winnicott, 1971 plSl) 

The provision of this "environmental minimum" is the responsibility of 

the mother or, more correctly, the adult in the maternal relationship. The 

mother places objects into the child's vicinity, in the beginning her breast (or a 

feeding bottle), but then clothing, bedding, and her limbs. In the natural 

sequence of events the faculty of experiencing is ready to be born: 

"at some theoretical point early in the development of every individual an 

infant in a certain setting provided by the mother is capable of conceiving of the 

idea of something that would meet the growing need that arises out of 

instinctual tension ... There is an overlap between what the mother supplies and 

what the child might conceive of." (Winnicott, 1971 p12) 

Into this environment comes what Winnicott calls a transitional object: 

an external catalyst for the beginning of awareness and the child's first 

structuring of the world into 'me' and Inot-me'. If we study a particular child 

in detail: 

"there may emerge some thing or some phenomenon - perhaps a bundle of wool or 

the corner of a blanket or eiderdown, or a word or tune, or a mannerism - that 

becomes vitally important to the infant for use at the time of going to sleep, and 

is a device against anxiety, particularly anxiety of the depressive type" 

(Winnicott, 1971 p4) 

We must remember that the infant is still supposed to exist in a 

subjective world, so we cannot talk about the child perceiving the transitional 

object, perception being an active process which relies on prior knowledge. 

Winnicott explains this in a way which adds to the psychoanalytic meaning of 

the word I create': 

214 



"I should like to put in a reminder that the essential feature in the concept of 

transitional objects and phenomena (according to my presentation of the subject) 

is the paradox and the acceptance of the paradox: the baby creates the object, but 

the object was waiting to be created and to become a cathected object." 

(Winnicott, 1971 p89) 

If we compare what we have seen so far of Winnicott's theories with 

Papert's concept of computer-based transitional objects two things immediately 

stand out. The first feature of note is that in both cases transitional objects are 

aimed at episodes of large scale mental change: the development of 

apperception on the one hand; the move from concrete to formal thinking on 

the other. Next, we see a similarity in the roles of mother and teacher: both are 

responsible for providing an environment which contains objects the 

individual can appropriate, although we would usually say the learner 

'discovers' the Turtle and its behaviour. 

Returning to Winnicott, we find he has much to say about the character 

of transitional objects. For instance, he stresses that the relationship between 

the child and the object is affectionate. This property is reminiscent of Papert's 

description (in the foreword to Mindstorms) of falling in love with the gears 

he played with as a child. Winnicott also emphasises that the object has to be 

something that the infant has the capacity to create (in his new sense of the 

word). This injunction echoes Papert's suggestion that we should equip 

transitional objects with methods of manipulation (the syntonic commands of 

section 6.3) that the learner already understands. Another observation of 

Winnicott's also has similarities with the picture we have presented in this 

thesis: he insists that the object must never change (unless it is changed by the 

infant), if it changes unpredictably then the foundations of the infant's 

perceptions are shaken. For similar reasons the definition of an objectworld 

presented in chapter 1 made the demand that the object be continuously 

visible. 

We mentioned in section 6.2 that a computer based transitional object is 

not a symbol in the usual sense. Winnicott comes to a similar conclusion: 

"It is true that the piece of blanket (or whatever it is) is symbolical of some 

part- object, such as the breast. Nevertheless, the point of it is not its symbolic 

value so much as its actuality ... When symbolism is employed the infant is 

already clearly distinguishing between fantasy and fact, between inner objects 

215 



and external objects, between primary creativity and perception ... It would be 

possible to understand the transitional object while not fully understanding the 

nature of symbolism." (Winnicott, 1971 p6) 

However, it is interesting to read Winnicott's views on what happens to a 

transitional object after it has performed its role as a catalyst for mental change: 

"Its fate is to be gradually allowed to be decathected, so that in the course of 

years it becomes not so much forgotten as relegated to limbo. By this I mean that 

in health the transitional object does not 'go inside' nor does the feeling about it 

necessarily undergo repression. It is not forgotten and it is not mourned. It loses 

meaning, and this is because the transitional phenomena have become diffused, 

have become spread out over the whole intermediate territory between 'inner 

psychic reality' and 'the external world as perceived by two persons in common', 

that is to say, over the whole cultural field." (Winnicott, 1971 pS) 

For Papert the object that has ceased to be transitional may still be useful 

in at least two senses. First, one can still do things with the object long after 

one has learnt the important concepts for which it was a vehicle. For instance 

one can go on using a Turtle to do drawings, and Massobs can be used to carry 

out physical experiments. In this way the objects become more like tools. 

Secondly, as we explained in section 6.2, the transitional object is permanently 

a means of doing the formal in a concrete way: we could, for example, use a 

Turtle to investigate trigonometric theorems. 

Winnicott, however, sees this move towards use of the object as a 

problematic issue. The difficulties are caused by the shift in the role of the 

object from its initial purpose as the instigator of a new mode of thought, to 

becoming a channel for the expression of thought. As Winnicott puts it, in a 

phrase which reminds us that his interest in the field derives from his 

therapeutic work: 

"In the sequence one can say that first there is object relating, then in the end 

there is object use; in between, however, is the most difficult thing, perhaps, in 

human development; or the most irksome of all the failures that come for 

mending." (Winnicott, 1971 p89) 

He makes an important distinction between relating to an object and 

using it. It is Winnicott's opinion that 

216 



" ... relating [to an object] can be described in terms of the individual subject, and 

that usage cannot be described except in terms of the acceptance of the object's 

independent existence, its property of having been there all the time." 

(Winnicott, 1971 p88) 

Relating and using are so different that the child must break down the 

charge of mental energy associated with a transitional object before the new 

ability to use objects can be applied to it: 

"This sequence can be observed: (1) Subject relates to object. (2) Object is in process 

of being found instead of placed by subject in the world. (3) Subject destroys object. 

(4) Object survives destruction. (5) Subject can use object." (Winnicott, 1971 p94) 

And this ability to use things is a separate talent we all have to learn, 

which also needs nurturing, in Winnicott's famous phrase, by a "good-enough 

mother"; 

"To use the object the subject must have developed a capacity to use objects ... This 

capacity cannot be said to be inborn, nor can its development in an individual be 

taken for granted. The development of a capacity to use an object is another 

example of the maturational process as something that depends on a facilitating 

environment." (Winnicott, 1971 p89) 

We have gone as far as we should in our examination of Winnicott's 

theories. The overall purpose of his research was to give insights to the 

condition of emotionally disturbed children who came to him for therapy. He 

believed that many psychopathological problems could be traced back to an 

unsatisfactory relationship with transitional objects in infancy. Accordingly, 

his enquiry into objects becoming tools was less strong, whereas in the context 

of education this process is very important. However, there is another 

researcher who has taken up this point, and it is his work we will consider in 

the next section. 

217 



6.6 Hodgkin: Transitional Objects and Play 

During the 1950s Robin Hodgkin was headmaster of Abbotsholme school, 

where his background as an enthusiastic climber and mountaineer led him to 

give outdoor activities an important place in the curriculum (Hodgkin, 1980). 

He then moved to Oxford university, where he was a professor of education 

until 1979. A common theme in Hodgkin's academic work was the search for a 

firm psychological basis to his belief in the educational value of playful and 

practical pursuits. In transitional objects he found a touchstone and in Playing 

and Exploring (Hodgkin, 1985), a book written in his retirement, he sought to 

amalgamate the views of Winnicott and Papert with his own. 

As may be guessed from the title of his book, Hodgkin's special interest is 

play and its relationship to discovery learning. Accordingly, he focuses on 

objects which children can first encounter as toys. He stresses that profound 

educational developments take place as children convert the objects in their 

environment from toys to tools, or from toys to symbols. It is possible to make 

"distinctions in the understanding of all cultural objects, including words and 

pictures: that they can be used with only slight intent (toys), with precise intent 

(tools) or to cope with ambiguities and with multiple levels of understanding 

(symbols)." (Hodgkin, 1985 p40) 

This leads to a refinement of the picture of transitionality we have 

presented so far. If we re-phrase everything in Hodgkin's terms then 

Winnicott's transitional objects become tools as they "become decathected". 

Papert's computer-based transitional objects change from toys into tools as they 

carry their powerful ideas into a child's mind. The move from tool to symbol, 

which is only briefly touched on by Winnicott and which Papert downplays, is 

really Hodgkin's territory: 

"Seen from the point of view of 'things for use' transitional objects can be 

regarded as the juvenile source from which flows all the practical gear of a 

technical world; but from another perspective - 'things for meaning' - they are 

the beginnings of all our imaginative and intuitive dreaming, of poetry and of 

religion." (Hodgkin, 1985 p42) 

So where does Hodgkin see transitional objects fitting into education? A 

metaphor for meaningful discovery learning he frequently refers to is "frontier 

experience" which can mean an explorer seeking a new route up a mountain, 

218 



or a child working at the outer limit of her knowledge. But this kind of 

activity, to which he attaches so much importance, is not always pleasant for 

everyone. Some learners are frightened if they are not given a set route 

through a topic. Hodgkin sees an important role for transitional objects : 

"Why is novelty, frontier experience, sometimes so alluring - as with [Papert's] 

gear wheels - yet sometimes so repellent? Bruner has given us the term 'pre

emptive metaphor' to describe how it is that at times of sharp developmental 

transition a boy or girl may be blocked from learning by a cluster of ideas which 

link associatively with one central locus of fear (Bruner, 1968 chap. 7). It is 

useful to have a similar but positive terminology for those objects and 

experiences which foreshadow success in exploring ... Such an opening is made 

available or entered into through the action of some transitional object becoming 

a symbol." (Hodgkin, 1985 p44) 

What is it like, this process of toy becoming symbol? Consider a child 

coming to the Turtle for the first time. At the beginning play seems to have 

little purpose, simply producing squiggles on the screen. After a while, perhaps 

under the prompting of a teacher, the child learns to draw specific figures. 

With practice the child becomes more proficient: the Turtle (in this context) 

has become a drawing tool. Next the child returns to playful activities but is 

playing with a tool "which points to a cluster of intentions." (Hodgkin, 1985 

p40). At some stage, and again with help from a teacher, this play might lead to 

a procedure which generates families of drawings, say a sequence of similar 

houses which increase in size. For Hodgkin, this is the genesis of symbol use 

and it is a key process for education to encourage. 

"How are these concepts - toys, tools and symbols - related? This question runs 

parallel to the crucial educational problem of how play, practice and creative 

discovery merge into each other within a heuristic field ... Play, practice and 

exploration: we need to hold these together in a model which is coherent and 

which matches our common experience of teaching." (Hodgkin, 1985 p44-45) 

Hodgkin emphasises that the processes of 'toy becoming tool' and 'toy 

becoming symbol' are not independent steps in a sequence: 

"In trying to think clearly about the relationship between play, practice and 

discovery. I found myself in a cul-de-sac. The reason was that I had imposed a 

mistaken sequence on the three kinds of artefact on which we act in these roles. 

219 



- .', 
0. ••• 

Toys, I thought, were the most primitive; tools must develop out of toys and then 

symbols must develop somehow out of tools. And yet that never seemed right ... 

we seem to require a two-way oscillating and dialectical concept, more on the 

lines of Taoism's yin and yang and less like a linear progression." (Hodgkin, 1985 

pSI-52) 

In Playing and Exploring he gives a diagram to help explain his point: 

u c 
Q) 
.u 
Q) 

~ o 
u 
~ 

o 
Ul 
Q) 

~ 
.u 

C 
'M 

~ 

Tools ......... ---- Toys ----... ~~ Symbols 

Potential 
Space 

A Toy 

..,. __ ngo ~ 
tool ~ 

becoming a~ 
symbol 

Practice ~Oring 

Cycle of Creativity 

Figure 6.2 The cycle of creativity: "Things a person plays with can, with practice, become part of some 
skill and thus eventually assimilated into a general area of competence. However, a toy or 'playwith' can 
also be pushed out to the frontier and become what might be termed an 'explorewith'." (Hodgkin. 1985 p46) 

Play is always the driving force for Hodgkin. Playing with transitional 

objects can create tools or symbols according to the learner's will: 

"We can either move from [play] in the direction of increasing efficiency and 

control, as we consolidate our competence, or we can move towards uncertainty 

and challenge as we stretch our competence." (Hodgkin, 1985 p52) 

He even offers a mild rebuke to Piaget for neglecting a dimension of play: 

"[Piaget] has also been responsible for a one-sided view of play, which he sees as 

being essentially a kind of repetitive practice. Play, seen in these terms, as 

helping learners to assimilate new concepts or skills to existing mental patterns 

("schemas") is not enough. Piaget failed to emphasize the complementary 

direction in which play is also useful: that which leads learners toward 

exploration and to the more stressful and challenging processes of accommodating 

unfamiliar experiences and concepts." (Hodgkin, 1985 p48) 

220 



We have completed our discussion of what Hodgkin has to say on the 

educational uses of transitional objects. However, he is a great pragmatist and 

his theoretical musings always lead to practical advice. In that spirit we finish 

this section off with some recommendations which he made in a very general 

tone but which seem to apply well to computer-based learning environments, 

and especially to objectworlds: 

"The following maxims summarize the links between all three phases of the 

creative cycle and good teaching. 

(i) Teachers should be able to initiate a range of activities which covers the 

play-practice-play-discovery cycle. 

(ii) The range needs to be wide enough to match and extend the different levels 

of competence of learners in a given group. 

(iii) The quality of a student's action is a good test for the beginning of an 

educational episode or of a plan of learning. Similarly, the quality of feedback 

resulting from it - what he or she learns from successes or failures - is the crucial 

test for judging its conclusion. 

(iv) The range needs to be sufficiently varied that, at any given level, allowance 

is made for some relearning and overlearning of skills, and for some analysis of 

error without producing boredom." (Hodgkin, 1985 p53) 

In respect of point (i) it should be apparent that objectworlds like Turtle 

Geometry and Gravitas do allow a wide range of activities within the play

practice-play-discovery cycle. Point (ii) is answered, in the case of Gravitas, by 

the combination of the easy to use graphical interface and the powerful 

programming language, which facilitates longer and more complex projects. 

As for point (iii), continuously visible objects, with consistent behaviours 

make it easy for students to devise actions. They receive feedback to their 

actions in a particularly direct fashion: a Turtle moves where it was expected 

to, or perhaps not; Massobs orbit each other, or collide, or escape. Activities 

such as those mentioned in Hodgkin's point (iv) are evident in the transcripts 

of the Moon shots in chapter 3. The students repeatedly try to get the boosts 

right but in a different context each time, and within an overall goal which 

they are motivated to attain. 

221 



6.7 Summary 

We have described Papert's position which contains two main assertions. 

If you have an apprehendable object which connects to rich concept areas then 

it can be used to revaluate the concrete ways of knowing in its related domain 

and it can assist the learner's transition from concrete to formal operations in 

that domain. We have outlined our three main qualifications of this position 

which are (i) We believe that the object and the commands by which it is 

manipulated are of equal importance in an objectworld. (ii) We do not confine 

the application of objectworlds to children's episodes of transition between 

concrete and formal thinking. (iii) We believe that it is only very difficult, 

rather than impossible, to carry out rigourous investigations into the effect of 

objectworlds on children's learning. 

We have outlined Winnicott's concept, derived from his clinical 

observations, of a critically important "first possession" which catalyses the 

development of awareness in young infants and which marks the start of their 

structuring the world into lime" and "not me". We have shown that although 

Papert's and Winnicott's transitional objects are part of quite different 

phenomena, there are striking resonances between them. In particular, they 

both emphasise that affection and consistency are essential features of the 

relationship between child and object. Winnicott and Papert also agree that 

learners' use of transitional objects prefigures (and is an important stage on the 

way to) the use of symbols. 

Finally, we have shown how Hodgkin has combined the views of Papert 

and Winnicott to produce an educational theory of toys. In Hodgkin's view, a 

child playing with toys that are transitional objects can develop them into tools 

or symbols. Tools have direct practical relevance as lithe juvenile source from 

which flows all the practical gear of a technical world." (Hodgkin, 1985 p42) 

For Hodgkin, the same key that opens the door to the realm of symbols can 

open the way to meaningful discovery learning. 

222 



7 Contributions and Further Work 

7.1 Introduction 

In this thesis we have identified a distinct class of computer-based 

discovery learning environments, which bring together a simulated object (or 

objects) and a programming language. The name we have given these systems 

is objectworlds, a refinement of the existing term microworld which has been 

applied to a wider range of software. In the sections which follow we detail the 

three main contributions this thesis makes to knowledge about objectworlds, 

and we point out some directions for future research. 

223 



7.2 Contribution 1: The Identification of the Objectworld Class 

An important aim of this thesis has been to pick out objectworlds from 

the spectrum of educational computing systems and to describe their essential 

features. To achieve this aim we have done three things. First, we have shown 

that the kinds of environment we are talking about have a traceable history. 

Second, we have developed more definite meanings for terms which have 

been used quite loosely. Third, we have contrasted objectworlds and the kinds 

of interactions they can support, with their close neighbours - simulations and 

modelling systems. 

7.2.1 History of Objectworlds 

We have illustrated the historical development of this class of 

environments with references to example systems including Turtle Geometry, 

Turtle Biology, Dynaturtles, Sprite Logo, Boxer and LEGO/Logo. Our survey 

shows how objectworlds arose from early research into the use of interactive 

computer programming as an educational tool. We have described the 

developments which have led from the original Turtle to the more 

sophisticated central objects, such as Boxer sprites, of the present day. 

7.2.2 Establishment of Definite Meanings for Vague Terms 

We have shown that the existing name 'microworld', which was 

originally applied to Turtle Geometry and related systems, has now become a 

catch-all term used for a wide range of discovery learning environments. We 

have constructed a precise definition for a narrower class of systems. This 

definition discriminates objectworld from non-objectworld and also serves as a 

basic set of requirements for future objectworld designers. 

Two concepts which are highly pertinent to objectworlds are transitional 

objects and syntonic commands. However, discussions about them have in the 

past been somewhat scattered and vague. In chapter 6 of this thesis we have 

brought together the relevant opinions of Seymour Papert, a Logo pioneer, 

Donald Winnicott, a clinical psychologist, and Robin Hodgkin, an 

educationalist. Our intent has not been to carve these concepts on tablets of 

stone. Rather, we have sought to describe a way of thinking about them which 

will prove useful and stimulating to future designers of objectworlds. 

224 



7.2.3 Objectworlds and other Discovery Learning Environments 

We have compared and contrasted objectworlds with their near 

neighbours among educational computing environments - simulations and 

modelling systems. Our survey shows that although the three kinds of 

program have much in common they afford very different learning 

experiences for their users. In particular they all use models to carry their 

message, but they differ in what the model is used to convey. 

In an objectworld the model is used to give a concept rich behaviour to a 

continuously visible object, which the learner can manipulate very 

straightforwardly. In a simulation, the model is encased in an interface which 

makes it easy for the user to vary parameters and observe results. In a 

modelling system the workings of the model are laid bare and users can choose 

to alter parameters or details of the algorithms; they may also construct their 

own models. 

Our discussion of the three kinds of system has made it possible for future 

debate to be clearer about the role each can play in education. In this context we 

have speculated that objectworlds, simulations and modelling systems form 

three steps in a progression for learners. Objectworlds allow students to gain 

concrete experience in formal domains. Simulations allow them to develop 

and stretch their formal knowledge. Finally, modelling systems give learners 

the chance to carry out activities similar to those of a working scientist. 

225 



7.3 Contribution 2: A New Example of the Class - Gravitas 

We have described a new objectworld called Gravitas, which provides 

learners with new simulated entities called Massobs. These behave like 

massive bodies moving through space obeying Newtonian laws of gravitation. 

All aspects of Massobs - position, velocity, mass and radius - may be controlled 

by commands or procedures typed into the Logo interpreter which runs 

concurrently with the system. Gravitas extends the concept of objectworlds in 

three main ways, which we describe below. 

7.3.1 A New Transitional Object 

With the creation of Massobs we have introduced a new transitional 

object. These are straightforward for students to work with and yet they 

connect to powerful physics concepts. Like Turtles, Massobs have a small set of 

syntonic commands. We use this term to describe commands which are 

particularly easy for young learners to comprehend because they connect to 

things children can be expected to know. In the case of Massobs, the four 

syntonic boost commands are simple to understand because they relate to 

sensorimotor knowledge about being pushed, and they require no 

understanding of coordinate systems or vectors for their use. 

7.3.2 Complex Behaviour 

Massobs exhibit a more complex dynamic behaviour than the central 

objects of previous systems such as Turtles and Sprites: they move 

continuously and their trajectories are affected by their gravitational 

interactions with each other. An underlying mathematical mechanism 

computes the forces acting between all the Massobs present in the system and 

modifies their velocities accordingly 

7.3.3 A Graphical Interface 

We have duplicated the functionality of all the Massob commands in a 

graphical interface which makes it easier for learners to create and manipulate 

Massobs in their two dimensional space. In fact, Massobs may be positioned 

and given a velocity, a mass and a radius by straightforward direct 

manipulation with the mouse. The graphical interface was installed in 

Gravitas to 'lower the threshold' which newcomers to the system must 

overcome before they can begin useful work. 

226 



7.4 Contribution 3: An Initial Study of Learning Activities 
Supported by Gravitas 

Gravitas is a new system which presents a new educational space to be 

explored, not just by learners but also by educators who might wish to exploit it 

for their own teaching goals. In this sense, Gravitas is in a similar position to 

Turtle Geometry in the early 1970s, when Papert and others sought to develop 

a range of meaningful activities for children to engage in. Accordingly, we 

have carried out preliminary studies to identify the nature of the activities that 

Gravitas can support. We have made four principal discoveries which we 

detail below. 

7.4.1 Surprises 

First, learners are very often surprised by the behaviour of the Massob 

systems they construct, even when these are quite simple. The orbital 

procession of the Moon, for instance, surprised all of our subjects yet it arose 

from a system of only two Massobs. In our studies, subjects have been highly 

motivated to resolve such surprises, a process which requires them to think 

deeply about the physics of gravitating bodies. We have shown that it is 

possible to break a surprise down into constituent episodes, each of which 

learners are capable of resolving, in such a way that they are led to an overall 

understanding. 

7.4.2 Programming Gravitas 

Second, we have found that quite simple programs, well within the scope 

of novices, can generate interesting projects, such as the navigation of a rocket 

from the Earth to the Moon and back. There are no unusual limitations on the 

Logo interpreter attached to Gravitas and users are free to build arbitrarily 

complex programs. However, it was important to us that even a very basic 

level of programming could lead to meaningful work with Gravitas. It is 

significant in this context that some of the subjects who completed the Moon 

mission had no previous experience of writing programs. 

7.4.2 Interface Synergy 

Third, we have discovered a synergistic effect between the Logo 

programming interface and the graphical interface which allows learners to 

take on more complex tasks than would otherwise be the case. The Moon shot, 

227 



for example, is greatly facilitated by this synergy. The graphical interface 

encourages tactical investigations - does a particular boost have the required 

effect? - while programming supports a strategic approach - does that boost fit 

into the overall plan? 

7.4.3 Gravitas and the Science National Curriculum 

We have surveyed the Science National Curriculum and discovered 

several areas where Gravitas may be of direct application. In particular, 

Gravitas based activities seem to be appropriate for Statements of Attainment 

dealing with concepts such as Force, Momentum, Energy and Gravity, and 

with more general knowledge of astronomical bodies and satellites. These 

activities can be immediate, with students use Gravitas interactively, or 

procedural, with the learner exploiting Gravitas' programming interface to 

build Logo programs for some longer term goal. 

228 



7.5 Further work - Theoretical Issues for Objectworlds 

This research has also raised a number of theoretical issues which require 

further investigation. 

7.5.1 Transitional Objects and Intuitive vs. Formal Knowledge 

Papert and others have claimed that transitional objects can help young 

learners make the leap from their intuitive, concrete knowledge about the way 

the world works to the formal and symbolic forms of knowledge which 

dominate science. Gravitas represents an attempt to give children formal 

objects - Newtonian masses - in a transitional form - Massobs, which the user 

can manipulate in concrete ways. 

We have shown that Massobs can be useful in realisitic learning settings 

but Papert's assertions remain untested. The question is, can we discover 

whether the claims made for transitional objects are true? Can we measure any 

improvement in children's grasp of formal concepts, which is solely due to 

their interactions with transitional objects? Papert has cautioned against 

experiments of the usual kind, based on the treatment methodology, where 

one group is exposed to the new method and a second group is not, and results 

are compared. As we saw in section 6.4, he sees this as pointless 

technocentrism. Papert's solution is a new genre of writing which he calls 

computer criticism. Several references point the way, for instance: (Papert, 

1987b; Harel and Papert, 1990; Turkle and Papert, 1990). 

What is needed then, is a study in this spirit, which critically examines 

the development of children's understanding of a formal concept, like 

Conservation of Energy, as they use and play with Massobs. Chapter 4 shows 

how such a concept can be demonstrated in Gravitas, but the hard part, 

accurate observation and record, remains. 

7.5.2 Alternative Syntonic functions 

As we noted in section 2.8, the existing boosts are not the only form that 

syntonic commands for Massobs could have taken. At present they are suited 

to the kind of investigations we wanted learners to make for the studies in 

chapter 3, but it would be interesting to explore other ideas. For instance, we 

could try the scheme outlined in section 4.2.2, or Massobs could be given a new 

attribute called boost heading and syntonic commands analogous to the left 

229 



and right of the turtle. There would then be just a single boost. Such 

configurations would certainly suit investigations of single Massobs and the 

effect of forces on them, or situations where gravity is not a significant factor. 

7.5.3 How Useful are Dual Interfaces? 

In chapter three we reported on users carrying out a task which would be 

very difficult, if not impossible, to perform using a single interface. However, 

we have not had time to quantify the extent to which the dual interface 

accelerates progress. The effect would be fairly straightforward to investigate, 

for instance by setting the same task to students using different single interface 

versions of Gravitas. 

7.5.4 Visual Programming Languages 

It has often been claimed that learning to program carries general 

cognitive benefits. Some have even seen this as a purpose of transitional 

objects. For instance, Lawler, writing in the context of Turtle Geometry and 

sprites, states that: 

"People can become engaged with computational objects which they interpret as 

symbols for real objects. But they can only manipulate these objects by means of a 

computer language. Doing so engages them in the nitty gritty effort of learning a 

set of operations which transform the states of objects, and this gives them 

everyday experience with the surface details of a formal system whose deeper 

properties they can gradually come to appreciate." (Lawler, 1987 p1S) 

We have shown with Gravitas that it is possible to remove the need for 

people to use a programming language in the first instance, but we have also 

shown that there are interesting tasks which a graphical interface cannot tackle 

alone, and in these cases the user must program. However, programming 

languages, even Logo, still deter many learners with their fussy syntax and 

strict grammar. It would be interesting to take Gravitas one step further by 

replacing Logo with a visual programming language (Myers, 1986; Chang, 1987; 

Shu, 1986). That is, replace the typing in of Logo procedures with program 

construction by the graphical manipulation of iconic components. 

230 



7.6 Further work - Practical Experiments with Gravitas 

Now that Gravitas has been built and we have found some learning 

activities it can support, the next logical step is to use the program with more 

children, in real educational settings. Gravitas is a robust system, not just a 

research prototype. It would work in school classrooms without breaking and 

therefore it would make sense to examine the use of Gravitas in real school 

science lessons. 

7.6.1 A Gravitas Physics Curriculum 

An exciting continuation of the work described here would be to create a 

physics curriculum based on Massobs in a manner analogous to the 

mathematics course represented by Turtle Geometry (Abelson and diSessa, 

1980). We have shown in chapters 3 and 4 that Gravitas can support many 

different kinds of physics rich activities. Obviously, the construction of an 

entire curriculum would be a major task, and one best carried out with the co

operation of working teachers. However, we believe Gravitas has the potential 

to support such an effort, and the examples we have given show that Massobs 

can be vehicles for the key physical concepts of mass, force, momentum and 

energy. 

7.6.2 Constructing qualitative explanations for surprises 

A consideration related to the previous point concerns the way in which 

surprises, such as the orbital procession of the Earth, are resolved by puzzled 

learners. As we have said before, these surprises occur naturally as learners 

play with Massobs and they can be highly motivating. In our studies we led 

subjects to explain orbital procession to themselves by considering what 

happens over quarter turns - "three o'clock to six o'clock" and so on. Other 

surprises (and they are a common occurrence, especially when the boost 

commands are used) will require teachers to offer different qualitative stories 

to help their students achieve understanding. 

7.6.3 Connecting Gravitas to an Intelligent Tutoring System 

Several authors have pointed out weaknesses in the Discovery Learning 

approach. For instance, John Seely Brown (1985) writes: "critics of discovery 

learning point to its inherent inefficiency - students can spend a lot of time 

floundering - and to the possibility that some students will never make the 

231 



discoveries that we think they, as educated people, should make". Echoing this 

point is Wall ace Feurzeig, one of the pioneers of Logo: "without the aid of a 

teacher, many children do not learn in a Logo microworld. They are not able to 

set their own goals, to find effective methods of thinking about problems, or to 

acquire the skills of exploration, conjecture and inference. Left to themselves, 

they thrash about" (Feurzeig, 1984). 

In chapter 5 we mentioned Elsom-Cook's Guided Discovery Tutoring 

synthesis (Elsom-Cook, 1990), which attacks this problem by bringing together 

Discovery Learning Environments and Intelligent Tutors to provide a system 

in which students are free to explore a subject domain, while a software tutor 

provides guidance. Since objectworlds are a variety of Discovery Learning 

Environment, they could obviously take a place in this paradigm if a suitable 

tutor was developed. 

It would be interesting to construct such a tutor for the topic of orbital 

transfers like the Moon shots reported in chapter three. To carry out these 

journeys users must form an overall plan and then experiment with the 

boosts required to initiate each stage of the journey. They also have to translate 

these findings into simple Logo programs. A tutor could provide advice in 

each of these contexts. 

The intelligent tutoring system MYCROFT (Goldstein, 1975), which was 

built at MIT, tackled a similar problem. First of all it was intended to assist in 

the debugging of simple Logo programs, just the sort of program we have seen 

Gravitas users building. Second, the output of the programs which MYCROFT 

was designed to debug is mainly graphical. The same is true for Gravitas. 

MYCROFT operates by mediating between the picture that actually is 

drawn, the program that the user writes to draw it, and a description of the 

target picture to be drawn (encoded in a simple declarative language). The 

system's resources for this mediation are a knowledge of plans and debugging 

strategies, and what Goldstein calls a Cartesian annotator that describes the 

performance of the user's program in geometric terms. 

It seems feasible that the planning knowledge and debugging technique 

concepts of MYCROFT could be applied in an agent for Gravitas without 

serious difficulty. An equivalent for the Cartesian annotator, however, would 

seem to require a substantial amount of research. However, it might be feasible 

232 



if the domain of proficiency of the agent is restricted to families of situations, 

like the Moon shots, where two bodies are in stable orbit around each other 

and a third object is navigated between them. 

233 



7.7 Concluding Notes 

A great deal more could be said about the possibilities for extending and 

experimenting with Gravitas, but it is time to call a halt. We have identified 

three major contributions of the research, and eight promising directions for 

further investigations. 

We set out with the intention of building a system similar in scope to 

Turtle Geometry. Succeeding at this goal has left us with the task of exploring 

Gravitas' scope, a task we have only just begun with the studies of chapter 

three. We hope that others may come along to continue these explorations. 

Another goal was to provide guidelines for educators who would like to 

construct systems of this type. In the end, Gravitas stands as simply another 

example. It would have been gratifying to discover a set of design principles 

but this will have to wait for the future. However, we believe that the 

definition of objectworlds is a solid beginning. 

The most problematic issue attaching to this work is the question of 

transitional objects. Is it really possible to engineer on the computer objects 

which make concept acquisition easier for learners? In Massobs we have 

created another candidate but, as we have pointed out above, there is far more 

work to be done. However, we believe, along with Papert, that transitional 

objects may be one of the most profound contributions computers can make to 

education. 

234 



Appendix A - Dynamical Astronomy 

A.I The N-Body Problem 

The gravitational behaviour of Massobs is generated by a mathematical 

mechanism which is part of a rich tradition. This tradition began with the 

invention of fast digital computers in the early 1950s and continues as a 

research front to this day. Accordingly, we will begin this section with a brief 

historical survey. 

Not long after Newton formulated his Law of Gravitation it was realised 

that there was a profound problem with the application of the law to real 

situations. The discovery was soon made that it is possible to write down 

equations which, given the present state of two gravitating bodies, will describe 

their past and future motion with perfect accuracy. However, it was found that 

the same is not true for the case of three or more bodies. This became known 

as the N-body problem. 

Astronomers reacted to the impasse in two ways. First, they concentrated 

on global properties, such as the total energy of a system or the trajectory of its 

centre of mass, for which they were able to derive precise formulas. Second, 

they considered systems like our Solar System, which can, under certain 

assumptions, be treated as modified two-body problems. Both of these lines of 

research were successful and celestial mechanics became an active field. 

From the beginning, astronomers realised that they could, in principle, 

attack the N-body problem with numerical methods. That is, they were aware 

that the equations of motion for a set of bodies could be numerically 

integrated, over a series of small intervals, from the initial conditions to any 

desired point in the future. This technique was given the name special 

perturbations and it was applied to a few problems. However, most workers in 

celestial mechanics ignored it because of the long and laborious calculations 

required. 

All this changed with the appearance of computers, which were able to 

perform arithmetic operations at high speed. Special perturbations, which 

works for any configuration of bodies, became the basic tool of workers in the 

field of dynamical astronomy. The technique has been refined and extended in 

many ways, only some of which have been used in Gravitas. 

235 



The purpose of this section is to describe some of the methods used in 

Gravitas, and some others that could be added to increase its speed and 

accuracy. 

A.2 Fundamental Limitations 

First, we should strike a note of caution. Miller (1964) discovered that all 

numerical simulations will ultimately fail. He first noted that the trajectories 

arising from two nearly identical sets of initial conditions diverge. This in 

itself was not unexpected as mathematicians realised from the outset that 

numerical errors accumulate as the integration process is extended. However, 

Miller found that the rate of divergence renders simulations of many systems 

unreliable: the properties that the dynamical astronomer is investigating are at 

risk of being submerged by the growing error. Miller's findings did not bury 

dynamical astronomy as a field, but they did place a health warning, as it were, 

on all numerical research. As Aarseth and Lecar put it: 

11 Although this result has cast a shadow over N-body calculations ever since, it 

has not deterred subsequent investigations from being carried out in an optimistic 

spirit." (Aarseth and Lecar, 1975) 

The principal generators of error, according to Miller, are close binary 

collisions, that is to say, encounters between two bodies which involve large 

accelerations and highly curved orbits. As Aarseth (1985) has shown, much 

effort has gone into dealing with these kinds of situation. However, we will 

begin by looking at the simplest techniques. 

A.3 Aarseth's Basic Method 

Although Aarseth was not the first person to state the formulae for the 

method of special perturbations, the basic equations have become associated 

with his name. In (Aarseth, 1962) he expressed the fundamental relation as: 

d2 IN m (r. - rJ.) 
~ J I 

_I=G -----
dt 2 I r. _ r.1 3 

j=l I J 
j~ 

In words, this differential equation (which we have simplified slightly) 

says that the acceleration of a mass i is equal to the sum of all the other masses, 

each divided by its separation from mass i, all multiplied by the Universal 

Constant of Gravitation. 

236 



This equation of motion is then integrated twice with respect to time to 

obtain the next position of the mass. The integration is carried out for each of 

the masses present so that all the positions are updated. Finally, the entire 

process is repeated for as long as desired. 

A.4 Choice of Integration Method 

The simplest form of numerical integration is known as Euler's method. 

In this scheme the differential equation is transposed into a difference 

equation and multiplied out to gain the next position of a mass. There are 

several ways in which this can be improved upon, and we will briefly review 

two that are commonly used. An excellent survey of numerical integration 

techniques is given in (Roy, 1978 Chapter 7). 

The first constructs a more complex difference equation, adding terms 

which incorporate higher derivatives of the force terms. These terms 

compensate for the errors that are generated by the transposition of the 

differential equation. Because the terms are computed from a Taylor series 

expansion of the original equation of motion, this technique is known as the 

polynomial method. 

The second method also constructs a more complex difference equation to 

increase precision. It adds four extra terms to compensate for the error in a step 

of integration. These terms derive from geometrical considerations of the way 

error accumulates and they lead to a linear difference equation. This technique 

is named the Runge-Kutta method, after its originators. 

At present, Gravitas uses Euler's method. We have tried Runge-Kutta 

techniques but the increased precision did not provide enough benefit to 

outweigh disadvantages of speed and complexity. We have not tried the 

polynomial method as yet. 

A.S Previous Force Evaluations 

Another method of improving the accuracy of the numerical process 

takes a strategic approach. Once the step by step integration process is going it is 

possible to use previous calculations of the force on a mass to compute a list of 

successive differences. These can then be used (as analogues for higher 

derivatives of the force function) in a difference equation structurally similar 

to the Taylor series polynomial mentioned above. Of course, this method 

cannot begin until several steps of the iteration have been carried out by some 

237 



other means. Nevertheless, it has become ubiquitous in the literature on 

dynamical simulations. 

On the question of how many previous force evaluations it is worth 

preserving, Aarseth has written: 

"Practical considerations such as initialization, restarts, machine accuracy and 

increasing storage suggest that remembering four previous force evaluations is a 

good compromise." (Aarseth, 1985 p252) 

Previous force evaluation has been used in Gravitas but was removed for 

reasons of expediency. It would require a great deal of programming effort to 

combine this method with some of the other techniques used to generate 

Massob behaviour. However, at some point in the future this would be a 

worthwhile task. 

A.6 Individual Time Step 

One way of reducing the computational overhead is called the individual 

time step method (Aarseth, 1971). This technique is based on the observation 

that it is not necessary to calculate to the same precision for every mass in a 

system. While some of the masses are undergoing violent accelerations, which 

require integration steps over short time intervals, others may be moving 

almost rectilinearly, or in stable orbits for which it is wasteful to use such small 

steps. 

The individual time step method involves calculating a "reasonable" 

time step for each object in a system, using a criterion such as the relative 

change in force during the last step. The integration is then carried out over 

the shortest time step, but only for those objects with that step. Time is then 

advanced and the integration is carried out again, including, this time, any 

more objects whose time step has now been spanned. After several of these 

auxiliary steps, all the masses will have been advanced and the process can 

begin again. 

The individual time step method has been tried in Gravitas. In some 

cases, for instance a simulation of the entire Solar System, it provided 

worthwhile improvements, while in others, such as a simulation of just the 

Terran planets (Mercury, Venus, Earth and Mars), the improvement was 

negligible. Again, for reasons of expediency, the individual time step method 

238 



is not used in Gravitas at present, but it would be considered for future 

versions. 

A.S Heuristic Methods 

Besides improving the numerical methods there is another way in which 

the performance of Gravitas could be raised. For example, if only two Massobs 

are present, the program could use the analytic solution to the two-body 

problem and thereby work with perfect accuracy. Or it could examine the 

configuration of the Massobs in a more complex system and identify situations 

where the two-body solution is good enough. 

There are a range of established techniques which do just this, but we do 

not have room to summarise them here. (Roy, 1978) contains a survey and 

(Aarseth, 1985) has discussions of restricted three-body techniques being 

applied in the same context. No heuristic methods have been used in Gravitas. 

239 



References 

Aarseth, S.J. (1962), Dynamical Evolution of Clusters of Galaxies. Monthly 
Notices of the Royal Astronomical Society. 126 (3) 221-255 

Aarseth, S.J. (1971), Direct Integration Methods of the N-Body Problem. 

Astrophysics and Space Science. 14 118-132 

Aarseth, S.J. (1985), Direct N-Body Calculations. In Goodman, J., and Hut, P. 

(Eds.), Dynamics of Star Clusters. IAU. 

Aarseth, S.J., and Lecar, M. (1975), Computer Simulations of Stellar Systems. 

Annual Review of Astronomy and Astrophysics. 13 1-21 

Abelson, H., and diSessa, A.A. (1980), Turtle Geometry: The computer as a 

medium for exploring mathematics. MIT Press. Cambridge, MA. 

Abelson, H., diSessa, A.A., and Rudolph, L. (1975), Velocity Space and the 

Geometry of Planetary Orbits. American Journal of Physics. 43(7) 579-589. 

Abelson, H., and Sussman, G.J. (1985), The Structure and Interpretation of 
Computer Programs. MIT Press. Cambridge, MA. 

Adams, S.T. (1989), Developing Databases and Knowledge Spaces with Boxer: 
An Illustration Based on Dinosaur Knowledge, Technical Report G4. 

Available from The Boxer Group, Graduate School of Education, 

University of California, Berkeley, CA. 

Adams, T. (1988), Computers in Learning: A Coat of Many Colours. Computers 
and Education. 12 (1) 1-6. 

Baker, C.L. (1981), JOSS, Johnniac Open Shop System. In Wexelblat, R.L. (Ed.) 

History of Programming Languages. Academic Press. New York. 

Baker, R.M.L. (1967), Astrodynamics: Applications and Advanced Topics. 
Academic Press. New York. 

Bliss, J., Ogborn, J., Boohan, R., Briggs, J., Brosnan, T., Brough, D., Mellar, H., 

Miller, R., Nash, C., Rodgers, c., and Sakonidis, B. (1992), Reasoning 

Supported by Computational Tools. Computers and Education 18 (1-3) 1-9. 

Bork, A.M. (1979), Interactive Learning. American Journal of Physics. 47 5-10. 

Brna, P. (1987), Confronting Dynamics Misconceptions. Instructional Science 
16,351-379 

240 



Brna, P. (1989), Programmed Rockets: An Analysis of Students' Strategies. 

British Journal of Educational Technology 20 I, 27-40 

Brna, P. (1991), Promoting Creative Confrontations. Journal of Computer 
Assisted Learning. 7, 114-122. 

Brosnan, T. (1990), Using Spreadsheets in the Teaching of Chemistry. More 

Ideas and Some Limitations. School Science Review, 71 256, 53-59. 

Brown, J. S., Burton, R. R., and Bell, A. G. (1975), SOPHIE: A step towards a 

reactive learning environment. International Journal of Man Machine 

Studies. 7. 

Brown, J. S., Burton, R. R., and De Kleer, J. (1982), Pedagogical, Natural 

Language and Knowledge Engineering Techniques in SOPHIE I, II and Ill. 

In Sleeman, D. and Brown, J.S. (Eds.) (1982), Intelligent Tutoring Systems. 
Academic Press. London. 

Brown, J. S. (1985), Idea Amplifiers - New Kinds of Electronic Learning 

Environments. In Educational Horizons. Spring 1985. 

Bruner, J.5. (1968), Toward a Theory of Instruction. Harvard University Press. 

Cambridge, MA. 

Burns, B., and Hagerman, A. (1989), Computer Experience, Self-Concept and 

Problem-Solving: the Effects of Logo on Children's Ideas of Themselves as 

Learners. Journal of Educational Computing Research, 5 (2) 199-212. 

Cathcart, W.G. (1990), Effects of Logo on Cognitive Style. Journal of Educational 
Computing Research. 6(2) 231-242. 

Chang, S.K. (1987), Visual Languages: A Tutorial and Survey. IEEE Software, 

January 198729-39. 

Clements, D.H., and Gullo, D.F. (1984), Effects of Computer Programming on 

Young Children's Cognition. Journal of Educational Psychology. 76(6) 

1051-1058. 

Cox, B. (1986), Object-oriented Programming: An Evolutionary Approach. 
Addison-Wesley. New York. 

Department of Education and Science (1991), Science in the National 
Curriculum. HMSO. London. 

diSessa, A. A. (1982), Un learning Aristotelian Physics: A Study of Knowledge

Based Learning. Cognitive Science, 6(1) 37-75. 

241 



diSessa, A.A. (1986a), From Logo to Boxer, a new Computational 

Environment. Australian Educational Computing, July 1986. 

diSessa, A. A. (1986b), Notes on the Future of Programming. In Norman, D.A. 
and Draper, S.W. (Eds.) User Centred System Design, Lawrence Erlbaum. 
Hillsdale, NJ. 

diSessa, A. A. (1990), Local Sciences: Viewing the Design of Human-Computer 
Systems as Cognitive Science, Technical Report G6. Available from The 
Boxer Group, Graduate School of Education, University of California, 
Berkeley, CA. 

diSessa, A. A., and White, B.Y. (1982), Learning Physics from a Dynaturtle. Byte 
magazine August 1982. 

diSessa, A. A., and Abelson, H. (1986), Boxer: a Reconstructible Computational 
Medium. Communications of the ACM. 29(9) 859-868. 

Drescher, G. (1987), Object-Oriented Logo. In Lawler, RW. and Yazdani, M. 

(Eds.) Artificial Intelligence and Education, Volume One. Ablex. 

Norwood, NJ. 

du Boulay, J. B.H. (1978), Learning Primary Mathematics Through Computer 
Programming. Ph.D Dissertation. Department of Artificial Intelligence. 

Edinburgh University. 

Eichenbaum, L., and Orbach, S. (1982), Outside In ... Inside Out. Penguin Books. 

London. 

EIsom-Cook, M. (Ed.) (1990), Guided Discovery Tutoring. Paul Chapman. 

London. 

Eyler, M.A. (1990), Simulation Modeling Using Spreadsheets. Academic 

Computing on Macintosh Environment, Bogazi«;i University Publication 

No. 472. 

Feurzeig, W., Papert, 5., Bloom, M., Grant, R and Solomon, C (1969), 

Programming Languages as a Conceptual Framework for Teaching 
Mathematics. BBN Report No. 1889. Bolt, Beranek and Newman 

Laboratories, Cambridge, MA. 

Feurzeig, W. (1984), The Logo Lineage. In Ditla, S. (Ed.) Digital Deli. Workman 
Press. New York. 

Foley, J.D., and Van Dam, A. (1982), Fundamentals of Interactive Computer 
Graphics. Addison-Wesley. New York. 

242 



Forman, G., and Pufall, P.B.(Eds.) (1988), Constructivism in the Computer Age. 
Lawrence Erlbaum. Hillsdale, NJ. 

Frasson, C. and Gauthier, G. (Eds.) (1990), Intelligent Tutoring Systems. Ablex, 

Norwood NJ. 

Galizia, M.T. (1990), Experiences of Computer Laboratory in Mathematics 

Teaching. In Proceedings of the NATO Conference on Advanced 
Technologies in the Teaching of Mathematics and Science. Milton 

Keynes. 

Gettys, W.E., Keller, F.J., and Skove, MJ. (1989), Physics, Classical and Modern. 
McGraw-Hill, New York. 

Goldberg, A. and Robson, D. (1983), Smalltalk-80: the language and its 
implementation. Addison-Wesley. New York. 

Goldenberg, E.P. (1982), Logo: A Cultural Glossary. Byte magazine August 1982. 

Goldstein, LP (1975), Summary of MYCROFT: A System for Understanding 
Simple Picture Programs. Artificial Intelligence. 6 (3) 249-288 

Graham, I., (1991), Object Oriented Methods. Addison Wesley. London. 

Groen, G. (1984), Theories of Logo. In Sorkin, R. (Ed.) Logo 84: Pre-proceedings. 

MIT. 

Hammond, N., and Trapp, A. (1992), Matching eBL Approach to Learning 

Need: A Heuristic Methodology for Instructional Design. In Brusilovsky, 

P., and Stefanuk, V. (Eds.) Proceedings of the East-West Conference on 
Emerging Computer Technologies in Education. Moscow. 

Harel, I., and Papert, S. (1990), Software Design as a Learning Environment. 

Interactive Learning Environments. 1 1-32. 

Hodgkin, R. A. (1980), Mountains and Education. The Alpine Journal. 86 (330) 

201-11. 

Hodgkin, R. A. (1985), Playing and Exploring. Methuen. London. 

Hollan, J.D., Hutchins, E.L., and Weizman, L. (1984) STEAMER: an interactive 

inspectable simulation-based training system. AI Magazine, 5 (2). 

Holm, P.E. (1988), Petrogenetic Modeling with a Spreadsheet Program. Journal 
of Geological Education. 36 (3). 

Howe, J., O'Shea, T.M.M., and Plane, F. (1979), Teaching Mathematics Through 

Logo Programming: An Evaluation Study. In In Lewis, R. and Tagg, D. 

243 



(Eds.) Computer-Assisted Learning - Scope, Progress and Limits. North
Holland. Amsterdam. 

Howe, J., Ross, P., Johnson, K., Plane, F., and Inglis, R (1982), Teaching 

Mathematics Through Programming in the Classroom. Computers and 
Education 6 p85-91 

Hughes, M. and MacLeod, H. (1986), The Craigmillar Logo Project. In Lawler, 

R, du Boulay, B., Hughes, M. and Macleod, H., Cognition and Computers: 
Studies in Learning. Ellis Horwood. Chichester. 

Hutchins, E.L., Hollan, J.D., and Norman, D.A. (1986), Direct Manipulation 

Interfaces. In Norman, Donald A. and Draper, Stephen W. (Eds.), User 
Centred System Design. Lawrence Erlbaum. Hillsdale, NJ. 

Jeans, J. (1947), The Growth of Physical Science. Cambridge University Press. 

Jeans, J. (1967), An Introduction to the Kinetic Theory of Gases. Cambridge 

University Press. 

Klotz, L.L. (1989), Boxer: The Programming Language, Unpublished B.S. 

Thesis, Massachussetts Institute of Technology, Cambridge, MA. 

Knowledge Revolution. (1989), Interactive Physics. Software for the Apple 

Macintosh. Knowledge Revolution, San Mateo, CA. 

Lawler, RW. (1979), One child's learning. PhD Dissertation. Department of 

Electrical Engineering and Computer Science. MIT, Cambridge MA. 

Lawler, RW. (1982), Designing Computer-Based Microworlds. BYTE magazine. 
August 1982. 

Lawler, R.W. (1985), Computer Experience and Cognitive Development. Ellis 
Horwood. Chichester. 

Lawler, RW. (1987), Learning Environments: Now, Then, and Someday. In 

Lawler, R. L. and Yazdani, M. (Eds.) Artificial Intelligence and Education, 

Volume One. Ablex. Norwood, NJ. 

Lecar, M. and Aarseth, S.J. (1986), A Numerical Simulation of the Formation of 

the Terrestrial Planets. The Astrophysical Journal. 305 564-579. 

Leron, U. (1985), State Transparency and Conjugacy. Micromath. Winter 1985. 

Martin, F. and Resnick, M. (1990), LEGO / Logo and Electronic Bricks: Creating 

a Scienceland for Children. In Proceedings of the NATO Conference on 

244 



Advanced Technologies in the Teaching of Mathematics and Science. 

Milton Keynes. 

Mellar, H. (1989), Creating Alternative Realities: Computers, Modelling and 

Curriculum Change. In Hoyles, C. and Noss, R. (Eds.), Mathematics 

versus the National Curriculum. Farmer Press. 

Miller, R.H. (1964), Irreversibility in Small Stellar Dynamical Systems. The 
Astrophysical Journal 140 (1) 250-256 

Miller, R.S.; Ogborn, J.M.; Turner, J.; Briggs, J.H. and Brough, D.R. (1990), 

Towards a Tool to Support Semi-Quantitative Modelling. In Proceedings 
of the International Conference on Advanced Research on Computers 
and Education. Tokyo. 

Millwood, R. and Stevens, M. (1989), What is the Modelling Curriculum? In 

Kibby, M. (Ed.), Computer Assisted Learning: Selected Proceedings from 
the CAL '89 Symposium. Pergamon Press. Oxford. 

Minsky, M. and Papert, S. (1972), The '72 Progress Report. MIT AI Lab Memo. 

Minsky, M. (1975), A framework for representing knowledge. in P. H. Winston, 

The Psychology of Computer Vision. McGraw-Hill. New York. 

Myers, B.A. (1986), Visual Programing, Programming by Example, and 

Program Visualization: A Taxonomy. Conference Proceedings, CHI '86: 
Human Factors in Computing Systems. Association for Computing 

Machinery. 

Nelson, T. H. (1967), Getting it out of our system. In G. Schechter (Ed.), 

Information Retrieval: A Critical Review (pp 191-210). Thompson. 

Washington, DC. 

Newcombe, A. and Stewart, K. (1985), Exploring in a Physics Microworld The 

Laws of Gravity and Motion. In Palmgren, M. (Ed.), Logo 85: Pre

proceedings. MIT, Cambridge MA. 

Ogborn, J. and Wong, D. (1984), A Microcomputer Dynamical Modelling 

System. Physics Education, 19 138-142. 

Oke, K.H. and Jones, A.L. (1982), Mathematical Modelling in Physics and 

Engineering- part 1. Physics Education, 17 220-3 

O/Shea, T. and Smith, R. (1987), Understanding Physics by Violating the Laws 
of Nature: Experiments with the Alternate Reality Kit. Proceedings of the 
Conference on Computer-Assisted Learning (CAL '87) 

245 



Palmgren, M. (1985), Logo 85: Pre-proceedings. MIT, Cambridge MA. 

Papert, S. (1970), Teaching Children Thinking. Paper delivered to the 1970 lFIP 

Conference on Computer Education. In Soloway, E., and Spohrer, J.C. 

(Eds.) Studying Novice Programmers. Lawrence Erlbaum. Hillsdale NJ. 

Papert, S., and Solomon, C. (1971), Twenty Things to do with a Computer. Logo 
Memo No.3. MIT. Reprinted in Soloway, E., and Spohrer, J.C. Studying 
Novice Programmers. Lawrence Erlbaum. Hillsdale, NJ. 

Papert, S. (1972), Teaching Children to be Mathematicians Versus Teaching 

About Mathematics. Int. ,. Math. Edue. Sei. Teehnol.3 249-262. 

Papert, S.; Watt, D.; diSessa, A.A. and Weir, S. (1979), Final Report of the 
Brookline Logo Project. Logo Memos 53 & 54. MIT, Cambridge MA. 

Papert, S. (1980), Mindstorms, Children, Computers and Powerful Ideas. 
Harvester Press. Brighton. 

Papert, S. (1987a), Microworlds: Transforming Education. In Lawler, R. L. and 

Yazdani, M. (Eds.) Artificial Intelligence and Education, Volume One. 
Ablex. Norwood, NJ. 

Papert, S. (1987b), Computer Criticism versus Technocentric Thinking. 

Educational Researcher, 16 22-30. Also published in MIT Logo 85 

Conference: Theoretical Papers. 

Paradigm Software Inc. (1990), Object Logo. Cambridge, MA. 

Pea, R.D., Hawkins, J., and Sheingold, K. (1983), Developmental Studies on 
Learning Logo Computer Programming. Paper presented to the Biennial 

Meeting of the Society for Research in Child Development. Detroit, MI. 

Ploger, D. and Carlock, M. (1991), Programming and Problem Solving: 

Implications for Biology Education. Journal of Artificial Intelligence in 

Education. 2 (4). 

Polanyi, M. (1962), Personal Knowledge. Routledge and Kegan Paul. London. 

Resnick, M. and Ocko, S. (1990), LEGO / Logo: Learning Through and About 

Design. In Harel, I. (Ed.) Constructionist Learning. MIT Media Laboratory. 

Richmond, B., Peterson, 5., and Vescuso, P. (1987), STELLA. High Performance 

Systems Inc. 

Ross, P., and Howe, J. (1981), Teaching Mathematics Through Programming: 

Ten Years On. In Lewis, R. and Tagg, D. (Eds.) Computers in Education: 

246 



Preprints to the World Conference on Computers and Education, 
Lausanne 1981. North-Holland. Amsterdam. 

Roy, A.E. (1978), Orbital Motion. Adam Hilger, Bristol. 

Schecker, H. (1990), The Didactic Potential of Computer Aided Modeling for 

Physics Education. In Ferguson, D.L. (Ed.) Advanced Technologies in the 
Teaching of Mathematics and Science. Springer-Verlag. London. 

Shneiderman, B. (1982), The Future of Interactive Systems and the Emergence 

of Direct Manipulation. Behaviour and Information Technology. 1 237-

256 

Shneiderman, B. (1983), Direct Manipulation: a Step Beyond Programming 
Languages. IEEE Computer, 16 (8) 57-63 

Shu, N.C. (1986), Visual Programming Languages: A Perspective and a 

Dimensional AnalysiS. In Chang, S.K., Ichikawa, T., and Ligomenides, 

P.A. (Eds.) Visual Languages. Lawrence Erlbaum. Hillsdale, NJ. 

Shute, V., and Bonar, J. (1986), Intelligent Tutoring Systems for Scientific 

Enquiry Skills. In The Proceedings of the Eighth Annual Conference of 
the Cognitive Science Society. Lawrence Erlbaum. Hillsdale, NJ. 

Shute, V., and Glaser, R. (1990), A Large-Scale Evaluation of an Intelligent 
Discovery World: Smithtown. Interactive Learning Environments, 1 51-

77. 

Shulman, S.L. and KeisJar, E.R. (1966), Learning by Discovery. A Critical 

Appraisal. Rand McNally. Chicago IL. 

Sinclair, G. and Colton, M. (1985), Ideamap: An Idea Composing Microworld. 

In Palmgren, M. (1985), Logo 85: Pre-proceedings. MIT, Cambridge MA. 

Sleeman, D. and Brown, J.S. (Eds.) (1982), Intelligent Tutoring Systems. 
Academic Press. London. 

Smith, R. B. (1986), The Alternate Reality Kit: An Animated Environment for 

Creating Interactive Simulations. In Proceedings of the IEEE Computer 
Society Workshop on Visual Languages. 

Smith, R. B. (1987), Experiences with the Alternate Reality Kit: An Example of 

the Tension between Literalism and Magic. In Proceedings of the 
Computer Human Interaction and Graphical Interface Conference. 

Toronto. 

247 



Solomon, C., and Papert, S. (1976), A Case Study of a Young Child Doing 

Turtle Graphics. Logo Memo No.28. MIT 1976. 

Solomon, J.C. (1962), Fixed Idea as an Internalised Transitional Object. 

American Journal of Psychotherapy. 16. 

Spensley, F., O'Shea, T., Singer, R., Hennessey, 5., O'Malley, C. and Scanlon, E. 

(1990), An 'Alternate Realities' Microworld for Horizontal Motion. CITE 
Report No. 105, Centre for Information Technology in Education, Open 

University, Milton Keynes. 

Squires, D. and McDougall, A. (1986), Computer-based Microworlds - A 

Definition to Aid Design. Computer Education,10 (3) 375-378. 

Squires, D. and Sellman, R. (1985), Designing Computer Based Microworlds, In 

Palmgren, M. (1985), Logo 85: Pre-proceedings. MIT, Cambridge MA. 

Statz, J. (1973), The Development of Computer Programming Concepts and 
Problem-Solving Abilities among Ten- Year-Olds Learning Logo. 
Unpublished PhD Thesis, Syracuse University (0659). 

Swan, K (1991), Programming Objects to Think With: Logo and the Teaching 

and Learning of Problem Solving. Journal of Educational Computing 
Research, 7 (1) 89-112. 

Tatar, D. (1987), A Programmer's Guide to COMMON LISP. Digital Press. 

Bedford, MA. 

Taylor, R. (Ed.) (1980), The Computer m the School: Tutor, Tool, Tutee. 
Teachers College Press. 

Teodoro, V.D. (1990), The Computer as a Conceptual Lab: Learning Dynamics 

with an Exploratory Environment. In Ferguson, D.L. (Ed.) Advanced 
Technologies in the Teaching of Mathematics and Science. Springer

Verlag. London. 

Thompson, P. W. (1985a), A Piagetian approach to Transformation Geometry 

via Microworlds. The Mathematics Teacher. September 1985. 

Thompson, P. W. (1985b), Experience, problem-solving and learning 

mathematics: Considerations in developing Mathematics curricula. In 
E.A. Silver (Ed.), Learning and teaching mathematical problem solving: 
Multiple research perspectives. Lawrence Erlbaum. Hillsdale, NJ. 

248 



Thompson, P. W. (1987), Mathematical Microworlds and Intelligent Computer 

Assisted Instruction. In: Greg P. Kearsley (Ed.), Artificial Intelligence and 
Instruction: Applications and Methods. Addison-Wesley. 

Turkle, S. and Papert, S. (1990), Epistemological Pluralism: Styles and Voices 
Within the Computer Culture. Signs, 16 (1) 129-157 

Wenger, E. (1987), Artificial Intelligence and Tutoring Systems. Morgan 

Kaufmann. Los Altos CA. 

White, B. (1984), Designing Computer Games to Help Physics Students 

Understand Newton's Laws of Motion. Cognition and Instruction. 1 (1) 

69-108. 

Winnicott, D.W. (1951), Transitional Objects and Transitional Phenomena. 

Tavistock Publications. London. 

Winnicott, D.W. (1971), Playing and Reality. Tavistock Publications. London. 

Winograd, T. (1972), Understanding Natural Language. Academic Press. 

249 


