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PAPER AND PRINTED PAPER SURFACE CHARACTERISTICS 
STUDIED USING AN OPTICAL METHOD. 

W SANANPANICHKUL 

A non-contact optical method for evaluating surface characteristics is 
reviewed. The optical reflectance instrument has been improved to be able to 
evaluate printed surfaces. Experiments were conducted with solid prints 
prepared on two types of papers printed with a heatset yellow ink. Both 
paper surfaces and printed surfaces are characterized into two regions: 
above the surface plane resulting in macrosmoothness (Sm) and below the 
surface plane resulting in microsmoothness (Su). For a better understanding 
of such optical print smoothness, a printed surface model is proposed based 
on Barkas' classical model. It is generally known that the qualities of a print 
are determined by the materials and their interactions in the process, 
therefore the formation of printed surface characteristics has been discussed 
in relation to ink and paper interaction. Print smoothness is influenced by 
the uncompressed paper roughness and porosity, which determine the degree 
of ink penetration and ink distribution on the surface. 

Offset lithographic printing has been the most widely used printing 
process, printing onto paper substrates. To achieve good press performance 
and high quality prints, the ink has to emulsify a certain amount of fountain 
solution; maintenance of this ink and water balance is, therefore, very 
important. The effects of fountain solution emulsified in the ink on print 
smoothness wp-re investigated. A range, of varying amounts of fountain 
solutions, was emulsified in a heatset yellow ink using a high speed 
laboratory mixer; these 'emulsion inks' were printed as soon as possible after 
preparation. It was found that the print smoothness in macro regions, for 
both uncoated and coated papers, decreased significantly. In addition, an 
unpigmented ink system was employed to verify the role and the effects of 
pigment in the emulsification mechanism on print smoothness. The results 
indicated that pigment is the dominant contributor, to a smoothness 
decrease; and the pigment effect arises from the amount of fountain solution 
emulsified in the ink. 

It has become important to measure print quality directly and 
quantitatively in the developments of ink, paper and printing technologies. 
This method makes it possible to measure print smoothness as a criterion for 
print quality. 

1 



AIMS OF TIllS STUDY. 

Conventional measurements of print quality have been made on print 

density or print gloss. Few studies have been concerned with the 

characteristics of printed surfaces. This study concerns a measure of print 

quality in terms of print smoothness by an optical method. The aims of the 

study are 

1. To improve an instrument so as to be able to measure the reflection 

of printed surfaces. 

2. To verify the method for reliable determinations of print 

smoothness. This requires a large number of samples to be examined and 

statistical methods employed to ensure significant data. When this has been 

achieved, a printed surface model can be proposed. 

3. To investigate the effects on print smoothness, of materials involved 

in the offset lithographic process, on a laboratory scale printing press. 

Print smoothness is one of the most important print quality factors. It 

is hoped that this study will provide a better understanding of ink / paper 

interactions; and, for the offset lithgraphic process, 'emulsion ink' / paper 

interactions. The method of this study may be useful to both ink makers for 

the developments of their ink formulations and printers to be aware of such 

printed defects which may occur. 

2 



1. INTRODUCTION. 

The products from any printing process are prints whose properties 

and characteristics correspond to the desired results. A study of ink and 

paper interactions is obviously important since they determine not only the 

efficiency and quality of a printing process but also the qualities of the 

prints. Ink and paper interactions are two-phase interactions involving ink 

transfer in the printing nip and ink drying after the nip. Various phenomena 

such as contact between ink and paper, ink immobilization, wetting and 

spreading of the ink, ink film splitting, ink penetration, determine the 

characteristics of a printed surface. DeGrace & Dalphond [1989] stated that 

the smoothness and the uniformity of the prints are determined by the 

uniformity of pigment distribution on the surface, the penetration and the 

evaporation of ink vehicles and the film formation of the polymer which holds 

the pigments within the ink film. 

Earlier researches on print smoothness have been done through the 

use of specular gloss measurements or goniophotometer measurements. For 

example, Leekley, Denzer & Tyler [1970] employed a goniophotometer from 

which they could separately measure specular and diffuse reflectance of 

paper and printed surfaces. Their optical smoothness results were shown by 

the distributions of the inclination angles of surface elements relative to the 

nominal plane of the samples. They suggested that the change in distribution 

of inclinations between unprinted and printed samples provided information 

that paper surface irregularities were filled with the inks. 
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In her study of surface reflection of coated papers and prints, Oittinen 

[1980] investigated the effects of ink variables on ink transfer and print 

gloss. Print gloss measurements were determinted using a gloss meter which 

is in accordance with the TAPPI standard method. The influences of ink film 

thickness on paper· smoothness and print gloss were explained through 

filtration and absorption mechanisms. 

As demonstrated by Maley [1990], ink film smoothness and ink 

uniformity are the major contributors to print quality. However, there are not 

many methods available that are capable of providing good information on 

printed surfaces. One reason is that printed surfaces are the products of 

many factors in the printing process. The present study is concerned with the 

printed surface characteristics of solid prints in terms of print smoothness by 

using the non-contact optical method, which was previously employed to 

evaluate paper surface smoothness [Hansuebsai, 1989]. The sensitivity of 

that method was increased, so as to provide valid results by the improvement 

of its instrument and by an appropriate increase in the number of samples 

evaluated. A printed surface model based on Barkas' classical model is 

proposed as an ink vehicle-air interface rather than a pigment-air interface. 

The printed surfaces are characterized into two regions. One region is at or 

above the surface plane corresponding to dried polymer film, which results in 

macrosmoothness (Sm). The other is below the surface plane corresponding to 

the dried polymer film and the pigments within the ink film, which results in 

microsmoothness (Su). 

The offset lithographic process is the most widely used printing 

process and dominates the printing of papers and boards. The uniqueness of 
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the process is that the image and the non-image areas are in the same plane. 

During printing, fountain solution is applied to non-image areas to keep 

these areas free from inks whereas/ ink is applied to image areas. As a 

consequence, the quality of the printed image produced by the offset 

lithographic process is determined by the combination of three major 

materials and their interactions: ink, paper and fountain solution. It is well 

known that offset litho inks emulsify a certain amount of fountain solution 

during printing and thus the maintenance of ink and water balance is the 

most crucial requirement to achieve high print quality and to avoid printing 

problems. Most of the printing problems are related to too much water. 

Extensive studies [e.g., Storm & Vanderhoff, 1984; Fetsko, 1986; Surland, 

1980, 1983] have been made on ink and fountain solution (water) 

interactions on the plate. Few works have been concerned with the effects of 

emulsification on the resultant prints. Therefore, this study was aimed to 

investigate the effects on print smoothness, of fountain solution emulsified in 

the ink. To simulate offset lithographic printing, a 'pre-emulsified ink' was 

prepared using a high speed laboratory mixer [Bassemir & Krishnan, 1991]. 

A heatset yellow ink was chosen to be studied and the amount of fountain 

solution emulsified in the ink has been varied. Printing of these 'emulsion 

inks' was carried out as soon as possible after ink preparation on a laboratory 

printability tester under controlled conditions. Statistical analysis of the 

results was employed to indicate the significance of the effects and the 

results were discussed in relation to 'emulsion ink' and paper interactions. 

In addition, the role and the effects of pigments on the emulsification 

mechanism in this process are not fully understood; unpigmented ink, whose 

formulation is similar to the heatset yellow ink with the pigment excluded, 
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was also prepared to study the effects on print smoothness. The 

emulsification, water uptake tests, for both heatset yellow ink and 

unpigmented ink were carried out using a modified Surland's method to 

provide supportive information. 

Surfaces of all unprinted and printed samples were also examined by a 

scanning electron microscope. The results not only provided a visual image of 

each surface but also provided supporting evidence for the effects on print 

smoothness. 
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2. BACKGROUND. 

2.1 BACKGROUND ON OFFSET UTHOGRAPHY. 

Printing is the process of making copies of graphic images and text 

that are usually transferred from an image carrier or printing plate to a 

substrate such as paper using a printing press. Among the major printing 

processes, offset lithography is the most widely used process and its major 

application is for printing on paper and board substrates. The name 'offset' is 

given because the inked image does not transfer directly from the image 

carrier or plate to the substrate, but it is 'offset' from the plate onto a rubber 

blanket and then to the papers or other substrates. 

For a better understanding of the process, it is necessary to investigate 

the operation of the printing press. The major components of an offset 

lithographic press are the feeder unit, the printing unit and the delivery unit. 

The most important component is the printing unit. Figure 2.1 shows a 

diagram of a typical offset lithographic printing unit. 

Every offset printing unit consists of a plate, blanket and impression 

cylinder together with dampening and inking systems. Since it is the area 

where ink and paper interactions occur, some of these will be discussed in 

detail. 

2.1.1 The inking system. 

This is generally made up of two types of rollers, namely rubber 

covered and hard surfaced rollers. A large number of rollers are arranged 
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Inking 
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Paper 

Dampening 
System 

Impression 
Cylinder 

Figure 2.1 A diagram of a typical offset 
lithographic printing unit. 
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alternately in a train to break down the ink from the ink reservoir into a thin 

film on the image area of the plate. Ink film thickness needs to be accurately 

controlled since a variation as little as 0.1 micron in a one micron film 

thickness on paper can cause variations in print density of :to.1 [Martin & 

Silver, 1976]. MacPhee [1979] proposed an idealized model for an inking 

system using a roller train assuming a 50/50 film splitting at any ink roller 

nip. He showed that the ink film thickness of approximately 2-3 microns and 

the fountain solution film of approximately 0.5-1 microns carried by the plate 

are necessary to obtain an ink film of 1 micron on the print. 

2.1.2 The dampening system. 

The function of the dampening system is to provide and maintain a 

film of fountain solution on the non-image area of the plate. Studying surface 

energy, phase interaction and work of adhesion of two lithographic plates, 

Strom & Vanderhoff [1984] concluded that during printing the non-image 

area carries a layer of bound fountain solution and a layer of free fountain 

solution. Both the fountain solution film thickness and the ink film thickness 

are very important to the success of the offset printing process. Scumming 

results from too little fountain solution on the non-image area whereas water 

marking results from too much water on the ink layer of the image area. It 

has been reported that the fountain solution film thickness on the plate is 

about one micron [Lawson & Watkinson, 1975]. As previously described, 

MacPhee [1979] considered that this fountain solution thickness is 

approximately one-half or one-third of the ink film thickness on the image 

area of the plate. This proportion is normally referred to as the appropriate 

ink and water balance and is dependent on the ratio of image to non-image 

areas. 
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2.1.3 Plates. 

The uniqueness of offset lithography is that it is a planographic 

process, Le., printing is achieved from a flat or plane surface. This can be 

achieved based on the fact that oil and water are immiscible. According to 

this, the basic requirement of the plate is an ability to produce an image area 

to accept only ink and repel water (hydrophobic> and a non-image area to 

accept water (hydrophilic). Various methods are employed to produce plates 

with this requirement, i.e., to produce a printing plate with completely 

different surface energetic properties between the image and non-image 

areas. 

To understand the process of producing an inked image on the plate it 

is necessary to study surface tensions and contact angles of inks, fountain 

solutions and plates. Surface tension and contact angle are discussed 

adequately in many textbooks and so only a brief discussion is given here. 

Molecules in any materials attract each other. The molecule within the 

bulk of the material will be attracted in all directions by its neighbours, 

therefore there is no tendency to move in anyone direction. A similar 

molecule at the surface has only half the number of neighbours attracting it. 

Thus, there is a force pulling it, and all other surface molecules, inwards 

which can contract the surface area. The potential energy produced in all the 

surface molecules constitutes surface energy and the force trying to contract 

the surface area is the surface tension. The two are virtually equivalent. 

Surface energy and surface tension exist not only at the surface of a liquid 

and air, but also at the surface of solids, at the interfaces between a liquid 

and a solid and vice versa. The units for surface tension and surface energy 
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are different but equivalent. For this thesis, surface energy will generally be 

used in reference to solid surfaces and surface tension for liquid surfaces. 

When a drop of liquid is placed on a solid surface, it may either spread 

across the surface or may remain as a drop having a finite contact angle (8). 

The contact angle is dependent on the surface energy, the phases interact 

according to the Young-Dupre' relation. 

Y s = Y sl + Yl cos e 
where 

Ys is the solid surface energy 

Yl is the liquid surface tension 

........................................................ ( 1) 

Ysl is the solid/liquid interfacial energy 

If a liquid with a higher surface tension is placed on a solid surface 

with a lower surface energy, the liquid will form into globules and will not 

wet the solid surface. In terms of contact angle, it will show a large contact 

angle. On the other hand, if the liquid has a lower surface tension than the 

solid surface, the liquid will wet and spread across that solid surface. The 

contact angle will be low and approaching zero. On a printing plate, the 

image area should show contact angles approaching zero for the inks whilst 

the non-image area should show contact angles approaching 180 degree for 

the inks (Figure 2.2). 
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non-image IJthoplate 

Figure 2.2 Lithoplate Surface Characteristics. 

Most solid surfaces used to make offset plates can be wetted to some 

extent by the inks used, Therefore, almost all offset plates require an 

application of fountain solution to maintain the distinction between the 

image and non-image areas. The main component of a fountain solution is 

water which is a polar liquid having a high surface tension (ca 72.8 

dynes/cm). In contrast, lithographic inks are virtually non-polar liquids 

having lower surface tensions approximately 30-35 dynes/cm [Banks, 1965; 

MacPhee, 1979]. On the press, the plate is clamped round the plate cylinder 

where it is first damped by the dampening form rollers. Because the surface 

tension of fountain solution is lower than the surface energy of the non-image 

area of the plate, fountain solution will form a thin film on the non-image 

area. On the other hand, it will contract into tiny droplets on the image area 

because of its higher surface tension compared to the surface energy of the 

image area of the plate. Strom & Vanderhoff [1984] found that after a film of 

fountain solution was applied, the wetted plate has the same surface energy 

as the fountain solution used. 

When the wetted plate passes under the ink form rollers, these rollers 

cannot ink the areas already covered with a film of fountain solution, i.e., the 

non-image area. This is because hydrophilic substances such as gum arabic 
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are present not only on the non-image area of the plate but also in the 

fountain solution. This promotes the attraction of fountain solution to the 

non-image area. This area thereby retains its hydrophilic property so that 

the ink cannot displace the fountain solution and adhere to the non-image 

area. Although ink and fountain solution are immiscible, in the nip between 

the ink form rollers and the plate (Figure 2.1), an emulsification process 

occurs. Stefan's theory [1874] explains a simple model of a liquid confined by 

two flat parallel plates. The force required to separate the plates is expressed 

as follows: [MacPhee, 1979] 

F = CllVA 
t 3 

where F = force 

C = constant 

J! = viscosity 

....................................................... (2) 

v = speed at which the plates are separated 

A = plate area 

t = distance between the plates (Le., film thickness) 

This equation shows that the force required to split a liquid increases 

with increasing liquid viscosity. Tollenaar [1973] and Karttunen 

& Manninen [1978] stated that at the nip exit, film splitting occurs in the 

much lower viscosity fountain solution film rather than in the ink layer. 

Thus, a film of fountain solution will remain on the non-image area but some 

droplets may transfer to the ink which are subsequently emulsified with the 

ink. In other words, the ink does not form a film on top of the fountain 

solution film. This has been shown by Strom & Vanderhoff [1984] who found 
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that the work of adhesion of ink on the non-image area is close to zero and 

independent of the surface tension of fountain solution. On the other hand, 

the ink form rollers will ink the image area either by pushing aside or 

emulsifying the droplets of fountain solution to make an inked image. 

The inked image is now transferred onto the rubber blanket, where the 

image is reversed to a mirror image. The substrate is then passed between 

the blanket and the impression cylinders where the image becomes right

reading again. The printing pressure is applied by the impression and the 

blanket cylinders in order to transfer the image from the blanket to the 

substrate. The correct pressure is of importance to print quality. Therefore, 

accurate adjustment of the gap between the blanket and the impression 

cylinder is necessary for each substrate. Details of the ink transfer to paper 

will be discussed in the section on ink and paper interactions. 
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2.2 BACKGROUND ON PAPER. 

Paper can be defined as a continuous web of materials formed by the 

deposition of vegetable fibres, synthetic fibres or a mixture of fibres with the 

addition of other substances, from liquid suspension 50 that the fibres are 

intermeshed and bonded together. Paper may be coated, impregnated, 

printed or otherwise converted, during or after its manufacture, without 

necessarily losing its identity as paper. 

2.2.1 The manufacture of paper. 

Papermaking can be divided into 4 distinct stages: the manufacture of 

pulp, the preparation of stock for the papermachine, the papermaking 

operation and the paper after-treatments and finishing. The nature of the 

fibres used and the treatments at these 4 stages determine the properties of 

the finished paper, particularly the printing characteristics [Grant & Young, 

1978]. 

The manufacture of pulp. This is known as 'Pulping process'. This 

stage is the separation of cellulose fibres from undesirable materials 

associated with them in the plants. Cellulose fibres from wood have become 

the most important source of pulp for papermaking. There are two basic 

groups of wood namely softwood and hardwood~ In softwood, there is 

virtually one type of fibre whereas hardwood has a more complicated 

structure with both long, or short and thick fibres. The chemical composition 

as well as the dimensions of the fibres are different. The pulping process 

makes use of the differences in physical and chemical properties of cellulose 

and lignin to separate them. In the mechanical pulping process, the fibres 

are liberated from wood by physical degradation of the middle lamella 
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between the fibres. The resulting pulp is a mixture of bundles of fibres and 

non-fibrous materials that existed in the original wood. Chemical pulping 

process extracts lignin and other. impurities from the wood by chemical 

solution. This process yields the cellulose fibres in a separated and relative 

pure state. Fibres extracted from hardwood are normally shorter than those 

from softwood. 

Stock preparation. This is the most important stage in papermaking 

because the majority of the paper properties are determined by the stock 

preparation. This covers the processes of producing 'stock' that is, a 

suspension of fibres and other non-fibrous materials in water, in the 

appropriate condition and composition for the production of a desired paper. 

The most important process is beating or refining which is a mechanical 

treatment to modify the fibre properties. There are three most important 

properties which are normally modified by the beating or refining operation: 

1. changes in fibre length as a result of cutting or shortening the 

fibres. 

2. flexibility resulting from internal fibrilation that is bruising and 

splitting the fibres internally. 

3. changes in specific surface defined as square metres of surface per 

gramme of fibre affected by external fibrilation. 

The original physical and chemical properties of the fibres used, the 

equipment, the temperature and the consistency of the pulp, all influence the 

effects of beating or refining, which in turn determine the main 

characteristics of the paper. Papers made from unbeaten pulp show less 

tensile and burst stength; and are bulkier with high porosity, absorbency, 

opacity and uneven formation. On the other hand, papers made from beaten 
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pulp exhibit greater strength, a higher density, a smoother surface and a 

more uniform formation. 

A number of non-fibrous materials are also added to the stock to obtain 

particular paper properties. The most important of these are sizing agents 

and fillers. The purpose of sizing is to improve the water resistance 

properties of paper. The most widely used method is internal or engine 

sizing. This is achieved by adding rosin and aluminium sulphate (alum) to 

the stock. Alum will precipitate particles of aluminium rosinate as a coating 

of size onto the fibre walls. This reduces the capillary action of water and 

prevents penetration into the paper. 

Fillers or loadings are water-insoluble, white mineral pigments 

originally added to modify characteristics of the finished paper. By filling in 

the interstices of the fibre network, they give a smoother surface. They also 

impart some specific properties such as brightness, opacity, softness and 

dimensional stability to the paper. However, due to their interference with 

fibre bonding, they appear to reduce the strength and degree of sizing. 

The papermaking operation. Formation of the paper web takes place in 

the papermachine. The main function of the papermachine is to remove the 

water from the stock so th.fit the fibres come together to form a web of paper. 

In the papermachine the stock is passed from the headbox through the slice 

onto the wire where the water is removed from the stock. The consistency or 

concentration of fibres of the stock affects sheet formation. A lower 

consistency tends to improve sheet formation [Hallgren & Lindstrom, 1989]. 
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Formation is the term used to describe the distribution of fibres within the 

finished sheet. Bad formation results in uneven ink absorption when printed. 

Water removal in the papermachine is accomplished by free drainage, 

by suction on the wire section, by pressing on the press section and by 

evaporation in the dry section. Throughout this sequence of water removal, 

different phases of consolidation of the web occur [Rance, 1980]. From the 

wire section to the press section, there is formation and compaction of the 

suspension. Most of the water is taken out on the wire section, hence it is on 

the wire section where the web of paper is first consolidated and many of its 

characteristics established. In addition, some of the characteristics of the 

paper are formed on the press section as a result of further consolidation. 

This depends on the type of press and the nip pressures. As the paper web 

passes through the dryer section, it tends to shrink as a whole. The extent of 

shrinkage depends on the basis weight. Heavier webs tend to shrink more 

than lighter webs, resuting in different surface structures 

[Corte & Herdman, 1975]. 

Paper after-treatments and finishing. The ~erm 'finish' describes the 

final surface or texture of a paper. Calendering in the papermachine is the 

last stage of consolidation, compressing the web which has already become a 

solid. It is considered to be the fine adjustment of the final characteristics of 

the sheet. The main purpose is to produce an eveness of surface as required 

by subsequent printing or coating processes. The surface of an uncalendered 

sheet is too rough to facilitate high quality printing. Calendering also 

improves the imperfections from the earlier stages of formation and 

consolidation to give uniformity of web thickness. The other purpose is to 
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impart specific optical properties to the surface of the paper, such as gloss. 

In some cases, smoothness and gloss are accomplished through 

supercalendering which is normally carried out as a separate process off

machine. 

2.2.2 The coating of paper. 

The above description is how uncoated papers are generally 

manufactured. High quality printing requires a surface that is smoother than 

that resulting from papermachine alone. Therefore the sheets are often 

coated with a thin layer of mixture to fill in the voids and to cover the fibres. 

This helps to improve such properties as smoothness, gloss and other 

printing properties including ink absorptivity and ink holdout. Although a 

layer of coating can hide to some extent the irregularities of the base paper, 

the base paper must be uniform in its substance and texture, otherwise, the 

coating will mirror the surface contour. Coated papers generally have a 

denser and more uniform structure than uncoated rPers. Most of the coated 

papers are calendered or supercalendered after the coating is dried. The 

effectiveness of the coating process depends on the formulation of the coating 

mixture, the amount applied onto the paper, the application method and the 

amount of calendering or supercalendering. Normally, matt-coated papers 

have little or no calendering, dull-coated papers are moderately calendered 

and gloss-coated papers are heavily calendered. 
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2.3 BACKGROUND ON INK. 

Printing inks are coloured materials applied to any substrate by one of 

the printing processes. They are therefore classified by the printing process 

used: letterpress, offset lithographic, flexographic, gravure, screen or other. It 

is the offset inks that are of interest in this study. 

2.3.1 Ink composition. 

In common with other inks, offset inks are composed of three major 

components: pigments, vehicle and additives. Variations in these three basic 

components lead to differences in ink properties. 

Pigments. These are finely divided solid colouring materials which are 

dispersed in the ink vehicle. Pigments impart colour or tone, opacity or 

transparency, and other properties to an ink. The nature of offset lithography 

imposes restrictions on the pigments that can be used. They must have a 

greater affinity for oil than for water, i.e., they must be insoluble in and 

unreactive with the fountain solution used. Offset lithography prints thinner 

ink films than any of the other major process mainly because of the low 

capacity of the plate for carrying ink. It follows that for offset inks to print a 

full colour strength, they must be formulated with high pigmentation. In 

general. the properties required for an offset ink pigment are good colour 

strength, reasonable stability to chemicals and fine particle size; with the 

ability to be dispersed in various types of offset ink vehicles and to give inks 

the desired rheological properties. 

Vehicles. The main function of ink vehicles is to provide a means of 

transferring the pigments to the substrate and binding the pigment layer on 
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the surface of the substrate. The vehicles should not react with the pigments 

but should disperse them effectively and yield inks of good rheological 

properties. Additionally, they should be capable of emulsifying water or 

fountain solution but not to an excessive extent. They are made up of resin, 

oil and solvent of which the proportions are determined by the printing 

process and the drying system. Offset ink vehicles can be classified into two 

groups; oleoresinous and acrylate systems. The oleoresinous system, 

normally made up of hard resin and a drying oil alkyd, is used in producing 

quickset, heatset and oxidative drying inks. The acrylate system is used in 

radiation curing inks [Leach, 1988]. 

1. Oils. They can be classified into three groups; drying oils, semi

drying oils and non-drying oils. Usually, they are treated, purified or 

modified with other materials and used for different functions in ink 

formulations. Some are used as the raw materials in the manufacture of 

resins, or as solvents or diluents in the production of ink vehicles. Oth~rs are 

used as plasticisers or lubricants in inks. 
.' 

2. Resins. These are non-crystalline solid materials or high molecular 

weight liquids with the ability to be dissolved in organic solvents. They 

impart hardness, gloss, adhesion and flexibility to an ink. The choice of the 

resin used has to meet fundamental requirements such as solubility in weak 

solvents and controlled water tolerance, i.e., neither fully water miscible nor 

totally repellent. They also need to be cohesive when used in a suitable 

solvent system. 
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3. Solvents. These are liquids capable of dissolving resins or oils. The 

usefulness of a solvent depends on its solvent power, that is, its effectiveness 

in dissolving polymers such as resins, oils or waxes. Another important 

property is the rate of evaporation because the solvents are normally 

required to leave the ink film immediately after printing. Offset inks also 

have to use solvents of low volatility to obtain press stability. The most 

important solvent is high boiling petroleum distillate. The two major 

properties of distillates are their boiling range and aromatic content. The 

boiling range affects press stability; a narrow range gives optimum press 

stability whilst a wide range leads to poor press stability. The aromatic 

content determines its solvent power that is the solvents having high 

aromatic content will have high solvent power. 

Additives. A number of additives are added to impart special 

characteristics to an ink. It is essential that the additives are compatible with 

the ink. Plasticisers are added to make the resins more flexible and to 

promote binding of the ink to the substrate. Waxes are incorporated into the 

ink to impart the dried ink film with more slip, scratch and rub resistance. 

Driers are used as catalysts to promote drying by oxidation/polymerization of 

inks containing drying oil derivatives. 

The formulation of a printing ink must meet a number of criteria. 

Offset inks have to be formulated to run in the presence of water or fountain 

solution. This necessitates the formulation of offset inks that take up a 

limited amount of water or fountain solution only as a finely divided 

dispersion. They should not tend to form an oil-in-water emulsion. In 

addition, offset printing machines are constructed in two basic types; 

22 



sheetfed and webfed presses. The printing speed of a webfed press is faster 

than that of a sheetfed press. This makes the formulations of offset ink more 

complicated. 

The objective in ink manufacture is to produce a thorough dispersion 

of pigment particles in a varnish. Manufacture of offset inks usually takes 

place in two stages: mixing and milling. Mixing is a process in which ink 

components are mechanically mixed so that the pigment is initially wet and 

the aggregates of pigments are reduced in size. Milling is a further process to 

bring the ink to a smooth and homogeneous state ready for use in a printing 

machine [NAPIM, 1980]. 

2.3.2 Ink properties. 

The ink flow properties are of great importance in offset lithographic 

printing. For an ink to transfer from one surface to another, until its transfer 

to paper, ink films are required to split. The properties of the ink which 

involve ink flow and ink splitting are viscosity and tack. 

Viscosity is a liquid's resistance to flow. It is defined as the ratio of 

shear stress (shear force per unit area) to shear rate (velocity gradient of 

flow). Liquids such as the solvents used in the inks or water in fountain 

solution are examples of Newtonian liquids. Newtonian behaviour is where 

the flow is proportional to force applied and even a small force produces some 

flow as shown in Figure 2.3. 
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Figure 2.3 Rheogram for Newtonian liquids. 

When pigments are mixed into Newtonian liquids, the resultant 

mixture has properties that differ considerably from Newtonian behaviour. 

Offset inks have a viscosity which is broken down by shearing but which 

rebuilds itself when the ink is allowed to stand. This is known as thixotropy 

which is a time dependent phenomenon. The diagram of the viscosity for a 

thixotropic system is shown in Figure 2.4. 

A 
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Figure 2.4 Viscosity for a thixotropic material 
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Offset inks are visco-elastic materials that is they contain both the 

viscous characteristic of a liquid and the elastic characteristic of a solid. The 

viscous liquid moves when a minimal stress is applied and the change 

persists on removal of the stress, whereas the elastic solid will recover its 

original form on removal of the stress. 

Tack is defined as the force required to split an ink film. Tack is a 

critical factor influencing ink transfer to the paper. The tack of an ink must 

be lower than the surface strength of the paper so that the ink will not pick 

the paper at the required printing speed. In halftone printing, the tack 

should be at an optimum value. An ink having too high a tack may produce 

sharper dots or the actual printed images are smaller than the plate images 

resulting in loss of detail and colour balance. On the other hand, an ink 

having too low a tack may cause dot gain. Tack is more important for 

multicolour printing because the degree of ink trapping will depend on the 

relative tacks of the inks. In order to obtain a satisfactory printing, . the tack 

of the first ink must be greater than that of the second ink which in turn 

must be greater than the tack of the third ink and so on. 

2.3.3 Ink drying mechanisms. 

Printing inks are usually applied in the liquid phase to a substrate. 

Ideally these liquid inks should be stable both in the tin and on the press; 

but, as soon as possible after impression, should undergo a change from a 

liquid to a solid dried film. This change of state is referred to as ink drying 

and involves the formation of a film. Drying occurs by either a chemical or 

physical change in the ink or the combination of both physical and chemical 

changes [Askew, 1969]. 
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Chemical film formation. 

1. Oxidation/polymerization. This is a chemical reaction in which 

many small molecules react to form large molecules or polymers. 

Oxidative/polymerization is a classical drying process for offset inks which 

involves oxygen-induced free radical polymerization. That is the atmospheric 

oxygen attacks at the activated sites on the drying oil chains in the resin 

system producing hydroperoxide which will decompose into free radicals. The 

free radicals of one molecule add on to another molecule of the drying oil 

increasing the molecular weight. There is also more than one activated site to 

be attacked, therefore cross-linkage occurs. These processes cause the ink 

vehicle to become a dried film. The dried ink film must have hardness, 

adhesion and flexibility during its lifetime. In summary, the process proceeds 

by four stages: 

a) Initiation or peroxide / hydroperoxide formation. 

b) Propagation or decomposition to form free radicals. 

c) Polymerization. 

d) Termination. 

2. Radiation curing [Morrison, 1990]. This is an accelerated ink drying 

process involving an initial input of energy being transmitted from a suitable 

emitter and absorbed directly by the ink vehicle molecules within the wet ink 

film. The term 'cure' generally refers to the forming of chemical bonds in the 

drying of an ink. Free radical chain polymerization is enhanced by some 

forms of radiation such as ultraviolet, infrared, electron beam, microwave or 

radio frequency. The resins used contain highly reactive sites which create 

rapid chain reactions and thus a highly cross-linked dry film is produced in 

fractions of a second. 
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Physical film formation. The important physical processes are: 

1. Absorption or penetration of the ink. This is the simplest physical 

method of drying. The ink does not really become solid in this case. The ink is 

absorbed into the network of narrow channels or pores of the paper by 

capillary action. Coldset inks based on hydrocarbon oils and resins are 

normally used in newsprinting. They dry solely by this mechanism and the 

drying speed is influenced mainly by the oils. Absorption drying is often used 

in conjunction with other drying processes. 

2. Quickset mechanism. This drying process involves a combination of 

physical and chemical film formation namely absorption and 

oxidation/polymerization. Quickset ink vehicles consist of a viscous solution 

of hard resin in drying oil and very low viscosity petroleum distillate. Both 

components have to be sufficiently compatible to yield an ink with reasonable 

press stability. After the ink is applied on an absorbent paper, the capillary 

action mechanism draws the low viscosity distillate into the pores of the 

paper to separate it from the rest of the ink. The hard resin in the drying oil 

j.s therefore left on the surface. At this stage, the ink film is not fully dried. 

This . 
IS known as 'ink setting'. After the print has set 

oxidation/polymerization proceeds within the drying oils or the resins, 

leading to the formation of a three dimensional cross-linked network of 

chemical bonds in the ink film. 

3. Evaporation. In this process volatile solvents or mixtures of solvents 

evaporate into the atmosphere. After printing, the solvent evaporates leaving 

the resin binding the pigments to the paper surface. The drying rate can be 
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speeded up with the aid of heat or air currents. Evaporation plays an 

important role in the drying of heatset web offset inks. 

4. Heatset mechanism. This is similar to the quickset mechanism 

except that the low viscosity distillate is mostly separated from the rest of the 

ink by evaporation with the aid of heat from an oven. A small amount of 

distillate also penetrates into the pores of the paper. Drying is then 

completed by oxidation/polymerization. In brief, heatset drying is achieved by 

evaporation, penetration and oxidation/polymerization. 
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2.4 BACKGROUND ON FOUNTAIN SOLUTION. 

The two major functions of the fountain solution are to keep the non

image areas clean and free from ink and to render the minimum amount of 

water necessary to obtain a clean print and therefore help to maintain ink 

and water balance. 

When image and non-image areas are produced on a plate, they will 

have a thin layer of gum arabic on the surface to make the plate surface 

extremely hydrophilic. If the plate could remain in this condition, i~ would be 

possible to apply only water onto the non-image areas. However, because 

gum arabic is easily worn away by the contact of roller and blanket, it is 

necessary to apply a desensitiser in the fountain solution to maintain this 

hydrophilic non-image area. Therefore, it is the desensitiser which is the 

main active component of any fountain solution. 

Besides the desensitisers which all fountain solutions contain, other 

components are incorporated to improve their performance. A pH buffer is 

added to maintain the pH of the fountain solution. Some preservatives are 

added to prevent the growth of bacteria or fungi. One special additive is used 

to prevent the spreading of an oil film from the ink over the water film on the 

non-image areas. Otherwise, when the press is stopped and the moisture 

evaporates away, the oil film will then deposit on the non-image areas 

tending to print as a scum when printing is resumed. 

As water is the main component in the fountain solution, its general 

function is to render the non-image areas inaccessible to ink. It also has some 

specific functions: to establish the boundaries of non-image areas, to 
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replenish gum to the corroded sites and to act as a medium to dissolve and 

transport dissolved chemical components to the plate surface. 

Alcohol is known as one of the most effective wetting agent in offset 

lithographic process. Isopropanol is the most widely added alcohol to the 

fountain solution at a level of between 10 and 15 percent [Rosos, 1990]. 

Isopropanol dissolves in water fast and homogeneously and the functions of 

the alcohol are as follows: 

1. To lower the surface tension of water to induce a more rapid 

spreading and better wetting of the non-image areas [Banks, Smith & 

Charlesworth, 1968; Lindqvist, Karttunen & Virtanen, 1982]. Surland [1980] 

stated that adding 25% isopropanol in fountain solution reduced its surface 

tension down to 32 dynes/em. Others reported that an addition of 5% 

isopropanol to tap water lowers the surface tension of water from 75 to 50 

dynes/cm [K+E technical information]. A fountain solution with alcohol will 

produce a thinner, more consistent film than one without alcohol. 

2. Because alcohol evaporates readily from the plate surface, this helps 

to reduce emulsification of ink into fountain solution, obtain quicker ink and 

water balance, easier maintenance of this balance, and improved drying of 

the inks. Furthermore, there is also less water transferred to the blanket 

which subsequently reduces the water transferred to the paper inducing less 

difficulties. 

3. Isopropanol increases the viscosity of fountain solution, therefore 

improving the transfer of fountain solution in the dampening system. 
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2.5 INK AND PAPER INTERACTIONS. 

As far as paper is concerned, the quality of a print can be related to the 

distribution of the ink in the paper and on the paper surface. This 

distribution is determined by the· properties of paper and ink and their 

interactions in a printing process. Ink and paper interactions can be 

considered in 2 stages: in the printing nip (during the impression) and post

nip interactions. 

2.5.1 In the (printing) nip interactions - Ink transfer. 

The first process in the interactions is the transfer of ink to the paper 

in the printing nip. The aspect of particular interest throughout this study is 

that of printing a single colour where the ink transfers to an uninked paper 

surface. The paper passes through the nip between the blanket and the 

impression cylinders in approximately one millisecond at full commercial 

printing speeds [Williams, 1988]. The ink transfer is accomplished by means 

of a specific amount of pressure applied at the point of contact between the 

blanket and the paper. Without this pressure, there would be no transfer. 

In the nip, the applied printing pressure not only compresses the 

porous structure of the paper but also hydraulically impresses a portion of 

the ink into these compressed pores in the paper surface. This ink is 

considered to be immobilized. At the nip exit, cavitation and filamentation 

take place in the ink film. As the cylinders continue to move apart, the 

cavities expand and the ink filaments stretch. The ink transfer is completed 

with the fracture of the lengthening ink filaments. 
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Figure 2.5 An S-shaped ink transfer characteristics curve. 

The ink transfer characteristics curve is an S-shaped curve as shown 

in Figure 2.5. The shape of the curve can be explained as follows [Askew, 

1969; Mangin et al., 1982]. With a sufficiently thin ink film, there is 

incomplete contact between the paper surface and the ink_ This contact 

increases with increasing ink film thickness causing the fraction of ink 

transferred to the paper to increase. Ink is immobilized in the compressed 

pores of the paper and the remaining free ink film splits to transfer some 

constant fraction to the paper. The amount of immobilized ink increases as 

ink film thickness is increased up to a maximum value that depends on the 

surface porosity of paper under printing pressure. After the maximum 

amount of immobilised ink is obtained, the free ink film predominates. The 
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split fraction was found to decrease as the thickness of the free ink film 

increased [DeGrace & Mangin, 1988]. Consequently, the overall fraction of 

ink transferred decreased. 

The most well-known ink transfer equation was derived by 

Walker & Fetsko [1955]. This equation shows the amount of ink transferred 

(y) as a function of the amount of ink on the plate before the impression (x). 

Both amounts of ink are measured either in g/m2 or f.lm. In case of 'f.lm' the 

term 'ink film thickness' is used instead of the amount of ink per unit area. 

At low ink film thickness, the relation becomes 

where 

y = A [ bB + f(x-bB) ] ...................................................... (3) 

A is the coverage function = 1- e-kx 

B is the immobilization function = 1- e-x/b 

k is a constant related to the printing smoothness of the paper 

b is the acceptance or immobilization capacity of the paper surface 

for the ink during impression 

f is the fraction of the free ink transferred to the paper 

The power function e-x approaches zero as x increases. Thus at high 

ink film thickness, A and B approach 1. Both power functions are eliminated 

and the equation reduces to 

y = b + f(x-b) ..................................................... ( 4) 

Equation 4 states that when there is sufficient ink to contact all parts 

of the paper surface, ink transfer is the sum of the two quantities: the 
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maximum capacity of the paper surface to immobilize the ink and a constant 

split fraction of the remaining ink on the plate. 

Evaluating the three transfer constants Ik, b and r provides some basic 

information on the printing properties on the paper and ink. For example, 

the constant Ikl which indicates how quickly full contact is achieved between 

the paper and the ink film, is used as a measure of the smoothness of the 

paper under printing conditions. 

It was found [Walker & Fetsko, 1955] that the constants derived from 

ink transfer curves were influenced by paper and ink properties and printing 

conditions. All three constants increased with increasing printing pressure 

and decreasing printing speed. Moreover, the constant Ik' increased with 

increasing paper smoothness and both Ibl and If increased with decreasing 

ink vehicle viscosity. 

The ink transfer process can be summarized into three partly 

independent phenomena: contact between the ink film and the paper surface 

in the printing nip, immobilization of the ink in the surface pores of the 

paper and the splitting of the remaining portion of the ink film. It will be 

seen that the complex structure of paper creates many effects on these ink 

transfer components. Using a contact smoothness measurement, it was found 

that uncoated papers normally consist of 5-15% fibrous solid area and 15-

25% for coated papers [Sear et al., 1954]. The major area of the surface 

consists of voids or depressions. In addition, pore spaces form a large amount 

of the volume within the paper. Most of the pore spaces connect with each 
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other to form complicated three dimensional channels through the sheet, 

capable of drawing in liquids by the action of surface tension. 

Ink / paper contact. The contact between the ink film and the paper 

surface is determined by the printing smoothness and the compressibility of 

the paper. Printing smoothness is referred to as the completeness of contact 

between the paper's surface and the ink film on the printing plate or blanket 

under printing pressure [Bureau, 1982]. Paper is a compressible material 

which means that its volume changes under pressure; the extent of this 

compressibility depends on the fraction of voids in the paper and the stiffness 

of the fibre network. In addition, the pressure on the liquid ink in the 

printing nip also increases the contact. 

Ink immobilization. Karttunen, Kautto & Oittinen [1971] modified ink 

transfer models by introducing a new smoothness parameter (Ao) which is 

the flattened fraction as illustrated in Figure 2.6. They explained that when 

a paper is compressed in a printing nip, there is a portion of the surface that 

lies parallel to the surface of the plate or the blanket. This is called the 

flattened fraction (Ao) which can be covered by an ink film of any thickness. 

The total surface area (A) in contact with the ink film under compression can 

be considered as Ao and the recess area is therefore A-Ao. The new model 

assumed that the liquid ink is immobilized only in the recess area and not in 

the flattened fraction. In other words, the ink is only split but not 

immobilized in this flattened fraction during the ink transfer process. 

Schaeffer, Fisch & Zettlemoyer [1963] interpreted the transfer parameter 'b' 

to include only the ink immobilized during impression where the paper is 

being compressed in the nip. 
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Figure 2.6 An illustration of paper surface during impression. 

Karttunen [1976] proposed that most of the decrease in total pore 

volume in the printing nip occurs in the pores between the fibres not in the 

fibre lumens. The pore size of the paper in comparision with the pigment 

particle of the ink determines whether the ink, as a whole, can be 

hydraulically impressed. The pore volume under printing pressure 

determines the amount of immobilized ink. 

Banks [1965] and Lepoutre, DeGrace & Mangin [1979] explained that 

the penetration of ink into paper during impression occurred under two 

forces: the force of hydrodynamic pressure developed in the nip and the 

capillary forces. Lepoutre et ale derived equations; based on Hagen-Poiseuille 

and Laplace equations assuming a zero contact angle; to calculate the volume 

of ink penetration per unit area (V) during this short impression time (6) by 

these two forces. 
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where 

v = (ER/2't)(pe/~)1/2 

v = (E/'t)(Roe/2~)1!2 

E is void volume fraction or porosity 

R is average pore size 

........................................... (5) 

........................................... (6) 

't is tortuosity (the ratio of the length of the pore to its 

end-to-end distance, e.g., the coating thickness) 

P is hydrodynamic pressure 

o is surface tension of the ink 

~ is ink viscosity 

Olsson & Pihl [1954] and Banks [1965] showed that the printing 

pressure is much larger than the capillary force and they concluded that the 

capillary forces are negligible during impression. Many researchers have also 

found that the penetration rate of an ink into paper during impression in a 

printing nip is faster than the penetration after printing [Coupe & Smith, 

1956; Hsu, 1962]. Oittinen & Lindqvist [1982] indicated that printing 

pressure is the primary cause of ink penetration inside the nip whereas 

capillary action plays an increasingly important part outside the nip. 

Coupe & Hsu [1960] studied penetration of varnishes and inks into paper 

and concluded that penetration during impression initially increases with 

increasing ink film thickness and is dependent on impression pressure, 

impression time and ink viscosity. Eventually it reaches a limiting point and 

becomes independent of film thickness. 

Schaeffer et aZ. [1963] and Lyne & Aspler [1982] showed that under 

the same printing conditions, the ink immobilization of uncoated paper is 
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much higher than that of coated papers. The reason for this is that the mean 

pore size in the surface of coated papers is smaller than in uncoated papers 

[Lepoutre et al., 1979]. The results indicate why heatset inks are often used 
, 

in coated papers in order to prevent set-off. 

In considering the ink's influences, ink rheological properties have 

little effect on the ink immobilization 'b' with coated paper. However, with 

uncoated papers, increasing viscosity decreases the ink immobilization in the 

nip [Schaeffer et al., 1961]. 

At the nip exit, the ink which is impressed into the paper under 

hydrodynamic pressure cannot be sucked out again by the lower pressure 

splitting force [Hultgren, 1971]. Morever, it was observed that the 

penetration rate of ink into the paper is higher than the rate of recovery of 

the penetrated layers of the compressed paper. As a result, as soon as the 

paper regains its original size, the created space is filled with the ink drawn 

from outside [Hsu, 1961]. 

Ink film splitting. Ink splitting occurs in the total coverage area (A). 

Wetting, spreading and adhesion are important to ink film splitting. The first 

requirement for splitting is wetting and spreading of the ink over the surface 

of the paper. In order to achieve spreading of the ink on the paper, the 

contact angle between the ink and the paper must be zero which occurs only 

when the ink completely wets the paper. The criterion for this is that the 

surface energy of the paper (Yp) must exceed the sum of those of both the ink 

(Yi) and the interfacial tension between the paper and the ink (Yip)' Under 

other conditions, spreading does not occur. 
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s = Yp - Yi - Yip ••••••••••••••••••• I ••••••••••••••••••••••••••••• (7) 

The second requirement, in order that splitting can occur in the ink 

film, is that the adhesion strength of the ink with the paper must be stronger 

than the cohesive strength of the ink itself. The work of adhesion (W) 

between the ink and the paper is defined as 

W = Yp + Yi - Yip .............................................. (8) 

The adhesion of the ink film to the paper is enhanced by factors such 

as the roughness of the paper and the polarity of both the ink and the paper. 

Increasing the roughness of the paper provides greater potential areas of 

contact for adhesion to take place. If the ink and the paper contain polar 

groups, the negative charges in the ink film may orient themselves close to 

the positive charges on the paper surface and vice versa to improve the 

adhesion. 

Banks & Mill [1954] studied the ink film splitting mechanism at the 

exit of the nip formed by two rollers. They considered this mechanism to 

involve cavitation, filament formation, filament elongation and filament 

rupture. Using a high speed photographic technique to observe ink filaments, 

DeGrace, Dalphond & Mangin [1992] suggested that ink film splitting in the 

printing nip, where the ink is brought into contact with an uninked paper 

surface, also follows the same sequence. They explained the basic mechanism 

of ink film splitting as follows. 

As the ink emerges at the nip exit, there is a sudden reduction of 

pressure in the ink. This reduction of the pressure causes dissolved air in 
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some ink components to emerge and form cavities within the ink film [Myers, 

Miller & Zettlemoyer 1959]. As the two cylinders continue to move apart, the 

cavities expand vertically and ink filaments are formed between the cavities. 

The ink filaments elongate and become thinner. Eventually, ink film splits as 

the ink filaments rupture. Figure 2.7 shows ink film splitting at a nip exit. 
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Figure 2.7 Ink film splitting at a nip exit. 

Theoretically, ink film will split 1:1 (50%) between two rollers moving 

at the same speed, However, if the rollers move at different speeds, ink film 

splitting will always yield more ink to the faster roller [Fetsko, 1989]. Many 

researchers reported that the free ink splits asymmetrically [e.g., Walker & 

Fetsko, 1955; Zettlemoyer & Fetsko, 1956]. In addition, some have made an 

attempt to explain the origin of this asymmetric splitting. Fetsko [1958] 

suggested that air bubbles from a porous paper could enter the ink film and 
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cause ink splitting near the paper surface. Taylor & Zettlemoyer [1958] 

proposed that there was a region of low viscosity ink film closer to the paper 

surface. The cavity growth and the ultimate film splitting proceeded in the 

direction of low viscosity, that is towards the paper. DeGrace & Mangin 

[1984, 1988] explained that surface asperities on the substrate surface and 

air entrainment at the nip entrance may act as nucleation sites for cavitation 

and cause subsequent ink film splitting to occur near the substrate surface, 

probably at the very tip of the surface asperities. 

Karttunen [1976] reported that paper properties have little effect on 

splitting. The most important factors which influence the splitting constant 'f 

are printing speed and ink viscosity. The splitting constant 'f varies from 

about 0 to 0.5. High printing speed and high viscosity ink give low values of 

'f whereas slow printing speed and low viscosity ink give high values of 'f. 

The force required to split an ink film is termed 'tack', Banks & Mill 

[1954] stated that tack is a consequence of cavitation and corresponds to the 

maximum negative pressure occurring in the nip. Two important factors 

involving tack are cavitation and ink rheology. Hoffman & Myer [1962] 

analysed a cavity expansion within an oil and found that the contribution of 

surface tension to the force required to separate a liquid film (tack) is about 

7% of that of the viscosity. Banks [1965] explained that tack forces will be 

smaller when cavitation occurs in the ink film. The effect of ink viscosity on 

the splitting constant 'f was also observed by Schaeffer et ale [1961]. He 

found that the portion of the free ink film which splits towards the paper also 

decreases with increasing ink viscosity. 
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Pigmentation increases the number of cavities formed (Myer et al., 

1959). Lyne & Aspler [1982] stated that suspensions cause cavitation more 

readily than fluid vehicles. Large pigment particles will initiate cavitation 

sooner, thus the tack force is smaller. Conversely, smaller pigment particles 

will cause cavitation to occur later. This results in finer filaments which in 

turn improve print quality by improving the uniformity of ink transfer. 

Ink transfer to paper under the conditions that occur in a printing nip 

was studied by DeGrace & Mangin [1984]. They examined the effects on ink 

transfer of substrate properties such as surface free energy, roughness and 

porosity and of press conditions such as printing pressure and speed. They 

found that the surface free energy did not affect ink transfer. A greater 

amount of ink was hydraulically impressed into a porous substrate such as 

newsprint than into a non-porous substrate at the same level of roughness. 

Moreover, printing pressure was found to affect only the immobilized fraction 

while printing speed has a marked effect on both the immobilized and the 

split fractions. This was also found by Schaeffer et al. [1963] who explained 

that for coated papers, the rheological properties of the ink determine the 'b' 

value whereas printing conditions as well as paper influence 'f more than 'b'. 

In the case of uncoated papers, both 'b' and 'f are significantly influenced by 

printing conditions. 

Lepoutre & DeGrace [1978] and Lepoutre et al. [1979] investigated the 

effects of coating structures with different absorption properties on ink 

transfer, print density and print gloss. Ink transfer characteristics were 

found to be independent of the absorption properties of the coatings but were 

only a function of their surface roughness. Print density and gloss increased 
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with the amount of ink deposited on the coatings. They concluded that no ink 

absorption into the coating occurs during the impression but the immobilized 

ink is contained in the surface crevices. Furthermore, uneven print density 

and gloss are mainly influenced by the variations in thickness of the ink film 

deposited, these being related to the uneven surface profile and 

compressibility of the coated papers. 

Apart from surface roughness and porosity properties, oil absorbency 

and water absorbency are two different properties which are of importance in 

offset lithographic printing. Ink films transfer from one surface to another by 

splitting. This splitting cr~ates a split pattern which remains for a certain 

time until the ink levels out. The oil absorbency of paper is important at this 

stage because if the paper absorbs thin oil too fast before the leveling out is 

completed, it will result in roughness of the ink film. Water absorbency is 

very important on multicolour printing where the dampened non-image area 

of the first unit may become the image area of the second unit. If the second 

ink contacts the fountain solution instead of the paper surface, ink repellance 

may occur. 

2.5.2 Post-nip phenomena. Ink drying or consolidation of the ink 

film. 

Post-nip interaction.s that occur between the transferred ink film and 

the paper are normally referred to as 'ink drying', Ink drying goes through 

two phases: ink setting and ink hardening. 

Ink setting mostly involves penetration into the paper or evaporation 

(and leveling) of the ink vehicle causing the ink to 'gel' or 'set', The ink film is 
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not completely dry at this stage but is sufficiently dry to be handled 

mechanically. Adhesion of the ink film to the paper is influenced by the 

degree of penetration. Ink hardening involves oxidation/polymerization of the 

resin into a hard film that adheres to the paper surface. 

Penetration. The penetration of ink into paper which depends on the 

relative size of the ink pigments and of the surface pores has been studied by 

several researchers [e.g., Coupe & Hsu, 1960; Hsu, 1962; Levlin & Nordman, 

1967; Larsson & TroUsas, 1967, 1969; Christensen, 1967]. The mechanism 

can be explained as follows. In the nip, ink penetrates as a whole into the 

larger pores and depressions on the surface of the compressed paper. After 

the nip, the paper recovers from its compressed state, most of the pigments 

which have penetrated to a depth of 20-30% of the paper thickness remain in 

their penetrated layers [Levlin & Nordman, 1967]. The vehicle moves further 

into the paper under capillary action, leaving the large pores on the paper 

surface open. The surface pores in paper are modelled as being conical. 

DeGrace & Dalphond [1989] observed that pigment penetration ended 

within 3 seconds after printing. This implied that pigment particles 

penetrated into the compressed surface through hydraulic impression and 

through aspiration of the paper after the nip. 

The capillary force depends on the pore system constituted by the 

fibres and pigments. A condition for the capillary force to act on the vehicle is 

that the vehicle completely fills up the pore, i.e., the vehicle does not move 

along the fibre surfaces only. The irregularities in the capillaries will 

decrease the radius of the meniscus and thus retard penetration. Figure 2.8 
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(right) shows the penetration of liquid into an irregular capillary. When the 

liquid has penetrated to a point where the diameter increases quickly, the 

menicus becomes flattened and the capillary action ceases. 

Figure 2.8 Penetration of a Jiquid into an irregular capillary. 

Penetration of a liquid under capillary pressure in a horizontal 

capillary where gravity can be neglected is described theoretically by the 

Lucus-Washburn equation [Washburn, 1921]: 

where 

I = (rycos8 / 2l') 1/2 t 1/2 

1 is penetration depth after time t 

r is effective pore radius 

y is surface tension 

e is contact angle 

l') is liquid viscosity 
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This Lucus-Washburn equation is a simple equation to model the rate 

of capillary penetration of non-swelling liquids such as oil-based inks. 

However, it is not suitable for the penetration of liquids such as water or 

other polar liquids into paper. One of the reasons is that swelling of the 

fibres as a result of water penetration affects the penetration rate. 

Olsson & Pihl [1954] developed an equation of the Lucus-Washburn 

type to calculate the penetration depth (T) of vehicle into paper. 

where 

T2 = (V/1tr2)2 = [(2rycos9 + Pr2)/411] t ......................................... (10) 

V is volume of vehicle that has penetrated at time t 

r is mean effective pore radius 

y is surface tension of vehicle 

e is contact angle between vehicle and structure 

P is pressure on vehicle 

'YJ is viscosity of vehicle 

t is penetration time 

Equation 10 can be used for both nip penetration and post-nip 

penetration. For example, when P = 0, the post-nip penetration depth of 

vehicle by capillary force only can be calculated. 

The dependence of liquid penetration on coating absorption properties 

was examined by Lepoutre [1978]. He found that the absorption rate 

decreased exponentially with decreasing porosity. The reduction in the 

porosity of a coating as a result of the calendering process also decreases the 

oil penetration rate. 
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The progressive penetration of the vehicle results in an increase in the 

pigment concentration in the ink film. Capillaries are created between 

pigment particles within the concentrated ink film and begin to exert an 

external resistance to the flow of ink which is subsequently equal to that in 

the paper [Bristow & Bergenblad, 1992]. That is the ink penetration process 

continues until an equilibium between capillary forces in the ink film and in 

the paper is obtained. Thereafter the vehicle is retained by the pigments. The 

retention of ink pigments and high molecular weight resin is a function of the 

absorbency of paper and is known to play a part in ink drying for coated 

papers. 

The penetration of pigment particles in the ink into papers is often 

obstructed by the filtration mechanism of the paper structure. 

Coupe & Smith [1956] studied this phenomenon and stated that in all cases, 

the vehicle has penetrated deeper into the paper than the pigments and that 

the extent of this filtration depends on the pore size. Papers having small 

pores such as coated papers will show greater filtration than one having 

large pores such as uncoated papers. Hattula & Oittinen [1982] used K&N 

ink to examine the ink penetration into a coating structure with very small 

pore sizes. They reported that very little pigment penetrated whereas the 

solvent penetrated to a greater extent. As a result the coating structure 

showed a gradient in pigment and vehicle concentration. This has also been 

observed by Larsson & Trollsas [1967]. They introduced a method of splitting 

a printed sheet into layers parallel to the plane of the sheet and found that 

the pigments were distributed with decreasing concentration in the 

transverse direction from the printed side of the paper. However, Banks 

[1975] stated that there is no filtration of pigments for uncoated papers 
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whereas the coating pores of coated papers are smaller than the pigment 

particles which are therefore filtered out. 

Larsson & Sunnerberg [1972] studied these two phenomena: 

penetration and filtration of the ink. They found that penetration occurs 

mainly within the first minute after printing. Filtration occured over a much 

longer period of time and changes in pigment concentration occu!.ed quickly, ,c 

during the first few minutes. They believed that equilibium was reached 

after twenty-four hours. S~rensen [1982] measured changes in tack of the ink 

film with time. The results supported the suggestion that pigment 

concentration increases as the ink vehicle penetrates into the coatings. 

The uniformity of vehicle penetration into the paper after the nip is 

influenced by the sheet formation which in turn affects the surface· 

characteristics of the ink film remaining on the surface. Continued vehicle 

penetration may cause the remaining pigment layer to follow the surface 

contour of the paper resulting in an uneven ink film on the surface 

[DeGrace & Dalphond, 1989]. The uniformity of pigment distribution is thus 

determined by the roughness of the uncompressed paper. 

2.5.3 Ink and paper interactions in offset lithographic process. 

As has been discussed earlier, the offset lithographic process involves 

ink and fountain solution interactions prior to ink and paper interactions. 

This aspect has to be considered in addition to the general understanding of 

ink and paper interactions. Surland [1980, 1983] explained that the dynamic 

printing of offset lithographic process involves emulsion formation and 
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emulsion breakdown, which can be written in a parametric equation as 

follows. 

W+O 
P+ 

W/O .................................................. (11) 

where W is fountain solution or water and 0 is ink. 

He developed a method to determine the rate of the emulsification of 

fountain solution into ink. The emulsification test provides a P-curve of the 

progressive change between these opposite vectors . 

.................................................. (12) 

where P+ is the emulsion formation rate and P- is the emulsion breakdown 

rate. The rate of emulsification of fountain solution or water into ink can be 

used as an indication of press performance. Chou, Fadner & Bain [1987] 

stated that the success of offset lithographic printing in relation to ink and 

water interactions depends on the emulsification capacity and the emulsion 

rate of fountain solution into the ink. 

If water only is used as the fountain solution, any polar components in 

the inks can form a film onto the non-image area which has already been 

covered with water. To prohibit such film formation, Banks et al. [1968] 

found that non-ionic surfactants or alcohols are necessary additives in the 

fountain solution. Bock [1969] examined several functions of alcohol used in 

the fountain solution and he found that when isopropanol below 12% by 

volume is used, the water feed rate rises rapidly. These high water feed rates 

can cause a number of printing problems such as softening of the paper 

coating, and expansion of paper or snowflaking. Burland [1980] showed that 
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the addition of isopropanol into fountain solution improves the emulsification 

characteristics that in turn improves press performance. The study of 

Douw & Blokker [1989] indicated that an addition of only 1% isopropanol to 

an ink caused the viscosity of ink to reduce by 50% which inturn improves 

the emulsification. Braun [1985] reported that the emulsified droplets in the 

emulsion ink are much finer in the presence of isopropanol. 

Two terms are usually used to express the emulsification results: 

water content and water pick up. Water content is the relative amount of 

water or fountain solution in an emulsified sample. It is expressed as g H20 

/100 g emulsion. Water pick up is the amount of water relative to that of the 

ink in an emulsified sample. It is expressed as g H20 /100 g ink. 

Cunningham & Moore [1984] postulated that an ideal offset ink should 

absorb water or fountain solution approximately 21% by weight under high 

shear condition without adversely changing its physical properties. 

Chou & Cher [1989] pointed out that with increasing water content, the 

stability of an emulsion will decrease. 

Many workers have studied the rheology of emulsion inks. 

Emulsification of fountain solution in offset inks was found to reduce the 

viscosity but increased the yield value and the shortness, which is the ratio of 

yield value to viscosity, of the ink [e.g., Lavelle, Schaeffer & Zettlemoyer, 

1969; Bassemir & Shubert, 1985]. However, this trend was not always the 

case since the emulsification behaviour varied from system to system, i.e., 

with different materials. Emulsification enhances ink transfer to porous 

substrates but had no effect on non-porous substrates. 
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Using infrared analysis to determine the water content of offset inks at 

various stages of printing, Cartwright & Harden [1965] found that the water 

content dropped off from 1% on the blanket to 0.5% on the print due to the 

action of evaporation. MacPhee [1985] also pointed out that most of the 

aqueous component of fountain solution is evaporated in the inking system. 

Therefore the composition of fountain solution certainly changes with time. 

By the time it reaches the plate or the blanket, the concentration of the 

volatile components have decreased. In addition, Karttunen, Lindqvist & 

Virtanen [1988] employed neutron activation analysis to determine the 

amount of ink and fountain solution transferred to paper. They found that 

the amount of fountain solution transferred to paper is higher in the image 

area than in the non-image area regardless of the different types of fountain 

solution used. This was also found in the study of Nieminen [1992]. The 

amounts of fountain solution transferred from the non-image areas at usual 

feed levels were less than 0.5 g/m2 whereas the amounts transferred to image 

areas in all cases were greater than 0.5 g/m2• 

The influences of these phenomena on the characteristics of a print 

have been studied mostly in relation to print density and print gloss. It is 

known that gloss depends on smoothness or roughness. Interactions between 

water and paper in offset lithographic printing may result in an increase in 

macroroughness as found in paper coating process [Skowronski & Lepoutre, 

1985]. The effects of water on paper smoothness were also studied by 

Hansuebsai [1989] who found that water decreased paper smoothness in all 

cases. Koniecki et 01. [1983] found that print density and print gloss obtained 

with high water uptake inks are slightly higher than those obtained with low 

water uptake inks. Ginman & Visti [1971] reported that for web offset 
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printing, the main factor which causes a decrease in gloss is moisture. 

Heating plays a minor role. The change in gloss is accompanied by a change 

in smoothness. 

It can be seen that there has been much study of ink transfer 

phenomena, in particular, ink penetration and ink film splitting; and of the 

emulsification behaviour and the resultant properties of the emulsion inks. 

Little work, however, has been concerned with the effects of these 

phenomena on print quality. The qualities of interest mostly evaluated were 

print density and print gloss. It is attempted, in the present work, to study 

the ink/paper/print quality relationships by applying methods to evaluate 

print smoothness. This aspect has not been widely examined. This is 

probably because the achievement of print smoothness involves many factors 

in the printing process, as previously discussed. However, it is this quality of 

'smoothness' to which many other print qualites, such as print gloss and 

print mottle are related. The present study thus arose from the need to 

develop such understanding. 
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2.6 SURFACE CHARACTERISTICS CONSIDERATION AND 

MEASUREMENTS. 

The preceding section has dealt with ink and paper interactions and 

also gave particular attention to the offset lithographic process; where 

fountain solution is present and interacts with the ink and paper. All of the 

phenomena in the nip and after the nip are of importance to the quality of a 

print. 

Print quality (or the quality of a print) is the degree to which the 

appearance characteristics of the print approach those of the desired result 

regardless of how it was produced [Walker & Carmack, 1964]. High print 

quality is dependent on the desired results. Print quality may not be a single 

property but a composite of many contributing factors whose relative 

importance varies between jobs. Therefore, a print as a result of any printing 

process needs a clear statement of which quality factors are desirable. Print 

quality factors are mostly classified in relation to printability. 

Printability of a surface is the degree to which its properties enhance 

the production of high quality prints in a particular process. It is apparent 

that printability of a surface includes all properties that influence the quality 

of the prints made on it. From the section on ink and paper interactions it 

can be seen that one of the most important factors affecting print quality is 

the surface structure of paper [DeGrace & Mangin, 1984; Walker & Fetsko, 

1955]. This is usually referred to in the literature as surface smoothness (or 

roughness). 
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Several different methods have been used for the determination of this 

surface structure. They can be divided into direct and indirect methods. Most 

indirect methods measure physical properties which are controlled by surface 

structure over a relatively large sample area and do not give detailed 

information. Direct methods measure geometric profiles therefore giving 

more detailed information. 

2.6.1 Direct method. 

Surface profile measurement. A qualitative method is simply to observe 

the magnified surface using instruments such as a magnifying glass or an 

electron microscope. Attempts have been made to describe the surface 

structure quantitatively. A more useful method is surface profile 

measurement. This method mechanically scans the surface with a contacting 

stylus and records the vertical movement of the stylus arm. One example of 

this instrument [Higgins et al., 1973] scans the surface of a paper sample 

over a 50 mm length which is divided into 1 mm intervals with 120 readings 

per interval. The readings are used to calculate the r.m.s. (root mean square) 

(0) of the vertical displacement as the roughness of the surface. 

where 

[ 12 ]112 
0= ,IZ dx 

o 

I is a profile length 

Z is a height measured from the mean line 

................................... ( 13) 

The Talysurf 10 is a commercial instrument modified to involve both 

the vertical and horizontal directions and produces a centre line average 

(c.I.a.) of the profile as a measure of surface roughness. The centre line 
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average value is determined as the average of the departure of the profile 

from its centre line throughout the sampling length. The centre line is 

defined in BS 1134, Part I : 1972 as a line so placed that the sums of the area 

contained between it and those parts of the profile which lie on each side of it 

are equal. 

Another study was done by Ginman, Makkonen & Nordman [1973] to 

characterize surfaces of newsprint and magazine paper. They used a 

specially built profile tester as shown in Figure 2.9a. From the profile curve 

(Figure 2.9b), they calculated the profile roughness which is defined as the 

cumulative width of depressions at a level which is a given distance below 

the centre line. 

'l'ranaducer 

Drive Rollers 
Paper atrip 

Figure 2.9a A diagram of a profile tester. 

Centre line 

Figure 2.9b An illustration of a surface profile. 
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Optical contact method. Paper is compressible and when printed, is 

subjected to a printing pressure. This has an effect on the smoothness of 

paper. Therefore it is desirable to measure the 'printing smoothness' of paper. 

Printing smoothness is defined as a measure of how well full contact between 

the paper surface and the ink image on the plate or blanket surface is 

attained under printing conditions. Complete coverage of the paper surface 

by ink occurs close to the maximum in fractional ink transfer 

[DeGrace & Mangin, 1984]. A high printing smoothness paper gives complete 

coverage with a minimum of ink film thickness and pressure 

[Walker & Carmack, 1964]. 

An instrument which is designed to determine printing smoothness 

optically is the Chapman smoothness tester [Chapman, 1954]. As illustrated 

in Figure 2.10, the principle of this instrument is that the sample is pressed 

against a flat glass prism and illuminated normally by a parallel beam of 

light through the prism. This incident light is partly absorbed and partly 

reflected back towards the glass prism. The latter is dependent on whether or 

not the paper is in optical contact with the glass prism. The light from the 

contact areas is diffusely reflected back into the prism in all directions. On 

the other hand, that from the non-contact areas enters the glass prism from 

an air medium and is refracted towards the normal according to Snell's law. 

The light from the non-contact areas enters the glass prism at less than the 

critical angle to the normal (about 41 degree from the normal). It is shown 

that the detected light outside the critical angle thus originates only from the 

contact areas whereas that detected within the critical angle will contain 

light from both contact and non-contact areas. These two measured values 

are used to calculate the Chapman printing smoothness according to 
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where 

F= MA 
B+NA 

......................................... ( 14) 

F is the fractional contact area or printing smoothness 

A is the illumination on photocell A arranged to detect light from 

outside the critical 41 degree cone. 

B is the illumination on photocell B arranged to detect light 

from within the critical 41 degree cone. 

M and N are the instrumental constants. 

Another approach to characterize the roughness of paper under actual 

printing conditions was proposed by Mangin & Geoffrey [1990]. The printing 

roughness is calculated from the modified ink coverage function. in the ink 

transfer equation as follows: 

where 

A(X) = 1- (l-Fo) e-(kx)Y 

k is the smoothness parameter 

Fo is the flattened fraction 

y is the compression parameter 

The printing roughness (Rg) is given by 

Rg= [6 (i-Fa1r'3 
k3Y 

......................................... ( 15) 

..................................... ( 16) 

where k, Fo and yare obtained from ink transfer data. The proposed printing 

smoothness correlates well with conventional air leak methods. 
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2.6.2 Indirect method. 

Air-leak methods. Roughness from these methods (Figure 2.11) is 

determined by the rate of air-flow through voids formed between the paper 

surface and a flat surface. 

The Bekk.'s air leak tester was the first of the well-known methods in 

this group. The sample is pressed against an annular glass surface of 10 cm 

area and a vacuum is applied to the hole in the centre. Air flows between the 

paper surface and the glass. The flow rate of the air is a measure of 

roughness of the paper. 

The Bendsten roughness tester, as described in British Standard 

4420:1969, adopts the Bekk's air leak principle. The sample is pressed 

by a flat annular metal ring. The air at a constant pressure is supplied to the 

centre of this ring and then escapes between the annulus and the sample. 

The rate of airflow between the annulus and the sample is measured. Both 

the Bekk and the Bendsten tester measure roughness in units of mVmin. 

The Parker Print-surf air leak apparatus (PPS) was developed by 

Parker [1971]. As described in British Standard BS 6563:1985, the PPS 

eliminates a major error which normally occurs in other air leak methods 

caused by the flow of air through the whole paper. Another error, the 

distortion of the paper surface caused by the use of a high clamping pressure, 

is avoided by a better design of its sensing head. With PPS, the sample is 

pressed at a fixed pressure by a resilent backing against a reference plane 

which is interrupted by two narrow parallel slots separated by a metering 
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land. Air is supplied at constant pressure to one of the slots and the rate of 

airflow between the surface and the metering land into the other slot is 

measured and thereafter is used to calculate PPS roughness. PPS instrument 

determines roughness in unit of J-lm. 

Fluid transfer and coverage method. This is a method to obtain paper 

roughness by filling the voids on the paper surface with one material and 

determining the amount of that material used. Roughness in this case is the 

surface void volume. Hart, Verhoeff & Galley [1962] used a trailing blade 

device to coat paper with lanolin. This produced a reference surface level at 

the height of the maximum profile. The amount of lanolin used was taken as 

a measure of the roughness. It could be determined by several means, such 

as: gravimetrically, by weighing the paper before and after coating; or 

colorimetrically, by adding an oil-soluble dye into the lanolin, which was 

subsequently extracted from the measured area and the dye which remains 

on the surface was then determined photometrically. 

Hsu [1964] suggested a criterion to distinguish between surface 

crevices (which constitute roughness) and pores (which do not) by considering 

the time taken for the liquid to flow into the paper surfaces. He postulated 

that the filling of surface crevices will take nearly zero time whereas filling of 

the pores will take some time. 

Using fluids other than inks may not give a roughness identical to the 

printing roughness required, therefore Hsu [1964] proposed a method using 

ink as the medium for the determination of paper roughness. The ink was 

transferred to the paper on an IGT printability tester to produce a range of 
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film thicknesses. Various roughness parameters were determined from the 

diffuse reflectance data of the surfaces measured immediately after inking. 

They are found to correlate to some extent with other roughness methods 

such as the Bendsten, Chapman and Talysurf. The method concerns the 

whoie distribution of depressions rather than an average roughness value of 

the sample and Hsu suggested that the depression at which the maximum 

frequency occurs should be taken as a surface roughness index. 

All of the methods previously described have been useful to a degree 

but have their own particular limitations as follows. 

1. Surface profile measurement gives the profile of an uncompressed 

surface. If the size of the stylus is larger than the roughness of the paper, it 

may not bottom in the crevices on this smoother surface. This results in 

inaccurate measurements. Making the point of the stylus finer may present 

further drawbacks to the method as the stylus may damage the surface. The 

method detects a very small area and is time consuming. For example, stylus 

profilometry takes from 20 minutes to 1 hour to generate a 3D map of 1 mm 

of paper surface whereas PPS takes only a few seconds [Mangin, 1990]. Also 

it is difficult to relate the profile result to actual printing performance. 

2. The condition of the Chapman optical contact method is that the 

sample is made to contact the glass prism optically and is then illuminated. 

The amount of reflected light is related to smoothness. This optical contact 

condition in turn becomes a drawback of this method because it does not fully 

relate to printing. The paper only approaches the plate or the blanket within 

the thickness of the ink film. Since the ink at this state is quite fluid, it can 

transfer to the paper under the printing pressure applied. 
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3. Most air leak methods examine the paper surface under pressures 

far less than those which occur in actual printing. The roughness results are 

subjected to errors caused by the compressibility of the paper and by the flow 

of air through the paper [Ginman et al., 1964;' Vloodt, 1964; and 

Walker & Carmack, 1964; DeGrace & Mangin, 1984;]. Thus a paper with 

many small voids may produce the same reading as one with a few deep 

voids. In addition, the result gives the roughness of paper surface in 

dimensions of total volume. 

4. The fluid transfer and coverage methods in most cases do not give a 

definite figure but provide SUbjective comparisons between various papers. 

Hsu's method examines roughness under specific conditions so that the 

roughness obtained is that under the impression pressure of the printing 

process. However, the method is very time consuming. 

Non-contact optical method. This is generally a method to characterize 

surface structure by reflectance measurements where the light incident on 

the surface is partly reflected or scattered and partly absorbed or transmitted 

through the surface. Therefore, a knowledge of the laws governing 

reflectance, refraction and scattering of light is needed for a better 

understanding of this method. 
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2.6.3 Reflectance theory. 

Type of reflectance. 

1. Specular reflectance. The law of mirror reflectance states that light 

incident at an angle, as measured from the normal to the surface, is reflected 

in the same perpendicular plane on the opposite side of the normal so that 

the reflected angle (r) is equal to the incident angle (i). For a perfect mirror 

surface (Figure 2.12), the intensity of the reflected light (Ir) is equal to that of 

the incident light (Ii) at every specular angle. 

r = i and Ir = Ii ................................ (17) Law of mirror reflection 

Figure 2.12 Specular reflectance from a perfect mirror surface. 

2. Diffuse reflectance. The law of diffuse reflectance states that the 

intensity of the reflected light at any angle is proportional to the intensity of 

the incident light, the cosine of the incident angle and the cosine of the 

reflected angle. 

Ir = Ii cos i cos r ............................................ (18) Lambert's law 

For an ideal diffuse surface (Figure 2.13), if In is the intensity of reflected 

light normal to the surface, the intensity at any angle is given as Ir = In cos r 

since cos 00 = 1. 
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Figure 2.13 Diffuse reflectance from an ideal diffuser. 

3. Refraction or internal diffusion. For all surfaces except a perfect 

mirror surface, the incident light is partly reflected directly from the surface 

and in part penetrates the surface to be refracted or transmitted. Figure 2.14 

illustrates the reflectance and refraction from a smooth pigmented film. The 

incident light penetrates the surface at an angle (0. The extent of refraction 

is dependent on the refractive indices of the film (n2)and the air (nl)' This is 

Snell's law: 
................................................. ( 19) 

This refracted light is then either diffusely reflected from the 

pigmented film and re-emerges to join with externally reflected light or is 

reflected further for repeated refraction by pigment particles which will 

absorb some of the refracted light. The overall reflectance from the surface is 

therefore affected by multiple reflectance of the refracted light. 
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Figure 2.14 An illustration of the reflectance and refraction from a 

smooth pigmented surface. 

Laws of reflectance. 

1. Fresnel law for specular reflectance. The Fresnel law applies to a 

surface which consists of macro sized elements compared with the 

wavelength of incident light. For light which is incident at an angle of zero 

degrees to a non-metallic surface with a refractive index ofn2 in contact with 

a less dense medium nl' such as air, the reflectance intensity (R) is given as: 

R = f~;; ~~r ...................................................... (20) 

When the incident angle is not at zero degrees, the Fresnel law states 

that the intensity of specularly reflected light increases with the refractive 

index ratio, with angle of incidence and the degree of polarization of the light 

(See equation 21,22). 

A light wave is considered to consist of time dependent magnetic and 

electrical fields perpendicular to each other and vibrating perpendicularly to 

the direction of propagation. Unpolarized light has no preferential plane of 
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vibration and the plane of vibration alternates many times per second. 

However, there is light where such vibration remains in only one plane. Such 

light is called (linearly) polarized light. Figure 2.15 illustrates linearly 

polarized and unpolarized light. The plane of polarization usually referred to 

is that of the electrical field and is either perpendicular or parallel to the 

plane containing the incidence and reflection. 

Polarized 
Unpolarized 

Figure 2.15 Polarized and unpolarized light. 

Let R.l. be the reflectance of perpendicular polarized incident light, 

which is the preferred plane to give greater reflectance. RlI be the reflectance 

of parallel polarized incident light, the plane for which the ren ~ctance is 

least. Then according to the Fresnel law, the specular reflectance of such 

plane polarized light from a mirror surface is: 0 

R.L = [cos i - v'(ninl)2 - sin 2 i 12 
cos i + V(n2inl)2 - sin 2 d 

................................... (21) 

R!/ = [(n2!'n1)2 cos i - v'(ninl)2 - sin 2 i ] 2 ................................... (22) 
(n2inl)2 cos i + v(n2)nl)2 - sin 2 i 
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For unpolarized incident light, the reflectance intensity (R) is the 

average of R.L and Rtl : 

R = R.L + Rtl 
2 

It can be seen that 

when i = 00
, R = [n2 - n 1 ]2 

n2 + n
1 

and when i = 900
, R = 1. 

That is at both normal and glancing angles, the reflected light remains 

unpolarized whereas at almost all other angles, it is partially polarized as 

shown in Figure 2.16. 

Figure 2.16 illustrates Fresnel reflectance of plane-polarized and 

unpolarized light from an air-glass interface (n2/nl = 1.5), as a function of 

angle of incidence. It is shown that the reflectance of unpolarized light 

increases gradually from about 4% at normal incidence to a maximum at 

glancing incidence. The reflectance at normal incidence and the 

characteristics of the curve depend on the refractive index ratio of the 

materials. Since nl is usually air, the refractive index of which is 

approximately 1, then the higher the refractive index of the glass, the greater 

the reflectance. Figure 2.17 shows Fresnel reflectance for unpolarized light 

as a function of angle of incidence (i) for various values of refractive index 

ratio. 

Figure 2.16 also shows that the reflectance of parallel polarized 

incident light passes through a minimum at an angle known as the 

polarizing or Brewster angle (B). Unpolarized light incident on the surface at 
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this angle will reflect a completely plane (perpendicular) polarized light. This 

angle which depends on the refractive index ratio is expressed as follows: 

..•••...•..•••..•...••.••••••. (23) Brewster's law 

As part of the incident light penetrates the surface, the intensity will 

decrease mainly by selective absorption and in some cases scattering may 

play a part. Most materials show selective absorption, that is they show 

strong absorption for some particular wavelengths. The intensity is 

decreased by a constant fraction for each unit length traversed in the 

material. This is expressed as Bouguer's law. 

where 

1 = 10 e-at •••••••••••••••••••••••••••••••••••••••••••••••••••••••• (24) 

10 is the initial intensity, i.e., the light intensity entering the material 

1 is the intensity after passing through a thickness t 

a is the absorption coefficient of the material, Le., the fraction of the 

intensity absorbed by unit thickness 

Since the loss of intensity in some cases also results from light 

scattering, a is made up of 2 components; aa due to true absorption, i.e., the 

energy being transformed, and as due to scattering. Equation 24 thus 

becomes 

1 = 10 e -(aa+as)t .................................................. (25) 

2. Laws of scattering. When the particle size is much larger than the 

wavelength of incident light, the particle will react with light according to the 

Fresnel law. On the other hand, when the particle is considerably smaller 

than the wavelength of the incident light, it will scatter the light. The light 
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begins to go round the pigment particle instead of being reflected or refracted 

by it. 

The first quantitative study of the laws of scattering by small particles 

was made by Rayleigh [Jenkins & White, 1957]. Rayleigh defined small 

particles as those which are much smaller than the wavelength of light, i.e., 

much less than about 0.5 JA.m. The optimum particle size for light scattering is 

about 0.4A, that is (for wavelength of the visible light) ranging from about 

0.16 to about 0.28 .... m [Judd & Wyszecki, 1975]. The intensity of the scattered 

light is proportional to 1/).,4 where)., is the wavelength of light. With a given 

size of particles, the particles will scatter short wavelength light more 

effectively than long wavelength light. This is Rayleigh's law. Figure 2.18 

illustrates the relationship between the intensity of the scattered light and 

the wavelength of light according to Rayleigh's law. It is shown from this 

Figure that the particles will scatter violet light more effectively than red 

light provided the particles are much smaller than the wavelength of either 

colour. 

R lR 

400 500 A. --+ 600 700nm 

Figure 2.18 The intensity of scattered light 
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Mie theory describes the light scattering from single spherical or 

cylindrical particles of submicron size. For a spherical particle, Figure 2.19 

shows the scattered intensity is strongest in the forward direction, around 

which it is centrosymmetrically distributed [Borch, 1983]. The scattering 

coefficient for spherical shaped particles is influenced by the size and the 

refractive index of the particles. Particle sizes greater than half the incident 

wavelength were found to result in maximum scattering [Borch & Lepoutre, 

1978]. It was postulated that Mie scattering theory is not appropriate for 

application to paper reflectance [Hemstock, 1962], since paper particles such 

as fibres or fillers are large and are compacted so closely that the scattering 

intensity distribution from a single particle disappears. However, it was 

found in pigmented paint that single particles play a part in the overall 

scattering intensity. 

Figure 2.19 Mie scattering from submicron sphere 

It was claimed that a non-contact optical method is the most effective 

method to characterize surfaces [Hansuebsai, 1987] and this is the method to 

be employed in this study. Therefore, the previous relevant work will be 

discussed. 
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2.6.4 Studies of surface characteristics by reflectance measur~ments. 

The magnitude and the angular distribution of the surface reflection 

from a rough surface are determined by the laws governing the behaviour of 

electromagnetic radiation, the complex refractive index of the surface and the 

roughness of the surface profile [Oittinen, 1980]. 

Davies [1954] was the first to derive equations relating surface 

reflection distribution to surface profiles of a perfectly conducting (e.g., 

metallic) rough surface. Surface reflection was characterized by a Gaussian 

depth distribution of roughness and a Gaussian autocorrelation function. 

Davies' statistical surface model gives two parameters; the standard 

deviation of the depth distribution, which is experimentally equivalent to 

r.m.s. roughness, (0) and the autocorrelation length (a). 

Bennett and Porteus [1961] also studied the relation between surface 

roughness and specular reflectance at normal incidence by using long 

wavelength radiation. They modified Davies equations and expressed the 

specular and diffused reflectance of light incident at zero degrees, on a rough 

metal surface, in the following equations: 

where 

Rs = Ro exp [ - (4n;o)2 / ;...2] 

Rd = Ro 2
5

n;4 (O/A) 4 (bs8)2 
m2 

............................................. (26) 

............................................ (27) 

Rs is the specular reflectance of the rough surface 

Rd is the diffused reflectance of the rough surface 

Ro is the specular reflectance of a perfectly smooth surface of the same 
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material 

o is the root mean square roughness, defined as the root mean square 

deviation of the surface from the mean surface level 

A is the wavelength of the incident light 

m is the root mean square slope of the profile of the surface 

as is the instrumental acceptance angle 

and the total reflectance R is 

R = Ro exp [-(431:0)2/ ",2] + Ro 2531:4 
(O/A)4 (as)2 

m2 
.......................... (28) 

These expressions are applicable only when the root mean square 

roughness is small compared to the wavelength of light. When the 

wavelength is sufficiently long, the diffused component can be neglected 

resulting in R = Rs. Thus the value of root mean square roughness (0) can be 

calculated directly from the measured reflectance. That is the surface 

roughness can be determined regardless of the root mean square slope of the 

surface profile. 

Bl'nnett [1963] and Porteus [1963] considered that specularly reflected 

light is coherently reflected whereas diffusely reflected light or scattered 

light is incoherently reflected. Bennett extended the theory to various 

aluminized ground-glass surfaces. The height distribution of the surface 

profile was Gaussian which gave close agreement with the theory previously 

discussed. Porteus extended the theory to measurements at shorter 

wavelengths and explained the characteristic behaviour as follows. When the 

roughness (0) is small compared to the wavelength, i.e., the difference in the 

levels within the facets is small relative to the wavelength, the surface will 
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behave as a plane reflector. The reflected light is thus coherent. As the 

wavelength gets shorter, the difference of the facets becomes significant so 

that the facets scatter the light independently resulting in incoherent 

reflectance until completely incoherent reflectance is obtained at the shorter 

wavelengths. When the wavelength is sufficiently short compared to the 

average dimension of the facets, the facets will behave as a plane reflector 

that is the incoherent component is now specularly reflected. 

Warren & Peel [1973] proposed a non-contact optical method based on 

the relationship between specular reflectance and the root mean square 

roughness as expressed in the following form: 

where 

p = Po exp [-(ka cosB / A)2] ......................................................... (29) 

P and Po are the reflected and the incident light intensities 

e . is the angle of incidence 

A is the wavelength 

k is a constant 

Since there is evidence that paper generally has a r.m.s. roughness range of 

about 1-5 J.lm [Hsu, 1964], the radiation selected was infrared radiation. They 

employed a simple infrared reflectometer and measured the characteristics of 

specular reflectance to indicate the roughness of the paper. Warren & Peel 

found that the peak intensity of the reflectance from a rougher paper is 

broader and of lower intensity than that of a smoother paper. The effects of 

various incident angles and of wavelengths were also investigated and they 

showed that increased wavelengths or increased incident angles gave a 

narrower peak of greater reflectance. They proposed that peak reflectance at 
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an appropriate wavelength is the best parameter for the determination of 

roughness. 

A quantitative study of the paper coating surfaces was done by Gate, 

Windle & Hine [1973]. Typical coatings were prepared and surface roughness 

was determined by both an optical and a mechanical profile method. The 

optical method involved specular reflectance measurements with a specially 

constructed spectro-goniophotometer. The optical roughness was calculated 

from the reflectance data using the Bennett-Porteus equation. They found a 

good correlation between the optical root mean square roughness (00) and the 

mechanical root mean square roughness (op). The mean value of these optical 

and mechanical roughnesses, is defined as o. The authors [1973] showed a 

good correlation between if- and gloss value (plotted on a logarithmic scale). 

The maximum gloss value is obtained when a is zero, corresponding to a 

completely smooth surface. 

It was found that the optical print quality of solid printing arises 

mainly from ink and paper interactions whereas in halftone printing it is 

controlled by the ink properties to a greater extent [Oittinen & Lindqvist, 

1982]. When considering a single-colour solid printing, one of the most 

important quality factors is print gloss [Schaeffer et al., 1963]. 

Fetsko & Zettlemoyer [1962] indicated that uniformity of gloss is also 

important since lack of uniformity can be the greatest deterrent to any print 

quality characteristic. Gloss is created in the topmost surface layer of the 

material structure. It is defined as the degree to which a surface approaches 

a mirror surface. This agreed with Gate's work which showed that print gloss 

is dependent on the smoothness of the paper and the smoothness of the 
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printed film. It will be shown that studies of print gloss and print smoothness 

are not separated. Among six distinct types of gloss classified by Hunter 

[1937], specular gloss is the type most commonly referred to. Gloss is based 

on reflectance measurements at the specular angle. Thus, the measurement 

of specular reflectance is generally used as a measure of gloss. The variety of 

angles of specular gloss measurements is shown in Figure 2.20. 

Hi ·01"". Prin Ia Madi urn Print. Maue Print. 

Figure 2.20 Variety of angles of specular gloss measurements. 

Fetsko, Witherell & Poehlein [1973] investigated the relationship 

between specular gloss and surface roughness of thirteen paperboards and 

the corresponding solid prints. Specular gloss measurements were made on a 

Gardner Multiangle Glossmeter; surface roughness measurements with a 

Brush Surface Analyzer; and goniophotometer measurements on a modified 

Brice-Phoenix Universal Light Scattering Photometer. Specular gloss results 

for paperboards were consistent with the basic laws of optics that specular 

gloss increases with increasing angle of incidence. The prints, however, 

always gave lower gloss va.lue at 85° than at 75°. In contrast, the 

goniophotometer reflectance results were always higher at 85° than at 75° 

but the maximum reflectance occurs at an angle approximately 5-8 degrees 

higher than the specular angle owing to the roughness of the test sam pIe. 

The two angles will coincide only with perfectly smooth surfaces. The gloss of 

both the paperboards and the prints decreased with increasing number of 
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roughness elements on the test surface. They found a relationship between 

specular gloss and the smoothness for both th~ paperboards and the prints 

only at the glancing angle of 85°. 

It has been shown that gloss is related to roughness (0) [Gate et al., 

1973; Fetsko et al., 1973]. In addition, Oittinen [1980] examined two 

roughness parameters derived from surface reflectance measurements 

according to the Davies and Bennett - Porteus theory to determine the 

specular gloss of surfaces. Diffuse reflectance was calculated from the 

Lambert Law and subtracted from the total reflectance obtained on a Zeiss 

goniophotometer. From the results of nineteen coated and uncoated papers 

and boards, she found that the r.m.s roughness (0) was inadequate for the 

determination of specular gloss and that the size distribution of roughness 

had to be taken into account in order to obtain a more accurate specular 

gloss. She introduced two more parameters, Sand g, into the Bennett

Porteus equation to account for the multiple scattering which would decrease 

the reflectance. 

. ......................................... (30) 

S is inversely proportional to multiple scattering and correlated well with 

optical roughness (00). 'g' is an estimate of the proportion of scattered light 

which is included with the specular reflectance component. 

A schematic diagram of the reflectance from an ink film is shown in 

Figure 2.21. There are two components of surface reflection from this ink 

film; a white surface component and a coloured diffuse component. It is 
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known that the diffuse component is included in the surface reflectance 

measurement. Leekly, Denzer & Tyler [1970] proposed a method using a 

goniophotometer to measure surface reflection and to distinguish between 

surface and diffuse components for papers and prints. The method is based 

on the assumption that polarized light incident on a surface is partly 

reflected from the upper surface of the ink film without depolarization and is 

partly refracted into the ink film. This refracted component becomes diffusely 

scattered and completely depolarized within the ink film. However, 

repolarization occurs when this completely depolarized light re-emerges from 

the ink film. They found that this repolarization effect cannot be neglected in 

order to separate specular and diffuse components accurately. For all the 

samples tested, separation into surface and diffused reflectance was 

achieved. 

Figure 2.21 A schematic diagram of reflectance from an ink film. 

The resolution of reflectance into surface and diffuse components has 

been made using a series of printed and unprinted papers with different 

surface characteristics. In all cases, the printed surfaces showed higher 

surface reflectance at the specular peak than the unprinted surfaces. This 
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was due to the filling of the surface depressions and levelling of the surface 

by the ink film. A mathematical surface model was developed by Leekly et al. 

to calculate from the reflectance data the fraction of the surface which is 

inclined at an angle t to the nominal plane of the surface. 

where 

A'tp = [Ra/Ra(max)] [cos t cos 450
/ cos (450 +t)] .............................. (31) 

A'tp is the fraction of the surface, measured by projection on the plane 

of the surface, which is inclined at an angle t to the nominal 

plane of the surface 

Ra is the measured specular reflectance at detector angle, r' 

Rs(max) is the specular reflectance which would occur if the whole 

surface were optically flat and inclined at the angle t and 

can be calculated from the Fresnel equation 

0.08.--------------------

PRlNTEO 
".. 

UNPRINTED 

O~~~~~~~~~~~~~~~~.J 
-H5 0 -15 -30 

SURFACE INCLINATION ANGLE. ~ 

Figure 2.22 An illustration shows an increase in optical smoothness 

when a dull coated paper was printed. 
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The surface inclination or optical smoothness is expressed as a plot of 

A'tp against surface inclination angles. Figure 2.22 illustrates an increase in 

optical smoothness when a dull coated paper was printed. The fraction of 

printed surface which lies in contact to the nominal plane of the surface 

(inclination angle is zero) is greater than that of the unprinted surface. 

Consistent with the concept of reflectance measurement of Leekly et al. 

[1970], Bryntse and Norman [1976] developed a new instrument which can 

measure simultaneously both the surface reflectance and the diffuse 

reflectance of a surface. This makes it possible to separate these two 

components. The important part of the instrument is an optical system as 

shown in Figure 2.23. The scanning device of the instrument makes it 

possible to measure the variations in surface and diffuse reflectance of 

printed and unprinted paper samples. Experimental results showed that the 

average surface reflectance (including very small scattering reflectance) of a 

calendered print is approximately twice as high as that of uncalendered print 

whereas the average diffuse reflectance is not influenced by calendering. 

U ... r'y polariud 
HeNeluer 

Pholod ioel. 011 

Figure 2.23 An optical system of Bryntse & Norman. 
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Maley [1990] has used print evaluation forms from which he has 

shown that ink film smoothness and ink film uniformity are the major 

contributors to print quality. 

It appears, however, that little work has been done to evaluate print 

smoothness. Therefore, an area of particular interest throughout the course 

of the present study is print smoothness. The most obvious distinction 

between an ink film and a paper is that the former is not compressible 

whereas the latter is. As a result, most of the methods used in measuring 

paper surfaces as described above are not appropriate to the examination of 

an ink film except for the reflectance methods. For example, regarding print 

gloss measurement, there was evidence that the optimum geometrical 

conditions varied for prints made with different ink-paper combinations. 

Gloss values increased with increasing incident and measured angles. This 

implies that until a standard geometrical condition is established, 

comparisons of print gloss based on gloss values may not be reliable [Fetsko 

et al., 1962; Fetsko et al., 1973]. 

2.6.5 The non-contact optical method. (used in this study) 

A non-contact optical method was recently developed by Hansuebsai 

[1989]. He developed a statistical surface model to calculate 

macrosmoothness and microsmoothness from reflectance measurements for 

paper surfaces. This method will be applied in the present work to evaluate 

printed surfaces; it has the following advantages. 
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1. The method considers the whole surface that is above and below the 

mean surface. The mean surface is a geometrical plane which is an average 

within the profile variation. 

2. The method can separate (primary) surface reflection from (internal) 

diffuse reflection by means of polarized light. 

3. The printed surfaces under measurement are in an uncompressed 

condition as usually seen by the customers. 

Developments of the method will be described from two aspects: 

concept and surface characteristics. 

Concept. The method is based on the understanding of surface 

reflection and Barkas' classical model. 

1. Surface reflection. In general, when a surface is illuminated, the 

reflection from the surface can be surface specular reflection, surface 

scattering reflection and re-emerging diffuse reflection as demonstrated in 

Figure 2.24 with a paper surface. 

-: ....... c:. lpecular r.'Iect,on 
---: .......... _c_1Ag r.'lec:uan _: diU.... ,..,laclaon 

"",ldenr .... 

-
Figure 2.24 Surface reflection of a paper surface. 
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2. Barkas' classical model. Barkas [1939] considered that a surface 

contains two types of small elementary facets of suitable areas which may be 

inclined at varying angles to the mean surface. One type consists of mirror 

facets which reflect a proportion of incident light according to Fresnel's law 

and the other type consists of rough facets which diffuse a proportion of 

incident light according to Lambert's law. Barkas' surface model was applied 

to a paper surface. He considered that complete fibres have reflecting 

surfaces whereas finely divided fibres and the filling material scatter the 

light. In the case when a highly inclined mirror facet is illuminated. the 

reflected light will fall onto other facets. either mirror or rough. and so on. 

Consequently such light, on emerging, will be classified as coming from 

rough facets. Light which is refracted through the surface undergoes many 

multiple internal reflections. Eventually when re-emerging, it is equivalent 

to having undergone reflection from rough facets. 

It is generally known that there is no scattered light from a perfect 

plane surface (e.g., mirror surface) and the light, accordingly, is only 

specularly reflected from it. The method is thus designed to relate to the 

smoothness of the surface with respect to the light which is reflected from it 

in the specular direction. 

Surface characteristics. 

Surface characteristics are characterized into macrosmoothness and 

microsmoothness. Macrosmoothness mostly arises from the real reflecting 

elements (mirror facets) above the mean plane. Microsmoothness arises from 

a combination of macro elements and micro elements below the mean plane. 

This combination scatters the light which can be considered as equivalent to 
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that from the mirror facets above the mean plane. Both macrosmoothness 

and microsmoothness are determined only from the surface reflection 

measured at the specular angle. However, diffuse light which arises from 

highly inclined reflecting elements is included in each measurement. In order 

to discriminate between the surface reflection and the diffuse reflection, the 

method is based on the reflection characteristics of polarized light. That is 

the surface reflection remains polarized whereas the diffuse reflection would 

be depolarized as a result of mUltiple internal reflections within the 

materials. This depolarized light is eliminated by means of the method of 

measurement which will be described later in the Preliminary Study. 

1. Derivative reflectance technique. This is a useful technique to 

eliminate the influence of the refractive index of the surface on the 

evaluation of smoothness parameters. With reference to Figure 2.17, it is 

shown from Fresnel's law for specular reflectance that the reflectance 

intensity is dependent on the refractive index of the surface. This reflectance 

information does not seem to he useful because of the effect of the refractive 

index. To search for an appropriate standard surface for the determination of 

optical smoothness, it was found that derivative or slope values of the 

reflectance provide a potentially useful form. The slopes of the surface 

reflectance at specular angles for refractive index values from 1.5 to 1.9 are 

determined over a series of incident angle regions from 15 degrees to 80 

degrees at 5-degree interval. The plot of these slope values, versus the angles 

of a series of incident angle regions on a normal printability graph, is shown 

in Figure 2.25. It can be noted that a linear line is obtained for each 

refractive index chosen and these lie close to one another. The averaged slope 

values for these refractive index values are calculated and plotted as shown 
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Figure 2.25 A plot of slope va angle of incidence. 
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Figure 2.26 Average slope values for the refractive indices of 1.5-1.9. 
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in Figure 2.26. These averaged slope values are postulated to be used as a 

smooth standard surface for both paper and printed surfaces. It has been 

reported that the refractive index of paper and ink film are nearly the same 

[Yule, 1967]. The refractive index of paper is 1.55 [Barkas, 1939]; that of an 

oil-based vehicle is approximately 1.45-1.65 [Judd & Wyszecki, 1976; Young, 

1973]. 

2. Statistical surface model - Macrosmoothness and Microsmoothness. 

Measurements within a range of incident angles from 15 to 80 degrees, 

of a small surface sample are sufficient to evaluate the whole profile of that 

surface; both above and below the mean surface. It can be envisaged that as 

the incident angle increases towards glancing angle, the specularly reflected 

light arises from elements only at or above the mean surface. Therefore, the 

method is designed to divide the observed conditions into two angular ranges 

to separate the surface region above the mean surface from that below the 

mean surface. One set of measurements ranging from 15 to 45 degrees is 

used to obtain the reflectance from a combination of macro and micro 

elements below the mean surface. The other set ranging from 45 to 80 

degrees is used to obtain reflectance from, mostly, macro elements above the 

mean surface. Both sets of angles are determined with respect to zero degrees . 

at the normal to the surface. 

Smoothness is defined as the extent to which the surface consists· of 

plane-mirror facets as measured per unit of illuminated area. This implies 

that the relationship between the slope values of the sample and those of the 

standard surface can be attributed to surface smoothness. The techniques 

used to study the relationship are correlation and regression analysis. 
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Let Dp(n) and Ds(n) be the derivative or slope values of the reflectance 

determined in each of a series of 5-degree intervals of the sample and of the 

standard surface, respectively. In' is the index for angular regions numbered 

from 1 to 13 where n = 1 for the set at 15-20 degree to n = 13 for the set at 75-

80 degree. Thus the regions in which n :s: 6 are related to microsmoothness. 

The regions in which n ~ 7 are related to macrosmoothness. 

Microsmoothness (Su). Correlation is a widely used measure of the 

closeness of a relationship. It was found that the correlation coefficient, 'r 

value', between the slope values of the sample and of the standard surface is 

an appropriate measure of microsmoothness; since Dp(n) within the range 

where n :s: 6, of one sample is not significantly different from others. It is not 

useful to analyse further by regression. Thus, microsmoothness (Su) can be 

written as follows: 

where 

Su = k C(DpxDs) 
S(Dp)xS(Ds) 

................................................. (20) 

C(DpxDs) is the covariance of Dp and Ds. 

S(Dp) is the standard deviation of Dp. 

S(Ds) is the standard deviation of Os. 

k is the instrument constant. (in this practical work, k = 1) 

Macrosmoothness (Sm). Similarly, it is shown from the correlation 

coefficient that there is a significant relationship between the sample and the 

standard surface within the range where n ~ 7. A mathematical model based 
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on linear regression is applied. Therefore, macrosmoothness (Sm) can be 

written in the following form: 

where 

Sm = k C(DpxDs) 
V(Ds) 

V(Ds) is the variance of Ds. 

........................................................ (21) 

Both Sm and Su provide information about the surface. The higher the 

value, the smoother the surface. 
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3. PRELIMINARY STUDY 

Study of the effects of ink vehicle penetration on optical smoothness 

of paper. 

Earlier studies [Hansuebsai & Morantz, 1988; Hansuebsai, 1989) 

provided methods for the optical assessment of the smoothness of paper and 

proposed that the optical smoothness of a paper can be characterized by 

means of two parameters, namely macrosmoothness (Sm) and 

microsmoothness (Su). In his study, Hansuebsai [1989] has reported the 

effects of certain solvents on the optical smoothness of paper. It is intended to 

use this technique to study ink and paper interactions. The extension of 

these studies to a printed surface was envisaged as the next step. However, 

this preliminary study makes a first approach to investigate the effects, on 

the optical smoothness of paper, of individual ink vehicles and of one 

combination of these offset litho ink vehicles using materials employed in the 

printing industry. The results establish that a more comprehensive 

investigation on inked surface is warranted and certain considerations need 

to be taken into account. 

3.1 NON-CONTACT OPTICAL SMOOTHNESS METHOD. 

3.1.1 The instrument. 

The method employs a specially constructed instrument which is a 

form of goniophotometer, an instrument that measures reflectance as a 

function of incident angle and viewing angle, as shown in Figure 3.1. It is 

composed of three parts: 
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Figure 3.1 The optical reflectance instrument. 
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Illumination system. A 5 mW 632.8 nm HeNe linearly polarized laser, 

type GLT 2140 from NEe, is used as the light source and a power supply 

from Power Technology Inc. is used to operate the laser. A linear dichroic 

polarizer is placed in front of the laser in order to ensure the polarisation 

state of the incident beam. Neutral density filters are used to reduce the 

intensity of the beam so that the intensity of the reflected light corresponds 

to the capability of the meter. A 15 cm focal length convex lens is employed to 

converge the beam to a smaller area focused onto the illumination regions. 

Mechanical stage. This part is designed in order to be able to move the 

normal axes of the paper sample and the detector plane simultaneously 

parallel to a horizontal plane. This enables changes in the incident and the 

measured angles to be made. 

Detection system. The system uses a photomultiplier (PMT), which is 

an extremely sensitive light detector providing a current output proportional 

to light intensity, type 9524B manufactured by Thorn EMI Electron Tubes 

Ltd, (See circuit in Appendix A) as the detector. A power supply from 

Brandenberg type 2479N is used to operate the photomultiplier. Since the 

intensity of the reflected light is very low resulting in a large photon noise, 

the photomultiplier output is thus passed through a low pass filter (See 

circuit in Appendix A) to reduce this photon noise and is linked through a 

linear amplifier to a voltmeter to produce a reflectance readout (See circuit in 

Appendix A). The detector incorporates a pinhole of 1 mm diameter to form 

the aperture of the detector with another linear polarizer placed in front of 

the detector in order that the plane of polarization can be chosen. 
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Calibration of the instrument. This study uses a sheet of glass with a 

back surface ground and painted with a matt black paint as the reference 

standard smooth surface. The instrument is calibrated by adjusting the 

reflectance (Ru) readout at the meter to be 74% at 85 degree incident angle 

(glancing angle) and 0% when there is no incident light according to Fresnel's 

reflectance at refractive index 1.55 (See Appendix B). 

3.1.2 Optical smoothness procedure. 

Reflectance measurement. Reflectances of each sample are measured at 

specular angles in a range from 15 to 80 degrees at 5 degree intervals. By 

selecting the plane of the polarizer, the incident light is perpendicular 

polarised light. 

1. Since the instrument uses a laser light source, it is recommended to 

switch the laser on for at least 15 minutes before operating measurements. 

After this warm-up period, the standard glass surface is placed in the sample 

holder and the calibration is made as previously described. The standard is 

then replaced by the sample. 

2. Measurement of reflectance R.u.. This includes the first surface 

reflected, scattered and diffuse light components whose polarisation plane is 

in the same plane as the incident beam. 

3. Measurement of the diffuse light component Rut whose polarisation 

plane is different from that of the incident beam. 

4. Some of the diffuse component when re-emerging from the surface 

may alter its polarisation plane again. It is assumed that the measured full 

is equal to the diffuse component in Rll. Consequently, the surface and 

scattered components which retain polarisation are determined by Ru.. - Rut. 
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Fourteen reflectance readings are obtained over the range of angles for each 

point on a sample specimen. 

Evaluations of optical smoothness. The reflectance results were 

calculated according to the formulas previously given in section 2.6.5, to give 

macrosmoothness (Sm) and microsmoothness (Su). 

where 

Sm = k C(DpxDs) 
V(Ds) 

Su = k C(DpxDs) 
S(Dp)xS(Ds) 

C(DpxDs) is the covariance of Dp and Ds. 

S(Dp) is the standard deviation of Dp. 

S(Ds) is the standard deviation of Ds. 

V(Ds) is the variance of Ds. 

k is the instrument constant. (in this practical work, k = 1) 

3.2 MATERIALS. 

3.2.1 Paper samples. 

Four different types of printing paper, namely newsprint (NP), 

machine finish (MF), machine glazed (MG) and poladin cartridge (PC) were 

chosen for study. 

Newsprint (NP). Cbeapness is very important, but permanence is not 

necessary, for newsprint. It is usually made from mechanical wood pulp with 
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sufficient chemical wood pulp to strengthen the sheet for high speed printing. 

It is not normally sized but may contain a small amount of loadings (5-10%) 

to reduce show through. The main requirement is its high oil absorbency to 

give quick drying by the absorption of news ink on a high speed web 

machine. It is supercalendered to make the sheet capable of reproducing 

coarse halftone illustrations. 

Machine finish (MF). The surface finish of this paper contains a higher 

proportion of chemical wood pulp than is present in newsprint. It is described 

as a semismooth paper due to the finish and degree of calendering. It is 

suitable for book printing which consists mainly of texts and line 

illustrations. 

Machine glazed (MO). This printing paper is usually well sized with a 

little loading. The manufacture of this paper is unique in that the paper web 

is pressed up against a finely polished M.G. cylinder, sometimes referred to 

as a 'Yankee' dryer, which is stearn-heated. Because of its large diameter, one 

side of the paper which is in contact with this M.G. cylinder surface for a long 

time gains a high finish or glaze while the other side remains rough. As a 

result, machine glazed is widely used for printing posters because the glazed 

side makes it suitable for halftone colour printing and the rough side for 

carrying adhesives. 

Poladin cartridge (PC). This is a matt coated paper. The coating is 

applied using a blade coating technique. After coating, the paper is pressed 

through a one-to-three nip calender stack on the paper machine in order to 

smoothen the coating. 
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3.2.2 Ink 'vehicles'. 

Three different individual ink vehicle components and one 

combination of ink vehicle components were used. These were supplied by 

Coates Lorilleux International. 

R1066. This is the code for a high boiling point petroleum distillate 

normally used in sheetfed offset formulations. 

R1976. This is the code for a process oil used in coldset black 

formulations for web offset printing of newspaper. This vehicle was studied 

only in conjunction with newsprint. The process oil was not suitable for the 

other paper samples since it yielded undried samples within the limited 

drying time. 

R1835. This is the code for a high boiling point petroleum distillate 

used in heatset web offset formulations. 

SM2007. This is the code for a 55% resin solid solution of a simple 

hydrocarbon resin mixed in RI066. It is used as an additive varnish in web 

offset news inks. 
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3.3 EXPERIMENTAL METHOD. 

3.3.1 Flotation. This method was used to study some of the individual ink 

vehicle components. Paper samples were cut into squares measuring 

approximately 3 x 3 cm2• Each sample was floated in a bath of ink 'vehicle' 

for 5 seconds, removed and dried at room temperature. 

3.3.2 IGT printability tester. The resin solution (SM2007) is too viscous to 

apply to the paper sample by floatation; therefore an IGT printability tester 

model A2-3 (Pendulum Drive), using a 2 cm metal inking disc and a pressure 

setting of 30 kgf, was employed to apply the resin solution. The samples were 

dried at room temperature. 

3.3.3 Optical smoothness determinations. The paper samples were 

measured to determine their smoothness both before they were treated with 

the ink 'vehicles' and after being dried for at least 24 hours. Nine points were 

measured from each sample and the results are given in Appendix C. 

3.3.4 Data analysis. To investigate whether there were significant effects 

from the treatments, the macrosmoothness and microsmoothness results for 

each type of paper (both untreated and treated) were subjected to statistical 

methods namely analysis of variance. This is one of the statistical procedures 

commonly used to test whether or not several sample group means are equal, 

Le., to test whether there are true differences between different samples or 

the observed difference can be attributed to chance. 
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For example, to test whether 

SmNP = SmNP+RI066 = SmNP+R1976 = SmNP+R1835 = SmNP+SM2007 

the F ratio is calculated: 

F = Between groups mean square / Within group mean square 

The calculated F ratio measures the importance of differences between 

groups as compared to differences within groups. This calculated F ratio is 

compared to the F distribution value with k-l, N-k degrees of freedom and at 

0.05 significance level which is the critical value of F. The between-groups 

degrees of freedom are k-l, where k is the number of groups and the within

groups degrees of freedom are N-k, where N is the number of cases in the 

entire sample. A significant difference between the sample group means is 

obtained when the calculated F ratio is equal to or greater than the critical 

value ofF. 

In addition, to determine which sample group means are different 

from each other, Duncan's multiple comparison test is used. The data 

analysis was performed on a 3S6-class personal computer using SPSS/PC+ 

programme and the results are shown in Appendix D. 
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3.4 RESULTS. 

This preliminary study employs the same types of paper, namely 

newsprint (NP), machine finish (MF), machine glazed (MG) and poladin 

cartridge (PC) as used by Hansuebsai (1989). However, the samples derive 

from different paper batches. 

Table 3.0 ComEarison of oEtical smoothness results. 
Sample Hansuebsai This study 

Sm Su Sm Su 
NP 0.02 0.66 0.011 0.73 
MF 0.011 0.077 0.009 0.21 
MG 0.074 0.7 0.076 0.9 
PC 0.017 0.14 0.010 0.17 

It was found that the optical smoothness results, Table 3.0, are fairly 

close in all cases but that for microsmoothness of machine finish. In the 

present work (See Table 3.2), microsmoothness for machine finish shows a 

minimum value of 0.16 and the 95% confidence interval minimum is 0.184. 

These results are for 9 random samples. Hansuebsai's microsmoothness for 

machine finish is an average of a machine direction value of 0.045 and a 

cross machine direction value of 0.13. This latter figure can be compared with 

the lowest individual value obtained in this work, namely 0.16. In this light 

the discrepancy is not too significant as the samples were, in any event, not 

from the same batch. In general, therefore, the results in this study are 

compatible with Hansuebsai's. Tables 3.1-3,4 summarize macrosmoothness 

and microsmoothness of each paper sample both before and after being 

treated with ink 'vehicles' and also indicate the ink 'vehicles' which affect the 

smoothness. The differences in macrosmoothness and microsmoothness are 

demonstrated in Figures 3.2-3.5. 
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Table 3.1 Optical smoothness summary: newsprint before and after being 

treated with ink 'vehicles'. Each result given is the average value of nine 

different points on the sample (See Appendix C). 

(a) Macrosmoothness (Sm). 

Sample Sm (x) S.D. 95% C.I. for X Min. Max. 

Untreated NP 0.011 0.002 0.009 to 0.013 0.008 0.015 

NP+R1066a 0.018 0.003 0.016 to 0.021 0.014 0.023 

NP+R1835a 0.021 0.003 0.018 to 0.023 0.015 0.024 

NP+R1976a 0.018 0.004 0.015 to 0.021 0.013 0.024 

NP+SM2007 0.013 0.004 0.009 to 0.016 0.008 0.020 

a - Sm significantly increased when compared with untreated NP and NP 

treated with SM2007 (See Appendix D and Figure 3.2). 

(b) Microsmoothness (Su) . 

Sample Su (x) S.D. 95% C.I. for X Min. Max. 

Untreated NP 0.728 0.069 0.675 to 0.781 0.619 0.832 

NP+R1066a 0.818 0.056 0.775 to 0.861 0.750 0.898 

NP+R1835 0.744 0.043 0.711 to 0.777 0.688 0.809 

NP+R1976 0.732 0.055 0.689 to 0.774 0.649 0.819 

NP+SM2007 0.799 0.126 0.702 to 0.895 0.613 0.939 

a - Su significantly increased when compared with untreated NP and NP 
treated with R1976 (See Appendix D and Figure 3.2). 
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Table 3.2 Optical smoothness summary: machine finish before and after 

being treated with ink 'vehicles'. Each result given is the average value of 

nine different points on the sample (See Appendix C). 

(a) Macrosmoothness (Sm). 

Sample Sm (x) S.D. 95% C.I. for X Min. Max. 

Untreated MF 0.009 0.002 0.007 to 0.010 0.006 0.012 

MF+RI066a 0.015 0.005 0.011 to 0.019 0.009 0.021 

MF+R1835 0.008 0.004 0.005 to 0.011 0.005 0.017 

MF +SM2007a,b 0.020 0.003 0.018 to 0.023 0.017 0.027 

a - Sm significantly increased when compared with untreated MF and MF 

treated with R1835 (See Appendix D and Figure 3.3). 

b - Sm significantly increased when compared with MF treated with 

RI066 (See Appendix D and Figure 3.3). 

(b) Microsmoothness (Su). 

Sample SU (X) S.D. 95% C.I. for X Min. 

Untreated MF 0.211 0.034 0.184 to 0.237 0.162 

MF+RI066a 0.739 0.067 0.688 to 0.791 0.629 

MF+R1835b 0.403 0.098 0.327 to 0.478 0.197 

MF+SM2007a 0.721 0.072 0.666 to 0.777 0.604 

Max. 

0.265 

0.812 

0.534 

0.802 

a - Su significantly increased when compared with untreated MF and MF 
treated with R1835. (See Appendix D and Figure 3.3) 

b - Su significantly increased when compared with untreated MF (See 

Appendix D and Figure 3.3). 
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Table 3.3 Optical smoothness summary: machine glazed before and after 

being treated with ink 'vehicles'. Each result given is the average value of 

nine different points on the sample (See Appendix C). 

(a) Macrosmoothness (Sm). 

Sample Sm (X) S.D. 95% C.I. for X 

Untreated MG 0.076 0.013 0.066 to 0.086 

MG+R1066a 0.042 0.009 0.035 to 0.049 

MG+SM2007a 0.052 0.020 0.037 to 0.068 

Min. 

0.067 

0.025 

0.037 

Max. 

0.108 

0.053 

0.099 

a - Sm significantly decreased when compared with untreated MG (See 
Appendix D and Figure 3.4). 

(b) Microsmoothness (Su). 

Sample SU (X) S.D. 95% C.I. for X 

Untreated MG 0.897 0.062 0.849 to 0.945 

MG+R1066 0.874 0.074 0.817 to 0.930 

0.802 0.052 0.762 to 0.842 

Min. 

0.766 

0.764 

0.727 

Max. 

0.949 

0.970 

0.880 

a - Su significantly decreased when compared with untreated MG and MG 
treated with R1066 (See Appendix D and Figure 3.4). 
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Table 3.4 Optical smoothness summary: poladin cartridge before and after 

being treated with ink 'vehicles'. Each result given is the average value of 
nine different points on the sample (See Appendix C). 

(a) Macrosmoothness (Sm). 

Sample Sm (i) S.D. 95% C.I. for X 

Untreated PC 0.010 0.002 0.008 to 0.011 

PC+RI066a 0.018 0.004 0.015 to 0.022 

PC+SM2007a,b 0.049 0.010 0.041 to 0.057 

Min. 

0.007 

0.009 

0.031 

Max. 

0.013 

0.023 

0.065 

a - Sm significantly increased when compared with untreated PC (See 
Appendix D and Figure 3.5) 

b - Sm significantly increased when compared with PC treated with 
RI066 (See Appendix D and Figure 3.5) 

(b) Microsmoothness (Su). 

Sample 

Untreated PC 

PC+R1066a 

PC+SM20078 

Su (x) S.D. 95% C.I. for X 

0.165 0.028 0.143 to 0.186 

0.793 0.110 0.708 to 0.877 

0.823 0.081 0.760 to 0.886 

Min. 

0.135 

0.606 

0.665 

a - Su significantly increased when compared with untreated PC (See 
Appendix D and Figure 3.5). 
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Sm 

Figure 3.2 (a) Macrosmoothness (b) Microsmoothness of 
newsprint before and after being treated with 'ink vehicles'. 
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Figure 3.3 (a) Macrosmoothness (b) Microsmoothness of machine 
finish before and after being treated with 'ink vehicles'. 
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Figure3.4 (a) Macrosmoothness (b) Microsmoothness of machine 
glazed before and after being treated with link vehiclesl. 
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Figure 3.5 (a) Macrosmoothness (b) Microsmoothness of poladin 
cartridge before and after being treated with 'ink vehicles'. 

0.06 

0.05 

0.04 

Sm 0.03 

0.02 

0.01 

1 

0.9 

0.8 

0.7 

0.6 

Su 0.5 

0.4 

0.3 

0.2 

0.1 

0 

/ 

Untreated PC PC+R1066 

Sample 

I 0 lower limit 0 mean 

(a) 

PC+SM2007 

o upper limit 

~ ~ 

;:C. 
;:C. 

~ 
~ 

.. ' 

1,-

~7113 11.823 

I, 

?::.rL- .,c:-; 
1J.16G 

/ 
i- I/ - /'7 

Untreated PC PC+RI066 PC+SM2007 

Sample 

I 0 lower limit o mean o upper limit 

(b) 

107 



3.5 DISCUSSION. 

The optical smoothness results show the different behaviour of ink 

vehicles on paper. The effects of ink vehicles in changing the surface 

structure involve several aspects of fibre modification, such as fibre swelling, 

fibre relaxation or shrinkage of fibres. Changes in the smoothness 

parameters can be attributed to paper structure changes. This study also 

points to the role of surface structure in the penetration by each of the 

components. 

The effects of individual ink vehicle components are most clearly 

illustrated by RI066 (Figure 3.6). It significantly increases both the 

macrosmoothness and microsmoothness of almost all the papers tested except 

machine glazed. These increases are more clearly seen in microsmoothness 

than those in macrosmoothness. In particular, the increases are greater for 

machine finish and poladin cartridge. In the case of machine finish, it is 

increased from a value of 0.211 to a value of 0.739 and in the case of pol ad in 

cartridge, it is increased from a value of 0.165 to a value of 0.793. Another 

obvious result is that the treatment results in a significant decrease in the 

macrosmoothness of machine glazed paper, the macrosmoothness is 

decreased from a value of 0.076 to a value of 0.042. This behaviour can be 

explained as follows. Owing to the high amount of furnish and sizing 

materials in machine finish, and to the coating mixture and the coating 

method used in poladin cartridge, it is envisaged that when R1066 

penetrated into the paper, it may bring along these materials from the 

surface plane towards regions below the surface plane. This results in 

removing some microfeatures of the macro regions and, on the other hand, 

these materials deposit and may become compact on the micro regions of the 
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Figure 3.6 The effects of R1066 on (a) macrosmoothness and 
(b) microsmoothness of different types of paper. 
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surface. As a result, both the macrosmoothness and microsmoothness of 

machine finish and poladin cartridge will have increased significantly. On 

the other hand, R1066 may penetrate less into the more impervious surface 

such as that of machine glazed. This may cause the uppermost fibre layers of 

machine glazed to swell and debonding; and subsequently, after evaporation 

from the paper, the fibres shrink losing their compaction, resulting in a 

decrease in the macrosmoothness. 

SM2007 represents a simple model of ink varnish. The effect of this 

vehicle (Figure 3.7) significantly increases both macrosmoothness and 

microsmoothness for machine finish and poladin cartridge. Moreover, it 

should be noted that the increases in the macrosmoothness of both machine 

finish and poladin cartridge treated with SM2007 are greater than those 

with R1066. 

SmMF (0.009) < SmMF+RI066 (0.015) < SmMF + SM2007 (0.020) 

Smpc (0.010) < Smpc + RI066 (0.018) < Smpc + SM2007 (0.049) 

In contrast, it significantly decreased both macrosmoothness and 

microsmoothness of machine glazed. The treatment insignificantly increases 

both macrosmoothness and microsmoothness of newsprint. From this 

behaviour it may be assumed that for the more porous papers such as 

machine finish and poladin cartridge, the resin solution readily penetrated 

into the paper and filled the voids on the surfaces. Some SM2007, which has 

remained on the uppermost layer, forms a film of resin. This creates mirror 

facets on both macro and micro regions, hence increasing optical smoothness. 

In the case of machine glazed, the resin solution cannot penetrate as a whole 

due to the more compact surface of machine glazed. The solvent component 
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Sm 

Figure 3.7 The effects of SM2007 on (a) macrosmoothness and 
(b) microsmoothness of different types of paper. 
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may penetrate faster into the paper causing fibre swelling, relaxation and 

debonding which may in turn cause the film of the resin solution to follow the 

contour of the surface. 

The results show that significant changes in optical smoothness can be 

determined as a result of treatment with ink components; and further 

development of this research is possible to extend this method to determine 

the smoothness of printed surfaces. An attempt may be made to distinguish 

and evaluate the contribution to smoothness characteristics derived from 

both paper and ink components. In addition, the mechanism of ink 

penetration should be considered. 

3.6 IMPROVEMENTS OF THE INSTRUMENT. 

The preliminary study was aimed at quantitative measurements and 

in carrying out this work, there were some difficulties in making reflectance 

measurements because the optical components had not been rigidly located 

in the original set-up. This had consequently required tedious resetting for 

each measurement. Since this research is aimed to study ink and paper 

interactions by measuring the smoothness of the inked surfaces, 

improvements to the instrument were necessary and were made. 

1. Locating all of the optical components of the illumination system on 

an optical bench with levelling cross feet thus the illumination system was 

rigidly set. 
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2. The former HeNe laser was replaced by a more reliable 5 mW 

linearly polarized HeNe laser Model 1125P from Uniphase Laser Ltd. and a 

power supply to operate this laser from Hughes Power Supply, Mode14020F. 

3. A, modified, divided circle spectrometer was used to replace the 

previous mechanical stage. This classic instrument consists of three parts; a 

collimator and slit, a prism or grating on a rotating table and a viewing 

telescope on a rotating scale (Ealing Electro-Optics). Both the collimator and 

the telescope bases are heavy box form castings which make the instrument 

extremely stable and suitable for use as a mechanical stage. In order to 

achieve the improved functions of the mechanical stage, the main 

modifications of this instrument were as follows. 

• the collimator arm was removed. 

• the telescope was replaced with the photomultiplier. 

• A graduated rotating table was modified to make the sample holder 

which is then fixed on top of the prism table. The prism table incorporated 

vertical control which enables the height of the sample holder to be adjusted 

to match that of the illumination system. 

When all the improvements had been made and the new version of the 

instrument set up (Figure 3.8), the precision and repeatability of the 

instrument was evaluated. 
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Figure 3.8 The optical reflectance instrument. 

1) A HeNe laser. 

2) Neutral density filters. 

3) A polarizer. 

4) A convex lens. 

5) A modified mechanical stage. 

6) A photomultiplier. 
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Figure 3.8 The optical reflectance instrument. 

1) A BeNe laser. 

2) Neutral density filters. 

3) A polarizer. 

4) A convex lens. 

5) A modified mechanical stage. 

6) A photomultiplier. 
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3.7 REPEATABILITY OF THE INSTRUMENT. 

Comparing test results from different treatments may not indicate a 

quality difference if the difference between them can be attributed to errors 

arising from the instrument or from the operator. Thus, it is necessary to find 

the repeatability or the precision of the instrument employed in this study. 

Repeatability refers to tests carried out under conditions that are as 

constant as possible in one laboratory by one operator and using the same 

instrument (BS 5497:Partl:1987, ISO 5725·1986). To obtain this, a set of ten 

reflectance measurements in a range of incident angles from 15 to 85 degrees 

was made on the standard glass. The data are presented in Table 3.5. The 

coefficient of variation gave a maximum value of 3.14 %. 
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Table 3.5 Repeatability of the reflectance instrument. 

Ra 
Meaaurement 

16° 20" 25° 30° 36° 40° 45° 60" 55° 60° 66° '100 '15° 800 85° 

lat 4.3 4.7 5.3 6 7 8.2 9.8 11 14 18 25 32 42 56 74 

2nd 4.4 4.9 5.5 6.2 7.2 8.4 10 11 14 18 25 32 42 56 74 

Srd 4.4 4.7 5.4 6.1 7.1 8.2 9.8 11 14 18 24 32 42 56 74 

4th 4.6 5 5.4 6.2 7.2 8.5 10 11 15 19 25 33 42 56 74 

5th 4.6 5 5.5 6.2 7.2 8.5 10 11 15 19 25 33 43 56 74 

6th 4.6 4.9 5.4 6 6.9 8.2 10 11 14 18 25 32 42 56 74 

7th 4.6 5 5.4 6.2 7.1 8.1 9.8 11 14 18 24 32 42 56 74 

8th 4.7 5.1 5.6 6.2 7.2 8.3 9.8 11 14 18 24 32 42 56 74 

9th 4.7 5.1 5.5 6.3 7.2 8.2 10 11 14 18 24 32 42 56 74 

10th 4.7 5.1 5.6 6.4 7.4 8.5 10 11 14 18 24 32 42 56 74 

X 4.56 4,95 5.46 6.18 7.15 8.31 9.92 11 14.:t 18.2 24.5 3U 4U 56 74 

S.D. 0.14 0.15 0.1 0.13 0.14 0.15 0.1 0 0.42 0.42 0.53 0.42 0.32 0 0 

CV(%) 3.14 3.05 1.77 1.99 1.89 1.83 1.04 0 2.97 2.32 2.15 1.Sl 0.01 0 0 
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4. STUDY OF INKED SURFACES. 

Evaluation of printed image characteristics by an optical method 

with particular reference to offset lithographic printing. 

The quality of a solid print has been characterized so far by density 

measurements [Williams, 1988; Visa & Langinmaa, 1992]. Little work has 

been described for detailed laboratory methods capable of evaluating prints 

in terms of print smoothness. The present study is directed towards the use 

of the non-contact optical method [Hansuebsai, 1989] to gain further insights 

into the characteristics of printed surfaces which are the results of material 

interactions in the printing process. The technique has been reviewed and 

the optical reflectance instrument improved to allow the measurement of 

solid printed surfaces. The reflectance data were used to calculate both 

macrosmoothness and microsmoothness for the printed surfaces. Other 

• related methods have been reported. Gate & Parsons [1993] have reported 

further improvements in the optical reflectance examination of coated 

papers; Mangin [1993] has demonstrated the use of confocal laser microscopy 

in determining 3D profiles of a paper surface, moreover, he obtained, 

simultaneously, information on the microscopic distribution of the ink film by 

incorporating a fluorescent dye in the ink. Extensive information about ink, 

paper and water interactions has been published [e.g., Festko, 1986; Trollsas, 

1987; Aspler & Lepoutre, 1991], however, little work has been done on how 

the presence of water or fountain solution emulsified in the ink may 

influence both ink transfer and setting which in turn determine the printed 

surface characteristics. Thus the effects of emulsification, i.e., fountain 

solution emulsified in the ink, on print smoothness are investigated. "\ 

• This paper is important as much of this work is paralleled to this study 
and complements the work presented here. 
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4.1 MATERIALS. 

4.1.1 Paper samples. Two different types of printing papers; an uncoated 

and a coated type, were chosen in this study. They were expected to interact 

differently with the inks due to their variation in properties. Hence, the 

measurements were expected to reflect within limits ink and paper 

interactions and the effects of fountain solution on printed surface 

characteristics. Suprawhite machine glazed poster was chosen to represent 

the uncoated papers and Hispeed gloss art to represent coated papers. 

Machine glazed paper and gloss art paper will be referred to in Tables and 

Figures as MG and GA respectively. 

Machine glazed paper (MGJ. This was the same type as used in the 

preliminary study. 

Gloss art paper (GA). High quality printing normally requires a very 

smooth surface. Since supercalendering of uncoated papers alone gives a 

limited smoothness, coating is an excellent means of improving the surface of 

paper in term of both printability and optical properties. When compared 

with uncoated papers, one of its greatest contributions to print quality is its 

excellent affinity for printing inks [Franklin, 1970]. 

Gloss art is a coated paper having a high gloss surface which is 

achieved by the application of more than one layer of coating on the base 

paper. Paper coatings are mixtures of pigments in a liquid solution of an 

adhesive or binder to hold the pigment to the base stock. These layers can be 

applied at different stages of the paper making process to fill in the surface 

voids of the base paper thus producing a more uniform smooth surface which 
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is more uniformly wetted by printing inks. If a highly smooth surface is 

required then this is achieved by supercalendering. The amount of 

supercalendering to obtain a suitable printing smoothness depends on the 

evenness and the amount of coating. 

The paper samples were stored in the laboratory room which was used 

for optical smoothness measurements and were cut into approximately 4.5 

cm by 30 cm. strips to be used with the IGT printability tester. It should be 

noted that throughout the course of this study, the same batch, same side 

and same machine orientation was used for each paper. The properties of the 

papers are given in Table 4.1. 

Table 4.1 The paper properties of gloss art paper and machine glazed. 

Property GA MG 

Grammage (g / m2 ) 114.9 90.4 

Calliper (mm) 0.45 0.65 

Bendsten porosity (ml / min) 5 875 

Parker Print-surf roughness (microns) 0.75 4.73 

K&N oil absorption test CK&N' unit) 14.6 54.9 

Cobb water absorption test (g / m2 ) 18.1 13.1 

Gloss (%) 35.5 8.3 

Paper tests were carried out by the following methods in a laboratory 

maintained at 23 DC : 1°C and 50% : 2% RH. 
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The grammage of paper was determined on a quadrant balance and an 

analytic balance. 

The calliper of paper was obtained using a dead-weight dial 

micrometer. 

The surface roughness and the porosity were evaluated by air-leak 

methods. The surface roughness was measured using a Parker-Print-surf 

with soft backing and pressure loading at 10 kgf. The porosity was measured 

on the Bendtsen-type instrument, with standard weight 150 grams. 

The ink absorbency characteristics were determined by use of K & N 

ink. 

The water absorbency characteristics were obtained using the Cobb 

size test. 

The specular gloss was measured on a Minigloss meter from Sheen 

Instruments which complies with DIN 67530, ISO 2813, BS 3900-6161. 

According to DIN 67530, a measurement angle of 20° is used for high gloss 

surfaces, 60° for medium-gloss surfaces and 85° for dull surfaces. A 

measurement angle of 60° was chosen in this study. 

4.1.2 Ink sample. Since the optical reflectance instrument employs a HeNe 

laser 632.8 nm as the light source, the choice of inks to be studied was 

restricted to yellow or magenta inks whose reflectance spectra are high at the 

emission wavelength of HeNe laser. A commercial heatset yellow ink was 

thus chosen for this study and was supplied by Coates Lorilleux 

International. This ink sample will be referred to as Y-ink. 

4.1.3. Fountain solution. The main function of the fountain solution is to 

keep the non-image area clean and free from ink in order to obtain a clean 
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print. For this reason, the main active component of any fountain solution is 

the desensitiser composed of strong hydrophilic colloids such as gum arabic, 

water, and activated with acid such as phosphoric acid. 

The addition of alcohol, usually isopropanol, is made to the fountain 

solution. Quantities used are generally between 10% and 15% [Rosos, 1990]. 

Braun [1985] reported that isopropanol promotes the formation of emulsion 

with finer and more uniform droplets of fountain solution in the ink. 

Moreover, alcohol evaporates more readily from the plate surface leading to 

the following: less emulsification, quicker establishment of ink and water 

balance, better drying of the inks and better trapping of ink onto paper. 

A pure grade (99.7%) of isopropanol (or 2-propanol) from John Seaton 

Ltd. and deionized water from the Seradest S600 - Seral Water Purification 

System, in the proportion of 1:9 by weight was formulated to be the fountain 

solution model. It was claimed that 10% isopropanol is the lower limit of 

effective isopropo .nol concentration in the fountain solution [Fadner, 

White & Hayden, 1976]. This fountain solution will be referred to as F.S .. 

4.2 EXPERIMENTAL METHOD. 

4.2.1 Pre-emulsified ink preparation. Bassamir & Krishnan [1991] stated 

that a widely used procedure to simulate offset lithographic printing is the 

use of pre-emulsified inks. A fixed amount of fountain solution is emulsified 

into the ink using a high speed stirrer on a laboratory mixer before printing. 

The crucial stage is that the 'emulsion ink' must be transferred very quickly 

to avoid loss of the emulsified fountain solution. 
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Apparatus. The apparatus described below was used for both the pre

emulsified ink preparation and the emulsification rate tests which will be 

discussed later. 

1. A high speed laboratory stirrer with speed control and a drill chuck 

to take the paddle, supplied by Janke & Kunkel GMBH & Co. 

2. A single paddle mixing blade (Figure 4.1). This is a modified mixing 

blade used in Coates Lorilleux International. 

3. A beaker of approximately 90 mm external diameter. The base 

should be flat and the sides perpendicular to allow efficient mixing. 

4. An analytic balance. 

18cm 

to 3em 

t o.t= 
...-4em-.... 

Thickness· 1.5 m.m 

Mixing Blade 

Figure 4.1 A modified mixing blade. 
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Procedure. 

1. A clean empty beaker was placed on the balance and the balance 

was tared. 

2.90 g of yellow ink was weighed into the beaker. 

3. 10 g of fountain solution was added to the ink to make 100 g of 

'emulsion ink'. This can be described in terms of 10% water content 'emulsion 

ink'. 

4. The paddle was connected to the stirrer. 

5. The stirrer speed was adjusted to 225 rpm at the shaft. The ink and 

fountain solution was mixed at this speed for 5 minutes. Then the stirrer 

speed was increased to 350 rpm and the emulsion was mixed for a further 3 

minutes. The beaker should be rotated about its base during stirring to 

ensure complete mixing. 

6. Mter mixing, the 'emulsion ink' was put in a clean air-tight can. It 

was assumed that the evaporation of fountain solution was very little and 

could be considered negligible. 

7. Steps 2 to 6 were repeated for another two different proportions of 

ink and fountain solution; BOg of ink with 20g of fountain solution making 

approximately 20% water content and 70g of ink with 30g of fountain 

solution making approximately 30% water content. 

I t should be noted that the term water is used generically to mean the 

fountain solution. The relationship between water pickup (WP) and water 

content (WC) can be written as WP = WC / OOO-We). Table 4.2 shows the 

conversion of water content values into water pickup values. 
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Table 4.2 The relationship between water content and water pickup. 

Water content (%) 

10 

20 

30 

Water pickup(%) 

11.1 

25.0 

42.9 

4.2.2 Printing. The ink and the corresponding 'emulsion inks' were printed 

using an IGT printability tester, model Ale 2-5. The IGT printability tester is 

a precision, press-like testing device, i.e., printing speed, pressure and inking 

can be adjusted with the required precision. These conditions can be varied 

independently so that the effects of printing conditions on prints can be 

evaluated. The IGT printability tester consists of two separate units: an 

inking unit with an ink pipette for accurately measuring small quantities of 

ink; and a printing unit. Each 'ink' was distributed in the inking unit for two 

minutes, before inking the printing disc for thirty seconds. The inking unit 

and the printing disc were cleaned between each transfer measurement. It is 

claimed by the IGT manufacturer that the design of the inking unit ensure 

that the distribution of ink over the inking assembly does not cause an 

increase in temperature. Thus, it is believed that the inking procedure, used 

as a standard inking procedure in this study, would lead to a standard 

minimized loss of emulsified fountain solution before the ink is transferred to 

the paper. The printing throughout this study has been carried out under 

controlled printing conditions, with a rubber covered printing disc of 32 mm 

width, to simulate offset lithographic printing. The pressure applied was set 

at 60 kgf and the printing speed at 1 mls. 
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In practice, a printer is interested in printing to a standard print 

density, therefore the comparison is made at a constant print density rather 

than at a constant amount of ink on paper. Also prints are generally made to 

obtain a solid print density to suit the type of paper. The British Printing 

Industries Federation (BPI F) provides typical averages of solid density as 

given in Table 4.3 for greater standardisation when printing colour work by 

the offset lithographic process. 

Table 4.3 The BPIF recommendation for solid densities. 

Paper Cyan Magenta Yellow Black 

Art paper 1.4 1.4 1.0 1.8 

Matt coated paper 1.3 1.3 0.95 1.7 

Uncoated paper 1.15 1.1 0.9a 1.5 

Tolerances are of the order of :to. 1. 

a - Gretag standard value = 0.85. 

In the present study, densities were measured using a Gretag 

densitometer, model D-186. Gretag has also proposed standard values for the 

solid densities. The value for yellow density is very close to those of the BPIF 

(See footnote of Table 4.3). The density levels of the test prints were set at 

D - 0.92 for gloss art and 0 - 0.84 for machine glazed. The variations 

between the 'inks' were largely attributable to the variations in the water 

content of the 'inks', thus it was found necessary to transfer differing 

amounts of 'inks' to each paper sample to achieve the target density. This 

enabled the influences of fountain solution to be examined. The amounts of 
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ink transferred to the paper as shown in Table 4.4 were determined by 

weighing the printing disc before and after printing. The weights were 

divided by the surface area of the inked image and reported as weight per 

unit area (g/m2
). 

Table 4.4 The amounts of ink transfer for gloss art prints and machine 
glazed prints. 

Sample 

Gloss art (D-0.92) 

GA + 100% Y- ink 

GA + 90% Y- ink: 10% F.S. 

GA + 80% Y- ink: 20% F.S. 

GA + 70% Y- ink: 30% F.S. 

Machine glazed (D-0.84) 

MG + 100% Y- ink 

MG + 90% Y- ink: 10% F.S. 

MG + 80% Y- ink: 20% F.S. 

MG + 70% Y- ink: 30% F.S. 

ink transferred (g/m2 ) 

0.77 

0.81 

0.84 

0.89 

1.55 

1.57 

1.59 

1.61 

4.2.3 Drying. Since the 'inks' used were heatset inks, each printed strip was 

dried immediately after printing by passing through a Sinvatrol oven, a 

heatset tester oven. The heat was provided by 2 hot air blowers which enable 

the temperature of the oven to be set. The belt speed was set at 6 m/min and 

the oven temperature was set at 150°C. 
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4.2.4 Rheological property measurements. The rheological properties of 

the ink and the corresponding 'emulsion inks' are given in Table 4.5. 

Viscosity measurements. They were made on a Haake VT viscometer, a 

'cone and plate' viscometer. The viscosity was determined by measuring the 

torque required to rotate a cone over a flat plate, with the liquid sample 

placed in between. The viscosity is normally determined at two speeds; speed 

1 (high shear) and speed 4 (low shear). However, when reporting viscosity 

measurements of a sample, the reading at speed 1 is quoted. 

Tack measurement. It is a measure of the force required to split the ink 

film and tack measurements were carried out on a Tack-a-Scope. 

Table 4.5 The rheological properties of heatset yellow ink and the 

corresponding 'emulsion inks'. 

Ink sample 

Property l00%Y-ink 9O%Y-ink 8O%Y-ink 70%Y-ink 
+10% F.S. +20% F.S. +30% F.S. 

Viscosity, (Poise) 32°C 80.6 41.5 34.6 29.3 

Tack, ('Tack-o-Scope' 113 110 105 108 
unit),25°C 

4.2.5 Evaluation of printed surface characteristics. For solid printing, 

the most important print qualities are print smoothness and print gloss. 

Print smoothness. Unprinted paper samples (both machine glazed 

paper and gloss art paper) and the printed samples were evaluated by the 

optical method described in the preliminary study. Twenty points were 

evaluated from each sample and the results are given in Appendix E 

(Tables E.I-EA). 
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Print gloss. Print gloss was measured after the printed strips were 

dried for at least 24 hours. Gloss readings of both unprinted and printed 

samples were taken on a Sheen Minigloss, model 101 at an angle of 60°. This 

instrument was designed to be used only on flat surfaces and used to 

measure specular gloss. Readings were averaged for the final gloss values 

and the results are presented in Table 4.6. 

Table 4.6 Gloss values of unprinted and printed samples for both gloss art 
and machine glazed. 

Sample 

Unprinted GA 

GA + 100% y. ink 

GA + 90% y. ink: 10% F.S. 

GA + 80% y. ink: 20% F.S. 

GA + 70% y. ink: 30% F.S. 

Unprinted MG 

MG + 100% Y- ink 

MG + 90% y. ink: 10% F.S. 

MG + 80% y. ink: 20% F.S. 

MG + 70% y. ink: 30% F.S. 

Gloss (%) 

35.5 

57.6 

59.1 

59.5 

53.3 

8.3 

8.1 

8.2 

8.1 

8.0 

4.2.6 Data analysis. The optical smoothness results were subjected to 

statistical methods such as t-test, analysis of variance and Multiple 

com parison test. 
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The t-test was used to test whether the optical smoothness mean 

values of two sample groups are the same. The test is based on the means 

and the variances of both the samples and the theoretical population under 

consideration. The calculated t-value was compared to the values of the t

distribution with (n1 + n2 - 2) degrees of freedom and at 0.05 significance 

level where n 1, n2 are the numbers of cases in each sample group. These are 

the critical values of T. A significant difference between these two samples 

was obtained when 

a) the calculated t-value was equal to or greater than the (positive) 

critical value ofT. 

or b) the calculated t-value was equal to or less than the (negative) 

critical value ofT. 

Analysis of variance and Duncan's multiple comparison test were 

employed to test the optical smoothness results of several sample groups as 

previously described in the preliminary study. 

The results from these statistical methods are reported in Appendix F 

(Tables F.I-F.5). 

4.2.7 Water pickup or emulsification rate test. Measurement was carried 

out with a modified Sur land test using the same apparatus as in the pre

emulsified inks preparation stage. The procedures are explained below. 

1. A clean empty beaker and the mixing paddle were placed on the 

balance and the balance was tared. 

2. 50 g of ink was weighed into the beaker and the total weight of the 

beaker, stirrer paddle and ink recorded. 
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3. 50 g of fountain solution was added to the ink. 

4. The stirrer speed was adjusted to 400 rpm at the shaft. 

5. The paddle was connected to the stirrer and the ink and fountain 

solution mixed for a period of one minute. The beaker should be rotated 

about its base during mixing to ensure complete mixing. 

6. After one minute, the beaker, stirrer and contents were removed 

and any excess fountain solution was poured off. Any trapped fountain 

solution that was not in a refined emulsion was separated from the bulk by 

very gently mixing with the paddle for not more than one minute and 

pouring away that fountain solution. The beaker, stirrer and contents were 

then reweighed and the difference in weight of fountain solution recorded. 

7. Step 5 and 6 were repeated for a further nine x one minute periods. 

50 g excess fountain solution should be maintained throughout the test. 

G.I 
~ 

<'IS 

8. A graph was plotted of water pickup versus time, Figure 4.2. 

70 

60 

50 

Q. 40 
::I ... 
~ 30 • 
N 20 

10 

o ~--~----~--~----~--~----~--~----~--~--~ 
1 2 3 4 5 6 7 8 9 10 

mixing period (minutes) 

Figure 4.2 The percentage water uptake of heatset yellow ink. 
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4.2.8 Scanning electron microscopy (SEM). This is a very useful 

instrument to give an image of a surface. An electron beam is used to 

illuminate the sample. When the sample is exposed to the scanning electron 

beam, low energy secondary electrons are released from the sample surface, 

collected and transmitted to a cathode ray tube to form an image, The image 

is then photographically recorded. 

As the angle of the electron beam is stationary, the angle in which the 

beam strikes the sample surface is dependent on the tilt angle of the sample. 

It is known that tilt angles of the sample between 30° to 45° are the best 

conditions for observing porosity and micro detail [Settlemeyer, 1992]. In this 

study, unprinted and printed samples were observed by scanning electron 

microscopy. This was carried out on a Hitachi scanning electron microscope, 

model 8-450. The tilt angle of the sample was set at 45°. This SEM method is 

not influenced by the colour of the printing ink. However, at high resolution 

the ink pigment can be observed since their particle shape is significantly 

different from that of the fibres. The aim of employing SEM was to provide a 

better understanding of the surface characteristics and provide independent 

evidence for the surface characteristics. 
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4.3 RESULTS AND DISCUSSION. 

This work has developed through four stages. Firstly, the optical 

method used has been developed by Hansuebsai [1988, 1989]; secondly, that 

method was improved and developed so as to be able to assess printed 

samples; thirdly, ink and paper interactions have been studied with general 

reference to the printing process; and fourthly, the effect of fountain solution 

in offset lithographic printing has been explored. The results obtained are 

conveniently presented and discussed in two parts. 

In the brief results sections the amount of data involved is such that 

only the overall summaries will be presented in this chapter; the detailed 

summaries of the results are presented in the Appendices bound with this 

thesis; and the raw data itself comprises an extensive set of tables from 

which the Appendices have been derived. 

Moreover, in view of the mass of data required, it was decided to 

restrict the paper examples to two contrasting types namely, gloss art and 

machine glazed. 

Part I. Evaluating unprinted and printed paper surface 

characteristics: A criterion for quality of print is proposed in terms of print 

smoothness. Printed surface characteristics are discussed in relation to ink 

and paper interactions. This part will also highlight the contributions of 

paper properties to the characteristics of printed surfaces. 
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Part II. Studying the effects on print smoothness: Fountain solution 

and ink which are the major additional factors affecting print smoothness in 

the offset lithographic process. 

Part I. Printed paper surface formation - Print smoothness 

consideration. 

4.3.1 Results· Part I. 

From the preliminary study, the reflectance instrument has been 

improved and thereafter employed to evaluate printed surfaces. In the 

present (Part I) study, prints were prepared using two different tyPes of 

paper printed with a heatset yellow ink on a laboratory IGT printability 

tester. It was also found from the preliminary study that the number of 

samples examined was not sufficient to draw precise conclusions. Paper 

testing practice is generally carried out with a minimum of ten samples 

(BS 3430:1986, ISO 186-1985). However, since the study aims to investigate 

the effects of factors in the offset lithographic process, the number of samples 

had to be increased to twenty samples (which is appropriate within the time 

frame of this study); this was found to be necessary so as to increase the 

sensitivity of the method and the reliability of the results. Moreover, the 

application of statistics to the results can enable conclusions to be drawn 

within more precise limits in terms of a definite probability (eg. 95% 

Confidence Limits). As a result, during the course of this study, more than 

two hundred sets of measurements were undertaken which also produced 

more than two hundred optical smoothness results. All results cannot be 

presented in this thesis thus it was decided to choose one sample from each 

group to represent its property. These examples are given in Appendix G. 
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This optical method involves surface reflection measurements and 

statistical correlation and regression analysis of the reflectance data to yield 

smoothness parameters. Figure 4.3 shows the reflectance characteristics from 

one random sample each, of unprinted and printed gloss art. It can be seen 

that the reflectance characteristic curve of the printed samples has a similar 

shape to that of the unprinted sample. 
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Figure 4.3 An example of the reflectance characteristic of unprinted 

and printed gloss art. 

Table 4.7 summarizes macrosmoothness and microsmoothness, for 

each pair of unprinted and (corresponding) printed samples. A greater value 

of smoothness corresponds to a smoother surface. The macrosmoothness 

mean value of printed gloss art is greater than that of unprinted gloss art; . 

the macrosmoothness mean value of printed machine glazed is, however, 

lower than that of unprinted machine glazed. Nevertheless, the results from 
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t-test statistical analysis revealed that the only significant difference was 

that between the macrosmoothness of machine glazed printed with heatset 

yellow ink and that of unprinted machine glazed. Therefore, the printed 

surface characteristics of gloss art print can be considered to be as smooth as 

the paper surface characteristics of unprinted gloss art since no significant 

differences were observed for both macrosmoothness and microsmoothness. 

_ For the case of machine glazed, despite the absence of significant differences 

in the microsmoothness values, because of the lower value of its 

macrosmoothness, its printed surface characteristics can be considered to be 

rougher than the paper surface characteristics of unprinted machine glazed. 

These optical smoothness comparisons are illustrated in Figures 4.4-4.5. 

The scanning electron micrographs of printed samples for both gloss 

art and machine glazed as compared with unprinted samples are given in 

Figures 4.6-4.7 respectively. The micrographs of both prints clearly illustrate 

a distinct layer of ink covering the paper surface. 
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Table 4.7 Optical smoothness summary: unprinted and printed gloss art and 
machine glazed samples. Each result given is the average value of twenty 

different points for each sample (See Appendix E). 

(a) Macrosmoothness (Sm) 

= = 
Sample Sm{X) S.D. 95% C.I. for X Min. Max. 

Unprinted GA 0.968 0.074 0.934 to 1.003 0.873 1.129 

GA + 100% Y- ink 0.974. 0.084 0.935 to 1.014 0.855 1.133 
" 

Unprinted MG 0.111 0.020 0.101 to 0.120 0.079 0.154 

MG + 100% Y- inka 0.089 0.015 0.082 to 0.096 0.071 0.126 

a - Sm was significantly different when compared with unprinted MG (See 

Appendix F and Figure 4.5). 

(b) Microsmoothness (Su). 

= Sample Su{X) S.D. 95% C.I. for X Min. Max. 

Unprinted GA 0.951 , 0.037 0.933 to 0.968 0.872 0.991 

GA + 100% Y- ink 0.932 0.052 0.908 to 0.957 0.785 0.995 

Unprinted MG 0.837. 0.079 0.800 to 0.874 0.677 0.951 

MG + 100% Y- ink 0.874 0.056 0.848 to 0.901 0.750 0.958 

No significant differences were observed. 
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Figure 4.4 Optical smoothness of gloss art. 
(a) Macrosmoothness. 
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Figure 4.5 Optical smoothness of machine glazed. 
(a) Macrosmoothness. 
(b) Microsmoothness. 
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(a) 

139 

(b) 

Figure 4.6 Scanning electron micrographs x 5000. 
(a) unprinted GA. 

(b) GA printed with 100%Y·ink. 
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(a) 

, 141 

(b) 

Figure 4.7 Scanning electron micrographs x 600. 
(a) unprinted MG. 

(b) MG printed with 100%Y-ink. 
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4.3.2 Discussion· Part I. 

An ink is generally composed of pigments, ink vehicle and additives. 

The proportion of pigments in most inks is approximately 10-15% (that of the 

yellow pigment in the heatset yellow ink is 12.8%), therefore the main 

constituent is the ink vehicle. Moreover, it is generally known that one 

important factor contributing to the smoothness of the ink film is the amount 

of the ink vehicle 'holdout' on the paper surface. This means that if the 

pigment particles are completely covered by a level film of the vehicle, the 

ink film appears smooth. Therefore, a printed surface model is proposed as 

consisting of an ink vehicle-air interface rather than a pigment-air interface. 

This ink vehicle-air interface makes the ink film not far removed from 

Barkas' classical model, according to which any small area of the ink film is 

equivalent to a construct of mirror facets and rough facets. Mirror facets 

which are related to macro elements such as the dried polymer film of ink 

vehicle will reflect the incident light specularly. On the other hand, rough 

facets which are related to micro elements such as the pigment particles 

within the dried film will scatter the light. In addition, highly inclined mirror 

facets will lead to multiple reflections between sets of such facets. This is 

equivalent to diffuse reflection. Consequently, the reflection from the ink film 

includes surface specular reflection, surface scattering reflection and re

emerging diffuse reflection as shown in Figure 4.8. 
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Figure 4.8 Reflection from the ink film. 

The method uses Fresnel's reflectance data, averaged for a range of 

refractive index values of 1.5 - 1.9 as the reference standard data (See 

Appendix B); the same reference standard applies for both unprinted and 

printed surfaces owing to the similarity in the magnitude of the refractive 

index values of paper and ink. The refractive index of paper is 1.55 [Barkas, 

1939]; that of the oil-based vehicle is approximately 1.45-1.65 

[Judd & Wyszecki, 1976; Young, 1973]. 

Hemstock [1962] stated that Mie theory is not appropriate for 

appl~cation to paper due to the large size of paper particles such as fibres. 

Similarly, Mie scattering is not applicable to the printed paper surface 

because neither the vehicle film nor the pigments appear as single particles 

of submicron size. Although the particle size of organic pigments is normally 

in the submicron range, nevertheless it is known that no dispersion method 

is capable of producing 100% monodispersed particles. 
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Leekly et a1. [1970] observed that the reflectances of all printed 

surfaces were higher than those of unprinted surfaces due to the filling of 
( l 

paper crevi$es or pores and the leveling of the surface by the ink film. It was 7% 
I . 

found from the present study that the reflectance of unprinted and printed 

surfaces for both gloss art and machine glazed does show a similar monotonic 

increase with increasing incident angle. However, the magnitude of the 

reflectances varied between printed and unprinted samples and not 

necessarily in the same direction as reported by Leekly et a1. The reason for 

this argument is that the most influential factors which govern the 

magnitude of reflectance are the refractive index and the roughness of the 

surfaces. Regarding the refractive index of printed surfaces and paper 

surfaces, they are not significantly different as shown in the preceding 

section. Therefore, the dependency of the reflectance magnitude on the 

refractive index is of minor importance; it is considered that the surface 

roughness factor is predominant in this case. The results, on the other hand, 

agree well with Fetsko et aZ. [1973] who found that prints could be either 

smoother or rougher than the corresponding unprinted surface. 

It is understood that a print is a result of ink and paper interactions in 

a printing process. Both ink transfer in the printing nip and ink drying after 

the nip are the crucial interactions for the formation of printed paper 

surfaces. Major stages of the development of the printed surface 

characteristics are illustrated in Figure 4.9a for gloss art prints and 

Figure 4.10a for machine glazed prints. Generally for both cases, the 

formation of a print occurs as follows. The ink first contacts the paper at the 

entrance of the printing nip (stage 1). In the nip, the pressure applied not 

only compresses the porous structure of the paper but also hydraulically 
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impresses the ink into the compressed pores of the paper surface (stage 2). 

This is referred to as ink immobilization. At the nip exit, cavitation and 

filamentation occur in the ink film and eventually ink filaments split to give 

an amount of ink transfer on the surface (stage 3). After ink transfer, the 

paper decompresses and a redistribution of the ink may occur as some ink is 

imbibed into the expanded pores (stage 4) and this may continue to occur 

during the drying process. The ink film dries and results in a solid dried ink 

film on the surface (stage 5 and Figure 4.9b, 4.10b). It is known that ink 

penetration is generally involved in the drying of most printing inks. 

The differences of paper properties between gloss art paper and 

machine glazed paper, as can be seen in Table 4.1, were found to affect these 

basic stages which in turn determine the resultant printed surface 

characteristics. The most important factors are smoothness, porosity and oil 

absorbency properties. Smoothness and compressibility of the paper 

determine the extent of ink contacting paper at the first stage. It is commonly 

known that a rougher paper is more compressible than a smooth paper. Gloss 

art paper, as a result of a coating process, shows a smoother surface and a 

less porous structure than machine glazed paper as indicated by the Parker 

Print-surf and the Bendsten porosity results. This leads to a better contact 

between the surface of gloss art and the ink. However, this effect of surface 

roughness on ink transfer in offset lithographic process is not significant due 

to the use of a resilient rubber blanket. Furthermore, the amount of ink 

transferred to machine glazed was found to be much greater (almost twice) 

than that transferred to gloss art even though the target print density of 

machine glazed is lower than that of gloss art, as shown in Table 4.4. This 

can be explained by the effects of both the surface roughness and the porous 
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(a) 

(b) 

Figure 4.9 A schematic illustration of ink illm formation for gloss art. 

147 



(b) 

Figure 4.10 A schematic illustration of ink rIlm formation 
for machine glazed. 
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structure on ink immobilization of machine glazed paper. The results of ink 

transfer are in agreement with the study of DeGrace & Dalphond [1989] who 

investigated the development of print density and print-through resulting 

from ink and paper interactions both during and after printing. They 

reported that the rougher the surface, the more ink is needed to obtain the 

desired optical coverage which in turn determines print density. 

It is clearly seen that ink penetration plays an important role both in 

ink transfer and ink drying processes. Ink penetration in the nip is mainly 

governed by the printing pressure whereas ink penetration after the nip 

occurs by capillary action. It is believed that this phenomenon makes a 

dominant contribution to the characteristics of printed surfaces as will be 

further discussed. In studying penetration of ink into paper, the relationship 

between the pore sizes of paper and the pigment particle sizes of ink has to 

be taken into account. 

In the case of gloss art paper, during impression where printing 

pressure is applied, only a small amount of ink could penetrate into the 

paper and thus fill in all the small surface pores. This is because of its 

relatively small pore size as compared to the pigment size. The average 

particle size of yellow pigments is approximately 0.2 microns [Vernardakis, 

1984] whereas the pore size of gloss art [assumed from the study of 

Bristow & Berglenblad, 1992] may be approximately 0.1 microns. Moreover, 

it should be noted that when the pigments are dispersed into the ink vehicle 

system, some aggregates or flocculates may occur. Mter free ink film 

splitting, most of the ink including most pigments remain on the surface. An 

earlier study of Fetsko [1958] indicated that the magnitude of the free ink 
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fi~ splitting to coated paper is approximately 40% which is twice the '/' 

magnitude of that to uncoated paper. Mter ink transfer, only the ink vehicle 

penetrates further into the paper as part of the ink drying process. Thus, 

there is a separation of ink vehicle from the pigment which is known as a 

filtration phenomenon [Coupe & Smith, 1956; Christensen, 1967; 

Lepoutre et al., 1979]. However, vehicle penetration was also restricted by 

the porous structure itself. As the penetration slowly proceeds and the ink 

vehicle drains away from the pigments, ink vehicle capillaries are left 

between the pigment particles leading to gel characteristics of the ink which 

tends to retain the ink vehicle on the surface. Therefore, there is sufficient 

ink vehicle to provide a covering layer for pigment particles in the ink film to 

result in a uniform printed surface as shown schematically in Figure 4.9b. 

This ink vehicle film can be considered to correspond with Barkas' mirror 

facets. Printed gloss art samples when evaluated by the optical print 

smoothness method yielded macrosmoothness and microsmoothness values 

not significantly different from those for unprinted surfaces (see Table 4.7 

and Figure 4.4). Therefore, it is concluded that printed gloss art is no less 

smooth than the unprinted surface. Regarding ink transfer parameters, it 

can be concluded that it is the ink film splitting factor and not the ink 

immobilization factor which significantly determines the characteristics of 

printed surfaces for coated papers. 

In the case of machine glazed, a large amount of ink including the 

pigments was impressed into the compressed pores of the paper surface 

during impression owing to its more porous structure. The pore sizes for 

uncoated papers are in the microns range without any dominant size, unlike 

coated papers [Banks, 1975; Bristow & Berglenblad, 1992]. This is because of 
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the tendency of the fibres to aggregate into large lumps during the 

manufacture of the paper. It can be seen from the Bendsten porosity results 

(Table 4.1) that the porosity of machine glazed is approximately 170 times 

greater than that of gloss art. Under the same printing conditions and ink 

film thickness on the blanket, the ink film splitting portion of machine glazed 

would be less than that of gloss art. After ink transfer, ink vehicle from the 

immobilization portion would tend to penetrate further into the smaller 

pores, leaving the large pores open. Some of the pigment particles may 

accompany the ink vehicle. Thus, the extent of filtration phenomena is not 

seen to be significant. Ink vehicle from the splitting portion on the surface 

also penetrates, but relatively slowly, into the body of the paper by diffusion 

or through small pores of the surface. As a consequence, the ink film appears 

to follow the contour of the unprinted surface (Figure 4.10b). The ink which 

remains on the surface would be expected to behave as highly inclined mirror 

facets within the macro regions. Printed machine glazed when evaluated by 

the optical method therefore yields a lower value in the macrosmoothness as 

compared to the unprinted surface. Regarding the ink transfer parameters, it 

can be concluded that ink immobilization plays a more important role in 

determining the characteristics of printed surfaces for uncoated papers. 

In addition, it can be concluded that porosity is the most crucial factor 

in the formation of printed surface characteristics in this part of the study. 

The scanning electron micrographs of both unprinted paper surfaces 

(Figures 4.6-4.7) reveal the significant differences of the surface pore sizes of 

coated gloss art and uncoated machine glazed. The micrograph of gloss art 

printed with heatset yellow ink shows a distinct ink layer covering the paper. 

The micrographs of machine glazed printed with this ink do not show the 
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same details of ink layering as in the case of gloss art. Nevertheless, they do 

show ink layering with fibre related structure. Comparing the micrographs 

between gloss art prints and machine glazed prints, provides support for the 

importance of the filtration phenomenon on the formation of printed surface 

characteristics. 

Part lI(a) - The effects of emulsification on print smoothness. 

4.3.3 Results - Part I1(a). 

This study was aimed at the offset lithographic process, the presence of 

fountain solution is an important factor in this printing process and its 

effects on print smoothness were, therefore, investigated. Different water 

contents, 10%, 20% and 30% in the 'emulsion inks' were prepared with the 

heatset yellow ink. Gloss art and machine glazed were then printed with 

these 'yellow emulsion inks' to obtain a target print density, that is D - 0.92 

for gloss art and D - 0.84 for machine glazed. The optical smoothness of these 

prints was evaluated (Results are given in Appendix E, Table E.l·E.4). 

Statistical methods were employed to determine whether the optical 

smoothness results of unprinted and printed samples are significantly 

different. 

Tables 4.8-4.9 and Figures 4.11-4.12 summarize the macrosmoothness 

and microsmoothness of both gloss art prints and machine glazed prints 

respectively. To consider changes in the print smoothness, a reference 

standard needs to be established. Both gloss art and machine glazed printed 

with heatset yellow ink (no emulsified fountain solution in the ink) were 

used as reference standards. 
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The scanning electron micrographs of four 'yellow' prints for gloss art 

and machine glazed samples are shown in serial order for comparison in 

Figure 4.13-4.14 repectively. 
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Table 4.B Print smoothness summary: gloss art printed with heatset yellow 
ink and the 'yellow emulsion inks'. Each result given is the average value of 
twenty different points for each sample (See Appendix E). 

(a) Macrosmoothness (Sm). 

.,. 
Sample Sm (X) S.D. 95% C.I. for X Min. Max. 

GA + 100% Y- ink 0.974 0.084 0.935 to 1.014 0.B55 1.133 

GA + 90% Y- ink: 10% F.S. 1.023 0.107 0.973 to 1.073 0.B85 1.210 

GA + 80% Y- ink: 20% F.S. 1.010 0.090 0.967 to 1.052 0.853 1.225 

GA + 70% Y- ink: 30% F.s.a 0.838 0.077 0.802 to 0.B74 0.668 0.943 

a - Sm was significantly different from the other three printed samples. (See 
Appendix F and Figure 4.11). 

(b) Microsmoothness (Su). 

Sample Su (X) S.D. 
... 

95% C.1. for X Min. Max. 

GA + 100% Y- ink 0.932 0.052 0.908 to 0.957 0.785 0.995 

GA + 90% Y- ink: 10% F.S. 0.931 0.043 0.911 to 0.951 0.858 0.991 

GA + BO% Y- ink: 20% F.S. 0.932 0.042 0.912 to 0.951 0.855 0.983 

GA + 70% Y- ink: 30% F.S. 0.911 0.054 0.885 to 0.936 0.774 0.996 

No significant differences were observed. 
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Table 4.9 Print smoothness summary: machine glazed printed with heatset 
yellow ink and the 'yellow emulsion inks'. Each results given is the average 
value of twenty different points for each sample (See Appendix E). 

(a) Macrosmoothness (8m). 

Sample Sm(X) S.D. 95% C.I.for X Min. Max. 

MG + 100% y. ink 0.089 0.015 0.082 to 0.096 0.071 0.126 

MG + 90% y. ink: 10% F.S. 0.087 0.020 0.078 to 0.096 0.061 0.121 

MG + 80% y. ink: 20% F.s.a 0.065 0.012 0.060 to 0.070 0.037 0.088 

MG + 70% y. ink: 30% F.s.a 0.065 0.011 0.060 to 0.070 0.044 0.087 

a • Sm were significantly different from machine glazed printed with 100% 
heatset yellow ink and 10% water content 'yellow emulsion ink' (See 
Appendix F and Figure 4.12). 

(b) Microsmoothness (Su). 

Sample SU (X) S.D. 95% C.I.for X l.fin. Max. 

MG + 100% y. ink 0.874 0.056 0.848 to 0.901 0.750 0.958 

MG + 90% y. ink: 10% F.S. 0.855 0.101 0.808 to 0.902 0.667 0.973 

MG + 80% y. ink: 20% F.S. 0.849 0.094 0.805 to 0.893 0.703 0.998 

MG + 70% y. ink: 30% F.S. 0.846 0.076 0.810 to 0.881 0.696 0.968 

No significant differences were observed. 
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Figure 4.11 Print smoothness of gloss art (pigmented prints). 
(a) Macrosmoothness. 
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Figure 4.12 Print smoothness of machine glazed (pigmented ink). 
(a) Macrosmoothness. 
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(b) Microsmoothness. 
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(a) 

158 

(b) 

Figure 4.13 Scanning electron micrographs x 5000. 
(a) GA printed with lOO%Y-ink. 

(b) GA printed with 9O%Y-ink:lO%F.S. 

(c) GA printed with 80%Y-ink:20%F.S. 

(d) GAprinted with 70%Y-ink:30%F.S. 
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(a) 
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(b) 

Figure 4.14 Scanning electron micrographs x 600. 
(a) MG printed with lOO%Y-ink. 
(b) MG printed with 9O%Y-ink:lO%F.S. 
(c) MG printed with 80%Y-ink:20%F.S. 
(d) MG printed with 70%Y-ink:30%F.S. 
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The analysis of variance and the multiple comparison test (See 

Appendix F), in the case of gloss art prints, revealed that only the 

macrosmoothness mean value of gloss art printed with 30% water content 

'yellow emulsion ink' was significantly different from those of the other three 

printed samples. No significant differences were observed for the 

microsmoothness of these prints. The macrosmoothness of printed gloss art 

decreased from a value of 0.974 (printed with no fountain solution emulsified 

in the ink) to a value of 0.838 (printed with 30% water content emulsified in 

the ink). The printed surface of gloss art printed with 30% water content 

'yellow emulsion ink' is therefore a rougher surface. 

In the case of machine glazed, these statistical methods revealed that 

the macrosmoothness mean values of machine glazed printed with 20% and 

30% water content 'yellow emulsion inks' were significantly different from 

those printed with heatset yellow ink and 10% water content 'yellow 

emulsion ink'. No significant differences were observed for the 

microsmoothness of these prints. 

It is interesting to note that within the range explored of 

em ulsification, the macrosmoothness values of printed machine glazed can be 

characterized by two smoothness levels. One level included: the value of 

0.089 from machine glazed printed with heatset yellow ink, which was used 

as a reference; and of 0.087 from machine glazed printed with 10% water 

content 'yellow emulsion ink'. The other level included machine glazed 

printed with 20% and 30% water content 'yellow emulsion inks', these 

resulted in the same lower macrosmoothness value of 0.065 and therefore fall· 

into a rougher level. 

166 



4.3.4 Discussion· Part lI(a). 

There was a difference between the gloss art and the machine glazed 

samples; namely in the critical amount of fountain solution emulsified in the 

ink which would affect print smoothness. Nevertheless both show the same 

trend of a decrease in print smoothness with increasing amount of emulsified 

fountain solution. These printed surfaces are rougher. It is apparent that 

another important factor involved is the 'ink'. Therefore, in studying the 

effects of emulsification on print smoothness, it is necessary to consider the 

quality of these 'emulsion inks'. Table 4.5 gives the rheological properties of 

the 'yellow emulsion inks'. It can be seen that as the amount of emulsified 

fountain solution increases, the viscosity decreases. In this study, it also 

appears that tack decreases as the amount of emulsified fountain solution 

increases. The rheological properties of emulsion inks have been examined by 

many researchers and these findings are in ageement with those observed by 

Lavelle et al.,[1969] and Bassemir & Shubert [1985]. Other important factors 

are the size and the distribution of the emulsified droplets. It is believed that 

increasing the amount of emulsified fountain solution leads to the occurrence 

of more large droplets due to the greater probability of movements of small 

droplets which coalesce into one large droplet. This instability of emulsion 

ink was noted by Banks [1970]. In addition, it will be assumed that the 

technique used to prepare the 'yellow emulsion inks' is equivalent to that of 

Tasker et al., [1983] who employed a three-rolllithobreak tester operating at 

a low speed of 100 rpm and found that the droplet sizes never exceeded 2 

microns with a good heatset ink. They also reported that inks which formed a 

wide range of emulsified droplet sizes above 8 microns upto 20 microns were 

problem inks. Also it is known that fountain solution having isopropanol 

produces emulsions of finer and more uniform droplets than that without 
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isopropanol [Braun, 1985]. Therefore, it will be assumed that at low amount 

of water content in this 'yellow emulsion ink', the average droplet sizes are in 

a range of less than 2 microns. When the emulsified amounts exceed the 

critical amount, the sizes of the emulsified droplets vary considerably. 

As discussed in Part 1, both ink transfer and ink drying processses 

determine the characteristics of printed surfaces. Therefore, it is postulated 

that the roughness of these printed surfaces arose from interactions between 

the 'emulsion inks' and the papers; where the relevant phenomena are as 

discussed in the following. Figure 4.15 is a schematic illustration of three 

phenomena which are postulated to be the causes of print roughness. 

Considering the ink transfer phenomena. It is accepted that the extent 

of ink contact with paper depends mostly on the paper properties. The extent 

of contact also depends to a lesser extent on ink properties. It was reported 

that short inks produce less contact between ink and paper 

[Walker & Fetsko, 1955]. Short ink generally has higher tack. The tack of 

'emulsion inks' depends on the amount of emulsified fountain solution; and 

as found in the present study, the tack decreases with 'emulsion inks'. 

Therefore, it can be assumed that with 'emulsion inks', the ink/paper contact 

should be more. However, as shown in Table 4.5, the decrease in tack of 

'yellow emulsion inks' is only 7% whereas the decrease in viscosity is more 

than 60%. In addition to the use of a resilient rubber blanket, it is considered 

that the influence of ink tack on ink/paper contact in these cases can be 

negligible. 
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} Ink Film 

I-------f} Paper 

(a) 

(b) 

(c) 

Figure 4.15 A schematic illustration of rough printed surfaces caused by 
(a) Cavitation and filamentation. 
(b) Ink penetration. 
(c) Pigment aggregation. 

Note: /:). --- yellow pigment e --- emulsified fountain solution 
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Ink immobiliztion refers to the ink which was forced to penetrate into 

the paper by printing pressure. It was found that with decreasing ink 

viscosity, ink immobilization increased [Schaeffer, et aI., 1961]. Accordingly, 

it is believed that more ink was impressed into the paper with 'emulsion inks' 

according to the amount of fountain solution emulsified. 

1. Cavitation and filamentation (Figure 4.15a). At the nip exit, 

cavitation and filamentation occur. These phenomena are related to ink film 

splitting. It was found that pigments in an oil vehicle behave as foreign 

nuclei in the dispersion system and enhance cavities formation [Myer et al., 

1959]. From this knowledge, it is postulated that the presence of emulsified 

droplets in the ink film may also act as nuclei for cavitation and 

fllamentation. However, as a result of increasing the amount of emulsified 

fountain solution, the droplet sizes are in a wider range (possibly up to 20 

microns) and more large droplets can occur. These droplets initiate cavities at 

different positions within the ink film; large droplets initiated cavitation 

more readily than small droplets [Lyne & Aspler, 1982]. As a consequence, at 

the moment of ink film splitting, the ink filaments rupture unevenly. After 

ink film splitting, the smoothness of the printed surface strongly depends on 

the flow property of the transferred ink film, to level out evenly before the 

ink sets. This explanation is not completely contrary to Surland [1983] who 

suggested a 'cubic film splitting model' to explain the effect of emulsification 

on ink film splitting in the ink transfer process. Although he concluded that 

emulsion inks transfer more evenly than the corresponding inks, it has to be 

commented that the sizes of the disruptive particles should necessarily be 

considered. Cavitation and filamentation are postulated to be a cause of the 

roughness of printed surfaces. Many previous studies . support this. For 

170 



example, it has been reported that uniform small droplets give the best gloss 

and uniform large droplets can give a better gloss than uneven-sized droplets 

[Dahms & Hafner, 1988]. Low water pickup inks were found to produce 

better prints than high water pickup inks; with reference to the print 

qualities studied namely print density, print gloss, dot gain, trapping and 

print mottle [Bassemir et aZ., NPIRI 1990]. 

The critical point for the amount of emulsified fountain solution which 

causes rough printed surfaces, differs between gloss art and machine glazed; 

and this can be understood in terms of cavitation and filamentation as 

follows. In the case of gloss art, it has been shown that very little ink 

penetrates into the paper, most of the ink remains on the surface. Thus, it is 

the presence of those emulsified fountain solution droplets, within the ink 

layer on the surface, which plays an important role in cavitation and 

filamentation; and the roughness effect on the printed surface was found at 

30% water content only. In the case of machine glazed, although more ink 

has penetrated during impression, nevertheless the amount of ink 

transferred was not sufficient to fill up the large pores. Air released from the 

large pores behaves in analogous manner to large emulsified droplets. Thus, 

at 20% water content, both emulsified fountain solution droplets within the 

ink layer on the surface and air from the paper surface initiate cavitation. 

2. Ink penetration (Figure 4.15b). As previously discussed, it was 

found that the viscosity decreases after increasing the amount of emulsified 

fountain solution. It is also postulated that more large droplets occur with 

increasing the amount of emulsified fountain solution. These two factors 

integrate in the penetration process to cause the printed surfaces to become 
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rough. In the case of gloss art, owing to the lower viscosity of the 30% water 

content 'yellow emulsion ink', more ink can penetrate in the nip; and after 

the nip the ink vehicle penetrates further. Because of a wide range of sizes of 

emulsified droplets within this emulsion ink, the coating layer or both the 

coating layer and the fibres underneath become affected by this emulsion 

ink, more at some points than at others. This ink penetration can cause 

release of internal stress of the coating ·layer, fibre swelling, and bond 

breakage; leaving unbalanced stresses. Both the coating layer and the fibres 

underneath have been displaced; leading, at particular points, to localized 

relative displacements. As the ink film is dried on this surface, a rough 

printed surface is formed. The explanation in the case of machine glazed 

prints also follows a similar pattern although the critical point is at 20% 

water content for machine glazed. The difference in the critical point is due to 

the rougher and more porous structure of machine glazed than gloss art. 

Thus, at 20% of emulsified fountain solution in the yellow ink, there is a 

sufficient penetration depth (due to lowered viscosity) to cause disruption of 

the fibre network geometry of machine glazed. Swelling and debonding 

further increase the paper roughness and surface porosity and thus ink 

vehicle and pigments may penetrate further into deeper pores where they do 

not contribute to smoothness. This phenomenon is postulated to be analogous 

to water and paper interaction during paper coating 

[Skowronski & Lepoutre, 1985]. 

3. Pigment aggregation (Figure 4.15c). It was found that pigments 

show a preference for water rather than the vehicles and all pigment systems 

emulsified greater amounts of water than did the corresponding vehicles 

[Lavelle et al., 1969; Banks, 1970; Braun, 1985]. From these findings, it can 
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be envisaged that the emulsified fountain solution may preferentially spread 

as a thin film around the pigment surfaces. With increasing amounts of 

emulsified fountain solution, more pigment is covered with a layer of 

fountain solution film. Further ink penetration, after ink transfer by 

capillary action, appears to be affected by the penetration of ink in the nip. 

As previously discussed, ink penetration in the nip can cause fibre swelling 

which causes a reduction in pore size. It is known that narrower pores exert a 

higher capillary negative pressure and that the rate of penetration is 

dependent on the viscosity. Therefore, more ink vehicle of 30% water content 

'yellow emulsion ink' can penetrate after ink transfer; this can lead to a 

redistribution of components within the ink layer on the surface, which 

causes the pigments to join together with the coalescence of the fountain 

solution film. The effect of pigment aggregates on the roughness of printed 

surfaces will be seen only if there is not sufficient ink vehicle to form film 

thick enough to cover these pigment aggregates. The retention of ink vehicle 

within the ink film is a result of vehicle capillaries formed within the ink fim 

during the drying process. This further indicates an important role of the 

pigment in the ink. It is reasonable to conclude that this effect of pigment 

aggregation should be clearly seen in the case of gloss art prints because 

more pigments remain on the surface than on machine glazed prints .. 

The micrographs of all 'yellow' prints except that printed with 30% 

water content 'yellow emulsion ink' show similar printed surface 

characteristics. The micrograph of gloss art printed with 30% water content 

'yellow emulsion ink' illustrates that some areas protruded from the ink film. 

This is believed to be the yellow pigment aggregates. Further work is 

required to confirm whether the protruding elements are due to localized 
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coating or fibre rising or to pigment aggregates remaining on the uppermost 

layer. 

In comparisions between the micrographs of four 'yellow' machine 

glazed prints, it can be seen that the printed surface characteristics of 

machine glazed printed with 20% and 30% water content 'yellow emulsion 

ink' are slightly different from the other samples. That is the fibre structures 

shown for these two samples appear to be less compact and raised. 

Critical water content. 

Rosenberg [1986] has defined two types of water taken up by the ink 

in the offset lithographic process: emulsified water and surface free water; 

and suggested that a critical water content of every ink should be indicated, 

below which the free water was emulsified rapidly and is finally unable to 

keep the non image areas clean. Similarly, the present study considers the 

critical water content as the limit of emulsification above which print 

smoothness cannot be achieved. Figure 4.16 is the plot of print smoothness as . 

a function of % water content. The results suggest that there is a trend for 

print smoothness to decrease from a point where the water content in the 

'emulsion ink' is greater than 20% for gloss art print and 10% for machine 

glazed print. The interval of %water content emulsified in the ink under 

investigation was too wide. The effects of emulsification within the range of 

10%-20% appear to be interesting points if for example the same job is aimed 

to be printed on different papers under the same printing conditions. 

However, it may be deduced from Figure 4.16 that the critical amount of 

fountain solution which can be emulsified in this heatset yellow ink is 15% 

water content. This, in fact, suggests that if ink and water balance in the 
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press is set so that this heatset yellow ink emulsifies approximately 15% 

fountain solution, good quality can be expected for the resulting prints. 

Huelsman [1952] stated that the inks which have too low water absorption 

are bad, inks which absorb 15-20% of water are good and inks which absorb 

over 25% of water are definitely bad. 
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Figure 4.16 Print smoothness as a function of % water content. 

The results from this experimental part lead to another 

hypothesis that pigment aggregation may playa more important role in 

decreasing print smoothness. Further experimental studies were therefore 

undertaken to examine the role of pigments in the emulsification and the 

effects on print smoothness. 
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Part II(b) - Study of the role of the pigments in the 'emulsion inks' 

and the effect on print smoothness. 

Experimental methods. 

To examine this effect, this part of the experiment was designed to use 

a specially made unpigmented ink. This is an 'ink' having the same 

formulation as the heatset yellow ink with the yellow pigments excluded and 

was prepared and supplied by Coates Lorilleux International. This will be 

referred to as U -ink. Experimental methods used were repeated as described 

in the previous part; with some minor differences which will be noted. 

1. Pre-emulsified unpigmented inks. It was found that the print 

smoothness values of both gloss art and machine glazed decreased when 

printed with 30% water content 'yellow emulsion ink', therefore 30% water 

content 'unpigmented emulsion ink' was prepared to investigate the effect. 

2. Printing. It is not possible to use density readings to control the test 

prints when printing with an unpigmented ink. Therefore, the amounts to be 

transferred of unpigmented ink and 30% water content 'unpigmented 

emulsion ink' were calculated; so as to be equivalent to the corresponding 

amounts of heatset yellow ink, (excluding the yellow pigments), in the 

previous print-run. These amounts of ink transfer are given in Table 4.10. 
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Table 4.10 The amounts of ink transfer for gloss art and machine glazed 

printed with 'unpigmented inks'. 

Sample 

GA + 100% U - ink 

GA + 70% U - ink: 30% F.S. 

MG + 100% U - ink 

MG + 70% U - ink : 30% F.S. 

3. Drying as previously described. 

ink transfer (g/m2 ) 

0.67 

0.77 

1.36 

1.41 

4. The rheological properties of the unpigmented ink and the 

corresponding 30% water content 'emulsion ink' were determined and are 

given in Table 4.11. It can be seen that the viscosity of this unpigmented ink 

is lower whereas the tack is greater than that of heatset yellow ink 

(Table 4.5). Nevertheless, both viscosity and tack decreased when fountain 

solution was emulsified in this unpigmented ink. 

Table 4.11 The rheological properties of unpigmented ink and the 

corresponding 'emulsion ink'. 

Property 

Viscosity, (Poise) 32°C 

Tack, (,Tack-o-Scope' unit), 
25°C 

Ink sample 

100% U -ink 

49 

138 

177 

70%U-ink+ 
80% F.S. 

31 

119 



5. Print smoothness and print gloss were evaluated. Print smoothness 

results are given in Appendix E (Tables E.5-E.8). Print gloss results of both 

gloss art and machine glazed printed with unpigmented ink and 

'unpigmented emulsion ink' are presented in Table 4.12. It can be noted that 

the print gloss values between each pair of 'unpigmented' prints for both 

gloss art and machine glazed samples are not significantly different. 

However, comparing the corresponding samples in Table 4.6, significant 

differences also appear for the pigmented samples. Print gloss values of all 

gloss art prints are different from paper gloss of the unprinted samples. In 

the case of machine glazed samples, the gloss values for both paper and 

prints appeared to be so low that it may be assumed that the geometry of this 

glossmeter is not appropriate to determine such low gloss surfaces. 

Table 4.12 Print gloss of gloss art and machine glazed printed with 'unpig

mented inks'. 

Sample 

GA + 100% U - ink 

GA + 70% U - ink : 30% F.S. 

MG + 100% U - ink 

MG + 70% U - ink: 30% F.S. 

Gloss (%) 

67.3 

66.9 

9.8 

9.6 

6. Statistical methods were applied to these optical smoothness results. 

Summaries of these statistical analyses are shown in Appendix F (Table F.6-

F.9). 
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7. Water pickup test of this unpigmented ink was carried out. A graph 

plotted between % water pickup versus time is shown in Figure 4.17. 
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Figure 4.17 The percentage water uptake of unpigmented ink. 

As compared to the percentage water uptake of heatset yellow ink in 

Figure 4.2, it can be seen that the amount taken up by the heatset yellow ink 

was almost twice the amount taken up by the unpigmented ink. This is in 

agreement with Chambers [1993] who used other pigmented and 

unpigmented systems and similar results were obtained. These results 

indicate a significant role of pigments in the mechanism of water uptake. 
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The role of pigment in the emulsification and its effect on print 

smoothness. 

4.3.5 Results - Part II(b) 

Tables 4.13-4.14 and Figures 4.18-4.19 summarize macrosmoothness 

and microsmoothness of four printed samples, namely: prints printed with 

heatset yellow ink, printed with 30% water content 'yellow emulsion ink', 

printed with unpigmented ink and printed with 30% water content 

'unpigmented emulsion ink'; for both gloss art and machine glazed. 

Scanning electron micrographs of unprinted sample, and samples 

printed with unpigmented ink and printed with 30% water content 

'unpigmented emulsion ink' for gloss art and machine glazed papers are 

shown in Figures 4.20-4.21 respectively. 

Considering the results from the analysis of variance and multiple 

comparison tests, in the case of these printed gloss art samples (Table 4.13 

and Figure 4.18), these statistical methods bring out some additional 

interesting information relating to pigments. No significant difference was 

observed for gloss art prints between the macrosmoothness mean values for 

unpigmented ink with and without 30% water content; but both were 

significantly different from those for gloss art printed with heatset yellow ink 

and with 30% water content 'yellow emulsion ink'. No significant differences 

were observed in the microsmoothness between these prints. It can be 

concluded that both 'unpigmented' prints have smoother surfaces; and gloss 

art printed with 30% water content 'yellow emulsion ink' possesses the 

roughest printed surface characteristics of the group. 
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In the case of the printed machine glazed samples (Table 4.14 and 

Figure 4.19), the statistical methods revealed that the macrosmoothness 

mean value, using unpigmented ink, was significantly different from that for 

30% water content 'unpigmented emulsion ink'. Moreover, both were 

significantly different from those for heatset yellow ink and for 30% water 

content 'yellow emulsion ink'. No significant differences were observed, 

however, in the microsmoothness between these prints. It should be noted 

that within the machine glazed prints, the smoothest printed surface was 

obtained when printed with 30% water content 'unpigmented emulsion ink' 

whereas the roughest printed surfaces were obtained when printed with the 

amount of20% (or more) water content in 'yellow emulsion ink'. 
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Table 4.13 Print smoothness summary: gloss art printed with heatset yellow 
ink, unpigmented ink and their corresponding 30% water content 'emulsion 
inks'. Each result given is the average value of twenty different points for 
each sample (see Appendix E). 

(a) Macrosmoothness (Sm). 

Sample Sm (X) S.D. 95% C.I. for X Min. Max. 

GA + 100% V-ink 0.974 0.084 0.935 to 1.014 0.855 1.133 

GA + 70% V-ink : 30% F.s.a 0.838 0.077 0.802 to 0.874 0.668 0.943 

GA + 100% U-inkh 1.130 0.125 1.072 to 1.189 0.914 1.363 

GA + 70% U-ink : 30% F.S.h 1.172 0.123 1.115 to 1.230 0.946 1.377 

a - Sm was significantly different from the other three prints (See 

Appendix F and Figure 4.18). 
b - 8m was significantly different from gloss art printed with heatset yellow 

ink (See Appendix F and Figure 4.18). 

(b) Microsmoothness (Su). 

Sample Su (X) S.D. 95% C.I. for X Min. Max. 

GA + 100% Y-ink 0.932 0.052 0.908 to 0.957 0.785 0.995 

GA + 70% Y-ink : 30% F.S. 0.911 0.054 0.885 to 0 936 0.774 0.996 

GA + 100% U-ink 0.945 0.035 0.928 to 0.961 0.861 0.994 

GA + 70% U-ink: 30% F.S. 0.940 0.029 0.926 to 0.953 0.893 0.994 

No significant differences were observed. 
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Table 4.14 Print smoothness summary: machine glazed printed with heatset 
yellow ink, unpigmented ink and their corresponding 30% water content 
'emulsion inks'. Each result given is the average value of twenty different 
points for each sample (see Appendix E). 

(a) Macrosmoothness (Sm). 

Sample Sm (X) S.D. 95% C.I.for X Min. Max. 

MG + 100% Y-ink 0.089 0.015 0.082 to 0.096 0.071 0.126 

MG + 70% Y-ink: 30% F.S.a 0.065 0.011 0.060 to 0 .070 0.044 0.087 

MG + 100% U-inkb,c 0.104 0.013 0.098 to 0.110 0.086 0.132 

MG + 70% U-ink : 30% F.S.c 0.116 0.026 0.104 to 0.128 0.083 0.169 

a - Sm was significantly different from the other three printed samples. (see 
Appendix F and Figure 4.19). 

b - Sm was significantly different from machine glazed printed with 30% 

water content 'unpigmented emulsion ink' (see Appendix F and Figure 4.19). 

c - Sm was significantly different from machine glazed printed with heatset 
yellow ink (see Appendix F and Figure 4.19). 

(b) Microsmoothness (Su). 

Sample SU (X) S.D. 95% C.I.for X Min. Max. 

MG + 100% V-ink 0.874 0.056 0.848 to 0.901 0.750 0.958 

MG + 70% Y-ink: 30% F.S. 0.846 0.076 0.810 to 0.881 0.696 0.968 

MG + 100% U-ink 0.854 0.092 0.811 to 0.897 0.702 0.987 

MG + 70% U-ink : 30% F.S. 0.853 0.087 0.812 to 0.894 0.711 0.969 

No significant differences were observed. 
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Figure 4.18 Print smoothness of gloss art (pigmented and unpigmented prints). 
(a) Macrosmoothness. 
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(b) Microsmoothness. 
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(pigmented and unpigmented prints). 

(a) Macrosmoothness. 
(b) Microsmoothness. 
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Figure 4.20 Scanning electron micrographs x 5000. 

(a) unprinted GA. 

(b) GA printed with 100%U·ink. 
(c) GA printed with 70%U·ink:30%F.S. 
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Figure 4.21 Scanning electron micrographs x 600. 

(a) unprinted MG. 
(b) MG printed with 100%U·ink. 
(c) MG printed with 70%U.ink;30%F.S. 
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4.3.6 Discussion - Part II(b). 

The result of both gloss art and machine glazed printed with 30% 

water content 'unpigmented emulsion ink' indicates a smoother surface than 

that printed with unpigmented ink (no emulsified fountain solution) 

although the increase in the case of gloss art is not significant. To explain 

this effect, it is necessary to consider the emulsification behaviour of the 

unpigmented system. In Figure 4.17, besides the rapid rate of emulsification 

within the first minute, the results show that although the rate of 

emulsification decreases at first, nevertheless, subsequently the rate remains 

fairly constant and does not tend to zero; which means that the unpigmented 

ink has not yet reached its saturation for emulsified fountain solution. It is 

capable of taking up more fountain solution. Therefore, it is postulated that 

with 30% water content in this unpigmented ink, the ink is enabled to form 

fine emusified fountain solution droplets of a narrow range of droplet size. 

These emulsified droplets enhance cavitation, as previously described, and 

consequently the ink transfers more evenly. 

It is also found that all prints, printed with unpigmented ink and its 

(unpigmented) emulsion ink, have smoother surfaces than those printed with 

heatset yellow ink and 'yellow emulsion inks'. Thus, it is interesting to 

compare the emulsification behaviour between heatset yellow ink and 

unpigmented ink. In Figure 4.2 and Figure 4.17, it can be seen that within 

the first minute of emulsification, the pigmented system has emulsified 

approximately three times the amount as compared with the unpigmented 

system. However, the rate of emulsification for the pigmented system first 

drops dramatically and tends to zero which means that the pigmented system 

reaches saturation for emulsified fountain solution. This is not the case for 
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the unpigmented system as we have seen. It can be assumed that the system 

which easily reaches its saturation for emulsified water tends to have a 

higher probability for emulsified droplets to amalgamate. Therefore, it may 

be inferred that the unpigmented ink may form fine emulsified droplets of a 

narrower range in size; as compared to heatset yellow ink, having a wider 

range in size. The 'unpigmented emulsion ink' then transfers more evenly. A 

conclusion therefore can be drawn that the amount of emulsified fountain 

solution is not solely responsible for the decrease in print smoothness. The 

nature of the 'emulsion ink' having pigments in it is a more dominant 

contributor to this decrease. Pigment aggregates may occur which, as 

previously discussed, can lead to uneven ink film formation. 

With reference to the proposed printed surface model, it can be 

understood that the decrease in print smoothness of both gloss art and 

machine glazed prints is mainly due to a change in average facet angles at 

the area where the pigment aggregates adhere and to a smaller extent due to 

the fibre and/or the coating rising. 

Referring to the scanning electron micrographs in Figures 4.20-4.21, 

because where no pigment is included in the ink, it might be erroneous to 

draw a conclusion a priori that these ink films have the same contours as the 

unprinted surfaces. However careful consideration of the images sugge,sts 

that these 'unpigmented' printed surfaces are uniform ink films which follow 

the details of the unprinted surfaces underneath. 

It is interesting to note that the results from this study coincide with 

the results from other studies [Hayashi & Amari, 1992; Bery & Loel,1992]. 
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Hayashi & Amari studied dynamic ink transfer and splitting of emulsified 

ink and found that emulsified fountain solution in the ink accelerates the 

formation of pigment aggregates. Bery & Loel studied eight coated papers 

printed on a commercial web offset press and evaluated surface roughness of 

both unprinted and printed surfaces using a Parker Print-surf instrument. 

They found in a single colour printing that emulsification of fountain solution 

in the ink caused a decrease in the print smoothness. The results in the 

present study, as observed by the optical method also indicate a decrease in 

print smoothness. This confirms that, where print. smoothness is of 

importance and is to be studied, an appropriate laboratory set-up using this 

optical method can yield reliable results which can be correlated to practical 

printing. This helps to save the cost of using an expensive commercial 

printing press. 

Relationship between print gloss and print smoothness. 

The earlier study of paper surface structure [Hansuebsai, 1989] has 

found that gloss correlates well with macrosmoothness. The relation between 

print gloss and print smoothness is also studied. Figure 4.22 shows the plot 

between print gloss from Tables 4.6,4.12 and their macrosmoothness values. 

In the case of the gloss art prints the value for R2 is 0.95 while R2 is only 0.72 

for the machine glazed prints. The results show a better correlation between 

print gloss and print macrosmoothness for gloss art prints than for machine 

glazed prints. This is due to the fact that the gloss values of machine glazed 

prints are very low. This indicates that the geometry of the gloss meter 

employed in the study is not appropriate for low gloss surfaces. It was found 

[Fetsko & Zettlemoyer, 1962] from prints made with one ink on two papers 

(uncoated and coated papers) that coated prints produced a high narrow peak 
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Figure 4.22 Print gloss vs print smoothness. 

(a) gloss art samples. 

(b) machine glazed samples. 
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at the specular angle whereas the maximum reflectance for uncoated prints 

was shifted towards a larger angle than the specular angle. This leads to the 

conclusion that the optimum geometrical condition varies for prints made 

with different ink-paper combinations, whereas a standard optimum 

geometrical condition is necessary for a reliable comparison. 

The present study also attempted to evaluate print roughness by using 

a Parker Print-surf instrument (PPS automatic version 1.1) in order to find a 

relationship between PPS print roughness and the optical"print smoothness. 

However, the width of the prints obtained on the laboratory IGT printability 

tester was 32 mm which is smaller than the diameter of the measuring area 

of 35 mm required by the PPS. Hence, the PPS print roughness test was not 

performed. 

Implications for print mottle. 

When an ink fails to form a smooth uniform film after ink transfer, 

mottle can occur. Print mottle is defined as an uneven ink distribution layer 

of solid area on the printed surface and it 5s one of the most commonly 

occuring print defects in the offset lithographic process. Goodman [1992] 

stated that emulsification in the ink was one of the major causes of print 

mottle. Bassemir et aZ. [NPIRI, 1990] studied the effects of ink water pickup 

on several aspects of print quality including print mottle using a high speed 

web offset lithographic press. They determined print mottle by measuring 

optical print density and used the standard deviation in optical print density 

as an indicator of print mottle. They found that a high water pickup ink 

showed high print mottle at low and high water feed conditions. The present 

study is relevant to those studies since one type of print mottle may be 
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defined as pigment mottle [Carlsson & Lindberg, 1971]. Carlsson & Lindberg 

studied print mottle in a printing press using high-speed photography; they 

found that print mottle occurs in different ways distinguished as pigment 

mottle, displacement mottle and non-wetting mottle. It is noted that most 

methods of print mottle measurement are only qualitatively based on visual 

observation. The potential use of print smoothness as a direct indicator for 

print mottle is, therefore, of interest. Further analYSis of print smoothness 

data may be useful to provide a standard indicator for print mottle. 

Limitations in surface characterization techniques used. 

It has to be accepted that the methods employed in the present study 

namely print gloss and scanning electron microscopy. each has its 

limitations. The scanning electron microscope (SEM) has been extensively 

used to give high magnification visual images of a surface. Although the wide 

magnification range of SEM makes the method capable of recording the 

detailed features of both macrosmoothness and microsmoothness, the 

micrographs only give qualitative information which requires good 

knowledge and experience of the observers to interpret. Such assessm'ents 

therefore depend on the observers' perception. Gloss meters, on the other 

hand, generally measure smoothness at only one angle of incidence and 

reflectance, whether macrosmoothness or microsmoothness. Moreover, as 

discussed, the optimum geometrical condition varies for each combination of 

ink and paper; comparisons between print gloss can be made only if a 

standard geometrical condition is defined. The optical method is found useful 

as it can evaluate the whole surface. However, the present instrument needs 

further improvements to enable automated operation. Its present manual 

mode is too time consuming for routine work. 
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4.4 CONCLUSIONS AND FURTHER WORK. 

4.4.1 Conclusions. 

An optical reflectance instrument, a type of goniophotometer was 

specially rebuilt and utilized to measure surface reflection for both paper and 

printed paper surfaces. The work confirmed that the improved instrument 

was adequate for studies of printed paper surfaces; where the previous 

instrument could cope only with paper surfaces. The reflectance data were 

subjected to correlation and regression analysis to yield optical smoothness 

parameters, namely macrosmoothness and microsmoothness. The optical 

smoothness results obtained were statistically analysed to determine 

whether the results are significantly affected by a range of experimental 

treatments. Assessments are made in terms of 95% confidence limits. 

It should be recalled that the results from the preliminary study have 

shown that different papers were affected in differing ways by various 'ink 

vehicles'. The most significant, contrasting, changes were found with 

machine glazed and poladin cartridge paper. Ink vehicles, RI006 and 

SM2007, caused an increase in both macrosmoothness and microsmoothness 

of poladin cartridge. In contrast, these ink vehicles each caused a decrease in 

both macrosmoothness and microsmoothness of machine glazed. 

Consequently, it was decided to choose two contrasting types of paper, 

namely gloss art and machine glazed, for the study of print smoothness 

phenomena. 

Based on the fact that most inks generally consist of pigment, ink 

vehicle and additives of which the major proportion is the ink vehicle, a 

printed surface model is proposed as an ink vehicle-air interface rather than 
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a pigment-air interface. A printed surface is a result of material interactions 

in a printing process; and this model appears to lead to a better 

understanding of ink and paper interactions where such interactions can 

modify the air interface of the ink film. 

Printed surface characteristics of gloss art were found to be no less 

smooth than its paper surface characteristics. The macrosmoothness and 

microsmoothness values for both gloss art paper and printed gloss art are 

high, within a range of approximately 0.90-1.20. On the contrary, the printed 

surface characteristics of machine glazed was found to be rougher than its 

paper surface characteristics; although a decrease was shown in the 

macrosmoothness values only. The macrosmoothness decreased from a value 

of 0.11 down to 0.09. These two low smoothness values indicate the 

roughness of both the paper and the printed surfaces of machine glazed. It 

can be seen that the development of printed surface characteristics is affected 

by various phenomena in ink/paper interactions to a different extent. The 

first phenomenon namely ink/paper contact is seen to be less significant due 

to the use of a resilient blanket in the offset lithographic process. Ink 

penetration and ink film splitting are more important phenomena affecting . 

these printed surfaces. The penetration of ink into paper also plays a part in 

the ink drying process. The contribution of the paper properties is more 

dominant in these phenomena as it is found that the amount of ink transfer 

for an uncoated paper is almost twice that for a coated paper. A conclusion 

drawn from this finding is that ink penetration plays a more important role 

in determining the printed surface characteristics of uncoated papers; 

whereas ink film splitting is a more dominant factor for coated papers. 

Separation of the ink vehicle from the pigments, a well-known filtration 
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phenomenon, was clearly seen in the case of gloss art paper. This indicates 

the significant role of porous structure within the paper and the role of 

pigment particle sizes within the ink. 

The interactions between 'emulsion ink' and paper which occur in the 

offset lithographic process are not significantly different from interactions in 

other printing processes, where water does not playa role. Printed surface 

characteristics are developed through the same phenomena. However, 

because fountain solution is incorporated in the lithographic ink, the printed 

surfaces are found to behave differently, leading to rougher surfaces for both 

uncoated and coated paper samples. Print smoothness decreased when the 

amount of emulsified fountain solution is greater than a critical amount for 

the ink. The critical amount for the yellow ink used can be concluded to be at 

15% water content in 'emulsion ink'. At both 20% and 30% water content in 

the 'emulsion ink', the print smoothness of machine glazed samples 

decreased by almost 30%; and also at 30% water content the print 

smoothness of gloss art decreased by almost 14%. These results demonstrated 

the influences of emulsification behaviour on the resultant print qualities 

which may arise from the various phenomena during ink transfer and ink 

drying processes. In addition, it was found that this emulsification behaviour 

was connected with the pigments. The fountain solution when emulsified in 

the ink is believed to spread a thin film around the pigment surfaces which 

eventually join up together to form pigment aggregates. Such aggregates 

protrude from the ink film when the ink film was dried and pigment 

aggregation is found to be a more important contributor to the decrease in 

print smoothness than the amount of the emulsified fountain solution in the 

ink. These findings are of significance to the offset litho ink makers who are 
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ink. These findings are of significance to the offset litho ink makers who are 

required to produce high pigmentation inks, owing to the nature of the offset 

lithographic process. These findings are also beneficial to the printer who 

needs to rapidly adjust the printing conditions to obtain best resultant prints 

with different combinations olink and paper. 

In conclusion, this optical method makes it possible to evaluate quality 

of print in terms of print smoothness by employing a suitable laboratory test; 

prior to using a commercial printing press which would be costly and time 

consuming. In addition, this method also provides a means to obtain more 

direct data on the factors that affect the quality of printed surfaces. 

4.4.2 Further work. 

An ink will dramatically increase print smoothness and print gloss of 

uncoated papers whereas it can impair print gloss by disturbing the inherent 

coated paper gloss. It would be interesting for further work to investigate the 

influences of varying printing conditions such as ink film thiclmess, printing 

speed on print smoothness for different types of paper and using different 

pigment particle sizes, especially for offset lithography where the effect of 

paper swelling on pore dimension may be significant. The results may lead to 

a better understanding of various phenomena involved in ink and paper 

interactions, for example, the contact and the splitting of an ink film with 

increasing ink film thickness and with decreasing ink film thickness. 

In this study, the reflectance measurement and the data collection and 

analysis necessary to obtain the optical smoothness, were carried out 

manually. This is a tedious method particularly when a large number of 

samples are examined. The method needs to be improved by means of 
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motorized control and computerized data collection and analysis. This would 

help to cut down the testing time so that the results for surfaces under 

investigation can be obtained quicker and eventually some problems may be 

solved better. 

In addition, the ink chosen for study was a yellow ink. This is 

consistent with the use of a 632.8 nm HeNe laser as the light source of the 

reflectance instrument. To further establish the validity of this method to 

other colours of inks, the use of a dual colour laser namely a red/infrared 

laser is proposed. The visible red output would be used to set up the 

instrument. A filter could then be used to block the 632.8 nm line leaving the 

invisible line correctly aligned through the instrument. The longer infrared 

wavelength may provide interesting information on microsmoothness 

because the behaviour of the reflectance of the microfeatures would be closer 

to that of Fresnel reflectance. 
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Appendix A: Figure A.2 

Zero Offset 
-5 V 101< +15 V 

Gain Switch 

+15 V 

Input from Filter 

o V 

-5 V 

~sponse Time 

~ Meter 
10,ooo~F 1 OQt,A 

Adjust Gain 

ov 

Circuit of Amplifier /Meter 

218 

R1=22k 

R2=220k 

R3=2.2M 

R4=22M 

R1 

R2 

R3 

R4 

+15 V 

63,.;T 
10k 

100~Fl' 
10k --1-

-5 V 



Appendix A: Figure A.3 
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AppendixB. 

Table B.1 Fresnel reflectance for refractive indices (n) from 1.5·1.9 according 
to equation 21 in section 2.6.3. 

Angle n=1.5 n=l.55 n=1.6 n=1.7 n=1.8 D=1.9 

15 4.38 5.08 5.80 7.29 8.81 10.35 

20 4.71 5.45 6.20 7.76 9.35 10.95 

25 5.16 5.95 6.76 8.41 10.08 11.76 

30 5.78 6.64 7.51 9.28 11.06 12.84 

35 6.61 7.55 8.51 10.42 12.34 14.23 

40 7.72 8.77 9.82 11.92 13.99 16.01 

45 9.20 10.38 11.55 13.86 16.11 18.28 

50 11.21 12.54 13.85 16.40 18.84 21.18 

55 13.93 15.43 16.90 19.71 22.36 24.86 

60 17.66 19.35 20.99 24.06 26.91 29.55 

65 22.81 24.69 26.48 29.79 32.79 35.53 

70 29.96 31.99 33.89 37.34 40.40 43.14 

75 39.94 42.01 43.91 47.30 50.24 52.83 

80 53.86 55.74 57.44 60.42 62.93 65.11 
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Table B.2 Slope values of fresnel reflectance for refractive indices from 1.5-
1.9 and the averaged slope values used as the standard. 

Region n=1.5 n=1.6 D=1.7 n=1.8 n=1.9 standard 

15-20 0.07 0.08 0.09 0.11 0.12 0.09 

20-25 0.09 0.11 0.13 0.15 0.16 0.13 

25-30 0.12 0.15 0.17 0.20 0.22 0.17 

30-35 0.17 0.20 0.23 0.26 0.28 0.23 

35-40 0.22 0.26 0.30 0.33 0.36 0.29 

40-45 0.30 0.35 0.39 0.42 0.45 0.38 

45-50 0.40 0.46 0.51 0.55 0.58 0.50 

50-55 0.54 0.61 0.66 0.70 0.74 0.65 

55-60 0.75 0.82 0.87 0.91 0.94 0.86 

60-65 1.03 1.10 1.15 1.18 1.20 1.13 

65-70 1.43 1.48 1.51 1.52 1.52 1.49 

70-75 2.00 2.00 1.99 1.97 1.94 1.98 

75-80 2.79 2.71 2.62 2.54 2.46 2.62 
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AppendixC. 

Table C.1 Macrosmoothness (Sm) results of newsprint samples before and 

after being treated with ink 'vehicles' (See Table 3.1a). 

Sample NP/Sm 

No. Untreated RI066 RI976 RI835 SM2007 

1 0.008 0.022 0.015 0.022 0.008 

2 0.015 0.023 0.024 0.023 0.008 

3 0.009 0.014 0.023 0.022 0.014 

4 0.010 0.016 0.015 0.019 0.009 

5 0.010 0.015 0.020 0.022 0.016 

6 0.013 0.018 0.018 0.018 0.020 

7 0.010 0.021 0.016 0.015 0.011 

8 0.012 0.016 0.013 0.020 0.017 

9 0.013 0.017 0.018 0.024 0.011 

-X 0.011 0.018 0.021 0.018 0.013, 

S.D. 0.002 0.003 0.003 0.004 0.004 
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Table C.2 Microsmoothness (Su) results of newsprint samples before and 

after being treated with ink 'vehicles' (See Table 3.1b). 

Sample NP/Su 

No. Untreated RI066 RI976 RI835 SM2007 

1 0.619 0.770 0.768 0.688 0.613 

2 0.757 0.789 0.692 0.796 0.936 

3 0.753 0.892 0.725 0.750 0.625 

4 0.832 0.750 0.819 0.742 0.773 

5 0.695 0.876 0.711 0.767 0.939 

6 0.773 0.808 0.685 0.715 0.741 

7 0.642 0.898 0.799 0.738 0.866 

8 0.698 0.778 0.738 0.809 0.779 

9 0.782 0.803 0.649 0.690 0.917 

X 0.728 0.818 0.744 0.732 0.799 

S.D. 0.069 0.056 0.043 0.055 0.126 

223 



Table C.3 Macrosmoothness (8m) results of machine finish samples before 

and after being treated with ink 'vehicles' (See Table 3.2a). 

Sample MF/ Sm 

No. Untreated RI066 Rl835 SM2007 

1 0.007 0.009 0.007 0.021 

2 0.006 0.012 0.009 0.027 

3 0.010 0.018 0.006 0.022 

4 0.012 0.019 0.017 0.022 

5 0.011 0.021 0.006 0.017 

6 0.008 0.011 0.006 0.020 

7 0.009 0.010 0.006 0.017 

8 0.008 0.020 0.005 0.017 

9 0.009 0.014 0.011 0.021 

X 0,009 0.015 0.008 0.020 

S.D. 0.002 0.005 0.004 0.003 
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Table C.4 Microsmoothness (Su) results of machine finish samples before and 

after being treated with ink 'vehicles' (See Table 3.2b). 

Sample MF/ Su 

Untreated RI066 RlBa5 SM2007 

1 0.199 0.635 0.388 0.613 

2 0.168 0.812 0.343 0.776 

3 0.162 0.768 0.487 0.730 

4 0.231 0.729 0.454 0.758 

5 0.215 0.750 0.456 0.694 

6 0.234 0.805 0.369 0.604 

7 0.265 0.736 0.397 0.730 

8 0.235 0.787 0.534 0.802 

9 0.186 0.629 0.197 0.785 

X 0.211 0.739 0.403 0.721 

S.D. 0.034 0.067 0.098 0.072 
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Table C.5 Macrosmoothness (8m) results of machine glazed samples before 

and after being treated with ink 'vehicles' (See Table 3.3a). 

Sample MG/Sm 

No. Untreated RlOO6 SM2007 

1 0.108 0.025 0.062 

2 0.067 0.035 0.099 

3 0.072 0.053 0.042 

4 0.069 0.048 0.037 

5 0.077 0.052 0.043 

6 0.069 0.035 0.047 

7 0.082 0.041 0.064 

8 0.070 0.040 0.037 

9 0.068 0.048 0.040 

X 0.076 0.042 0.052 

S.D. 0.013 0.009 0.020 
._--
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Table C.6 Microsmoothness (Su) results of machine glazed samples before 

and after being treated with ink 'vehicles' (See Table 3.3b). 

Sample MG/Su 

No. Untreated KI066 SM2007 

1 0.766 0.970 0.842 

2 0.899 0.920 0.727 

3 0.822 0.862 0.816 

4 0.942 0.931 0.799 

5 0.941 0.764 0.743 

6 0.903 0.945 0.773 

7 0.915 0.776 0.880 

8 0.949 0.863 0.859 

9 0.934 0.832 0.781 

X 0.897 0.874 0.802 

S.D. 0.062 0.074 0.052 
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Table C.7 Macrosmoothness (Sm) results of poladin cartridge samples before 

and after being treated with ink 'vehicles' (See Table 3.4a). 

Sample PC/Sm 

No. Untreated Kloo6 SM2007 

1 0.007 0.019 0.049 

2 0.009 0.009 0.045 

3 0.009 0.019 0.061 

4 0.013 0.020 0.065 

5 0.008 0.022 0.047 

6 0.009 0.017 0.052 

7 0.012 0.018 0.031 

8 0.009 0.019 0.053 

9 0.012 0.023 0.040 

X 0.010 0.018 0.049 

S.D. 0.002 0.004 0.010 
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Table C.8 Microsmoothness (Su) results of poladin cartridge samples before 

and after being treated with ink 'vehicles' (See Table 3.4b). 

Sample PC/Su 

No. Untreated RI066 SM2007 

1 0.151 0.777 0.930 

2 0.180 0.606 0.859 

3 0.137 0.805 0.867 

4 0.164 0.932 0.665 

5 0.135 0.648 0.769 

6 0.203 0.884 0.772 

7 0.212 0.753 0.897 

8 0.157 0.845 0.858 

9 0.144 0.884 0.789 

X 0.165 0.793 0.823 

S.D. 0.028 0.110 0.081 
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AppendixD. 

Table D.1 
(a) Summary of analysis of variance for macrosmoothness (Sm) of newsprint 

samples. 

Source of D.F. Sum of Squares Mean F Ratio 
Variation Squares 
Between Groups 4 0.0006 0.0001 

12.7739 
Within Groups 40 . 0.0004 0.0000 

Total 44 0.0010 

The F ratio was compared to the value of the F distribution with 4 and 40 
degrees of freedom, which is approximately 2.61. This indicates that the 
macrosmoothness values between these newsprint samples are significantly 

different (see Table 3.la). 

(b) Multiple comparison test - Duncan procedure for Sm of newsprint 

samples. 

NP+RI066 NP+ RI076 NP + Rl835 NP + SM2007 

Untreated NP • • • 
NP + R1066 

NP + R1976 

NP + R1835 

NP + SM2007 • • • 
• Denotes pair of samples with a significant difference at the 0.05 level (see 
Table 3.1a). 
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Table D.2 
(a) Summary of analysis of variance for microsmoothness (Su) of newsprint 

samples. 

Source of D.F. Sum of Mean Squares F Ratio 
Variation Squares 
Between Groups 4 0.0621 0.0155 

2.7160 
Within Groups 40 0.2285 0.0057 

Total 44 0.2906 

The F ratio was compared to the value of the F distribution with 4 and 40 
degrees of freedom, which is approximately 2.61. This indicates that the 

microsmoothness values between these newsprint samples are significantly 

different (see Table 3.1b). 

(b) Multiple comparison test - Duncan procedure for Su of newsprint 

samples. 

NP + RIOl\6 NP + Rl976 NP + RI835 NP+ SM2007 

Untreated NP * 
NP + RI066 

NP + R1976 

NP + R1835 * 
NP + SM2007 

.* Denotes pair of samples with a significant difference at the 0.05 level (see 

Table 3.1b). 
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Table D.3 
(a) Summary of analysis of variance for macrosmoothness (Sm) of machine 
finish samples. 

Source of D.F. Sum of Mean Squares F Ratio 
Variation Squares 
Between Groups 3 0.0009 0.0003 

23.7713 
Within Groups 32 0.0004 0.0000 

Total 35 0.0013 

The F ratio was compared to the value of the F distribution with 3 and 32 
degrees of freedom, which is approximately 2.90. This indicates that the 

macrosmoothness values between these machine finish samples are 
significantly different (see Table 3.2a), 

(b) Multiple comparison test - Duncan procedure for Sm of machine finish 

samples. 

MF + RI066 MF + Rl835 MF + SM2007 

Untreated MF • • 
MF + R1066 * 
MF + R1835 • • 
MF + SM2007 

• Denotes pair of samples with a significant difference at the 0.05 level (see 
Table 3.2a). 
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Table DA 
(a) Summary of analysis of variance for microsmoothness (Su) of machine 
finish sam pIes. 

Source of D.F. Sum of Mean Squares FRatio 
Variation Sguares 
Between Groups 3 1.7818 0.5939 

116.0313 
Within Groups 32 0.1638 0.0051 

Total 35 1.9457 

The F ratio was compared to the value of the F distribution with 3 and 32 
degrees of freedom, which is approximately 2.90. This indicates that the 
microsmoothness values between these machine finish samples are 
significantly different (see Table 3.2b). 

(b) Multiple comparison test· Duncan procedure for Su of machine finish 

samples. 

MF + RI066 MF + Rl835 MF + SM2007 

Untreated MF • • • 
MF + R1066 

MF + RI835 • • 
MF + SM2007 

• Denotes pair of samples with a significant difference at the 0.05 level (See 
Table 3.2b). 
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Table D.5 
(a) Summary of analysis of variance for macrosmoothness (Sm) of machine 
glazed samples. 

Source of D.F. Sum of Mean Squares F Ratio 
Variation Sguares 
Between Groups 2 0.0054 0.0027 

12.2927 
Within Groups 24 0.0053 0.0002 

Total 26 0.0107 

The F ratio was compared to the value of the F distribution with 2 and 24 
degrees of freedom, which is approximately 3.40. This indicates that the 
macrosmoothness values between these machine glazed samples are 
significantly different (see Table 3.3a). 

(b) Multiple comparison test - Duncan procedure for Sm of machine glazed 

samples. 

MG + RI066 MG + SM2007 

Untreated MG * * 
MG+ R1066 

MG+SM2007 

• Denotes pair of samples with a significant difference at the 0.05 level (see 
Table 3.3a). 
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Table D.6 
(a) Summary of analysis of variance for microsmoothness (Su) of machine 

glazed samples. 

Source of D.F. Sum of Mean Squares F Ratio 
Variation Sg,uares 
Between Groups 2 0.0437 0.0219 

5.4636 
Within Groups 24 0.0961 0.0040 

Total 26 0.1398 

The F ratio was compared to the value of the F distribution with 2 and 24 
degrees of freedom, which is approximately 3.40. This indicates that the 
microsmoothness values between these machine glazed samples are 

significantly different (see Table 3.3b). 

(b) Multiple comparison test· Duncan procedure for Su of machine glazed 

samples. 

MG+RI066 MG+ SM2007 

Untreated MG • 
MG+ R1066 • 
MG+ SM2007 

• Denotes pair of samples with a significant difference at the 0.05 level (see 
Table 3.3b). 
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Table D.7 
(a) Summary of analysis of variance for macrosmoothness (Sm) of poladin 

cartridge samples. 

Source of D.F. Sum of Mean Squares F Ratio 
Variation Sguares 
Between Groups 2 0.0077 0.0039 

91.7768 
Within Groups 24 0.0010 0.0000 

Total 26 0.0087 

The F ratio was compared to the value of the F distribution with 2 and 24 
degrees of freedom, is approximately 3.40. This indicates that the 
macrosmoothness values between these poladin cartridge samples are 

significantly different (see Table 3.4a). 

(b) Multiple comparison test - Duncan procedure for Sm of poladin cartridge 

samples. 

PC + RI066 PC + SM2007 

Untreated PC • • 
PC + Rl066 • 
PC + SM2007 

• Denotes pair of samples with a significant difference at the 0.05 level (see 
Table 3.4a). 
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Table D.8 
(a) Summary of analysis of variance for microsmoothness (Su) of poladin 
cartridge samples. 

Source of D.F. Sum of Mean Squares FRatio 
Variation Sg,uares 
Between Groups 2 2.4848 1.2424 

191.3075 
Within Groups 24 0.1559 0.0065 

Total 26 2.6407 

The F ratio was compared to the value of the F distribution with 2 and 24 
degrees of freedom, which is approximately 3.40. This indicates that the 
microsmoothness values between these poladin cartridge samples are 

significantly different (see Table 3.4b). 

(b) Multiple comparison test - Duncan procedure for Su of poladin cartridge 
samples. 

PC + RI066 PC + SM2007 

Untreated PC • • 
PC + RI066 

PC + SM2007 

• Denotes pair of samples with a significant difference at the 0.05 level (see 
Table 3.4b). 
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AppendixE. 

Table E.1 Macrosmoothness results of unprinted gloss art and gloss art 
printed with 'yellow inks' (see Tables4.7, 4.8 and 4.13). 

GA/Sm 
Sample 

No. Unprinted lOO%Y·ink 9O%y. ink 80%Y· ink 70%Y· ink 
+ + + 

10% F.S. 20% F.S. 30% F.S. 
1 1.129 0.931 0.958 1.015 0.849 

2 1.077 1.005 0.959 1.037 0.880 

3 0.915 0.995 1.160 1.058 0.860 

4 0.873 0.855 0.885 1.058 0.943 

5 0.972 0.958 0.952 1.020 0.932 

6 0.910 1.088 0.933 1.070 0.745 

7 0.969 0.892 0.933 0.853 0.834 

8 0.928 0.942 0.900 1.043 0.816 

9 0.966 1.004 1.200 0.923 0.713 

10 0.922 0.892 1.103 1.019 0.668 

11 1.052 0.876 1.090 0.891 0.833 

12 1.109 1.133 1.160 1.079 0.937 

13 0.901 0.912 1.070 1.126 0.817 

14 0.952 0.904 1.088 0.929 0.928 

15 0.988 0.940 0.890 1.055 0.878 

16 0.873 1.079 1.210 0.985 0.872 

17 0.993 1.041 0.988 0.926 0.868 

18 0.979 1.011 1.071 1.225 0.875 

19 0.953 0.908 0.968 0.877 0.785 

20 0.901 1.122 0.939 1.001 0.730 

X 0.968 0.974 1.023 1.010 0.838 

S.D. 0.074 0.084 0.107 0.090 0.077 
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Table E.2 Microsmoothness results of unprinted gloss art and gloss art 
printed with 'Yellow inks' (see Tables 4.7, 4.8 and 4.13). 

Sample GA/Su 

No. Unprinted l00%Y· ink 9O%Y·ink 80%Y·ink 70%Y·ink 
+ + + 

10% F.S. 20% F.S. 30% F.S. 
1 0.956 0.915 0.933 0.862 0.937 

2 0.965 0.990 0.858 0.961 0.876 

3 0.874 0.965 0.900 0.962 0.937 

4 0.982 0.965 0.991 0.975 0.912 

5 0.964 0.918 0.932 0.934 0.913 

6 0.991 0.983 0.982 0.969 0.923 

7 0.955 0.785 0.940 0.912 0.969 

8 0.910 0.995 0.896 0.945 0.933 

9 0.947 0.928 0.859 0.929 0.774 

10 0.970 0.914 0.949 0.979 0.878 

11 0.978 0.922 0.893 0.884 0.996 

12 0.981 0.937 0.974 0.901 0.841 

13 0.939 0.975 0.956 0.954 0.824 

14 0.965 0.856 0.959 0.983 0.959 

15 0.960 0.867 0.918 0.978 0.920 

16 0.880 0.937 0.950 0.882 0.954 

17 0.984 0.994 0.862 0.855 0.885 

18 0.961 0.955 0.975 0.968 0.883 

19 0.983 0.941 0.981 0.890 0.926 

20 0.872 0.904 0.906 0.906 0.970 

X 0.951 0.932 0.931 0.932 0.911 

S.D. 0.037 0.052 0.043 0.042 0.054 
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Table E.3 Macrosmoothness results of unprinted machine glazed and 
machine glazed printed with 'Yellow inks' (see Tables 4.7, 4.9 and 4.14). 

Sample MG/Sm 

No. Unprinted 100%Y·lnk 9O%Y·lnk 8O%Y·lnk 70%Y-ink 
+ + + 

10% F.S. 20% F.S. 30% F.S. 
1 0.113 0.090 0.079 0.069 0.076 

2 0.084 0.078 0.063 0.074 0.079 

3 0.123 0.083 0.091 0.066 0.064 

4 0.117 0.083 0.091 0.063 0.058 

5 0.112 0.116 0.078 0.063 0.060 

6 0.085 0.101 0.074 0.067 0.077 

7 0.095 0.084 0.119 0.066 0.071 

8 0.145 0.074 0.071 0.054 0.064 

9 0.117 0.073 0.063 0.037 0.045 

10 0.079 0.093 0.106 0.066 0.044 

11 0.125 0.071 0.073 0.071 0.053 

12 0.089 0.086 0.120 0.068 0.070 

13 0.093 0.126 0.061 0.047 0.062 

14 0.154 0.076 0.101 0.088 0.071 

15 0.101 0.102 0.067 0.073 0.087 

16 0.133 0.078 0.073 0.081 0.071 

17 0.108 0.078 0.099 0.072 0.066 

18 0.117 0.091 0.121 0.064 0.056 

19 0.123 0.087 0.090 0.052 0.064 

20 0.100 0.106 0.097 0.057 0.062 

X 0.111 0.089 0.087 0.065 0.065 

S.D. 0.020 0.015 0.020 0.012 0.011 
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Table E.4 Microsmoothness results of unprinted machine glazed and machine 
glazed printed with 'Yellow inks' (see Tables 4.7, 4.9 and 4.14). 

Sample MG/Su 

No. Unprinted l00%Y· ink 9O%Y·ink 80%Y·lnk 70%Y·ink 
+ + + 

10% F.S. 20% F.S. 30% F.S. 
1 0.854 0.903 0.940 0.998 0.874 

2 0.775 0.830 0.739 0.997 0.902 

3 0.940 0.929 0.918 0.832 0.900 

·4 0.879 0.798 0.778 0.703 0.968 

5 0.843 0.958 0.937 0.844 0.843 

6 0.951 0.956 0.775 0.804 0.823 

7 0.713 0.907 0.892 0.931 0.802 

8 0.677 0.750 0.737 0.757 0.956 

9 0.890 0.875 0.914 0.755 0.696 

10 0.928 0.837 0.957 0.914 0.825 

11 0.843 0.896 0.847 0.899 0.900 

12 0.832 0.907 0.973 0.986 0.820 

13 0.897 0.906 0.907 0.852 0.779 

14 0.808 0.872 0.869 0.744 0.765 

15 0.857 0.884 0.667 0.712 0.713 

16 0.849 0.818 0.705 0.852 0.935 

17 0.784 0.794 0.952 0.775 0.817 

18 0.712 0.838 0.717 0.791 0.795 

19 0.933 0.917 0.906 0.950 0.874 

20 0.774 0.914 0.971 0.881 0.927 

X 0.837 0.874 0.855 0.849 0.846 

S.D. 0.079 0.056 0.101 0.094 0.076 
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Table E.5 Macrosmoothness results of gloss art printed with 'unpigmented 
inks' (see Table 4.13). 

Sample GA/Sm 

No. lOO%U-ink 70% U-ink + 30% F.S. 

1 1.048 1.347 

2 0.975 1.207 

3 1.257 1.180 

4 1.179 1.267 

5 1.009 1.141 

6 1.240 1.203 

7 1.235 1.239 

8 1.241 1.004 

9 1.039 1.054 

10 0.914 1.282 

11 1.067 1.125 

12 1.238 1.215 

13 1.146 1.377 

14 1.005 0.946 

15 0.963 0.967 

16 1.294 1.127 

17 1.126 1.019 

18 1.168 1.263 

19 1.363 1.192 

20 1.095 1.291 

X 1.130 1.172 

S.D. 0.125 0.123 
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Table E.6 Microsmoothness results of gloss art printed with 'unpigmented 
inks' (see Table 4.13). 

Sample GA/Su 

No. lOO%U-ink 70% U-ink + 30% F.S. 

1 0.918 0.975 

2 0.902 0.902 

3 0.959 0.893 

4 0.989 0.943 

5 0.941 0.937 

6 0.901 0.927 

7 0.915 0.964 

8 0.952 0.994 

9 0.987 0.964 

10 0.979 0.908 

11 0.942 0.942 

12 0.933 0.967 

13 0.951 0.992 

14 0.861 0.921 

15 0.946 0.922 

16 0.930 0.924 

17 0.990 0.945 

18 0.994 0.901 

19 0.975 0.928 

20 0.930 0.941 

X 0.945 0.940 

S.D. 0.035 0.029 
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Table E.7 Macrosmoothness results of machine glazed printed with 
'unpigmented inks' (see Table 4.14) .. 

Sample MG/Sm 

No. 100% U-ink 70% U-ink + 30% F.S. 

1 0.089 0.134 

2 0.103 0.102 

3 0.101 0.138 

4 0.116 0.097 

5 0.103 0.105 

6 0.096 0.083 

7 0.117 0.101 

8 0.103 0.169 

9 0.122 0.096 

10 0.093 0.114 

11 0.087 0.106 

12 0.114 0.00 

13 0.100 0.086 

14 0.116 0.150 

15 0.086 0.164 

16 0.111 0.087 

17 0.104 0.128 

18 0.086 0.122 

19 0.101 0.092 

20 0.132 0.147 

X 0.104 0.116 

S.D. 0.013 0.026 
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Table E.8 Microsmoothness results of machine glazed printed with 

'unpigmented inks' (see Table 4.14). 

Sample MG/Su 

No. 100% U-ink 70% U-ink + 30% F.S. 

1 0.846 0.799 

2 0.956 0.720 

3 0.706 0.967 

4 0.738 0.931 

5 0.914 0.854 

6 0.821 0.767 

7 0.869 0.849 

8 0.987 0.964 

9 0.886 0.871 

10 0.780 0.750 

11 0.975 0.894 

12 0.705 0.922 

13 0.891 0.711 

14 0.874 0.930 

15 0.923 0.969 

16 0.702 0.722 

17 0.780 0.777 

18 0.957 0.853 

19 0.860 0.910 

20 0.909 0.898 

X 0.854 0.853 

S.D. 0.092 0.087 
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AppendixF. 

Table F.1 T-test summary: unprinted and printed with heatset yellow ink for 

both gloss art and machine glazed samples. 
(a) Macrosmoothness (8m). 

Sample Sm 

x S.D. t -value 

Unprinted GA 0.968 0.074 

-0.25 
GA + 100% Y - ink 0.974 0.084 

Unprinted MG 0.111 0.020 

MG + 100% Y - ink 0.089 0.015 

a - The t-value was compared to the values of t-distribution with 38 degrees 
of freedom, which is approximately :t2.43. This indicates that these two 
sample macrosmoothness values are significantly different (see Table 4.7 and 
Figure 4.5). 

(b) Microsmoothness (Su). 

Sample Su 

x S.D. t -value 

Unprinted GA 0.951 0.037 

1.3 
GA + 100% Y - ink 0.932 0.052 

Unprinted MG 0.837 0.079 

-1.73 
MG + 100% Y - ink 0.874 0.056 

No significant differences were observed. 
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Table F .2(a) Summary of analysis of variance for macrosmoothness (Sm) of 
gloss art printed with heatset ink and 'yellow emulsion inks'. 

Source of variation D.F. Sum of Mean F Ratio 
Sguares Sguares 

Between Groups 3 0.4290 0.1430 

17.5581 
Within Groups 76 0.6190 0.0081 

Total 79 1.0480 

The F ratio was compared to the value of the F-distribution with 3 and 76 
degrees of freedom, which is approximately 2.73. This indicates that the 
macrosmoothness values between these gloss art prints are significantly 
different (see Table 4.8 and Figure 4.10). 

Table F.2(b) Multiple comparison test - Duncan procedure for Sm of gloss art 

printed with heatset yellow ink and 'yellow emulsion inks'. 

GA/Sm GA+ OO%Y- GA+ 8O%Y- GA+ 70%Y-
ink : 10% F.S. ink : 20% F .S. ink : 30% F .S. 

GA + 100% Y - ink • 
GA + 90% Y - ink: 10% F.S. • 
GA + 80% Y - ink: 20% F.S. • 
GA + 70% Y - ink: 30% F.S . 

. * Denotes paIr of samples with a significant difference at the 0.05 level (see 
Table 4.8 and Figure 4.10). 
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Table F.3(a) Summary of analysis of variance for microsmoothness (Su) of 

gloss art printed with heatset ink and 'yellow emulsion inks'. 

Source of variation D.F. Sum. of Mean F Ratio 
Sg,uares Sg,uares 

Between Groups 3 0.0066 0.0022 

0.9588 
Within Groups 76 0.1749 0.0023 

Total 79 0.1815 

The F ratio was compared to the value of the F-distribution with 3 and 76 
degrees of freedom, which is approximately 2.73. This indicates that the 
microsmoothness values between these gloss art prints are not significantly 
different. Therefore the multiple comparison test - Duncan procedure - was 
not made (see Table 4.8 and Figure 4.10). 
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Table F .4(a) Summary of analysis of variance for macrosmoothness (Sm) of 
machine glazed printed with heatset ink and 'yellow emulsion inks'. 

Source of variation D.F. Sum of Mean F Ratio 
Sguares Bguares 

Between Groups 3 0.0105 0.0035 

16.3850 
Within Groups 76 0.0163 0.0002 

Total 79 0.0268 

The F ratio was compared to the value of the F-distribution with 3 and 76 
degrees of freedom, which is approximately 2.73. This indicates that the 
macrosrnoothness values between these machine glazed prints are 
significantly different (see Table 4.9 and Figure 4.11). 

Table F.4(b) Multiple comparison test - Duncan procedure for Sm of machine 
glazed printed with heatset yellow ink and 'yellow emulsion inks'. 

MG/Sm MG+ 9O%Y- MG+80%Y- MG+ 70%Y-
ink: 10% F.B. ink : 20% F .S. ink : 30% F .B. 

MG + 100% Y - ink • • 
MG + 90% Y - ink: 10% F.S. • • 
MG + 80% Y - ink: 20% F.S. 

MG + 70% Y - ink: 30% F.S. 

• Denotes pair of samples with a significant difference at the 0.05 level (see 
Table 4.9 and Figure 4.11). 
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Table F .5(a) Summary of Analysis of variance for microsmoothness (Su) of 

machine glazed printed with heatset ink and 'yellow emulsion inks'. 

Source of variation D.F. Sum of Mean F Ratio 
Sguares Sguares 

Between Groups 3 0.0100 0.0033 

0.4764 
Within Groups 76 0.5291 0.0070 

Total 79 0.5391 

The F ratio was compared to the value of the F-distribution with 3 and 76 
degrees of freedom, which is approximately 2.73. This indicates that the 
microsmoothness values between these machine glazed prints are not 
significantly different. Therefore, the multiple comparison test - Duncan 
procedure - was not made (see Table 4.9 and Figure 4.11). 
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Table F .6(a) Summary of analysis of variance for macrosmoothness (8m) of 

gloss art printed with heatset yellow ink, unpigmented ink and their 
corresponding 'emulsion inks'. 

Source of variation D.F. Sum of Mean F Ratio 
Sguares Sguares 

Between Groups 3 1.4032 0.4677 

42.6033 
Within Groups 76 0.8344 0.0110 

Total 79 2.2376 

The F ratio was compared to the value of the F-distribution with 3 and 76 
degrees of freedom, which is approximately 2.73. This indicates that the 
macrosmoothness values between these gloss art prints are significantly 
different (see Table 4.13 and Figure 4.17). 

Table F.6(b) Multiple comparison test - Duncan procedure for Sm of gloss art 

printed with heatset yellow ink, unpigmented ink and their corresponding 

'emulsion inks'. 

GA/Sm GA+ 70%Y- GA+ 100% GA+ 70%U-
ink : 30% F .S. U-ink ink : 30% F .S. 

GA + 100% Y - ink • • • 
GA + 70% Y - ink: 30% F.S. 

GA + 100% U - ink • 
GA + 70% U - ink: 30% F.S. • 
• Denotes pair of samples with a significant difference at the 0.05 level (see 
Table 4.13 and Figure 4.17), 
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Table F. 7(a) Summary of analysis of variance for microsmoothness (Su) of 

gloss art printed with heatset yellow ink, unpigmented ink and their 
corresponding 'emulsion inks'. 

Source of variation D.F. Sum of Mean F Ratio 
S~uares S~uares 

Between Groups 3 0.0136 0.0045 

2.3449 
Within Groups 76 0.1471 0.0019 

Total 79 0.1607 

The F ratio was compared to the value of the F-distribution with 3 and 76 
degrees of freedom, which is approximately 2.73. This indicates that the 
microsmoothness values between these gloss art prints are not significantly 
different. Therefore, the multiple comparison test· Duncan procedure· was 
not made (see Table 4.13 and Figure 4.17). 

252 



Table F .8(a) Summary of analysis of variance for macrosmoothness (Sm) of 

machine glazed printed with heatset yellow ink, unpigmented ink and their 
corresponding 'emulsion inks'. 

Source of variation D.F. Sum of Mean F Ratio 
Sguares Sguares 

Between Groups 3 0.0291 0.0097 

32.2457 
Within Groups 76 0.0228 0.0003 

Total 79 0.0519 

The F ratio was compared to the value of the F-distribution with 3 and 76 
degrees of freedom, which is approximately 2.73. This indicates that the 
macrosmoothness values between these gloss art prints are significantly 
different (see Table 4.14 and Figure 4.18). 

Table F.8(b) Multiple comparison test - Duncan procedure for Sm of machine 
glazed printed with heatset yellow ink, unpigmented ink and their 

corresponding 'emulsion inks'. 

MG/Sm MG+ 70%Y- MG + 100% MG+ 70% U-
ink: 30% F.S. U-ink ink: 30% F.S. 

MG + 100% Y - ink • • • 
MG + 70% Y - ink: 30% F.S. 

MG + 100% U - ink • • 
MG + 70% U - ink: 30% • 
F.S. 

• Denotes paIr of samples Wlth a significant difference at the 0.05 level (see 
Table 4.14 and Figure 4.18). 
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Table F.9(a) Summary of analysis of variance for microsmoothness (Su) of 

machine glazed printed with heatset yellow ink, unpigmented ink and their 
corresponding 'emulsion inks'. 

Source of variation D.F. Sum of Mean F Ratio 
Sguares Sguares 

Between Groups 3 0.0091 0.0030 

0.4865 
Within Groups 76 0.4751 0.0063 

Total 79 0.4843 

The F ratio was compared to the value of the F-distribution with 3 and 76 
degrees of freedom, which is approximately 2.73. This indicates that the 
microsmoothness values between these machine glazed prints are not 
significantly different. Therefore, the multiple comparison test - Duncan 
procedure - was not made (see Table 4.14 and Figure 4.18). 
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Appendix: G. 

Table G.l An example, unprinted gloss art; reflectance data and smoothness 
calculations. 

Region Rp Rd Rs 

14(80) 20 0.001 19.999 

13(75) 9.3 0.001 9.299 

12(70) 4.5 0.001 4.499 

11(65) 1.8 0.002 1.798 

10(60) 0.9 0.002 0.898 

9(55) 0.57 0.002 0.568 

8(50) 0.37 0.003 0.367 

7(45) 0.26 0.003 0.257 

6(40) 0.18 0.004 0.176 

5(35) 0.12 0.004 0.116 

4(30) 0.096 0.004 0.092 

3(25) 0.071 0.004 0.067 

2(20) 0.056 0.004 0.052 

1(15) 0.044 0.005 0.039 

C I DpxDs I = DpxDs • DpxDs 

SIDpl = ~(Bp)2 

S I Th; I = v'f5S2 . (Ds)2 

V I Ds I = fiS2 • (lJs)2 

Dp 

2.14 

0.96 

0.5402 

0.18 

0.066 

0.0402 

0.022 

0.0162 

0.012 

0.0048 

0.005 

0.003 

0.0026 

8m = k C I DpxDs I ; region ~ 7 
VIDsl 

Ds DpxDp 

2.62 

1.98 

1.49 

1.13 

0.86 

0.65 

0.5 

0.38 0.000262 

0.29 0.000144 

0.23 2.30E-05 

0.17 0.000025 

0.13 0.000009 

0.09 6.76E-06 

= 0.48622 
0.5016 

DsxDs DpxDs 

6.8644 5.6068 

3.9204 1.9008 

2.2201 0.804898 

1.2769 0.2034 

0.7396 0.05676 

0.4225 0.02613 

0.25 0.011 

0.1444 0.006156 

0.0841 0.00348 

0.0529 0.001104 

. 0.0289 0.00085 

0.0169 0.00039 

0.0081 0.000234 

= 0.969338 

8u = k C I DpxDs I ; region s: 6 = 0.000473 = 0.95518 
S IDpl xSIDsl 0.005057xO.098 
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Table G.2 An example of gloss art printed 

reflectance data and smoothness calculations. 

Region Rp Rd Rs 

14(80) 21 0.002 20.998 

13(75) 10 0.002 9.998 

12(70) 5.8 0.002 5.798 

11(65) 2.6 0.003 2.597 

10(60) 1.6 0.003 1.597 

9(55) 1.1 0.003 1.097 

8(50) 0.8 0.003 0.797 

7(45) 0.54 0.004 0.536 

6(40) 0.36 0.004 0.356 

5(35) 0.23 0.004 0.226 

4(30) 0.18 0.004 0.176 

3(25) 0.16 0.005 0.155 

2(20) 0.14 0.005 0.135 

1(15) 0.1 0.005 0.095 

C I DpxDs I = DpxDs - DpxDs 

S I Dp I = v'fiP2. (IJp)2 

S I Ds I = li>s2 - (Ds)2 

V I Ds I = Ds2 • (Ds)2 

Dp Ds 

2.2 2.62 

0.84 1.98 

0.6402 1.49 

0.2 1.13 

0.1 0.86 

0.06 0.65 

0.0522 0.5 

0.036 0.38 

0.026 0.29 

0.01 0.23 

0.0042 0.17 

0.004 0.13 

0.008 0.09 

with a heatset yellow ink; 

DpxDp DsxDs DpxDs 

6.8644 5.764 

3.9204 1.6632 

2.2201 0.953898 

1.2769 0.226 

0.7396 0.086 

0.4225 0.039 

0.25 0.0261 

0.001296 0.1444 0.01368 

0.000676 0.0841 0.00754 

0.0001 0.0529 0.0023 

1.764E-05 0.0289 0.000714 

0.000016 0.0169 0.00052 

0.000064 0.0081 0.00072 

Sm = k Ql DpxDs I ; region C!: 7 
VIDsl 

= 0.480297 = 0.957529 
0.5016 

Su = k C I DpxDs I ; region s 6 = 0.001085 = 0.917939 
SIDPI xSIDsl 0.012063xO.098 
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Table G.3 An example of gloss art printed with 10% water content 'yellow 
emulsion ink'; reflectance data and smoothness calculations. 

Region Rp Rd as Dp Ds DpxDp DsxDs DpxDs 

14(80) 26 0.002 25.998 

13(75) 14 0.002 13.998 2.4 2.62 6.8644 6.288 

12(70) 7.4 0.002 7.398 1.32 1.98 3.9204 2.6136 

11(65) 4.9 0.002 4.898 0.5 1.49 2.2201 0.745 

10(60) 2.8 0.003 2.797 0.4202 1.13 1.2769 0.474826 

9(55) 1.5 0.003 1.497 0.26 0.86 0.7396 0.2236 

8(50) 0.92 0.003 0.917 0.116 0.65 0.4225 0.0754 

7(45) 0.62 0.003 0.617 0.06 0.5 0.25 0.03 

6(40) 0.39 0.004 0.386 0.0462 0.38 0.0021344 0.1444 0.017556 

5(35) 0.31 0.004 0.306 0.016 0.29 0.000256 0.0841 0.00464 

4(30) 0.25 0.004 0.246 0.012 0.23 0.000144 0.0529 0.00276 

3(25) . 0.22 0.004 0.216 0.006 0.17 0.000036 0.0289 0.00102 

2(20) 0.25 0.004 0.246 -0.006 0.13 0.000036 0.0169 -0.00078 

1(15) 0.27 0.004 0.266 -0.004 0.09 0.000016 0.0081 -0.00036 

C I DpxDs I = DpxDs - DpxDs 

S I Dp I = v'Dp2 -(np)2 

S I Ds I = v'fiS2 -(IJs)2 

VIOs I = Ds2 - (Ds)2 

8m = k C I Dp)(Ds I ; region:&! 7 
VIDs! 

= 0.536728 = 1.070031 
0.5016 

Su = k CI DpxDsl ; region s 6 = 
SIDpl xSIDsl 

0.001624 = 0.956362 
0.017326xO.098 
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Table G.4 An example of gloss art printed with 20% water content 'yellow 
emulsion ink'; reflectance data and smoothness calculations. 

Region Rp Rd Rs Dp 

14(80) 23 0.002 22.998 

13(75) 11 0.001 10.999 2.3998 

12(70) 6.6 0.002 6.598 0.8802 

11(65) 3.7 0.002 3.698 0.58 

10(60) 2.1 0.003 2.097 0.3202 

9(55) 1.2 0.003 1.197 0.18 

8(50) 0.86 0.003 0.857 0.068 

7(45) 0.65 0.003 0.647 0.042 

6(40) 0.5 0.003 0.497 0.03 

5(35) 0.43 0.003 0.427 0.014 

4(30) 0.37 0.004 0.366 0.0122 

3(25) 0.32 0.004 0.316 0.01 

2(20) 0.29 0.004 0.286 0.006 

1(15) 0.26 0.004 0.256 0.006 

C I DpxDs I = DpxDs • DpxDs 

S I Dp I = v'Dp2. (1Jp)2 

S I Ds I = v'Ds2 . {IJs)2 

Sm = k C I DpxDs I ; region ~ 7 
VIDsl 

Ds DpxDp DsxDs DpxDs 

2.62 6.8644 6.287476 

1.98 3.9204 1.742796 

1,49 2.2201 0.8642 

1.13 1.2769 0.361826 

0.86 0.7396 0.1548 

0.65 0.4225 0.0442 

0.5 0.25 0.021 

0.38 0.0009 0.1444 0.0114 

0.29 0.000196 0.0841 0.00406 

0.23 0.000149 0.0529 0.002806 

0.17 0.0001 0.0289 0.0017 

0.13 0.000036 0.0169 0.00078 

0.09 0.000036 0.0081 0.00054 

= 0.511717 = 1.02017 
0.5016 

Su = k C I DpxDs I ; region ~ 6 = 0.000746 - 0.934449 
SIDpl xSIDsl 0.008141xO.098 
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Table G.5 An example of gloss art printed with 30% water content 'yell~w 

emulsion ink'; reflectance data and smoothness calculations. 

Region Rp ReI Rs Dp Ds Dp)(Dp Ds)(Ds Dp)(Ds 

14(80) 21 0.001 20.999 

13(75) 10 0.001 9.999 2.2 2.62 6.8644 5.764 

12(70) 7.4 0.002 7.398 0.5202 1.98 3.9204 1.029996 

11(65) 5 0.002 4.998 0.48 1.49 2.2201 0.7152 

10(60) 3 0.003 2.997 0.4002 1.13 1.2769 0.452226 

9(55) 2.1 0.003 2.097 0.18 0.86 0.7396 0.1548 

8(50) 1.6 0.004 1.596 0.1002 0.65 0.4225 0.06513 

7(45) 1.1 0.004 1.096 0.1 0.5 0.25 0.05 

6(40) 0.83 0.004 0.826 0.054 0.38 0.002916 0.1444 0.02052 

5(35) 0.53 0.004 0.526 0.06 0.29 0.0036 0.0841 0.0174 

4(30) 0.38 0.004 0.376 0.03 0.23 0.0009 0.0529 0.0069 

3(25) 0.26 0.005 0.255 0.0242 0.17 0.000586 0.0289 0.004114 

2(20) 0.21 0.005 0.205 0.01 0.13 0.0001 0.0169 0.0013 

1(15) 0.2 0.005 0.195 0.002 0.09 0.000004 0.0081 0.00018 

C I Dp)(Ds I = Dp)(Ds • DpxDs 

S I Dp I = v'fiP2. (IJp)2 

S I Ds I = v'fiS2 . (IJs)2 

V I Ds I = Ds2. (lJs)2 

Sm = k C I DpxDs I ; region ~ 7 
VIDsl 

= 0.426092 = 0.849466 
0.5016 

Su = k C I DpxDs I ; region!O 6 = 
SIDpl xSIDsl 

0.001945 = . 0.936779 
0.021188xO.098 
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Table G.6 An example of gloss art printed 

reflectance data and smoothness calculations. 

Region Rp Rd Rs 

14(80) 29 0.001 28.999 

13(75) 16 0.001 15.999 

12(70) 11 0.002 10.998 

11(65) 4.1 0.002 4.098 

10(60) 3.2 0.002 3.198 

9(55) 2.2 0.003 2.197 

8(50) 1.7 0.003 1.697 

7(45) 1.3 0.003 1.297 

6(40) 1 0.004 0.996 

5(35) 0.78 0.004 0.776 

4(30) 0.59 0.004 0.586 

3(25) 0.39 0.004 0.386 

2(20) 0.27 0.005 0.265 

1(15) 0.2 0.005 0.195 

C I DpxDs I = DpxDs • DpxDs 

S I Dp I = v'Dp2. (lJp)2 

S I Ds I = v'Ds2 • (1Js)2 

VI Ds I = Ds2. (Ds)2 

Dp Ds 

2.6 2.62 

1.0002 1.98 

1.38 1.49 

0.18 1.13 

0.2002 0.86 

0.1 0.65 

0.08 0.5 

0.0602 0.38 

0.044 0.29 

0.038 0.23 

0.04 0.17 

0.0242 0.13 

0.014 0.09 

with an unpigmented ink; 

DpxDp DsxDs DpxDs 

6.8644 6.812 

3.9204 1.980396 

2.2201 2.0562 

1.2769 0.2034 

0.7396 0.172172 

0.4225 0.065 

0.25 0.04 

0.003624 0.1444 0.022876 

0.001936 0.0841 0.01276 

0.001444 0.0529 0.00874 

0.0016 0.0289 0.0068 

0.0005856 0.0169 0.003146 

0.000196 0.0081 0.00126 

8m = k C I DpxDs I ; region ~ 7 
VIDsl 

= 0.574822 = 1.145977 
0.5016 

Su = k C I DpxDs I ; region!!O 6 = 
81Dpl xSIDsl 
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Table G.7 An example of gloss art printed with 30% water content 
'unpigmented emulsion ink'; reflectance data and smoothness calculations. 

Region Rp Rd Rs 

14(80) 30 0.002 29.998 

13(75) 14 0.003 13.997 

12(70) 11 0.003 10.997 

11(65) 7.9 0.003 7.897 

10(60) 4.4 0.004 4.396 

9(55) 2.7 0.004 2.696 

8(50) 1.6 0.004 1.596 

7(45) 1.3 0.004 1.296 

6(40) 0.92 0.005 0.915 

5(35) 0.56 0.005 0.555 

4(30) 0.42 0.005 0.415 

3(25) 0.41 0.006 0.404 

2(20) 0.36 0.006 0.354 

1(15) 0.33 0.006 0.324 

C I DpxDs I = DPxIJs • IJpxDs 

S I Dp I = v'fiP2. (IJp)2 

S I Ds I = v'fiS2 . (1Js)2 

VI Ds I = Ds2 - (I>s)2 

Dp 

3.2002 

0.6 

0.62 

0.7002 

0.34 

0.22 

0.06 

0.0762 

0.072 

0.028 

. 0.0022 

0.01 

0.006 

8m = k C I DpxDs I ; region C! 7 
VIDsl 

Ds DpxDp DsxDs DpxDs 

2.62 6.8644 8.384524 

1.98 3.9204 1.188 

1.49 2.2201 0.9238 

1.13 1.2769 0.791226 

0.86 0.7396 0.2924 

0.65 0.4225 0.143 

0.5 0.25 0.03 

0.38 0.0058064 0.1444 0.028956 

0.29 0.005184 0.0841 0.02088 

0.23 0.000784 0.0529 0.00644 

0.17 4.B4E-06 0.0289 0.000374 

0.13 0.0001 0.0169 0.0013 

0.09 0.000036 0.0081 0.00054 

= 0.597689 = 1.191565 
0.5016 

Su = k C I DpxDs I ; region s 6 = 
SIDpl xSIDsl 

0.002782 = 0.927934 
0.030596xO.098 
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Table G.B An example, unprinted machine glazed; reflectance data and 

smoothness calculations. 

Region Rp Rd Rs 

14(80) 2.3 0.002 2.298 

13(75) 1 0.003 0.997 

12(70) 0.5 0.003 0.497 

11(65) 0.27 0.003 0.267 

10(60) 0.18 0.003 0.177 

9(55) 0.11 0.004 0.106 

8(50) 0.068 0.005 0.063 

7(45) 0.05 0.005 0.045 

6(40) 0.04 0.006 0.034 

5(35) 0.036 0.005 0.031 

4(30) 0.029 0.004 0.025 

3(25) 0.026 0.004 0.022 

2(20) 0.024 0.004 0.02 

1(15) 0.032 0.004 0.028 

C I DpxDs I = DpXDS • IJpxIJs 

S I Dp I = v'IJP2. (Ifp)2 

S I Ds I = v'~ . (tJs)2 

V I Ds I =: Ds2 - (Ils)2 

Dp 

0.2602 

0.1 

0.046 

0.018 

0.0142 

0.0086 

0.0036 

0.0022 

0.0006 

0.0012 

0.0006 

0.0004 

-0.0016 

8m = k C I DpxDs I ; region ~ 7 
VIDsl 

Ds DpxDp DsxDs DpxDs 

2.62 6.8644 0.681724 

1.98 3.9204 0.198 

1.49 2.2201 0.06854 

1.13 1.2769 0.02034 

0.86 0.7396 0.012212 

0.65 0.4225 0.00559 

0.5 0.25 0.0018 

0.38 4.84E-06 0.1444 0.000836 

0.29 3.6E-07 0.0841 0.000174 

0.23 1.44E-06 0.0529 0.000276 

0.17 3.6E-07 0.0289 0.000102 

0.13 1.6E-07 0.0169 0.000052 

0.09 2.56E-06 0.0081 -0.000144 

= 0.056294 = 0.112229 
0.5016 

8u = k C I DpxDs I ; region s 6 = ---,,0<..!.-'.Q~Q~0~Q.!o!.94:&42~_= 0.843112 
8 I Dp I x8 I Ds I 0.00114xO.098 
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Table G.9 An example, machine glazed printed with a heatset yellow ink; 
reflectance data and smoothness calculations. 

Region Rp Rd Rs 

14(80) 2.3 0.002 2.298 

13(75) 1.3 0.003 1.297 

12(70) 0.86 0.003 0.857 

11(65) 0.29 0.003 0.287 

10(60) 0.22 0.004 0.216 

9(55) 0.17 0.004 0.166 

8(50) 0.094 0.004 0.09 

7(45) 0.064 0.004 0.06 

6(40) 0.034 0.005 0.029 

5(35) 0.025 0.005 0.02 

4(30) 0.024 0.006 0.018 

3(25) 0.016 0.005 0.011 

2(20) 0.016 0.006 0.01 

1(15) 0.022 0.006 0.016 

C I DpxDs I = i5PxDS -DpxDS 

SIDpl = J~ _ (IJp)2 

S I Ds I = JDs2 -{1Js)2 

V I Ds I = Ds2 - (Ifs)2 

Dp Ds 

0.2002 2.62 

0.088 1.98 

0.114 1.49 

0.0142 1.13 

0.01 0.86 

0.0152 0.65 

0.006 0.5 

0.0062 0.38 

0.0018 0.29 

0.0004 0.23 

0.0014 0.17 

0.0002 0.13 

-0.0012 0.09 

DpxDp DsxDs DpxDs 

6.8644 0.524524 

3.9204 0.17424 

2.2201 0.16986 

1.2769 0.016046 

0.7396 0.0086 

0.4225 0.00988 

0.25 0.003 

3.844E-05 0.1444 0.002356 

3.24E-06 0.0841 0.000522 

1.6E-07 0.0529 0.000092 

1.96E-06 0.0289 0.000238 

4E-08 0.0169 0.000026 

1.44E-06 0.0081 ·0.000108 

8m = k C I DpxDs I ; region i!: 7 
VIDsl 

= 0.045137 :: 0.089986 
0.5016 

8u :: k C I DpxDs I ; region:s; 6 = 
S I Dp I x8 I Os I 
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0,000206 • 0.903483 
0.002323xO,098 



Table G.10 An example} machine glazed printed with 10% water content 

'yellow enulsion ink'; reflectance data and smoothness calculations. 

Region Rp Rd Rs 

14(80) 1.6 0.001 1.599 

13(75) 0.53 0.001 0.529 

12(70) 0.23 0.002 0.228 

11(65) 0.11 0.002 0.108 

10(60) 0.06 0.003 0.057 

9(55) 0.042 0.003 0.039 

8(50) 0.04 0.003 0.037 

7(45) 0.032 0.003 0.029 

6(40) 0.025 0.004 0.021. 

5(35) 0.015 0.004 0.011 

4(30) 0.011 0.004 0.007 

3(25) 0.009 0.004 0.005 

2(20) 0.01 0.005 0.005 

1(15) 0.009 0.004 0.005 

C I DpxDs I = DpxDs • DpxDS 

S I Dp I = JDp2. (IJp)2 

S I Ds I = v'fiS2 . (DS)2 

VIDsI = Ds2. (lJs)2 

Dp 

0.214 

0.0602 

0.024 

0.0102 

0.0036 

0.0004 

0.0016 

0.0016 

0.002 

0.0008 

0.0004 

·1.73E·19 

1.73E·I9 

Sm = k C I DpxDs I ; region ~ 7 
VIDsl 

Ds DpxDp DsxDs DpxDs 

2.62 6.8644 0.56068 

1.98 3.9204 0.119196 

1.49 2.2201 0.03576 

1.13 1.2769 0.011526 

0.86 0.7396 0.003096 

0.65 0.4225 0.00026 

0.5 0.25 0.0008 

0.38 2.56E·06 0.1444 0.000608 

0.29 0.000004 0.0841 0.00058 

0.23 6.4E·07 0.0529 0.000184 

0.17 1.6E·07 0.0289 0.000068 

0.13 3.01E·38 0.0169 ·2.26E·20 

0.09 3.0IE·38 0.0081 1.56E·20 

= 0.045327 = 0.090364 
0.5016 

Su = k C I DpxDs I ; region $ 6 = 
SIDpl xS IDs I 

0.000068 = 0.905914 
0.000766xO.098 
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Table G.11 An example, machine glazed printed with 20% water content 
'yellow enulsion ink'; reflectance data and smoothness calculations. 

Region Rp Rd Rs Dp 

14(80) 1.3 0.001 1.299 

13(75) 0.52 0.002 0.518 0.1562 

12(70) 0.29 0.002 0.288 0.046 

11(65) 0.14 0.002 0.138 0.03 

10(60) 0.084 0.003 0.081 0.0114 

9(55) 0.076 0.003 0.073 0.0016 

8(50) 0.063 0.003 0.06 0.0026 

7(45) 0.045 0.003 0.042 0.0036 

6(40) 0.028 0.004 0.024 0.0036 

5(35) 0.018 0.004 0.014 0.002 

4(30) 0.016 0.004 0.012 0.0004 

3(25) 0.015 0.004 0.011 0.0002 

2(20) 0.015 0.004 0.011 0 

1(15) 0.01 0.004 0.006 0.001 

C I DpxDs I = DpxDs -lJpxlJs 

S I Dp I = v'fiP2 - (Dp)2 

S I Ds I = v'Ds2 - (1Js)2 

V I Ds I = :Ds2 - (Ds)2 

8m = k C I DpxDs I ; region ~ 7 
VIDsl 

Ds DpxDp DsxDs 

2.62 6.8644 

1.98 3.9204 

1.49 2.2201 

1.13 1.2769 

0.86 0.7396 

0.65 0.4225 

0.5 0.25 

0.38 1.296E-05 0.1444 

0.29 0.000004 0.0841 

0.23 1.6E-07 0.0529 

0.17 4E-OB 0.0289 

0.13 0 0.0169 

0.09 0.000001 0.0081 

= 0.03304 = 0.06587 
0.5016 

DpxDs 

0.409244 

0.09108 

0.0447 

0.012882 

0.001376 

0.00169 

0.0018 

0.001368 

0.00058 

0.000092 

0.000034 

0 

0.00009 

8u = k C I DpxDs I ; region:so 6 = 0.000103 = 0.831688 
8 I Dp I xS I Ds I 0.00126xO.098 
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Table G.12 An example, machine glazed printed with 30% water content 
'yellow enulsion ink'; reflectance data and smoothness calculations. 

Region Rp Rd Rs 

14(80) 1.3 0.002 1.298 

13(75) 0.51 0.002 0.508 

12(70) 0.25 0.003 0.247 

11(65) 0.2 0.003 0.197 

10(60) 0.16 0.003 0.157 

9(55) 0.1 0.003 0.097 

8(50) 0.06 0.004 0.056 

7(45) 0.035 0.003 0.032 

6(40) 0.025 0.004 0.021 

5(35) O.OlS 0.004 0.014 

4(30) 0.016 0.004 0.012 

3(25) 0.015 0.004 0.011 

2(20) 0.012 0.004 0.008 

1(15) 0.01 0.004 0.006 

C I DpxDs I = DpxDs • lJpxIJs 

S I Dp I = v'fiP2. (IJp)2 

S I Ds I = v'fiS2 . (IJs)2 

Dp 

0.15S 

0.0522 

0.01 

O.OOS 

0.012 

0.0082 

0.0048 

0.0022 

0.0014 

0.0004 

0.0002 

0.0006 

0.0004 

Sm = k C I DpxDs I ; region ~ 7 
VIDsl 

Ds DpxDp DsxDs DpxDs 

2.62 6.8644 0.41396 

1.98 3.9204 0.103356 

1.49 2.2201 0.0149 

1.13 1.2769 0.00904 

0.S6 0.7396 0.01032 

0.65 0.4225 0.00533 

0.5 0.25 0.0024 

0.38 4.B4E-06 0.1444 0.000836 

0.29 1.96E-06 0.OS41 0.000406 

0.23 1.6E-07 0.0529 0.000092 

0.17 4E-OS 0.0289 0.000034 

0.13 3.6E-07 0.0169 0.000078 

0.09 1.6E-07 0.0081 0.000036 

= 0.032206 = 0.064207 
0.5016 

Su = k C I DpxDs I ; region $ 6 = 0.0000607 = 0.873527 
S I Dp I xS I Ds I O.000709xO.098 
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Table G.13 An example, machine glazed printed with an unpigmented ink; 
reflectance data and smoothness calculations. 

Region Rp Rd Rs Dp Ds DpxDp DsxDs DpxDs 

14(80) 2.3 0.001 2.299 

13(75) 1.2 0.002 1.198 0.2202 2.62 6.8644 0.576924 

12(70) 0.62 0.002 0.618 0.116 1.98 3.9204 0.22968 

11(65) 0.4 0.003 0.397 0.0442 1.49 2.2201 0.065858 

10(60) 0.24 0.003 0.237 0.032 1.13 1.2769 0.03616 

9(55) 0.16 0.003 0.157 0.016 0.86 0.7396 0.01376 

8(50) 0.14 0.003 0.137 0.004 0.65 0.4225 0.0026 

7(45) 0.14 0.004 0.136 0.0002 0.5 0.25 0.0001 

6(40) 0.1 0.004 0.096 0.008 0.38 0.000064 0.1444 0.00304 

5(35) 0.044 0.004 0.04 0.0112 0.29 0.0001254 0.0841 0.003248 

4(30) 0.026 0.005 0.021 0.0038 0.23 1.444E-05 0.0529 0.000874 

3(25) 0.019 0.005 0.014 0.0014 0.17 1. 96E-06 0.0289 0.000238 

2(20) 0.015 0.004 0.011 0.0006 0.13 3.6E-07 0.0169 0.000078 

1(15) 0.013 0.004 0.009 0.0004 0.09 1.6E-07 0.0081 0.000036 

C I DpxDs I = Dp~(Ds -tJpxns 

S I Dp I = v'Dp2 -(IJp)2 

S I Ds I = v'Ds2 -(Ds)2 

VI Ds I = Ds2. (1Js)2 

8m = k C I DpxDs I ; region ~ 7 = 0.050667 = 0.10101 
VIDsl 0.5016 

Su = k CIDpxDsl ; region:s 6 = Q,OQ0342 = 0.860271 
8 I Dp I x8 I Ds I 0.004059xO.098 
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Table G.14 An example, machine glazed printed with 30% water content 
'unpigmented enulsion ink'; reflectance data and smoothness calculations. 

Region Rp ReI Rs 

14(80) 2.3 0.002 2.298 

13(75) 0.7 0.002 0.698 

12(70) 0.51 0.003 0.507 

11(65) 0.26 0.003 0.257 

10(60) 0.19 0.003 0.187 

9(55) 0.12 0.003 0.117 

8(50) 0.1 0.004 0.096 

7(45) 0.045 0.003 0.042 

6(40) 0.023 0.004 0.019 

5(S5) 0.021 0.004 0.017 

4(30) 0.018 0.004 0.014 

3(25) 0.018 0.004 0.014 

2(20) 0.022 0.005 0.017 

1(15) 0.022 0.004 0.018 

C I DpxDs I = DpxDs • DPxDS 

S I Dp I = v'DP2. (nP>2 

S I Ds I = v'fiS2 • (IJs)2 

VI Os I = Ds2. (IJs)2 

Dp 

0.32 

0.0382 

0.05 

0.014 

0.014 

0.0042 

0.0108 

0.0046 

0.0004 

0.0006 

0 

·0.0006 

-0.0002 

8m = k C I DpxDs I ; region ~ 7 
VIDsl 

Ds DpxDp 

2.62 

1.98 

1.49 

1.IS 

0.86 

0.65 

0.5 

0.38 2.11SE·05 

0.29 1.6E-07 

0.23 3.6E·07 

0.17 0 

0.13 3.6E·07 

0.09 4E-08 

= 0.06137 
0.5016 

DsxDs DpxDs 

6.8644 0.8384 

3.9204 0.075636 

2.2201 0.0745 

1.2769 0.01582 

0.7396 0.01204 

0.4225 0.00273 

0.25 0.0054 

0.1444 0.001748 

0.0841 0.000116 

0.0529 0.000138 

0.0289 0 

0.0169 ·0.000078 

0.0081 ·0.000018 

= 0.12234 

Su = k C I DpxDs I ; region s 6 = 
SIDpl xSIDsl 

0.000146 = 0.852506 
0.001744xO.098 

268 


