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ABSTRACT 

Being able to rapidly recognise new research trends is strategic for 

many stakeholders, including universities, institutional funding 

bodies, academic publishers and companies. The literature pre-

sents several approaches to identifying the emergence of new re-

search topics, which rely on the assumption that the topic is al-

ready exhibiting a certain degree of popularity and consistently 

referred to by a community of researchers. However, detecting the 

emergence of a new research area at an embryonic stage, i.e., be-

fore the topic has been consistently labelled by a community of 

researchers and associated with a number of publications, is still 

an open challenge. We address this issue by introducing Augur, a 

novel approach to the early detection of research topics. Augur 

analyses the diachronic relationships between research areas and 

is able to detect clusters of topics that exhibit dynamics correlated 

with the emergence of new research topics. Here we also present 

the Advanced Clique Percolation Method (ACPM), a new com-

munity detection algorithm developed specifically for supporting 

this task. Augur was evaluated on a gold standard of 1,408 debu-

tant topics in the 2000-2011 interval and outperformed four alter-

native approaches in terms of both precision and recall. 

CCS CONCEPTS 

• Information systems → Digital libraries and archives; • Com-

puting methodologies → Artificial intelligence; • Information 

systems → Ontologies • Computing methodologies → Topic 

modeling • Information systems → Clustering • Information 

systems → Network data models 

KEYWORDS 

Scholarly Data, Embryonic Topic, Topic Detection, Topic Trends, 

Semantic Technologies, Clustering Algorithms, Ontologies. 

1 INTRODUCTION* 

The ability to promptly recognise the emergence of new research 

topics is an important asset for anybody involved in research, in-

cluding academic publishers, researchers, institutional funding 

bodies and so on. Nowadays, we are experiencing a rapid growth 

of the number of research publications produced each year [1], 
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and keeping up with new emerging trends is becoming progres-

sively more challenging. In the last two decades, as very large re-

positories of scholarly data have become available, we have wit-

nessed the emergence of several approaches capable of detecting 

novel topics and their trends [2-5]. However, these approaches are 

only able to detect the emergence of new topics that are already 

associated both with specific labels and a good number of publica-

tions. This is an important limitation since relevant stakeholders 

need to react as timely as possible to changes in the research land-

scape. For instance, academic publishers such as Springer Nature, 

who is funding this research, can take advantage of early intelli-

gence to commission a pertinent book or journal. In this paper, we 

address this issue by introducing an innovative approach for fore-

casting the emergence of new research topics at a very early stage.  

According to the literature, a research topic lifecycle tradi-

tionally consists of two main stages [6]. In the initial stage, a 

group of scientists agree on some basic tenets, define a conceptual 

framework, and begin to establish a new scientific community. 

Afterwards, a research area enters the recognised phase, one in 

which a substantial number of authors are active in it, producing 

and disseminating results.  Current methods for identifying new 

research topics focus on these two phases.  

In our recent study [7], we highlighted the existence of an em-

bryonic phase, which predates the initial stage. In this phase, a 

topic has not yet been explicitly labelled and recognized by a re-

search community, but it is already taking shape and affecting the 

research landscape, e.g., by fostering new collaborations between 

previously distant research communities. This is consistent with 

the well-known paradigm shift theory proposed by Kuhn [8], 

which states that research is pursued using a set of paradigms and 

when these paradigms cannot cope with certain problems, a para-

digm shift can lead to the emergence of a new scientific disci-

pline. In this phase, the relevant research communities usually 

start to build the foundations of the emerging new area by defin-

ing the associated challenges and paradigms, forming new collab-

orations, and producing seminal publications.  

In our previous work [7], we showed that the emergence of 

new research topics is correlated with specific dynamics of al-

ready established topics, paving the way to the detection of topics 

at their embryonic stage. In particular, using a sample of three 

million papers, we compared the sections of the topic co-

occurrence graphs, where new research areas are about to emerge, 

with a control group of subgraphs associated with established top-

ics. The results provided evidence that the emergence of a novel 

research topic can be anticipated by a significant increase in the 

pace of collaboration between relevant research areas, which can 

be considered as the “ancestors” of the new topic.  
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In this paper, we present Augur, a novel approach that aims to 

effectively detect the emergence of new research areas by analys-

ing topic networks and identifying clusters associated with an 

overall increase of the pace of collaboration between research are-

as1. Augur operates in three steps. First, it creates evolutionary 

networks describing the collaboration between research topics 

over time. Then it uses a novel clustering algorithm, the Advanced 

Clique Percolation Method (ACPM), to locate areas of the net-

work that exhibit a significant increase in the pace of collabora-

tion. Finally, it post-processes the results, merging and filtering 

the resulting clusters. The output of the process are clusters of ex-

isting topics (the ancestors of the new topic) that are nurturing a 

new research area that should shortly emerge. In addition, Augur 

also returns, for each cluster, a number of significant papers and 

authors, which can provide more details about the emerging re-

search. 

The main contributions of this paper are: 1) a new framework 

for the detection of research topics at their embryonic stage, 2) 

ACPM, a community detection algorithm developed for support-

ing this task, and 3) a gold standard composed by 1,408 debutant 

topics in the period 2000-2011. 

The rest of the paper is organized as follows. In Section 2, we 

review the literature regarding the early detection of trends in re-

search, pointing out the existing gaps. In Section 3, we describe 

Augur and in Section 4 we evaluate it versus four alternative ap-

proaches. Finally, in Section 5 we summarize the main conclu-

sions and outline future directions of research. 

2 LITERATURE REVIEW 

Topic detection and tracking (TDT) has attracted considerable 

attention in the last two decades so that we can find it applied to 

different domains, such as social networks [9], blogs [10], and 

scientific literature [2, 11-16].  

One of the main tasks for TDT is to analyse how topics devel-

op in time, paying special attention to emerging topics and trends. 

In literature, we can find several approaches that aim to track the 

development of topics as well as their emergence. A classic meth-

od for identifying emerging topics, based on the identification of 

their rapid growth, is the burst detection algorithm of Kleinberg 

[17]. This approach observes the frequencies of each word and 

highlights the ones that occur with higher intensity over a limited 

period of time. However, this burst analysis is performed on every 

word (including stop words) and not for specific topics, therefore 

it must be included in a pipeline that selects relevant keywords.  

Other approaches use custom metrics relying on the number 

of documents [12, 18] or authors [19] associated to the topic. 

Some other approaches perform more complex analyses, such as 

determining the citation patterns between documents [4, 20]. For 

instance, Jo, et al. [20] developed an approach that combines dis-

tributions of terms (i.e., n-grams) with the distribution of the cita-

                                                                 
1 We use the expression “collaboration between research areas” as a shortcut for 

“collaboration between research communities associated with specific research are-

as”. The community of a research area is given by the authors who publish in the 

area in question. 

tion graph related to publications containing that term. In particu-

lar, the authors assume that if a term is relevant for a topic, docu-

ments containing that term will have a stronger connection than 

randomly selected ones. Then, their algorithm identifies the set of 

terms having citation patterns that exhibit synergy. Similarly, He, 

et al. [4] combined the citation network with Latent Dirichlet Al-

location (LDA) [21]. Generally, LDA is used to extract topics 

from a corpus, modelling topics as a multinomial distribution over 

words [21]. Within their study, He, et al. [4] detect topics in inde-

pendent subsets of a corpus and leverage citations to connect top-

ics in different time frames. However, these approaches suffer 

from time lag, as newly published papers might need some years 

before being cited. 

Another category of approaches focus on the co-word analy-

sis, which studies the co-occurrence of words within documents 

[22, 23]. Furukawa, et al. [22] proposed a method which analyses 

the development of conference networks to indicate the emer-

gence of topics. In particular, using co-word analysis, they created 

progressive conference networks, in which nodes represent con-

ferences and links represent their similarity in terms of keywords 

extracted from the papers. Then, as indicators for emerging topics, 

they observe conferences that are becoming similar and thus they 

are collapsing over each other. Di Caro, et al. [23] designed an 

approach for observing how topics evolve over time. After split-

ting the collection of documents according to different time win-

dows, their approach selects two consecutive slices of the corpus, 

extracts topics using LDA and analyses how these topics change 

from one time window to the other. The main assumption is that 

by comparing the topics generated in two adjacent time windows, 

it is possible to observe how topics evolve as well as capture their 

birth and death. However, comparing two time windows implies 

that the new topics must appear in at least one of them, hence they 

have already emerged. 

Another set of approaches fall into the category of overlay 

mapping techniques to build maps of science and enable users to 

assess emerging topics [24, 25]. Although these approaches pro-

vide a global perspective, the interpretation of those maps is based 

on visual inspection by human experts. 

In brief, many approaches are capable of both tracking the de-

velopment of topics over time and acknowledge their emergence. 

However, they focus on recognised topics, which are already as-

sociated with a good number of publications. Detecting research 

topics at an embryonic stage remains an open challenge. 

3  AUGUR 

We devote this section to presenting Augur, which is a novel ap-

proach for the effective detection of new emerging research 

trends. Its workflow is depicted in Figure 1, and it consists of 

three main stages: 

i. Creating the evolutionary networks. Here we cre-

ate semantic enhanced topic networks from publica-

tion metadata, and then convert them to evolution-

ary networks, which track the pace of collaboration 

between research topics over the last n years. 
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ii. Clustering. Here we detect cluster of topics that ex-

hibit a significant increase in collaboration pace. 

iii. Post-Processing. Here we filter and further enhance 

the returned clusters with information regarding in-

fluential authors and papers. This information is 

needed to help users to make sense of the results. 

In the next sections, we will describe these stages in detail. 

 
Figure 1: Workflow of Augur. The rectangles represent the stag-

es. The circles represent the input/output data. 

3.1 Evolutionary networks 

In order to cluster the topics that exhibit an increase in collabora-

tion pace, we first need to produce an evolutionary network for 

each year of the period under analysis. This is a network in which 

the nodes represent topics and the links represent the pace of col-

laboration (Eq. 4) of two topics in a previous time interval. In this 

paper, we will use a time interval of five years, since this solution 

was already tested successfully in Salatino, et al. [7]. Therefore, 

the evolutionary network of the year t will contain a snapshot of 

the interactions between topics in the year interval (t-4, t). For in-

stance, an evolutionary network of the year 2000 will describe 

how the interaction between topics developed in the years be-

tween 1996 and 2000. 

For generating the evolutionary networks, we first create a 

semantic enhanced topic network for each year of the time inter-

val under consideration. Formally, each network is a fully 

weighted graph 𝐺𝑦𝑒𝑎𝑟  =  (𝑉𝑦𝑒𝑎𝑟 , 𝐸𝑦𝑒𝑎𝑟 , 𝑝𝑦𝑒𝑎𝑟 , 𝑤𝑦𝑒𝑎𝑟), in which V 

is the set of topics while E is the set of links representing the topic 

co-occurrences. The weight of a node in p represents the number 

of publications in which a topic appears in a year, while the link 

weights in w are equal to the number of publications in which two 

topics co-occur in the same year. 

We generate the semantic enhanced topic networks by ex-

ploiting a dataset describing three million papers in the field of 

Computer Science, which have been classified using CSO2 , a 

large-scale ontology of research topics in Computer Science. CSO 

was originally created to model research topics in the Rexplore 

system [26], and is currently used by Springer Nature to classify 

proceedings in the field of Computer Science [27], such as the 

well-known LNCS series. CSO was automatically generated by 
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applying the Klink-2 algorithm [28] to a corpus of 16 million sci-

entific publications in the field of Computer Science.  

We create the semantic enhanced topic network for a given 

year by selecting all the keywords from the publications in that 

year that also appear as concepts in CSO, and then aggregating 

keywords representing the same concept, i.e., keywords linked by 

a relatedEquivalent relationship in the ontology [28]. For in-

stance, we aggregate keywords such as “semantic web”, “seman-

tic web technology” and “semantic web technologies” in a single 

semantic topic and we assign it to all publications associated with 

these keywords. The weight of nodes is the number of publica-

tions associated with the node keyword/s and the weight of a link 

is equivalent to the number of publications in which the keywords 

of the nodes co-occur. 

In the current prototype of Augur, we have built fifteen topic 

networks representing topic co-occurrences in the 1995-2009 

timeframe. We then produced an evolutionary network for each 

year in the 1999 to 2009 interval. The evolutionary network for a 

given year t is mathematically represented by the graph in Eq. 1. 

( , , , ), : , :
t t t t t

evol evol evol evol evol

year year year year yearG V E p w p V w E    (1) 

The evolutionary graph 𝐺𝑦𝑒𝑎𝑟𝑡
𝑒𝑣𝑜𝑙  is a fully weighted graph com-

posed by the set of vertices 𝑉𝑦𝑒𝑎𝑟𝑡
𝑒𝑣𝑜𝑙 , the set of edges 𝐸𝑦𝑒𝑎𝑟𝑡

𝑒𝑣𝑜𝑙 , the 

weights of the vertices 𝑝𝑦𝑒𝑎𝑟𝑡
𝑒𝑣𝑜𝑙  and the weights of the edges 𝑤𝑦𝑒𝑎𝑟𝑡

𝑒𝑣𝑜𝑙 . 

The function that maps the five semantic enhanced topic net-

works (t-4, t) to an evolutionary network is showed in Eq. 2. 

1 2 3 4

1 2 3 4

( , , , , )

( )

(

t t t t t t

t t t t t t

t t

evol topic topic topic topic topic

year year year year year year
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year year year year year year

evol topic

year year ye

G f G G G G G

V unique V V V V V

E unique E E

   

   



    

 
1 2 3 4

)
t t t t

topic topic topic topic

ar year year yearE E E
   
  

 (2) 

The resulting evolutionary network is composed by the unique 

set of topics 𝑉𝑦𝑒𝑎𝑟𝑡

𝑡𝑜𝑝𝑖𝑐 and edges 𝐸𝑦𝑒𝑎𝑟𝑡

𝑡𝑜𝑝𝑖𝑐 from the five input networks. 

The weight of an edge is computed as the pace of collaboration 

(Eq. 4) between two nodes while the weight of a node is comput-

ed as its pace of growth (Eq. 5).  

In Salatino, et al. [7], we defined the pace of collaboration as 

the rate at which the number of publications shared by two topics 

changes in time and we showed that the pace of collaboration in a 

portion of a network is strongly correlated with the emergence of 

a new research area. For each edge, we first compute the strength 

of collaboration of all links in a year t, according to Eq. 3, and 

then we compute the pace of collaboration in a sequence of years, 

as showed in Eq. 4. In particular, given a link connecting node u 

and node v, we compute the strength of their collaboration (�̂�𝑢,𝑣
𝑡𝑜𝑝𝑖𝑐) 

by normalising the weight of their link (𝑤𝑢,𝑣
𝑡𝑜𝑝𝑖𝑐) against the number 

of publications of both nodes (𝑝𝑢
𝑡𝑜𝑝𝑖𝑐

 and 𝑝𝑣
𝑡𝑜𝑝𝑖𝑐) and then compu-

ting the harmonic mean of these two values.  

, ,

,
ˆ ( , )

year year

year

year year

topic topic

u v u vtopic

u v topic topic

v u

w w
w HarmonicMean

p p
  (3) 

Next, with Eq. 4, we calculate the pace of collaboration 

(𝑤𝑢,𝑣𝑦𝑒𝑎𝑟

𝑒𝑣𝑜𝑙 ) as the slope of the linear regression (computed with the 

least-squared method) that fits the five strengths of collaboration 

obtained from the same link in the five topics networks. In Eq. 4, 

http://cso.kmi.open.ac.uk/
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�̂�𝑢,𝑣
𝑡𝑜𝑝𝑖𝑐̅̅ ̅̅ ̅̅ ̅̅ represents the mean value of the five weights, 𝑦𝑒𝑎𝑟̅̅ ̅̅ ̅̅  is the 

mean value of all the years 
4 3{ ..,., , }t t tyear year year 

 the topic 

networks refer to, and 𝑦𝑒𝑎𝑟𝑡−𝑖, is the instance value from that set. 

If two topics do not have any co-occurrence in a year their 

strength of collaboration �̂�𝑢,𝑣𝑦𝑒𝑎𝑟−𝑖

𝑡𝑜𝑝𝑖𝑐  is zero. 
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The node weights in 𝑝𝑦𝑒𝑎𝑟𝑡
𝑒𝑣𝑜𝑙  represent their pace of growth and 

are computed according to Eq. 5. In particular, the weight of a 

given k-th vertex (𝑝𝑘𝑦𝑒𝑎𝑟

𝑒𝑣𝑜𝑙 ) is the slope of the line that best fits the 

weights of the same k-th vertex in the different topic networks 

(𝑝𝑘𝑦𝑒𝑎𝑟−𝑖

𝑡𝑜𝑝𝑖𝑐 ). In particular, 𝑝𝑘𝑦𝑒𝑎𝑟−𝑖

𝑡𝑜𝑝𝑖𝑐
 is the number of publications the k-

th topic received in 𝑦𝑒𝑎𝑟𝑡−𝑖, and 𝑝𝑘
𝑡𝑜𝑝𝑖𝑐̅̅ ̅̅ ̅̅ ̅ is the average value of pub-

lications the same node received in that period of five years. If a 

topic has zero publications in a year, the weight 𝑝𝑘𝑦𝑒𝑎𝑟−𝑖

𝑡𝑜𝑝𝑖𝑐  is zero.  

4
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3.2 Advanced Clique Percolation Method 

In this phase, Augur uses the Advanced Clique Percolation Meth-

od (ACPM) for detecting clusters of topics in the evolutionary 

networks, which exhibit an intense activity in terms of pace of 

collaboration, since this dynamic was shown to be linked with the 

eventual emergence of new topics. ACPM is an extension of the 

well-known Clique Percolation Method (CPM) [29] that we spe-

cifically developed to support the Augur framework. Indeed, CPM 

suffers from two main limitations when addressing this task. First, 

it does not consider the weight of edges. Secondly, since evolu-

tionary networks tend to be very dense, it usually returns coarse-

grained and large-scale communities composed by hundreds of 

topics. ACPM address these issues by using also the weights and 

by radically redefining the concept of community, with the aim of 

selecting fine-grained communities even in dense networks.  

ACPM consists of four steps: 

1. Detecting k-cliques within the network; 

2. Measuring pace of collaboration per k-cliques and 

filtering noise; 

3. Creating the k-clique adjacency graph; 

4. Locating local maxima and extracting neighbour-

hoods. 

Algorithm 1 reports the pseudocode of the ACPM. We will 

now report the steps of ACPM and highlight the differences with 

CPM. 

 

Step 1: Detecting k-cliques within the network. Cliques and in 

general, k-cliques are complete sub-graphs of order k in which all 

the nodes are connected to each other. The algorithm explores the 

topology of the network and detects 3-cliques (therefore k=3). 

This step is similar to the standard CPM.  

 

Step 2: Measuring pace of collaboration per k-cliques and fil-

tering noise. CPM works on binary networks (i.e., undirected and 

without any weight). An arbitrary network can always be convert-

ed into a binary network, simply inducing the graph that contains 

only the links with weight higher than a threshold w [29]. Indeed, 

with CPM, the link weights can only be used to filter the links 

when producing the binary network upon which locating the 3-

cliques. However, filtering the network with a static threshold is 

not the best solution. Indeed, a link having weight below w, can 

be still be used to detect 3-cliques with an intense activity of col-

laboration.  

Therefore, inspired by Farkas, et al. [30], we filter at the clique 

level rather than at the link one. After detecting the k-cliques, we 

compute the intensity of each clique and then remove all k-cliques 

having an intensity below the threshold I. This intensity (see Eq. 

6) is computed as the harmonic mean of the weights associated to 

its three links (𝑤𝑎𝑏, 𝑤𝑏𝑐, 𝑤𝑐𝑎), where a, b, and c are the nodes of 

the 3-clique. In particular, this value of intensity is equivalent to 

the pace of collaboration of the clique, analysed in our first study 

[7]. This strategy allows us to detect also k-cliques containing 

weak links (low weights) and include them in the percolation clus-

ter, as long as they contain edges with large weights that help 

them to exceed the threshold I. 

1 1 1

3
( )

ab bc ca

PaceOfCollaboration clique
w ww   


 

 (6) 

 

Step 3: Creating the k-clique adjacency graph. ACPM creates 

the k-clique adjacency graph G = (V, E,W). V is the set of vertices 

representing the identified 3-cliques from the original graph, E is 

the set of links connecting adjacent k-cliques that share k-1 verti-

ces, and W is the set containing the node weights, i.e., the intensi-

ties of each clique computed using Eq. 6.  

 

Step 4: Locating local maxima and extracting neighbour-

hoods. In this final phase, the algorithm identifies the communi-

ties within the evolutionary network. Another important differ-

ence between the standard CPM and ACPM lays in this step. 

CPM defines communities as connected components of the k-

clique adjacency graph. As a result, in the presence of very dense 

networks, as it is the case when processing evolutionary networks, 

it returns very coarse-grained communities. Palla, et al. [29] sug-

gest to monitor how communities change by trying different val-

ues of link weights w and tuning the value k for the dimension of 

cliques. Such analysis produces a similar effect as changing the 

resolution in a microscope. Increasing the threshold w leads the 

communities to shrink and fall apart, as fewer cliques will be 

formed. Conversely, increasing the dimension of cliques, k, makes 

the communities smaller, more cohesive and more fragmented. 

However, changing the values of w and k is not a good solution in 

this case. First, as mentioned in step 2, choosing any static thresh-

old for w is not feasible. Secondly, when increasing the value of k 

(from 3 to 4 and so on), communities become too granular, pre-

venting smaller cliques from belonging to a community.  
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ACPM addresses this limitation by taking advantage of the 

weighted k-clique adjacency graph produced in Step 3. It identi-

fies the local maxima of the k-clique adjacency graph and then 

selects as communities the surrounding portion of the network.  

This consists of three main steps: 

1. converting the clique graph into an overlap matrix M; 

2. locating local maxima in the matrix M; 

3. selecting their neighbourhoods which contain all the 

closely related topics that show an intense collaboration. 

First, ACPM converts the clique graph into an overlap matrix 

M, according to Eq. 7. 

, ,

( , )

0 ( , )

j

V V

i j i i j

W if i j E

m W if i j with m

if i j E






  
 

 (7) 

For each i and j clique M reports the pace of collaboration of 

the j-th clique (𝑊𝑗), if a direct link between the i-th and j-th clique 

exists. Since a clique is always connected with itself, the main 

diagonal (where j=i) will report the pace of collaboration of the i-

th clique (𝑊𝑖). ACPM identifies which cliques are in a local max-

imum by checking if the maximum value in the corresponding 

row is on the main diagonal. 

Then, ACPM extracts the neighbourhood of a local maximum, 

by selecting its ego network. The ego network is a network con-

sisting of a central node (ego), the nodes it is directly connected to 

(alters), and the ties between them [31]. In the context of this 

work, an ego network consists of the induced subgraph containing 

a given local maximum clique and the cliques that are directly 

connected to it. The size of an ego network is given by its order. 

When the order is 1, the ego network includes the ego node plus 

its immediate neighbours. The ACPM extracts the ego network of 

order 2, meaning that it will contain the ego node, the immediate 

neighbours and the neighbours of neighbours, and all the links 

between these cliques. We found that using order 2 allows us to 

better select meaningful cliques that are not directly connected to 

the ego node. Finally, the ACPM converts the ego networks in 

clusters of topics. 

3.3 Post-processing 

The size of the community returned in the previous step span from 

10 to 200, which is arguably a very large dimension for a commu-

nity of topics that is fostering a new research topic. This is be-

cause the selection of ego networks of order 2, within very dense 

networks, can produce very large clusters, which may also contain 

some topics that do not necessarily exhibit a high pace of collabo-

ration. In addition, since ACPM returns fuzzy communities, it 

may happen that two (or more) clusters share a large subset of 

their topics, because their mutual topics had the most active col-

laborations in both communities. ACPM addresses these issues by 

post-processing the clusters.  

First, for each returned cluster, Augur ranks the links by their 

weights in descending order and selects the first 15, which poten-

tially embody the most active collaborations between topics. It 

then prunes the clusters preserving only the topics connected by 

the selected links. Secondly, Augur removes redundant clusters by 

merging clusters that have Jaccard similarity above 0.7. 

Making sense 

As part of helping the user in making sense of the returned cluster 

of topics, Augur provides a set of influential authors and papers, 

relevant to cluster in question.  

As influential authors, Augur identifies the authors that are ac-

tively publishing in as many topics of the identified cluster as pos-

sible. This analysis is performed in the five years prior to the de-

tection of the cluster. Similarly, as influential papers, Augur re-

turns the papers that have been published in the previous five 

years, which discuss as many of the identified topics as possible. 

For lack of space, we will not report here the full process for the 

extraction of authors and papers, which will be further addressed 

in future work. 

In sum, Augur returns as output clusters of topics exhibiting 

an increase in the pace of collaboration that potentially will lead 

to the emergence of a new topic. In addition, for each cluster, it 

also returns a set of influential papers and authors that can help 

the user in making sense of the research dynamics in question. 

 

Algorithm 1: Advanced Clique Percolation Method. 

 

4 EVALUATION AND DISCUSSION 

In this section, we present an evaluation of Augur on the task of 

forecasting the emergence of new research topics. In particular, 
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we evaluated Augur on a gold standard extracted from historical 

data and compared ACPM against four other algorithms: Fast 

Greedy (FG), Leading Eigenvector (LE), Fuzzy C-Means (FCM), 

and Clique Percolation Method (CPM). 

To this end, we selected topic networks from the year 1995 to 

2009. We then created 11 evolutionary networks taking in consid-

eration a time interval of five years in the period 1999-2009. For 

instance, the evolutionary network for 1999 considers the topic 

networks in the years 1995-1999, while the evolutionary network 

of the year 2009 considers the networks in the years 2005-2009. 

We then processed the evolutionary networks using the five alter-

native algorithms and applied the post-processing described in 

Section 3.3. 

While Fast Greedy, Leading Eigenvector, Clique Percolation 

Method and ACPM directly operate on networks, Fuzzy C-Means 

works on a feature space and needs to know a priori the number of 

clusters. Therefore, before evaluating FCM, we converted the 

evolutionary networks to adjacency matrices so that each instance 

(node) got as features the nodes to which it is connected. Then, we 

assessed the best number of clusters, using the elbow method. To 

this end, we ran several instances of FCM, in each year, iteratively 

increasing the number of clusters, and we observed the number of 

clusters in which the curve of the squared errors of prediction 

(SSE) starts to bend like an elbow. We found out that the optimal 

number of clusters for all years was 25, so we used this value for 

the evaluation. 

The clusters resulting from an evolutionary network in a given 

year (e.g., 2001) were compared with a gold standard containing 

the ancestors of the topics that debuted in the two following years 

(e.g., 2002 and 2003). In the following sections, we will describe 

the gold standard (Section 4.1), the method for comparing the al-

gorithm output with the gold standard (Section 4.2), the metrics 

adopted to assess the performance (Section 4.3), and the results of 

the evaluation (Section 4.4) 

The data collected during the evaluation and the gold standard 

are available at http://rexplore.kmi.open.ac.uk/JCDL2018/. 

4.1 Gold Standard 

Very often an evaluation is carried out to compare the results of a 

given algorithm against a set of results determined a priori to be 

correct, also known as gold standard. In the context of this study, 

the gold standard is composed by the debutant topics that emerged 

from the 2000 to 2011 and a list of related topics that can be con-

sidered as their “ancestors”. We consider also their related topics 

since all the approaches return a cluster of ancestors linked to the 

future emergence of a yet unlabelled topic.  

In the following, we will discuss how we selected the debutant 

topics and the ancestors. 

Generation of debutant topics. 

From Rexplore dataset, with the support of CSO, we retrieved all 

the topics belonging to the Computer Science field, which 

emerged in the period 2000-2011. 

The simplest way to find the debut of a topic is to consider the 

year in which the label of the topic was used for the first time as 

keyword in a paper. For example, according to the Rexplore cor-

pus, the label of the topic Cloud Computing, made its first appear-

ance in the year 2006. However, considering only the year in 

which its label firstly appeared as the year of debut can be risky. 

A topic label can in fact be mentioned in few papers with some 

meaning and then become popular years later with a completely 

different meaning. It is the case of “linked data”, that initially was 

used in the context of databases to refer to pieces of data linked to 

each other before being adopted by the Semantic Web as a specific 

method for publishing data using the RDF format. This label mis-

use can create significant noise. To tackle this problem, we select 

as debut year of a topic the first year in which it reaches at least 5 

publications. In this way, we can be more certain that a new label 

is already recognised by multiple authors.  

Table 1 reports the number of debutant topics per year. Unfor-

tunately, the number of debutant topics drastically decreases in the 

second part of the analysed period. This is probably due to miss-

ing data in our dataset. We still included the years after 2006 in 

the analysis for the sake of completeness, however this issue pre-

vents us from trusting the results of the evaluation for years after 

2006. As future work, we plan to analyse other scholarly datasets 

to provide a gold standard that will cover also more recent years. 

 

Table 1: Number of topics that emerged in the years between 

2000 and 2011. 

Year 2000 2001 2002 2003 2004 2005 

#topics 149 194 221 216 137 241 
 

Year 2006 2007 2008 2009 2010 2011 

#topics 134 60 27 12 12 5 
 

Extraction of related topics or ancestors. 

For each debutant topic in the year of analysis we select the set of 

its ancestors that contributed to its creation.  

Our previous study [7] showed that simply selecting the most 

co-occurring topics as ancestors is too simplistic. Indeed, a high 

co-occurrence between two topics can be due to a variety of dif-

ferent reasons. Therefore, we consider as ancestors only the topics 

that most collaborate with the debutant topic during its initial 

stage, specifically in its first five years of activity. For each co-

occurring topic, we calculate the intensity of collaboration, as 

showed in Eq. 8. 
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In detail, considering �⃗� 𝑑𝑡 (paper vector of the debutant topic) 

the non-zero vector containing the amount of papers published 

about the debutant topic in the first five years of activity, and 𝐶 𝑑𝑡,𝑟𝑡 

(collaboration vector of the debutant topic and its related topic) 

the vector containing the amount of papers in which the two top-

ics appear together in the same five years, the intensity of collabo-

ration 𝐼𝑜𝐶(�⃗� 𝑑𝑡, 𝐶 𝑑𝑡,𝑟𝑡  ) between a debutant topic and a related topic 

can be computed as the Euclidean distance between these two 

vectors. 
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If the distance between the collaboration vector and the paper 

vector of the debutant topics is close to zero, it means that the 

debutant topic and the related topic had a very intense relationship 

in the first five years of life of the debutant topic and that the re-

lated topic had a major role in shaping the debutant topic.  

Then, we rank the computed values in ascending order, and 

select the first 25 meaningful topics, considered as influential for 

the debutant topic. The resulting gold standard is composed by 

1,408 topics in the 2000-2011 period associated with their 35,200 

ancestors. 

4.2 Matching clusters with debutant topics 

We assess the matching between the result set of an approach and 

the ancestors in the gold standard by computing the Jaccard Index 

between the i-th cluster 𝐶𝑖 and the ancestors of the k-th debutant 

topic 𝐷𝑘, as showed in Eq. 9. Because a topic can have more than 

one label (syntactic representation) referring to it, if the cluster 𝐶𝑖 

and the debutant topic 𝐷𝑘 contain the same topic, but with differ-

ent labels, the match will fail. 

To tackle this problem, we employed CSO [28] to semantical-

ly enhance Eq. 9 by including all topics 𝑆𝐴𝑖 that have a same-as 

relationship in CSO with the topics appearing in the cluster. 

In addition, we further enhanced both sets of communities and 

ancestors of debutant topics using the skos:broaderGeneric rela-

tionship between topics [28]. In CSO, this relationship is used 

when a topic is broader (super-area) than another one, e.g., “se-

mantic web” is a super-area of “linked data”. We analysed four 

different strategies: (1) 𝐶 𝑣𝑠. 𝐷 in which there is no semantic en-

hancement for both C and D except for the use of topics that are 

same-as in C – this semantic enhancement is included in all strat-

egies; (2) (𝐶 ∪ 𝑆𝑢𝑝) 𝑣𝑠. 𝐷, in which clusters are enhanced with 

their super-areas and compared with the debutant topics; (3) 

𝐶 𝑣𝑠. (𝐷 ∪ 𝑆𝑢𝑝) in which we enhanced the ancestors of debutant 

topics with their super-areas, and (4) (𝐶 ∪ 𝑆𝑢𝑝) 𝑣𝑠. (𝐷 ∪ 𝑆𝑢𝑝) 

where at the same time we enhanced both set of clusters and an-

cestors with their super-areas. 

The similarity measure 𝐽(𝐶𝑖 , 𝐷𝑘 , 𝑆𝐴𝑖 , 𝐸𝐶𝑖 , 𝐸𝐷𝑘) , in Eq. 9, 

combines the amount of topics matched between clusters and an-

cestors of debutant topics, and the topics matched using the se-

mantic enhancement. 

The similarity between the clusters and the debutant top-

ics falls in the range 0 to 1. If similarity is very near 0 the two sets 

share only few topics, while for values of 0.1 to 0.4 there is al-

ready a good number of matching topics. When the similarity is 

near 1, that the two sets are almost identical.  
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We consider a positive match between a debutant topic and a 

cluster only when their similarity is above a threshold t. Since the 

similarity threshold t cannot be defined a priori, we computed 

precision and recall for each method in each year, for 250 simi-

larity thresholds, from 0 to 1. 

4.3 Metrics 

We assessed the performance of the five algorithms by means of 

precision and recall. However, since a cluster can foster the emer-

gence of more than one new topic and similarly two or more dif-

ferent clusters can share the same subset of ancestors that match 

the same debutant topic, there is not a direct relationship between 

clusters and debutant topics. Therefore, it is important to observe 

this relationship from different angles (matched clusters, and 

matched debutant topics) and focus on the following two specific 

questions: 

1. How good is our system in identifying portions of topic 

networks (clusters) that will eventually lead to the 

emergence of new topics? (perspective of the cluster) 

2. How good is our system in identifying debutant topics 

that have been matched with clusters? (perspective of 

the debutant topics) 

These two questions shape the definition of the precision and 

recall metrics for this task. We then define precision as the frac-

tion of clusters that were successfully matched with debutant top-

ics, and recall as the fraction of topics that were successfully 

matched with the clusters, as respectively expressed by Eq. 10 and 

Eq. 11. 

   

 

retrieved clusters debutanttopics
Precision

retrieved clusters
  (10) 
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Reca
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The symbol ⋉ is called left semijoin and its operation in Eq. 9 

returns the set of the clusters for which there is a match with the 

debutant topics. Similarly, the sign ⋊ is called right semijoin and 

in Eq. 10, it returns the set of debutant topics that received a 

match from the clusters. 

4.4 Results 

We ran the five community detection algorithms within the Augur 

framework and evaluated them against the gold standard. In addi-

tion, we also ran the four different strategies described in Section 

4.2.  

In all cases, Augur with ACPM significantly outperforms the oth-

er approaches. In Table 2 and Table 3 we report the values of pre-

cision and recall derived by applying the four strategies on the 

results of the five clustering algorithms for the evolutionary net-

works of the years 1999 and 2000. We only show the results of 

the years 1999 and 2000, as the behaviour in the following years 

is similar. The fourth strategy, which enhances both topics in the 

clusters and ancestors with their super-areas, returns better values 

of recall and precision for all approaches, being able to identify 

matches that other strategies would miss. Therefore, we will adopt 

this strategy as default in the following analysis. 
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Table 2: Values of Precision and Recall obtained using the four 

strategies and the five approaches in the year 1999 with a similar-

ity threshold 0.1. 

 

Table 3: Values of Precision and Recall obtained using the four 

strategies and the five approaches in the year 2000 with a similar-

ity threshold 0.1. 

 FG LE FCM CPM ACPM 

Strat. Pr Re Pr Re Pr Re Pr Re Pr Re 

(1) .10 .01 .00 .00 .00 .00 .05 .00 .62 .39 

(2) .17 .02 .00 .00 .96 .01 .05 .00 .76 .58 

(3) .14 .02 .00 .00 .00 .00 .00 .00 .62 .48 

(4) .21 .07 .14 .02 .96 .01 .05 .00 .78 .70 

 

Table 4, Table 5 and Table 6 report the values of precision 

(Pr) and recall (Re) for the five algorithms, when the matches be-

tween clusters and debutant topics respectively have similarity 

equal or above 0.1, 0.15 and 0.2. As we can see, the ACPM out-

performs the other four clustering algorithms both in precision 

and recall for all the similarity thresholds. 

 

Table 4: Values of Precision and Recall for the five approaches 

along time, at similarity value of 0.10. In bold the best results. 

 FG LE FCM CPM ACPM 

Years Pr Re Pr Re Pr Re Pr Re Pr Re 

1999 .27 .11 .00 .00 .00 .00 .06 .01 .86 .76 

2000 .21 .07 .14 .02 .96 .01 .05 .00 .78 .70 

2001 .13 .04 .11 .01 .00 .00 .17 .00 .77 .72 

2002 .14 .04 .11 .01 .00 .00 .29 .01 .82 .80 

2003 .09 .02 .20 .02 .00 .00 .08 .02 .83 .79 

2004 .11 .05 .06 .00 .00 .00 .00 .00 .84 .68 

2005 .07 .11 .06 .01 .00 .00 .00 .00 .71 .66 

2006 .01 .01 .07 .01 .00 .00 .00 .00 .43 .51 

2007 .01 .08 .00 .00 .00 .00 .00 .00 .28 .44 

2008 .01 .04 .00 .00 .00 .00 .00 .00 .15 .33 

2009 .00 .00 .00 .00 .00 .00 .00 .00 .09 .76 

 

Table 5: Values of Precision and Recall for the five approaches 

along time, at similarity value of 0.15. In bold the best results. 

 FG LE FCM CPM ACPM 

Years Pr Re Pr Re Pr Re Pr Re Pr Re 

1999 .12 .06 .00 .00 .00 .00 .03 .00 .81 .65 

2000 .14 .02 .00 .00 .96 .01 .00 .00 .75 .55 

2001 .04 .00 .00 .00 .00 .00 .17 .00 .73 .63 

2002 .07 .01 .00 .00 .00 .00 .29 .01 .81 .70 

2003 .07 .01 .20 .01 .00 .00 .08 .02 .80 .73 

2004 .07 .03 .06 .00 .00 .00 .00 .00 .74 .58 

2005 .05 .04 .00 .00 .00 .00 .00 .00 .68 .59 

2006 .00 .00 .00 .00 .00 .00 .00 .00 .35 .38 

2007 .00 .00 .00 .00 .00 .00 .00 .00 .24 .36 

2008 .00 .00 .00 .00 .00 .00 .00 .00 .14 .25 

2009 .00 .00 .00 .00 .00 .00 .00 .00 .07 .59 

Table 6: Values of Precision and Recall for the five approaches 

along time, at similarity value of 0.2. In bold the best results. 

 FG LE FCM CPM ACPM 

Years Pr Re Pr Re Pr Re Pr Re Pr Re 

1999 .08 .03 .00 .00 .00 .00 .03 .00 .64 .41 

2000 .03 .00 .00 .00 .00 .00 .00 .00 .57 .33 

2001 .04 .00 .00 .00 .00 .00 .17 .00 .63 .44 

2002 .04 .00 .00 .00 .00 .00 .07 .01 .70 .50 

2003 .02 .00 .20 .01 .00 .00 .08 .02 .70 .51 

2004 .04 .02 .06 .00 .00 .00 .00 .00 .66 .42 

2005 .04 .02 .00 .00 .00 .00 .00 .00 .56 .43 

2006 .00 .00 .00 .00 .00 .00 .00 .00 .30 .28 

2007 .00 .00 .00 .00 .00 .00 .00 .00 .15 .28 

2008 .00 .00 .00 .00 .00 .00 .00 .00 .12 .17 

2009 .00 .00 .00 .00 .00 .00 .00 .00 .03 .24 

 

An analysis on the clusters revealed that Leading Eigenvector, 

Fuzzy C-Means, and Clique Percolation Method, returned for all 

years a very large cluster (above 1000 topics) and several other 

smaller ones (on average around 6-7 topics). The Fast Greedy 

method yielded few large clusters per year (with at least 300 top-

ics) and many small ones. This confirms the difficulty of standard 

approaches in handling evolutionary networks, which tend to be 

very dense since they represent every interaction that occurred 

during a 5 years period. Indeed, the Fast Greedy and Leading Ei-

genvector algorithms try to optimise a quality function called 

modularity. During this phase, they force small communities into 

larger ones, offering a misleading characterisation of the underly-

ing community structure and returning very coarse-grained clus-

ters. Fuzzy C-Means and CPM similarly fail to correctly identify 

coherent clusters. As an example, Table 7 shows some statistics of 

the evolutionary network in the year 2000, suggesting the dense 

structure of the network.  

 

Table 7: Statistics for the evolutionary network (EN) of year 

2000. 

Network  

parameter 

EN-2000 Network  

parameter 

EN-2000 

Nodes 2263 Max degree 184 

Edges 13327 Diameter 20.67 

Average 

degree 

11.77 Average clustering 

coefficient 

0.163 

 

Figure 2 compares the dimension of the clusters generated by 

CMP (left) and ACMP (right) from the evolutionary network pro-

duced in the 1996-2000 interval. In this example, CPM identifies 

a very large cluster containing 1,124 topics and 10,939 connec-

tions and other 53 smaller clusters. Conversely, ACPM is able to 

better handle the density of the evolutionary networks and detects 

103 clusters of comparable dimensions. The clusters produced in 

the other years exhibit the same trend. 

Figure 3 and Figure 4 shows precision and recall obtained re-

spectively by ACPM and Fast Greedy (which obtained the second 

best results) for varying values of similarity. Each coloured line 

represents the values of precision and recall in a particular year. 

As highlighted by Table 4-6 and Figure 3-4 the values of pre-

cision and recall are much lower in most recent years. This hap-

 FG LE FCM CPM ACPM 

Strat. Pr Re Pr Re Pr Re Pr Re Pr Re 

(1) .12 .05 .00 .00 .00 .00 .06 .01 .68 .49 

(2) .15 .07 .00 .00 .00 .00 .06 .01 .81 .59 

(3) .19 .04 .00 .00 .00 .00 .03 .00 .69 .55 

(4) .27 .11 .00 .00 .00 .00 .06 .01 .86 .76 
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pens for all algorithms and is due to the aforementioned fact that 

the number of debutant topics in the gold standard (see Table 1) 

significantly decrease in the last part of the analysed period, and 

thus many correct clusters are unable to find a match in the gold 

standard.  

 
Figure 2: On the left, we show the output of CPM in the year 

2000 (54 clusters). The largest cluster counts 1,124 topics and 

10,393 edges. On the right, the output of ACPM in the year 2000 

(103 clusters). 

z  

Figure 3: Performance of the Advanced Clique Percolation 

Method. 

 
Figure 4: Performance of Fast Greedy algorithm. 

 

Table 8 shows an example of a cluster produced by Augur 

from the topic networks in the period 1998-2002. The cluster (top-

left) contains topics such as “world wide web”, “query lan-

guages”, “metadata”, “content base retrieval”, and “search en-

gines” that exhibit a strong increment in their pace of collabora-

tion in the period under analysis and match the ancestors of Se-

mantic Search, a topic that debuted in 2003. Therefore, we con-

sidered this cluster as correctly predicting Semantic Search (with 

a similarity of 0.38). Semantic Search aims to improve search ac-

curacy by understanding the contextual meaning of terms and 

combines research in semantic technologies and information re-

trieval. The topics in bold are the direct ancestors of semantic 

search, but, even among the other ones, we find many topics con-

ducive to semantic search or that produced technologies adopted 

by this field, such as “text processing”, “electronic commerce”, 

“digital libraries”, and “web browser”. This is an exemplary case 

of the dynamics exploited by Augur, in which some topics, previ-

ously less connected, started to collaborate and moulded a novel 

research area that inherited their domains (e.g., “information re-

trieval”, “digital libraries”), formats (e.g., “xml”), software (e.g., 

“search engines”), and applications (e.g., “content-based retriev-

al”). As part of the making sense process, in Table 8 we also re-

port the top 10 authors (top-right) and the top 5 papers (bottom) 

relevant to this cluster. 

 

Table 8: Example of output produced by Augur. Top-left, we show 

the cluster associated with the emergence of the semantic search 

topic (in bold the topics that match its ancestors). Top-right, the 

top 10 influential authors. At the bottom, the top 5 papers.  

Cluster Influential Authors 

world wide web, query lan-

guages, metadata, content-

based retrieval, information 

retrieval, search engines, xml, 

information systems, infor-

mation retrieval systems, multi 

agent systems, intelligent agents, 

servers, digital libraries, electronic 

commerce, text processing, infor-

mation management, indexing, web 

browsers, classification 

W. Bruce Croft, 

Dieter Fensel, 

Dan Suciu, 

William W. Cohen, 

Berthier Ribeiro-Neto, 

Clement T. Yu, 

James Allan, 

Justin Zobel, 

Dragomir R. Radev, 

Victor Vianu 

Influential Papers 

- A Sheth et al. "Managing semantic content for the Web" (2002) 

- RWP Luk et al. "A survey in indexing and searching XML docu-

ments" (2002) 

- J Kahan et al. "Annotea: An open RDF infrastructure for shared Web 

annotations" (2002) 

- R Manmatha et al. "Modeling score distributions for combining the 

outputs of search engines" (2001) 

- S Dagtas et al. "Models for motion-based video indexing and retriev-

al" (2000) 

5 CONCLUSIONS 

In this paper, we presented Augur, a new framework to detect re-

search topics at the embryonic stage, i.e., when they have not yet 

been labelled or associated with a considerable number of publi-

cations. This approach takes advantage of the results of the study 
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presented in Salatino, et al. [7], which showed a strong correlation 

between the pace of collaboration in a topic network and the 

emergence of new research topics, a few years later. Specifically, 

Augur uses the Advanced Clique Percolation Method (ACPM), a 

novel community detection algorithm, for analysing the dynamics 

between existent topics and returns clusters of topics associated 

with the future emergence of new research areas, which are then 

further characterised by providing a list of significant authors and 

publications. 

We evaluated Augur and ACPM versus four alternative ap-

proaches on a gold standard of 1,408 debutant topics in the 2000-

2011 timeframe. The results show that our approach outperforms 

state of the art solutions and is able to successfully identify clus-

ters that will produce new topics in the two following years.  

While these results are satisfactory, our analysis presents 

some limitations that we plan to address in future work. In the 

first instance, the gold standard does not cover well the years after 

2007. We thus intend to consider more up-to-date scholarly da-

tasets and to produce a more comprehensive version of the gold 

standard that could be adopted by the scholarly community to fur-

ther study this task. In the second instance, the current version of 

Augur only focuses on the pace of collaboration between topics. 

This single indicator may not be enough to fully understand and 

detect the complex dynamics behind the creation of a topic. We 

thus plan to investigate other kinds of dynamics that could be as-

sociated with the emergence of new research areas, such as the 

patterns of collaboration between prominent authors, the dynam-

ics of citations networks, or the change in the topic distributions 

of high-tier scientific venues. Finally, Augur has been tested only 

on the field of Computer Science. We believe that more work is 

needed to evaluate it on other disciplines. 

Our aim is to produce a robust approach that can be used by 

researchers, policy makers, and academic editors to gain a better 

understanding of the dynamics of academic research and detect 

new research trends at the earliest possible stage.  

ACKNOWLEDGMENTS 

We would like to thank Springer Nature for partially funding this 

research and Elsevier B.V. for providing us with access to their 

large repositories of scholarly data. 

REFERENCES 
[1] P. O. Larsen and M. Von Ins, "The rate of growth in scientific 

publication and the decline in coverage provided by Science Citation 

Index," Scientometrics, vol. 84, pp. 575-603, 2010. 

[2] L. Bolelli, Ş. Ertekin, and C. L. Giles, "Topic and trend detection in text 

collections using latent dirichlet allocation," in Advances in Information 

Retrieval, ed: Springer, 2009, pp. 776-780. 

[3] A. Duvvuru, S. Kamarthi, and S. Sultornsanee, "Undercovering research 

trends: Network analysis of keywords in scholarly articles," Computer 

Science and Software Engineering (JCSSE), 2012 International Joint 

Conference on, pp. 265-270, 2012. 

[4] Q. He, B. Chen, J. Pei, B. Qiu, P. Mitra, and L. Giles, "Detecting topic 

evolution in scientific literature: how can citations help?," Proceedings 

of the 18th ACM conference on Information and knowledge 

management, pp. 957-966, 2009 2009. 

[5] Y. Wu, S. Venkatramanan, and D. M. Chiu, "Research collaboration and 

topic trends in Computer Science based on top active authors," PeerJ 

Computer Science, vol. 2, p. e41, 2016. 

[6] T. Braun, A. P. Schubert, and R. N. Kostoff, "Growth and trends of 

fullerene research as reflected in its journal literature," Chemical 

reviews, vol. 100, pp. 23-38, 2000. 

[7] A. A. Salatino, F. Osborne, and E. Motta, "How are topics born? 

Understanding the research dynamics preceding the emergence of new 

areas," PeerJ Computer Science, vol. 3, p. e119, 2017/06/19 2017. 

[8] T. S. Kuhn, The structure of scientific revolutions: University of 

Chicago press, 2012. 

[9] M. Cataldi, L. Di Caro, and C. Schifanella, "Emerging topic detection 

on twitter based on temporal and social terms evaluation," in 

Proceedings of the Tenth International Workshop on Multimedia Data 

Mining, 2010, p. 4. 

[10] M. Oka, H. Abe, and K. Kato, "Extracting topics from weblogs through 

frequency segments," in Proceedings of WWW 2006 Annual Workshop 

on the Weblogging Ecosystem: Aggregation, Analysis, and Dynamics, 

2006. 

[11] Y.-H. Tseng, Y.-I. Lin, Y.-Y. Lee, W.-C. Hung, and C.-H. Lee, "A 

comparison of methods for detecting hot topics," Scientometrics, vol. 

81, pp. 73-90, 2009. 

[12] S. L. Decker, B. Aleman-Meza, D. Cameron, and I. B. Arpinar, 

"Detection of bursty and emerging trends towards identification of 

researchers at the early stage of trends," University of Georgia, 2007. 

[13] C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. Yee, 

"Exploring the computing literature using temporal graph visualization," 

Electronic Imaging 2004, pp. 45-56, 2004. 

[14] P. H. Lv, G.-F. Wang, Y. Wan, J. Liu, Q. Liu, and F.-c. Ma, 

"Bibliometric trend analysis on global graphene research," 

Scientometrics, vol. 88, pp. 399-419, 2011. 

[15] X. Sun, K. Ding, and Y. Lin, "Mapping the evolution of scientific fields 

based on cross-field authors," Journal of Informetrics, vol. 10, pp. 750-

761, 2016. 

[16] F. Osborne, G. Scavo, and E. Motta, "A hybrid semantic approach to 

building dynamic maps of research communities," in Knowledge 

Engineering and Knowledge Management, ed: Springer, 2014. 

[17] J. Kleinberg, "Bursty and hierarchical structure in streams," Data 

Mining and Knowledge Discovery, vol. 7, pp. 373-397, 2003. 

[18] J. C. Ho, E.-C. Saw, L. Y. Lu, and J. S. Liu, "Technological barriers and 

research trends in fuel cell technologies: A citation network analysis," 

Technological Forecasting and Social Change, vol. 82, pp. 66-79, 2014. 

[19] H. Guo, S. Weingart, and K. Börner, "Mixed-indicators model for 

identifying emerging research areas," Scientometrics, vol. 89, pp. 421-

435, 2011. 

[20] Y. Jo, C. Lagoze, and C. L. Giles, "Detecting research topics via the 

correlation between graphs and texts," Proceedings of the 13th ACM 

SIGKDD international conference on Knowledge discovery and data 

mining, pp. 370-379, 2007. 

[21] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," J. 

Mach. Learn. Res., vol. 3, pp. 993-1022, 2003. 

[22] T. Furukawa, K. Mori, K. Arino, K. Hayashi, and N. Shirakawa, 

"Identifying the evolutionary process of emerging technologies: A 

chronological network analysis of World Wide Web conference 

sessions," Technological Forecasting and Social Change, vol. 91, pp. 

280-294, 2015. 

[23] L. Di Caro, M. Guerzoni, M. Nuccio, and G. Siragusa, "A Bimodal 

Network Approach to Model Topic Dynamics," arXiv preprint 

arXiv:1709.09373, 2017. 

[24] K. W. Boyack, R. Klavans, and K. Börner, "Mapping the backbone of 

science," Scientometrics, vol. 64, pp. 351-374, 2005. 

[25] L. Leydesdorff, I. Rafols, and C. Chen, "Interactive overlays of journals 

and the measurement of interdisciplinarity on the basis of aggregated 

journal–journal citations," Journal of the Association for Information 

Science and Technology, vol. 64, pp. 2573-2586, 2013. 

[26] F. Osborne and E. Motta, "Mining semantic relations between research 

areas," in The Semantic Web–ISWC 2012, ed: Springer, 2012. 

[27] F. Osborne, A. Salatino, A. Birukou, and E. Motta, "Automatic 

classification of springer nature proceedings with smart topic miner," in 

International Semantic Web Conference, 2016, pp. 383-399. 

[28] F. Osborne and E. Motta, "Klink-2: integrating multiple web sources to 

generate semantic topic networks," in The Semantic Web–ISWC 2015, 

ed: Springer, 2015, pp. 408-424. 

[29] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, "Uncovering the 

overlapping community structure of complex networks in nature and 

society," Nature, vol. 435, pp. 814-818, 2005. 

[30] I. Farkas, D. Ábel, G. Palla, and T. Vicsek, "Weighted network 

modules," New Journal of Physics, vol. 9, p. 180, 2007. 

[31] L. C. Freeman, "Centered graphs and the structure of ego networks," 

Mathematical Social Sciences, vol. 3, pp. 291-304, 1982. 

 


