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 Antimicrobial resistance (AMR) is one of the greatest medical challenges the world faces. It 9 

was estimated recently that by 2050, AMR will account for 10 million extra deaths annually 10 

with additional economic costs in the region of $100 trillion.  In order to combat this, novel 11 

antimicrobial agents with a broad spectrum of activity are required.  Bee products, including; 12 

honey, propolis, defensins, royal jelly, bee pollen and venom have been used to treat 13 

infectious diseases for several centuries, although they were largely disregarded by Western 14 

medicine during the antibiotic era. There has since been a resurgence in interest in their 15 

antimicrobial properties, especially due to their reported activity against multi-drug resistant 16 

pathogens displaying high levels of AMR. In this paper we review the current scientific 17 

literature of honey, propolis, honey bee, defensins, royal jelly, bee pollen and bee venom. We 18 

highlight the antimicrobial activity each of these products has displayed and potential future 19 

research directions. 20 
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 Introduction   28 

 29 

  Natural compounds of both plant and animal origin have traditionally been used in a 30 

medicinal context due to their broad-spectrum of therapeutic activity, including; anti-bacterial, 31 

fungal, and viral activity, as well as anti-inflammatory and immunomodulatory effects 1-8.  In recent 32 

years the interest in natural products as a potential source of novel antimicrobial agents has grown, 33 

due to a concomitant decline in the number of effective antibiotics that are available and the ever 34 

increasing emergence of antibiotic resistance within pathogenic bacteria 9-13. This effect has been 35 

compounded by a decline in the manufacture of new antimicrobial agents by traditional 36 

pharmaceutical companies 14-16, and both the over and misuse of the available antimicrobial agents 37 

17-19.  Together these factors have led to a situation whereby bacteria have evolved various 38 

resistance mechanisms to conventional antibiotics and in some cases become multi drug resistant 39 

(MDR) or pan resistant 20-25.   40 

 41 

  The rise of antimicrobial resistance (AMR) as outlined above is a significant global problem, 42 

currently accounting for approximately 700,000 deaths annually, and predicted to lead to 10 million 43 

deaths annually by 2050 if no action is taken to find alternative ways of combating MDR pathogens 44 

16,26. In addition to the increased morbidity and mortality of patients caused by AMR there is also a 45 

large financial burden causing an estimated cost of between $70,000 and $100,000 per person 27. It 46 

is likely that the cost of AMR is higher than the estimated figures, as there will also be an impact 47 

on routine operations, such as joint replacements, which require prophylaxis in order to stop 48 

secondary infections 27-29.  These factors combined illustrate the need for novel antimicrobial 49 

agents, which can be used to bolster the lineup of currently available therapeutics as part of a 50 



multidisciplinary strategy for reducing patient morbidity and mortality rates.   51 

 52 

  Within the wide range of natural products that are currently being investigated for their novel 53 

antimicrobial activity, there has been a renewed interest in elucidating the antimicrobial activity of 54 

apitherapeutics (bee products). There is a growing body of evidence that suggests bee products 55 

such as honey, propolis, bee venom (BV) and honey bee defensins could have a role to play in 56 

mitigating the effect of AMR, by providing an alternative source of antimicrobial activity, which 57 

could be used to tackle infection alone or enhance the activity of current antimicrobial agents 30-37. 58 

This review will consider a range of bee products and evaluate the evidence available for their 59 

potential use as antimicrobial agents.   60 

 61 

Antimicrobial properties of Honey. 62 

 63 

 For over two millennia, the medicinal properties of honey have been known to many historic 64 

civilisations (such as the ancient Greeks, Romans, Egyptians, and Chinese), however much of this 65 

knowledge was based on anecdotal evidence rather than designed scientific experimentation 38.  It 66 

wasn’t until late in the 19th century when the first scientific publication showing the antimicrobial 67 

efficacy of honey was published by Van Ketal 39.  Since this publication, bar a momentary pause at 68 

the beginning of the antibiotic-era, interest in honey as an antimicrobial agent has increased.  As stated 69 

previously, this resurgence is in part due to the emergence of MDR pathogens 40, but also due to the 70 

natural qualities of honey and the breadth and depth of components from which it is composed.     71 

 72 

 Honey is a complex solution with three distinct “fractions”; a sugar fraction, water fraction, 73 

and a highly variable fraction that contains a range of amino acids, antioxidants, enzymes, flavonoids, 74 

phenolic acids, minerals, and vitamins.  Both the sugar and water fractions are highly conserved 75 



between different honey types 41, conferring a basic level of antimicrobial activity through a high 76 

osmotic potential and its acidic attenuation 42.  In many studies looking into the antimicrobial effects 77 

of honey, an “artificial honey” formulated from these two fractions can be used as a control.  In most 78 

instances, the artificial honey is found to possess significantly reduced antimicrobial activity than that 79 

of honey containing the variable fraction 43.    80 

 81 

 The largest variation in honey composition, which alters the smell, taste, aroma, and ultimately 82 

antimicrobial activity, occurs (unsurprisingly) within the variable fraction.  This fraction is dependent 83 

on both plant and bee-derived products, which in turn are subject to different environmental, 84 

geographic, temporal, and phyletic variables 44,45.  It is because of the highly variable nature of 85 

summative components, that there are 100s of different honey types, each having varying degrees of 86 

antibacterial efficacy, with some variability between batches of the same honey.  A range of studies 87 

(summarised in 46) have shown >50 bacterial species to be inhibited by these different honey types, 88 

with some studies highlighting the anti-viral and anti-fungal properties of honey 47-51.  Determining 89 

which of the compounds within the variable fraction contributes to the bulk antimicrobial activity of 90 

each honey is very difficult, due to the potential for complex interactions between any of the 200 91 

compounds that may be present within the honey 52.   92 

 93 

 Some of the most promising compounds which are currently being researched are bee-defensin 94 

1, hydrogen peroxide, leptosperin, and methylglyoxal 53,54.  The former two can be found in many 95 

different honeys and not associated with a specific type, whilst the latter two are commonly associated 96 

specifically with manuka honey, a honey typically from New Zealand and Southern Australia, which 97 

has received increased research interest due to its heightened antimicrobial activity.  Many studies 98 

have shown manuka honey to be capable of inhibiting >50 different bacterial species 55.  Due to the 99 



exceptional activity of manuka honey, its potential mechanism(s) of action against two problematic 100 

pathogens (Pseudomonas aeruginosa and Staphylococcus aureus) have been identified. Two distinct 101 

mechanisms of antimicrobial action have been revealed 33,56, however the components within the 102 

honey that elicit this mechanistic effect have yet to be elucidated.  A broader effect against Escherichia 103 

coli was investigated by Blair and colleagues 57, identifying various regulatory changes in the presence 104 

of honey, however the components within honey and their corresponding effects are yet to be fully 105 

identified.  For an in depth review on some of the mechanistic effects of honey, see 58. 106 

 107 

 Whilst many honeys have exceptional antimicrobial activity in their own right, some 108 

researchers have found the effects to be antibiotic enhancing. Two recent studies have shown the 109 

sensitisation of methicillin resistant S. aureus (MRSA) to antibiotics (such as oxacillin, tetracycline, 110 

and mupirocin),  following combined therapies with honey 34,37.  These effects are not limited to a 111 

single species, with other studies observing a multitude of antimicrobial enhancing effects against 112 

other pathogens, such as P. aeruginosa, K. pneumonia, and E. coli 59,60.  The ability of honey to not 113 

only work concurrently with antibiotics, but to enhance their effects, is of great clinical significance 114 

as it has the potential to alleviate some of the problems associated with AMR and chronic infection 115 

with MDR pathogens.   116 

 117 

To date, much of the work determining the antimicrobial efficacy of honey relates specifically 118 

to its topical application, however some studies have diverted from this trend.  A recent study by 119 

Jenkins and colleagues 59 have identified manuka honey as a potential therapeutic for the inhibition of 120 

pathogens associated with cystic fibrosis lung infections.  Further to this, Daglia and colleagues 61 have 121 

shown the ability of some key antimicrobial components within manuka honey to resist simulated 122 

gastroduodenal digestion.  In light of the ever growing body of evidence for honey as an antimicrobial 123 



agent, its efficacy against these pathogens is not disputed, however if honey is to be used for other 124 

applications (such as lung and gastrointestinal infections as suggested by the examples above), 125 

effective formulation and application strategies need to be identified, so as to ensure the safe 126 

application and an obtainable inhibitory concentration at the site of infection.  127 

 128 

Antimicrobial properties of Propolis 129 

 130 

  Propolis is a resinous substance used by bees for structural repairs 62 that has been 131 

widely used within traditional medicines, with recent studies showing its potential for use in 132 

mainstream medicine 63. Like honey its composition is highly variable due to bees foraging from 133 

tree resins which are present in their local area 63.  This make propolis a good health indicator for 134 

the local ecosystem 64, however this variability  makes the use of propolis in medicine 135 

problematic. For medicinal use, a constant and quantifiable level of biological activity is required, 136 

however to the best of our knowledge there is no standardized medical grade propolis.  This is in 137 

contrast to honey products which are available in many countries at a medicinal grade.  In light of 138 

this, researchers have instead focused on bioactive compounds that have been extracted from 139 

propolis via a variety of chemical extraction techniques. Many groups report that the antimicrobial 140 

activity of propolis varies depending on when and where the samples were collected, with a 141 

positive correlation between the flavonoid content of samples and their antibacterial activity 65-67. 142 

Conversely, a study by Sforcin and colleagues suggests that variability of the components which 143 

make up propolis, and their respective concentrations, have no correlation with the overall 144 

antimicrobial activity 68.  Therefore the overall composition of propolis should not be used as an 145 

indicator of its antimicrobial potential.  146 

 147 

  Recently there has been much interest in the antibacterial properties of South American 148 



propolis. Samples of a Brazilian propolis were compared with a Bulgarian propolis with regards to 149 

their antimicrobial activity and potential synergy with antibiotics. Both propolis samples 150 

demonstrated inhibitory efficacy against Salmonella Typhi and S. aureus at concentrations of <10% 151 

and 0.5% v/v respectively, with synergistic effects when combined with commonly used antibiotics 152 

69. The mechanism of action for the two propolis samples differed however, with only the Brazilian 153 

propolis showing bactericidal activity 69. Brazilian propolis has now been classified according to it 154 

physicochemical characteristics 70. Green Brazilian propolis has been shown to have some 155 

antimicrobial activity against various oral pathogens, such as; Streptococcus mutans, Streptococcus 156 

sanguinis and Porphyromonas gingivalis. The same study established that there was no cytotoxicity 157 

to mammalian cells at concentrations required to inhibit bacterial cells (2000 µg/ml) 71. An 158 

investigation of red Brazilian propolis, which is produced by bees foraging a red resin produced by 159 

the Dalbergia ecastophyllum tree, also identified antimicrobial activity against S. aureus, although 160 

this activity was variable and dependent on the season of collection 72. In addition to the well-161 

studied antimicrobial activity, Brazilian propolis has confirmed antifungal activity, with a 162 

minimum inhibitory concentration of <5% v/v against C. albicans and C. tropicalis 73. 163 

 164 

  Other Southern American propolis samples, such as those from Chile, show promise as an 165 

antibacterial compound, particularly against Gram positive Streptococcus sp.  An in vitro test of 20 166 

Chilean propolis samples against S. mutans and S. sobrinus showed a good level of activity against 167 

the pathogens 65. Interestingly, variability in antimicrobial activity was observed between Chillean 168 

propolis samples, with a clear north/south geographic divide, the latter having increased 169 

antimicrobial activity over the former 65.  Polyphenol rich extracts of Chilean propolis have also 170 

been shown to have activity against S. mutans, down-regulating expression of the surface proteins 171 

GtfB, GtfC, GtfD and SpaP, thereby inhibiting the bacterium’s ability to attach to surfaces and 172 

form biofilms 74. The phenolic composition of the propolis has been shown to be important in this 173 



activity, with propolis samples containing higher polyphenol concentrations also providing a higher 174 

level of inhibitory and bactericidal activity against S. mutans 67. 175 

 176 

  As with other bee products, some investigators have chosen to chemically separate propolis 177 

and extract components of interest. Although ethanolic extracts of Turkish propolis showed 178 

promising levels of antifungal activity against various fungal pathogens such as C. albicans, C. 179 

glabrata, Trichosporon sp. and Rhodotorula sp., once again the antifungal activity of the propolis 180 

samples varied depending on their source 75.  Extracts collected from the Eastern Anatolia region of 181 

Turkey showed antimicrobial activity against E. coli, P. aeruginosa and S. aureus and antifungal 182 

activity against C. albicans 76. In vivo studies have also demonstrated that ethanolic extracts of 183 

propolis are able to successfully treat S. aureus keratitis in rabbits, and enhance the activity of 184 

ciprofloxacin to treat this infection 77.  185 

 186 

Antimicrobial properties of Bee Defensin 187 

 188 

  Bees, along with other insects do not have a lymphocyte based immune system 78, relying 189 

instead on a range of antimicrobial peptides (AMPs) and barrier immunity to protect them from 190 

infection 79,80. These small, cystine rich cationic peptides are expressed in several tissue types in 191 

response to various pathogenic challenges 79. In honey bee colonies these challenges include 192 

bacteria such as; Paenibacillus larvae larvae 81, the fungal pathogen Nosema ceranae and parasites 193 

such as Crithidia mellificae 82. Some researchers have found the expression of AMPs to vary 194 

between different colonies with increased expression directly correlating to a reduction in microbial 195 

disease within the colony.  High levels of AMP expression have also been shown to have a fitness 196 

cost, leading to a reduction in larvae production 83. It should also be noted that although much of 197 

the research into AMPs has been carried out in Western honey bee populations, it has been show 198 



that Asian honey bee populations also carry very similar AMPs, with similar levels of antimicrobial 199 

activity 84. 200 

 201 

  Bee AMPs also show activity against human and animal pathogens and this has been 202 

explored in detail, using both recombinant forms of various AMPs 85,86 and purified extracts from 203 

bees themselves 78. AMPs have increased activity against Gram positive bacteria 81 with both 204 

bactericidal or bacteriostatic effects observed and efforts to utilise them as an antibiotic have begun 205 

87,88.  To date six different AMPs have been identified in honeybees; hymenptaecin 78, defensin 1 206 

and the closely related royalisin 89,90, defensin 2 91, abaecin 92 and apidaecin 93. All of the AMPs 207 

discovered to date have demonstrable in vitro antimicrobial activity against a wide range of 208 

pathogens, but it is the defensins which are most widely found AMPs in bee products.  209 

 210 

  Defensins are short chain polypeptides containing an alpha helix and two parallel β sheets 211 

which are cross linked 89. They can be found in non-maukua honeys and royal jelly. Defensin 1 and 212 

Royalisn, a defensin found exclusively within royal jelly, are very closely related and expressed by 213 

the same gene within the bee, however they undergo different post-transcriptional and translational 214 

modifications 91. Defensin 2 is closely related, both genetically and structurally to defensin 1, 215 

however it is expressed by a different gene 91. Some of the antimicrobial activity of Revamil® 216 

honey, a honey which is produced by bees foraging on limited plant sources in order to control its 217 

content, is attributable to the presence of Defenisn 1 within the honey 54. Neutralisation of defensin 218 

1 leads to a reduction in the antimicrobial activity of the honey. It should be noted however, that the 219 

inactivation of defensing-1 does not completely negate the antimicrobial activity of the honey, 220 

highlighting the multifactorial nature of honey, as described above 54. In contrast to these findings 221 

in Revamil® honey, it has been shown that Defenisn 1 does not contribute to the antimicrobial 222 

activity of manuka honey 94. Recent work has shown that this is not due to differences in defensin 223 



expression levels in the colonies foraging on the different plants, but rather the high levels of MGO 224 

found within manuka honey 95. MGO has an ability to react with lysine and arginine residues 225 

within proteins, including defensin, leading to their glycosylation and subsequent inactivation 96. 226 

MGO levels in manuka honey have been shown to increase as the honey matures 97 and it is this 227 

increase that leads to the inactivation of the defensin proteins which are secreted by the bees into 228 

the original honey.  229 

 230 

Antimicrobial properties of Royal Jelly 231 

 232 

  Royal jelly is a secretion produced in the hypopharingeal and mandibular glands of honey 233 

bees 98. As with many bee products, royal jelly is very variable in its composition, with its bioactive 234 

potential affected by both seasonality and geographical diversity 99,100. It is produced by worker 235 

bees as a source of nutrition for larvae less than three days old and queen bees throughout their 236 

lives, it contains complex combinations of pheromones which control the honey bee colony 237 

hierarchy 101. Royal jelly is a complex mixture of proteins, carbohydrates, fatty acids, sugars, lipids 238 

and vitamins 102. Like honey, it contains several known antimicrobial compounds and several 239 

studies have shown that royal jelly, and its extracts have antimicrobial activity against a wide range 240 

of bacterial and fungal sp. 103. Assessment of the antimicrobial potential of Bulgarian royal jellies 241 

showed that some samples were active at concentrations of 5% v/v against the enteropathogen 242 

Aeromonas hydrophilia 104 and MRSA 105. Similarly Algerian royal jelly was shown to have 243 

inhibitory efficacy against P. aeruginosa, and that this activity could be further enhanced by 244 

combining royal jelly with honey 106. It is interesting to note that although the AMP royalisin is 245 

only reported to have activity against Gram positive bacteria, non-extracted samples of royal jelly 246 

have reported activity against Gram negative bacteria 107. Similarly, Bíliková and colleagues 103 247 

reported that royal jelly showed a strong antifungal activity against Botrytis cinerea, however 248 



extracted royalisin was only active against the fungi at concentrations of over 27 µg/ml. Taken 249 

together these results suggest that, as with many honeys, it is the interaction of various 250 

antimicrobial compounds within royal jelly which gives it such potent antimicrobial activity. 251 

 252 

  It should be noted that many investigators do not work directly with the royal jelly, preferring 253 

instead to chemically isolate fractions which contain several substances, some of which may have 254 

antimicrobial activity, or extract individual active components from the royal jelly. The extraction 255 

process has not only a high level of waste, with one group reporting the production of 180 mg from 256 

an initial 30 g sample of royal jelly 103, but the exact extraction method chosen dictates which 257 

compounds will be obtained.  Recently there has been an effort to standardise the extraction process 258 

and classify royal jelly 102,108 and work has been carried out to show the effect, if any, that 259 

processing may have on the activity of royal jelly. A recent study has shown that lyophilisation, 260 

which allows storage and further processing of the royal jelly, did not alter its antimicrobial activity 261 

against S. aureus, S. epidermidis, S. pneumoniae, E.coli, K. pneumoniae, Proteus mirabilis, S. 262 

Enteritidis or P. aeruginosa 107.  263 

 264 

  The majority of the dry mass of royal jelly is protein, more than 80% of which are identified 265 

as belonging to the major royal jelly proteins (MRJP) family, a member of which is MRJP1 109. The 266 

precursor of MRJP1 is also responsible for the production of the antimicrobial jellein peptides 110. 267 

Fontana and colleagues 111 reported the discovery of 4 jellein peptides following separation of royal 268 

jelly. Further investigation showed that of the four jellein peptides identified, three showed 269 

antimicrobial activity against a panel of Gram positive and negative bacterial isolates and a yeast, 270 

although antimicrobial activity was reduced in one of the jelleins 111. Further investigation of the 271 

three active jelleins confirmed the activity of jellein 1 against S. aureus, Listeria monocytogenes, 272 

Salmonella Enterica and E. coli, but found no activity against the bacterial isolates tested for the 273 



other two jelleins  112.  274 

 275 

  A study of the remaining protein components of royal jelly identified 20 other proteins, 276 

including one termed; royalisin 113. Royalisin is a 55 kDa disulphide rich protein made of 51 amino 277 

acids. As with other defensin proteins it contains an amphipathic α helix, a carboxyl terminal tail 278 

which is aminated and antiparallel β strands, which are cross-linked by six cystine residues forming 279 

disulphide linkages 114. Although there are small differences between the structure of royalisn in 280 

Western and Asian honey bee populations, both have been shown to have antimicrobial activity 86. 281 

Recently is has been possible to express a recombinant form of royalisin within E. coli, in both its 282 

original and a modified form, which contains a truncated C terminal and no disulphide linkages of 283 

the β strands. Although the modified royalisin maintained some of its antimicrobial activity it was 284 

much less active that its intact form 114. When the antimicrobial activity of Asian honey bee 285 

royalisin expressed within E. coli was assessed against a panel of Gram positive and negative 286 

bacterial isolates as well as fungal pathogens, it was only active against certain Gram positives 287 

species tested, including S. aureus, Bacillus subtilis and Micrococcus luteus 85,86. Further 288 

investigation of the expressed proteins indicated that they acted on the cell walls of B. subtilis 289 

increasing cell surface hydrophobicity 86. It is interesting to note that although a similar mechanism 290 

of antimicrobial action was reported by 114, these authors found that their recombinant royalisin 291 

protein was active against both Gram positive and negative bacteria. This finding is unusual since 292 

other authors working with defensin proteins, and in particular royalisin, typically only report 293 

activity against Gram positive species  85,86,90. It is possible that the mechanism of expression and 294 

modification within the E. coli could account for these differences, indeed reductions in 295 

antimicrobial activity have been reported where royalisin 114 or jellein 112 peptides were modified. 296 

Further structural analysis and comparison of the proteins expressed by different groups is required 297 

to confirm this hypothesis. 298 



 299 

  Royal jelly also contains fatty acids, the most common of which is 10-hydroxy-2-decenoic 300 

acid (10-HDA) 115. As with other royal jelly components, 10-HDA has been shown to have a range 301 

of bio-activities, including; antitumor activity 116, neurogenesis 117, anti-rheumatoid arthritis  302 

activity 118 and modulation of diabetes 119. 10-HDA also exhibits potent antimicrobial activity 303 

against the Gram positive dental pathogen S. mutans.  Furthermore, it was found that 10-HDA was 304 

able to modulate biofilm formation within S. mutans by reducing expression of two 305 

glucosyltransferases (gtfB and gtfC), which in turn led to a decrease in its attachment to embryonal 306 

carcinoma cells 120. 307 

 308 

Antimicrobial properties of Bee Pollen 309 

 310 

  Bee pollen is composed of plant pollen combined with nectar or the salivary secretions of 311 

bees. Therefore it is similar to other bee products in that it is composed of a wide range of 312 

secondary plant metabolites such as: thiamine, tocopherol, biotin, niacin, folic acid, polyphenols, 313 

carotenoid pigments, phytosterols and enzymes 121,122 and has been used as a component of human 314 

medicine for thousands of years 123.  Research groups have outlined several potential bioactive 315 

roles for bee pollen and its components, including; antioxidant 124, immunomodulatory 125 316 

cardioprotective 126, and antimicrobial activities 127,128.  317 

 318 

  There are several studies which report variability in the antimicrobial activity of bee pollen, 319 

attributing this to the geographical and botanical source of the pollen, which in turn will influence 320 

the phytochemical composition 121,129-133.    As a result of this variation, there are thought to be over 321 

250 biologically active compounds within pollen 134-136. The majority of work into the antibacterial 322 

potential of pollen has been carried out on chemically extracted of pollen (using either ethanol or 323 



methanol) and then tested in vitro. As with propolis extracts, the method by which the extracts are 324 

made may well impact on the content and thus the activity of the extract that is then tested.  325 

 326 

  The antibacterial activity reported from bee pollen extracts is thought to be linked to the 327 

presence of polyphenols (3-5%) and phenolic acids (0.19%) within the pollen, depending on origin 328 

134,136-138.  Several studies have shown that the antibacterial activity of pollen is linked to the level 329 

of phenolic compounds, and in some studies have identified individual components responsible for 330 

this activity such as; kaempferol 2-O-rhamnoside, quercetin 3-O-glucoside, isorhamnetin 3-O-331 

xylosyl (1-6) glucoside and 7-O-methylherbacetin3-O-xylosyl-8-O-galactoside 134,135,139. Research 332 

has shown that the activity of polyphenols within pollen is likely to disrupt bacterial metabolism 333 

and therefore viability by several mechanisms, including; forming complexes within bacterial cell 334 

walls, inhibiting electron flow within the electron transport chain, inhibiting DNA gyrase and 335 

blocking ion channels 140,141.  More specifically, high quercetin and kampferol levels seen in some 336 

bee pollen extracts are suggested as particular flavonoids that could be responsible for the activity 337 

described above 139. 338 

 339 

  The antimicrobial activity of bee pollen in vitro has been established against a wide range of 340 

both antibiotic sensitive and antibiotic resistant bacteria and fungi142-150. Studies have demonstrated 341 

activity of methanol and ethanol extractions of pollen against pathogens such as S. aureus, Bacillus 342 

cereus, P. aeruginosa, E. coli, C. albicans and Aspergillus fumigatus among others142-150.  The 343 

range of activity seen suggests a potential for a role for bee pollen as an antimicrobial agent against 344 

microbes of medical relevance .  However in contrast to the activity seen in the studies described 345 

above, two studies by Ozcan 138,151 which assessed the antimicrobial activity of pollen extracts at 346 

0.002, 2.5, 2 and 5 % against tested against a range of bacteria and fungi including; E. coli, S. 347 

aureus, S. Typhimurium, Candida arugosa, Alternaria alternate, Fusarium oxysporium, and 348 



reported that the microbial viability was not affected.  This lack of antimicrobial activity is in direct 349 

contrast to the results presented above and highlights the inherent variability of this natural product 350 

which may be problematic when used medicinally.  The differences could be attributed to the low 351 

concentration of pollen extract used in Ozcan’s studies, or as with both honey and propolis the 352 

variations seen could be due to the differences in geographical and floral sources of the pollen 353 

tested.  As many of the studies cited above use either methanol or ethanol extraction methods 354 

before testing the pollen, it could be suggested that using individual components extracted and 355 

identified as having antimicrobial activity might give more reproducible results. As the current 356 

information stands to warrant using pollen as a clinical antimicrobial agent there would need to be 357 

more extensive in vitro studies prior to randomized clinical trials.  358 

 359 

  Currently there are commercially available pollens, with a study by Pascoal 149 confirming 360 

the antimicrobial activity of these pollens against a range of microbes in vitro. It is important to 361 

note that any pollen or pollen extract that was to be utilised primarily for clinical antimicrobial use, 362 

rather than as a food product would need to undergo sterilization, as a study by Nogueira 152 363 

showed, commercially available pollens can contain aerobic mesophiles, molds and yeasts.  364 

 365 

Antimicrobial effects of Bee Venom. 366 

 367 

 Apitoxin, or Bee venom (BV) as it is more commonly known, is another apitherapy product 368 

that has received increased interest throughout the last century.  Much of the research into the 369 

medicinal effects of BV has focused on the treatment and relief of various chronic diseases, unearthing 370 

many anti-inflammatory, anti-mutagenic, anti-nociceptive, and anti-cancer effects (For a review see 371 

153,154).  Studies examining the potential of BV in the treatment of infectious diseases are quite limited, 372 



however in light of the impending antimicrobial resistance (AMR) crisis 40 the antimicrobial effects 373 

are beginning to be elucidated.   374 

 375 

BV is a colourless liquid composed of various amino acids, peptides, pheromones, 376 

phospholipids, proteins, sugars and minerals 155. It is evident from numerous studies that the 377 

biochemical profile of BV can vary in a similar manner to that of honey, affected by bee species, 378 

season, and geographical region 156-159.  The overall activity of BV is better suited to the inhibition of 379 

Gram positive bacteria as opposed to Gram negative species, however some activity is still retained 380 

against Gram negative bacteria 160.  An interesting observation made by Han and collegues 161 381 

identified the antimicrobial activity of BV to be pH-independent with comparable inhibitory efficacy 382 

at a range of different pH levels (2-11).   383 

 384 

The primary bee venom component (BVC), in terms of both dry weight (~50% w/w) and 385 

biological activity, is the antimicrobial peptide; melittin 158.  This 26-amino acid residue has 386 

exceptional non-selective lytic activity, capable of inhibiting both eukaryotic and prokaryotic cells 162.  387 

For a prospective antimicrobial agent this might appear to be counter intuitive, however the dose 388 

required for bacteriolytic activity is much lower than that required to elicit a cytolytic effect for 389 

eukaryotic cells 155,163.   390 

 391 

  The secondary BVC, in terms of both dry weight (~10% w/w) and more importantly biological 392 

activity, is phospholipase A2.  This hydrolase is capable of cleaving phospholipids and altering their 393 

membrane association.  There are significantly fewer studies on phospholipase A2 derived from BV 394 

than its more common counterpart, however antimicrobial effects have been demonstrated against both 395 



Gram positive and negative bacteria 164.  Despite this, a recent study by Leandro and colleagues 165 396 

showed the inhibitory effects of phospholipase A2 to be less than melittin.  In addition to this, the 397 

combination of the two BVCs did not appear to interact effectively, concluding that the majority of 398 

activity was due to the presence of melittin.  This is in direct contrast to initial observations by Mollay 399 

and collegues 166,167 whereby melittin was found to enhance the efficacy of phospholipase A2 400 

Interestingly, a recent in vivo study  showed melittin to be more effective than BV at reducing bacterial 401 

load in a surface wound, whilst concurrently enhancing would healing  168.   402 

 403 

In recent years, some researchers have taken to assessing the antibiotic-enhancing effects of 404 

BV (or singular components), specifically against multi-drug resistant bacteria for which the number 405 

of effective treatment regimes in operation may be diminishing. Han and colleagues 161 have shown 406 

antibiotic enhancing effects of BV (as a whole) against MRSA.  Conversely Dosler and colleagues 169 407 

have identified antibiotic enhancing effects of melittin (alone) against E. coli and K. pneumonia, with 408 

only inhibitory effects observed against P. aeruginosa, most likely due to the innate resistance 409 

mechanisms of this organism.  A more all-encompassing study by Al-Ani and collegues 170 showed 410 

that BV and its main component; melittin, inhibited over 50 different strains of both Gram positive 411 

and negative organisms, including strains with increased AMR.  412 

 413 

The additive and synergistic effects observed between BV/BVCs is interesting from a 414 

therapeutic perspective.  Due to the high cytotoxic effects associated with elevated doses of BV/BVCs, 415 

reduced doses would be preferable.  By combining the two, we may be able to reinvigorate ailing 416 

antibiotics whilst also reducing potential side effects, both of which would be welcomed in clinical 417 

practice. Importantly, whilst there is potential for BV and BVCs as antimicrobial agents, it is essential 418 



that prospective patients are tested for potential allergies to apitherapy-products prior to treatment, so 419 

as to avoid potential life-threatening side effects  420 

 421 

Conclusion 422 

The research presented within this review demonstrates that bee products including; honey, 423 

propolis, honey bee peptides, royal jelly, bee pollen and bee venom show great promise as 424 

antimicrobial agents against a wide range of microbial pathogens. All the bee products reviewed have 425 

a broad spectrum of reported activity against both Gram positive and negative bacterial species and 426 

several products also show promising activity against a range of fungal species of medical relevance. 427 

One of the problems highlighted in this review is that many of the studies report varying levels of 428 

antimicrobial activity due to the inherent variability, and poorly defined chemical nature of these 429 

products. Many natural products show similar variances in composition and activity, however if 430 

products are to be considered for use in modern medical applications they must have a consistent and 431 

specific level of activity.  This has already been achieved with products like medical grade manuka 432 

honey and work is now beginning to classify propolis and its activity. It would be beneficial if other 433 

apitherapeutics were to also undergo this process. Once antimicrobial activity, and the extraction 434 

methods used to release the antimicrobial fractions are standardized and classified it will be possible 435 

to make direct comparisons of products and their relative activity. Similarly, standardized and sterile 436 

products are favoured for use in in vivo and in-patient studies, which is the natural next step for many 437 

of the products reviewed here.  438 

 439 
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