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ABSTRACT

In real Web applications, CoSimRank has been proposed as
a powerful measure of node-pair similarity based on graph
topologies. However, existing work on CoSimRank is restricted
to static graphs. When the graph is updated with new edges
arriving over time, it is cost-inhibitive to recompute all CoSim-
Rank scores from scratch, which is impractical. In this study,
we propose a fast dynamic scheme, D-CoSim, for accurate
CoSimRank search over evolving graphs. Based on D-CoSim,
we also propose a fast scheme, F-CoSim, that greatly accel-
erates CoSimRank search over static graphs. Our theoreti-
cal analysis shows that D-CoSim and F-CoSim guarantee the
exactness of CoSimRank scores. On the static graph G, to
efficiently retrieve CoSimRank scores S, F-CoSim is based on
three ideas: (i) It first finds a “spanning polytree” T over G.
(ii) On T , a fast algorithm is designed to compute the CoSim-
Rank scores S(T ) over the “spanning polytree” T . (iii) On
G, D-CoSim is employed to compute the changes of S(T ) in
response to the delta graph (G ⊖ T ). Experimental evalua-
tions verify the superiority of D-CoSim over evolving graphs,
and the fast speedup of F-CoSim on large-scale static graphs
against its competitors, without any loss of accuracy.

1 INTRODUCTION

Graphs are widely used to model complex objects (e.g., web
pages) and their relationships (e.g., hyperlinks). CoSimRank,
proposed by Rothe and Schütze [18], is a powerful similar-
ity measure between two objects based on graph topologies.
It recursively follows the SimRank-like philosophy that “two
nodes are considered as similar if their in-neighbours are sim-
ilar”. CoSimRank is a node-pair similarity measure, which is
different from PageRank that ranks nodes only. Intuitively,
a CoSimRank score s(a, b) between nodes a and b aggregates
all the meeting time of two random surfers starting at a and
b, in contrast to SimRank [8] that counts their first meeting
time only. Thus, CoSimRank has been shown [18] to be more
accurate and effective than SimRank in many applications.

Application 1 (Synonym Expansion). Synonym expan-
sion is a useful tool in search engine query rewriting [2, 5]
and text simplification [4] that replaces a target word in a

sentence with another more appropriate word. The CoSim-
Rank measure was utilised to measure the similarity of words
based on the intuition that “two words that are synonyms
of each other should have similar lexical neighbors”, where
nodes are nouns, adjective and verbs occurring in Wikipedia,
and edges denote types of syntactic configurations extracted
from the parsedWikipedias (e.g., adjective-noun, verb-object,
and noun-noun coordination). They evaluated the CoSim-
Rank similarities of words (synonyms), whose results are su-
perior to the cosine similarity of two Personalised PageRank
vectors to identify effective synonyms.

Application 2 (Lexicon Extraction).Automatically build-
ing bilingual lexicons from corpora is an important task in
natural language processing. Rothe and Schütze have applied
CoSimRank to lexicon extraction, and represented an Eng-
lish and a German text corpus as two graphs, where nodes
represent words, and edges denote grammatical relationships
between words. Their central intuition is that “a node in the
English graph and a node in the German graph are similar
(i.e., are likely to be translations of each other) if their neigh-
bouring nodes are similar”. They initialised the CoSimRank
scores using an English-German “seed” dictionary whose en-
tries correspond to known pairs of equivalent nodes (words).
Their approach produces more reliable similarity results than
SimRank-based approaches [11, 22].

Despite its effectiveness, existing work on CoSimRank is
restricted to static graphs. However, when the graph is up-
dated with new edges arriving over time, it is difficult for this
approach to handle quick response over dynamical graphs,
due to its cost-inhibitive overheads for recomputing CoSim-
Rank scores from scratch. This highlights our need to con-
sider the problem of fast accurate dynamic CoSimRank search:

Problem 1 (Dynamic CoSimRank on Evolving Graphs).
Given: a graph G, a collection of edge updates ∆G to

G, and a query set Q = {q1, q2, · · · }.
Retrieve: the changes to the CoSimRank scores w.r.t. Q

on (G⊕∆G) quickly and accurately.
To address this issue, we propose a fast accurate dynamic

scheme, D-CoSim, for CoSimRank search over evolving graphs.
Moreover, as an important application of D-CoSim, we show
that our dynamic D-CoSim is also applicable to static graphs
to achieve a huge speedup for large-scale CoSimRank search.
Thus, based on D-CoSim, we also design a fast accurate static
scheme, F-CoSim, to solve the following problem:

Problem 2 (Static CoSimRank on Large Graphs).
Given: a graph G, and a query set Q = {q1, q2, · · · }
Retrieve: the CoSimRank scores w.r.t. Q on G

quickly and accurately.
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To speed up the computation of CoSimRank scores S over
the static graph G, (i) F-CoSim first finds a “spanning poly-
tree” T over G; (ii) on the “spanning polytree” T , we devise
a fast approach to compute the CoSimRank scores S(T ) of T ;
(iii) on (G⊖T ), we employ D-CoSim to compute the changes
of S(T ) w.r.t. the delta graph (G ⊖ T ). With these ideas,
F-CoSim and D-CoSim have the following salient features:

• Fast. F-CoSim and D-CoSim are orders of magnitude
faster than the best-known competitors on static and
dynamic graphs, respectively, with no loss of accuracy.

• Dynamic. D-CoSim quickly and accurately answers
ad-hoc CoSimRank search on evolving graphs, with no
need to recompute CoSimRank scores from scratch.

• Accurate. F-CoSim and D-CoSim do not compromise
any accuracy for huge speedup.

• Scalable. Our schemes require only linear memory
space, and scales well on million-node graphs.

In a nutshell, both dynamic D-CoSim and static F-CoSim
allow myriads of SimRank-based applications [6, 14, 21, 30]
being handled more efficiently and accurately.

2 RELATED WORK

Previous work on CoSimRank search focuses on static graphs.
The pioneering research of [18] proposed an efficient local al-
gorithm that computes each CoSimRank score from the sum
of the dot product of two Personalised PageRank vectors. It
entails O(Kdn) time and O(dn) memory to compute a single-
pair CoSimRank score over a static graph with n nodes and d
average degree after K iterations. However, when the graph
is slightly updated, all CoSimRank scores have to be recom-
puted from scratch. Recently, Yu and McCann [27] have sug-
gested an optimisation technique, namely CoSimMate, that
leverages repeated squaring memoisation to cut down the
number of iterations from K to ⌈log2 K⌉ for all-pairs CoSim-
Rank scores retrieval, but this approach requires extra O(n2)
memory to store repeated squaring results, which is imprac-
tical on large-scale graphs. Worse still, the approach of [27]
is a non-local algorithm on static graphs, meaning that, even
if one wishes to compute a single-pair score, all-pairs scores
have to be computed simultaneously.

Regarding dynamic updating, there is no work on CoSim-
Rank except a relatively little work on updating of SimRank,
a variant of SimRank, in dynamic graphs [9, 13, 20, 25, 26].
However, when extended to CoSimRank, these work would
become inefficient, due to the following reasons: First, the
two state-of-art studies [9, 20] are based on random walk
sampling, whose optimisation techniques heavily hinge on
aggregating “only the first meeting time” of two random
surfers for SimRank. If applied to aggregate “all the meet-
ing time” of two random surfers for CoSimRank, their ap-
proaches will become slow, due to the expensive cost to sam-
ple more additional meeting paths of two coalescing random
walks. Second, some work [13, 25] devised low-rank decompo-
sition methods to update all-pairs SimRank scores, leading
to O(n2) memory to store the decomposed matrices, which

Symbol Description
G given (old) graph G
∆G update graph to (old) graph G
n/ñ number of nodes in old/new graph
m/m̃ number of edges in old/new graph

deg−i in-degree of node i in (old) graph G
C damping factor (0 < C < 1)
K number of iterations

A/Ã old/new column-normalised adjacency matrix

S/S̃ old/new SimRank matrix
I n× n identity matrix
ei n× 1 unit vector with only a 1 in i-th entry
XT transpose of matrix X
X[i, :] i-th row of matrix X
X[:, j] j-th column of matrix X
X[i, j] (i, j)-th entry of matrix X

Table 1: Description of Main Symbols

is not scalable on large graphs. Worse still, these methods
rest on an assumption that all pairs of old SimRank scores
should be given in advance even if only a few pairs of scores
need updating, which is unrealistic in practice.

There is also a growing body of research on SimRank (the
variant of CoSimRank) on static graphs [6–8, 10, 13, 15, 16,
19, 23, 29]. Their optimisation techniques can be classified
into three broad categories: Monte Carlo sampling [6, 10,
19, 23], matrix-based methods [7, 13], and iterative schemes
[8, 15, 29]. Among them, the sampling approach, SLING
[23], is the best-of-breed SimRank algorithm on static graphs.
However, their techniques, if applied to CoSimRank, are not
fast as the performance gain of SLING relies on aggregating
only the first meeting time of two coalescing walks, as op-
posed to CoSimRank that aggregates all their meeting time.

There has also been much work on computing incremental
Personalised PageRank (PPR) vectors [3], and dynamic Ran-
dom Walk with Restart (RWR) proximities [28]. However, it
is not efficient to directly apply these techniques to dynamic
CoSimRank updating. This is because the CoSimRank score
at iteration k is the sum of k inner products between two Per-
sonalised PageRank vectors at every iteration i = 1, 2, · · · , k.
Thus, to update the k-th iterative CoSimRank score, exist-
ing incremental PPR (RWR) algorithms will be repeatedly
applied 2k times to update two PPR (RWR) vectors at ev-
ery iteration i = 1, 2, · · · , k, respectively, before summing up
the k dot products of every two PPR (RWR) vectors at each
iteration, which would become rather expensive.

3 PRELIMINARIES

Let us formally revisit the CoSimRank definition. Table 1
lists the main notations used throughout this paper. CoSim-
Rank, proposed by [18], is an attractive node-pair similarity
measure based on graph topologies. It is based on a recur-
sive philosophy that “two nodes are considered as similar
if their in-neighbours are similar”. Unlike SimRank [8], the
CoSimRank score of each node with itself is not constantly 1.
Mathematically, CoSimRank is formulated as follows:1

S = CATSA+ I (1)

1In comparison, SimRank [8] is defined as: S = max{CATSA, I}.
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Figure 1: Example of old web graph G (solid arrows)
updated by ∆G (six new edges in dashed arrows)

where S is a (symmetric) CoSimRank matrix, whose element
S[i, j] is the similarity score between nodes i and j in the
graph G; C is a constant decay factor between 0 and 1; A
is the column-normalised adjacency matrix; I is the identity
matrix; and (∗)T is matrix transpose. The upper bound of
each element of S in Eq.(1) is 1/(1− C).

To evaluate one single-pair CoSimRank score, Rothe and
Schütze [18] adopted a novel method to compute S[i, j]:

S[i, j] =
∑∞

k=0 C
k(p

(k)
i )Tp

(k)
j (2)

where p
(k)
j is the Personalised PageRank vector with respect

to the seed node j, which can be iteratively obtained from

p
(k)
j = Ap

(k−1)
j with p

(0)
j = ej (3)

It requires O(K(m + n)) time and O(m + Kn) memory to
compute a single-pair score S[i, j] via Eqs.(2) and (3) on the
static graph G with n nodes and m edges after K iterations.
When the graph is dynamically updated, it will incur expen-
sive cost to recompute all CoSimRank scores from scratch.

4 PROPOSED SCHEMES

We first present our efficient dynamic scheme, D-CoSim, that
can quickly and accurately retrieve CoSimRank scores over
large evolving graphs. Next, we will show that our dynamic
D-CoSim is applicable to greatly speed up CoSimRank search
over static graphs, and propose our static scheme, F-CoSim.

4.1 D-CoSim over Evolving Graphs

Given an old graph G, and a set of new edges updated to G:

∆G = {(v1 → u1), (v2 → u2), (v3 → u3), · · · }

According to the end point ui of each edge (vi → ui) in ∆G,
we first bunch all edges in ∆G into pieces:

∆G = ∆Gu1 ∪∆Gu2 ∪ · · · ∪∆Gup

such that all edges in each piece ∆Gui share a common end
point ui. Thus, each piece ∆Gui takes the following form:

∆Gui = {(vi1 → ui), (vi2 → ui), · · · , (viδ → ui)}

which is abbreviated as ∆Gui , ([vi1 , vi2 , · · · , viδ ] → ui) .

Example 1. Figure 1 depicts old graph G (solid arrows),
and an update graph ∆G (dashed arrows) to G:

∆G = {(a → f), (c → e), (d → g), (f → e), (b → f), (g → e)}.

We lump edges of ∆G into 3 pieces: ∆G = ∆Ge∪∆Gf∪∆Gg,

where ∆Ge = {(c → e), (f → e), (g → e)} , ([c, f, g] → e),

∆Gf = {(a → f), (b → f)} , ([a, b] → f), ∆Gg = ([d] → g). �

The way we chunk edges of ∆G has two advantages: First,
we can efficiently characterise the changes to A in answer
to ∆Gui as a linear transformation of the ui-th column of
the old A. This characterisation allows us to dynamically
capture only the “refreshed areas” of CoSimRank scores in
answer to the update ∆Gui . Second, bunching edges of ∆G
facilitates sharing and reuse of common information among
all the edge updates over each piece ∆Gui , thus discard-
ing many unnecessary repeated computations on evolving
graphs. For instance, to efficiently update CoSimRank simi-
larities in response to each piece ∆Gui , ([vi1 , vi2 , · · · , viδ ] →
ui), the intermediate results to update the edge (vi1 →
ui), once computed, can be maximally reused to update all
the other edges (e.g., (vi2 → ui), (vi3 → ui), · · · ) in ∆Gui .
Therefore, D-CoSim is highly efficient over evolving graphs.

Having bunched all edges of ∆G into chunks, we propose
an efficient approach that dynamically computes the changes
to the CoSimRank scores in response to each update piece
∆Gu.

2 We observe that each update piece ∆Gu changes only
one column of A. Specifically, we show the following lemma.

Lemma 1. Given old graph G, and an update piece to G:
∆Gu = ([v1, v2, · · · , vδu ] → u), the new column-normalised

adjacency matrix Ã of the graph (G⊕∆Gu) can be dynami-
cally updated from old A by replacing its u-th column with

Ã[:, u] = 1

δu+deg−u

(
deg−uA[:, u] + 1{v1,v2,··· ,vδu}

)
(4)

where deg−u is the in-degree of node u in old graph G; δu is
the number of edge updates in ∆Gu; and 1{v1,v2,··· ,vδu} is a

column vector (its length is the number of rows in new Ã)
with 1s in the (v1, v2, · · · , vδu)-th entries, and 0s elsewhere.

Note that if the new Ã and old A are not of the same size
(this case will happen when there are new nodes in ∆Gu),
then prior to using Eq.(4), we should first border A with new
zero-columns on the right and new zero-rows on the bottom
to make it the same size of new Ã.

Example 2. In Figure 1, old graph G has 5 nodes, so the
old A is of size 5× 5. In ∆Ge = ([c, f, g] → e) there are two
new nodes f and g. Thus, to update A in answer to ∆Ge,
we first border A to 7× 7 with two zero columns and rows:

a b c d e f g

a 0 1

2

1

2
0 0 0 0

b 0 0 0 0 1

2
0 0

c 0 1

2
0 0 0 0 0

d 0 0 1

2
0 1

2
0 0

e 0 0 0 0 0 0 0

f 0 0 0 0 0 0 0

g 0 0 0 0 0 0 0

bordered
region

1

3+2
×

(

2×

a 0

b 1

2

c 0

d 1

2

e 0

f 0

g 0

+

a 0

b 0

c 1

d 0

e 0

f 1

g 1

)

=

a 0

b 1

5

c 1

5

d 1

5

e 0

f 1

5

g 1

5

1{c,f,g} new Ã[:, e]old A[:, e]old A(bordered)

deg−eδe

Then, since deg−e = 2 and δe = 3, in light of Eq.(3), the
e-th column of A in answer to ∆Ge is updated to

Ã[:, e] = 1
3+2

(
2A[:, e] + 1{c,f,g}

)
= [0, 1

5
, 1
5
, 1
5
, 0, 1

5
, 1
5
]T . �

2In the following, ∆Gui
= ([vi1 , vi2 , · · · , viδ

] → ui) is abbreviated

to ∆Gu = ([v1, v2, · · · , vδu ] → u) for simplicity.



Leveraging Lemma 1, we next show how to dynamically
update CoSimRank scores in answer to each piece ∆Gu.

Theorem 1. Given an old graph G, an update piece to G:
∆Gu = ([v1, · · · , vδu ] → u), and a query node q ∈ (G⊕∆Gu),
the changes ∆S[:, q] to CoSimRank scores with respect to q
are dynamically computed as

∆S[:, q] =
∞∑

k=0

Ck
(
t(k)[q] · p(k) + p(k)[q] · t(k)

)
(5)

where p(k)[q] and t(k)[q] denote the q-th entry of the vectors

p(k) and t(k), respectively, which are iteratively obtained by{
p(0) = eu

p(k) = ÃTp(k−1)

{
t(0) = C

2(δu+deg−u )
(A+ Ã)T r

t(k) = ÃT t(k−1)
(6)

and r = limK→∞r(K), which can be iteratively derived as{
r(0) = w(K)

r(k) = CAT r(k−1) +w(K−k) (1 ≤ k ≤ K) (7)

with

{
w(0) = 1{v1,··· ,vδu} − δuA[:, u]

w(k) = Aw(k−1) (1 ≤ k ≤ K) (8)

Proof. After ∆Gu is updated toG, by definition in Eq.(1),
the new CoSimRank scores (S+∆S) in G⊕∆Gu satisfy

S+∆S = CÃT (S+∆S) Ã+ I

Rearranging the terms in the above equation yields

∆S = CÃT∆SÃ+E with E = CÃTSÃ+ I− S (9)

Let ∆A = Ã−A. From Eq.(4) in Lemma 1, we have

∆A[:, u] = 1

δu+deg−u

(
1{v1,··· ,vδu} − δuA[:, u]

)
(10)

To simplify E in Eq.(9), we plug Ã = A + ∆A[:, u]eT
u and

S = CATSA+ I, and let fu , S∆A[:, u], which produces

E = C(eu(f
T
u A) + (AT fu)e

T
u + (∆A[:, u]T fu)eue

T
u )

= eux
T + xeT

u where (11)

x = CAT fu + C
2
(∆A[:, u]T fu)eu

= C(AT + 1
2
eu∆A[:, u]T )fu {using Eq.(10)}

= C
2
(AT + ÃT )fu (12)

Thus, combining Eqs.(9) and (11), we obtain

∆S =
∞∑

k=0

Ck(ÃT )
k
EÃk {using Eq.(11)}

=
∞∑

k=0

Ck
(
(ÃT )

k
eux

T Ãk + (ÃT )
k
xeT

u Ã
k
)

(13)

By direct iteration, it follows from Eqs.(6) and (8) that

p(k) = (ÃT )keu, w(k) = Ak(1{v1,··· ,vδu} − δuA[:, u]) (14)

To express r in t(0) of Eq.(6), by iteration, Eq.(7) implies

r(K) =
(
CAT

)K

w(K) +
(
CAT

)K−1

w(K−1) + · · ·+w(0)

=
(
(CAT )

K
AK + (CAT )

K−1
AK−1 + · · ·+ I

)︸ ︷︷ ︸
={the first K terms of S =

∑∞
k=0 Ck(AT )kAk}

(
1{v1,··· ,vδu} − δuA[:, u]

)︸ ︷︷ ︸
{By Eq.(10)}=(δu+deg−u )∆A[:,u]

By taking limits on both sides, we have

r , lim
K→∞

r(K) =
(
δu + deg−u

)
S∆A[:, u] =

(
δu + deg−u

)
fu

Thus, by plugging r =
(
δu + deg−u

)
fu into Eq.(6), we get

t(0) = C
2
(A+ Ã)T fu = {By Eq.(12)} = x, t(k) = (Ãk)Tx (15)

Substituting Eqs.(14) and (15) into Eq.(13) produces

∆S =
∞∑

k=0

Ck

(
p(k)

(
t(k)

)T

+ t(k)
(
p(k)

)T
)

Finally, post-multiplying both sides by eq yields Eq.(5). �

Example 3. Recall the old G (solid arrows) in Figure 1,
and update piece ∆Ge = ([c, f, g] → e) to G (dashed arrows).
Given query q = e, number of iterations K = 3, and decay
factor C = 0.6, Theorem 1 retrieves ∆S[:, e] as follows:

First, we compute {w(k)} and {r(k)} via Eqs.(8) and (7):

k w(k) r(k)

0 [0,−1.5, 1,−1.5, 0, 1, 1]T [0, 0, 0, 0, 0, 0, 0]T

1 [−.25, 0,−.75, .5, 0, 0, 0]T [−.375, 0, 0,−.375, 0, 0, 0]T

2 [−.375, 0, 0,−.375, 0, 0, 0]T [−.25,−.113,−.975, .5,−.113, 0, 0]T

3 [0, 0, 0, 0, 0, 0, 0]T [0,−1.868, 1.075,−1.5, .116, 1, 1]T

Next, we obtain {p(k)} and {t(k)} via Eq.(6) with r = r(3):

k p(k) t(k)

0 [0, 0, 0, 0, 1, 0, 0]T [0, .065,−.09, 0,−.105, 0, 0]T

1 [0, 0, 0, 0, 0, 0, 0]T [0,−.045, 0, 0,−.005, 0, 0]T

2 [0, 0, 0, 0, 0, 0, 0]T [0, 0, 0, 0,−.009, 0, 0]T

3 [0, 0, 0, 0, 0, 0, 0]T [0, 0, 0, 0, 0, 0, 0]T

Finally, we use Eq.(5) to derive ∆S[:, e] in answer to ∆Ge:

∆S[:, e] =
∑3

k=0 0.6
k
(
t(k)[e] · p(k) + p(k)[e] · t(k)

)
= [0, .0645,−.09, 0,−.2091, 0, 0]T �

Theorem 1 implies an efficient dynamic method, D-CoSim,
to retrieve the changes to CoSimRank scores (Algorithm 1).

Correctness. While Theorem 1 guarantees the correctness
of ∆S w.r.t. one piece update ∆Gu only, the following theo-
rem guarantees further that, after one piece update ∆Gu is
processed, other pieces being processed will not distort the
correct CoSimRank results ∆S[:, Q].

Theorem 2. Let ∆G , {∆G1,∆G2, · · · ,∆Gp} be a set
of edges bunched into pieces updated to the old graph G (line 1).
The CoSimRank changes ∆S (line 20) returned by D-CoSim
are the correct answers in response to the update graph ∆G.

Proof. Let ∆A,∆A1,∆A2, · · · ,∆Ap be the changes
to the column-normalised adjacency matrices w.r.t. the graph
updates ∆G,∆G1,∆G2, · · · ,∆Gp, respectively.

In the 1st round of for-loop (lines 4–19): D-CoSim starts

by viewing G0 (, G) as the old graph, and S0 (, S) as the
old CoSimRank scores, and update the 1st chunk ∆G1 to G0.
Theorem 1 ensures that s (line 18) at the 1st round, denoted
by ∆S1, is the CoSimRank changes w.r.t. the update ∆G1

to G0, i.e., ∆S1 satisfies

S0 +∆S1 = C(A0 +∆A1)
T (S0 +∆S1)(A0 +∆A1) + I



Algorithm 1: D-CoSim (G,∆G,C,Q,K)

Input : an old graph G, a set of edge updates ∆G to G,
decay factor C, a query set Q, #-iteration K

Output :CoSimRank changes ∆S[:, Q] in answer to ∆G.
1 chunk all edges of ∆G to {∆Gu} s.t. ∆G =

∪
u ∆Gu and

edges in ∆Gu = ([v1, · · · , vδu ] → u) share common end u

2 foreach query q ∈ Q do initialise ∆S[:, q] := 0

3 foreach piece ∆Gu do

4 initialise w(0) := 1{v1,··· ,vδu} − δuA[:, u]

5 for k = 1 to K do update w(k) := Aw(k−1)

6 initialise r := w(K)

7 for k = 1 to K do update r := CAT r+w(K−k)

8 ∆A[:, u] := 1

δu+deg−u

(
1{v1,··· ,vδu} − δuA[:, u]

)
9 update Ã := A+∆A[:, u]eTu

10 initialise p(0) := eu

11 for k = 1 to K do update p(k) := ÃTp(k−1)

12 initialise t(0) := C

2(δu+deg−u )
(A+ Ã)T r

13 for k = 1 to K do update t(k) := Ãt(k−1)

14 foreach query q ∈ Q do
15 initialise s := 0;

16 for k = 0 to K do

17 s := s+ Ck(t(k)[q] · p(k) + p(k)[q] · t(k));
18 update ∆S[:, q] := ∆S[:, q] + s;

19 update A := Ã

20 return ∆S[:, Q] := {∆S[:, q] | ∀q ∈ Q};

Then, D-CoSim updates ∆S (line 18) by adding s (= ∆S1),
and updates the current graph from G0 to G1 (line 19):

∆S = 0+∆S1 = ∆S1, A1 = A0 +∆A1

The for-loop (lines 4–19) continues till the last chunk ∆Gp

is updated. In the p-th (last) round of for-loop (lines 4–18):
D-CoSim regards Gp−1 (= Gp−2 +∆Gp−1) as the old graph,
and Sp−1(= Sp−2 +∆Sp−1) as the old CoSimRank scores,
and updates the p-th chunk ∆Gp to Gp−1. Theorem 1 en-
sures that s (line 18) at the p-th round, denoted by ∆Sp,
is the CoSimRank changes w.r.t. the update ∆Gp to Gp−1,
i.e., ∆Sp satisfies

Sp−1 +∆Sp = C(Ap−1 +∆Ap)
T · (Sp−1 +∆Sp)·

· (Ap−1 +∆Ap) + I
(16)

Then, D-CoSim updates ∆S (line 18) by adding s (= ∆Sp),
and updates the current graph from Gp−1 to Gp (line 19):

∆S = (∆S1 + · · ·+∆Sp−1) +∆Sp, Ap = Ap−1 +∆Ap

Finally, we check if ∆S (= ∆S1 +∆S2 + · · · +∆Sp) is
the correct CoSimRank changes w.r.t. the update ∆G to G.
Our above analysis for each round of the for-loop implies

Si = Si−1+∆Si, Ai = Ai−1+∆Ai (∀i = 1, · · · , p−1)

Repeatedly applying the above iterations produces

Ap−1 +∆Ap = (Ap−2 +∆Ap−1) +∆Ap = · · · =
=(A0 +∆A1) +∆A2 + · · ·+∆Ap−1 +∆Ap

=A0 +∆A with ∆A , ∆A1 + · · ·+∆Ap (17)

Similarly,

Sp−1 +∆Sp = S0 +∆S with ∆S , ∆S1 + · · ·+∆Sp (18)

Plugging Eqs.(17) and (18) into Eq.(16) produces

S0 +∆S = C(A0 +∆A)T (S0 +∆S)(A0 +∆A) + I

Thus, ∆S satisfies the CoSimRank definition, which implies
that ∆S (= ∆S1+∆S2+ · · ·+∆Sp) returned by D-CoSim
is exactly the CoSimRank changes w.r.t. the graph update
∆G (= ∆G1 + · · ·+∆Gp) to G0 (, G). �

Example 4. Recall old graph G (solid arrows) and update
graph ∆G to G (dashed arrows) in Figure 1. Given the query
q = e, number of iterations K = 3, and decay factor C = 0.6,
D-CoSim computes ∆S in answer to ∆G as follows:

First, D-CoSim chunks all edges of ∆G into three pieces:
∆G = ∆Ge ∪∆Gf ∪∆Gg, according to Example 1.

Then, after CoSimRank changes ∆S1[:, e] w.r.t. 1st piece
update ∆Ge to G0 (= G) are derived (see Example 3):

∆S1[:, e] = [0, .0645,−.09, 0,−.2091, 0, 0]T ,

D-CoSim views G1(= G0 ⊕∆Ge) as the old graph, and com-
putes changes ∆S2[:, e] w.r.t. 2nd piece update ∆Gf to G1:

∆S2[:, e] = [0, .009, 0, 0, .0239, .1, 0]T .

Next, it views G2(= G1 ⊕∆Gg) as the old graph, and com-
putes changes ∆S3[:, e] w.r.t. 3rd piece update ∆Gg to G2:

∆S3[:, e] = [0, .018, 0, 0, .0288, 0, .12]T .

Finally, the CoSimRank changes ∆S[:, e] w.r.t. the graph
update ∆G (= ∆Ge ⊕∆Gf ⊕∆Gg) are

∆S[:, e] = ∆S1[:, e] +∆S2[:, e] +∆S3[:, e]

= [0, .0915,−.09, 0,−.1564, .1, .12]T �

Complexity.We analyse the computational cost of D-CoSim.
Let ñ and m̃ denote the number of nodes and edges in new
G⊕∆G, respectively. Let δ be the number of edges in ∆G,
and p be the number of update pieces {∆Gu} in ∆G. Clearly,
p ≤ δ. D-CoSim has the following complexity bound:

Theorem 3. D-CoSim requires O(K(m̃ + ñp|Q|)) time
and O(m̃ + Kñ) memory to dynamically compute ∆S[:, Q]
after K iterations, where |Q| is the number of queries in Q.

Proof. D-CoSim runs in three phases: (1) bunching edges

of ∆G (line 1), (2) {p(k)} and {t(k)} iterating (lines 4–13),
and (3) online query (lines 14–18). Specifically, bunching
edges of ∆G requires O(δ) time and O(δ) memory for a lin-

ear scan of all edges in ∆G. To iteratively compute {p(k)}
and {t(k)}, for each query q ∈ Q and each piece update ∆Gu,
it entails O(Km̃) time and O(m̃+Kñ) memory for Eqs.(6)–
(8). The O(Km̃) time is dominated by 5 matrix-vector prod-

ucts:Aw(k−1) (line 5),AT r(k−1) (line 7), ÃTp(k−1) (line 11),

(A+ Ã)T r (line 12), and Ãt(k−1) (line 13). The memory
O(m̃ + Kñ) is dominated by the storage of matrix A, and

resulting iterative vectors. For online query, once {p(k)} and

{t(k)} are computed, they are memoised and reused to com-
pute ∆S[:, q] for every query in Q. After ∆S[:, q] is updated



in answer to each piece ∆Gu, all the vectors {p(k)} and

{t(k)} are freed for the next piece update. Thus, for |Q|
queries and p update pieces, it entails O(K(m̃+ñp|Q|)) time
and O(m̃+Kñ) memory in total. �

Theorem 3 guarantees the high efficiency of D-CoSim for
dynamic CoSimRank search, whose speedup is achieved by
(a) our characterisation of the “refreshed areas” ∆S[:, q] in

terms of only the linear combination of {p(k)} and {t(k)},
and (b) maximally reusing and sharing common interme-
diate results in answer to the edge updates on each piece
∆Gu. In comparison, the existing approach by [18] requires

O(K(m̃ + ñ)) time to compute only a single-pair S̃[i, j] per
edge update via Eqs.(2) and (3) from scratch, leading to

O(K(m̃ + ñ|Q|)ñδ) total time to compute S̃[:, Q] (ñ × |Q|
pairs) for δ edge updates, which is rather expensive.

4.2 F-CoSim over Static Graphs

Apart from supporting quick dynamic CoSimRank retrieval
on evolving graphs, D-CoSim can also be applied to static
graphs for accelerating CoSimRank search. Based on D-CoSim,
we next propose an efficient scheme, F-CoSim, that greatly
speeds up CoSimRank search over static graphs. Given a
static graph G and a query set Q, F-CoSim retrieves the
CoSimRank scores S[:, Q] over G based on three ideas: First,
we propose a fast method to find a “spanning polytree” T
of G so that G is decomposed into G = T ⊕ (G⊖ T ), which
can be viewed as the old T plus its update (G⊖T ). Next, on
T , due to its special “polytree” structure, we notice that the
CoSimRank scores are relatively easier to compute, and we
propose a novel fast algorithm to retrieve the CoSimRank
scores S(T )[:, Q] over the “spanning polytree”. Finally, we
apply our dynamic D-CoSim to compute S(T ) changes in re-
sponse to the graph update (G⊖ T ). With the above ideas,
F-CoSim enables a notable speedup in CoSimRank search
over static graphs, which is achieved by our efficient method
to retrieve S(T )[:, Q] over the “spanning polytree” and our
fast D-CoSim to compute the changes to S(T ) w.r.t. (G⊖T ).

In the following, we shall elaborate on these ideas.

Definition 1 (Spanning Polytree). A spanning poly-
tree T of a connected graph G is a subgraph of G that includes
every node of G (i.e., spans G), with a maximal set of edges
of G that contains no undirected cycles if we replace all the
directed edges of T with undirected edges.

Intuitively, in contrast with the traditional definition of
the spanning tree in which each node has only one parent
node, our spanning polytree is a generalised notion of the
spanning tree from undirected graphs to directed ones, in
which each node may have more than one parent nodes. The
reason we introduce the spanning polytree is that, when G
is a directed graph, its traditional spanning tree does not
always exist, but there always exists a spanning polytree of
G. For instance in Figure 2, there are no conventional trees
that span G, but one can find a polytree T that spans G. If G
is an undirected graph, the spanning polytree in Definition 1
reduces to the traditional spanning tree.
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Figure 2: Decompose G into a spanning polytree T
and ∆G (= G⊖ T )

To identify a spanning polytree T over a given graph G,
we devise a fast heuristic approach based on breadth first
search (BFS) in Procedure 1. The complexity of Procedure 1
is dominated by the BFS search, which is O(n+m) time and
O(n+m) memory on a graph with n nodes and m edges.

Procedure 1: Find Spanning PolyTree (G)

Input : a graph G.
Output : a spanning polytree T of G.

1 initialise T := ∅ ;

2 foreach weakly connected component Gwcc ⊆ G do
3 U.Enqueue(a node of maximum out-degree in Gwcc);

4 while U ̸= ∅ do
5 set node v := U.Dequeue() ;

6 T := T ∪ {unvisited in- and out-links of v} ;

7 forall w ∈ {unvisited in- and out-neighbors of v}
do U.Enqueue(w);

8 return T ;

Having identified the spanning polytree T of the graph G,
we can decompose G into two parts: G = T ⊕ (G⊖ T ). Due
to the special acyclic structure of T , there is a more efficient
way to retrieve CoSimRank scores of the spanning polytree T .
Our key observation is that, if the nodes of T are organised in
level order, the adjacency matrix A of T will exhibit a block
superdiagonal structure, leading to the CoSimRank scores of
T , S(T ), displaying a block diagonal structure. Consequently,
any two nodes at different levels of T have zero CoSimRank
scores. Moreover, the CoSimRank scores of the nodes at the
same level of T can be immediately derived from those at
the previous level, based on the following theorem:

Theorem 4 (CoSimRank on Polytree T ). Given a
polytree T with nodes organised in level order, let nl be the
number of nodes at level l (l = 1, · · · , L), the CoSimRank
scores of T , S(T ), is computed level by level:

S(T ) = diag(S1,S2, · · · ,SL) with S1 = In1 and

Sl = CAT
l−1,lSl−1Al−1,l + Inl (l = 2, · · · , L)

(19)

where L is the number of levels in T ; S(T ) is a diagonal block
matrix with each block Sl being the CoSimRank scores of n2

l

pairs of nodes at level l; Al−1,l is the (nl−1 × nl) column-
normalised adjacency matrix of the subgraph between level
(l−1) and level l of T ; and Inl is the nl×nl identity matrix.

Proof. Since T is a polytree, two surfers starting at dif-
ferent levels cannot meet at a common node via equal-length
steps. Thus, only node-pairs at the same level have nonzero
scores, leading to the block diagonal structure of S(T ).



To compute l-th diagonal block Sl, by Eq.(1), we have

C


0A1,2 · · · 0

0 0
. . .

...
...

...
. . . AL−1,L

0 0 · · · 0


T 

S1 0 · · · 0
0 S2 · · · 0
...

...
. . .

...
0 0 · · · SL



0A1,2 · · · 0

0 0
. . .

...
...

...
. . . AL−1,L

0 0 · · · 0

+


In1 0 · · · 0
0 In2 · · · 0
...

...
. . .

...
0 0 · · · InL



=


In1 0 · · · 0
0 CAT

1,2S1A1,2 + In2 · · · 0
...

. . .
. . .

...
0 0 · · · CAT

L−1,LSL−1AL−1,L + InL

 =


S1 0 · · · 0
0 S2 · · · 0
...

...
. . .

...
0 0 · · · SL


In the last equality, since the corresponding diagonal blocks
are equal, Eq.(19) holds. �

Theorem 4 gives a fast and accurate approach for CoSim-
Rank search on a spanning polytree in a level-by-level style.
The CoSimRank scores at level l are immediately computed
from those at level (l− 1). To retrieve each block Sl at level
l via Eq.(19), it requires only O(nl(nl−1 + nl)) time and
O(n2

l ) memory, as opposed to the original method entailing
O(K(m + n)nl) time and O(m + n) memory to retrieve n2

l

pairs of Sl scores. Since nl ≪ n = n1 + n2 + · · · + nL, the
complexity improvement of our approach is significant.

Example 5. Consider the spanning polytree T in Figure 2.
Theorem 4 computes the CoSimRank S(T ) of T as follows:

As Level 1 of T has two nodes {a, b}, Eq.(19) initialises

S1 =
[ (a) (b)

(a) 1 0
(b) 0 1

]
Since A1,2 = [ .5 0

.5 0 ] and A2,3 = [ 1 .5 1
0 .5 0 ], the CoSimRank

similarity of nodes {c, d} at Level 2 is computed from S1:

S2 = 0.6AT
1,2S1A1,2 + I2 =

[ (c) (d)

(c) 1.3 0
(d) 0 1

]
Next, the CoSimRank similarity of nodes {e, f, g} at Level 3

is computed from S2:

S3 = 0.6AT
2,3S2A2,3 + I3 =


(e) (f) (g)

(e) 1.78 0.39 0.78
(f) 0.39 1.34 0.39
(g) 0.78 0.39 1.78


Thus, the CoSimRank scores S(T ) = diag(S1,S2,S3). �

CoSimRank on Static Graph G. After the CoSimRank
S(T ) of the polytree T is computed, F-CoSim next computes
the CoSimRank changes ∆S w.r.t. the graph ∆G (= G⊖T ),
by utilising our dynamical D-CoSim algorithm in Section 4.1.
Finally, the two parts (S(T ) and ∆S) are added together,
which produces the CoSimRank S of the original graph, i.e.,

S = S(T ) +∆S

Based on the above ideas, Algorithm 2 provides our com-
plete static scheme, F-CoSim, which incorporates Theorem 4
and our dynamic D-CoSim scheme. F-CoSim consists of three
phases: (i) finding a spanning polytree T over G (line 1), (ii)
retrieving CoSimRank S(T ) on T (lines 2–7), (iii) computing
CoSimRank changes ∆S in answer to (G⊖ T ) (lines 8–9).

Example 6. Recall G in Figure 2. To retrieve S[:, c] on G,
F-CoSim first decomposes G = T⊕(G⊖T ). Then, it computes
the CoSimRank S(T )[:, c] of T , as shown in Example 5:

S(T )[:, c] =
[ (a) (b) (c) (d) (e) (f) (g)

(c) 0 0 1.3 0 0 0 0
]
T

Algorithm 2: F-CoSim (G,C,Q,K)

Input : graph G, decay factor C,
query set Q, #-iteration K

Output :CoSimRank scores S[:, Q] in G.
1 set T := Find Spanning PolyTree(G)

2 set LQ := maximum level of the query node of Q in T

3 initialise S1 = In1

4 for l = 2 to LQ do
5 set nl := the number of nodes at level l in T

6 Al−1,l is (nl−1×nl) col-normalised adjacency block:

Al−1,l[i, j] = 1/deg−j if ∃(i → j) ∈ T ; or 0 otherwise

7 compute Sl := CAT
l−1,lSl−1Al−1,l + Inl

8 compute ∆S[:, Q] := D-CoSim (T,G⊖ T,C,Q,K)

9 compute S[:, Q] = diag(S1,S2, · · · ,SL)[:, Q] +∆S[:, Q];

10 return S[:, Q];

Next, F-CoSim invokes D-CoSim (Line 8) to compute the
CoSimRank increment ∆S[:, c] w.r.t. delta graph (G⊖ T ):

∆S[:, c] = [0, .15, .045, 0, .03, .0225, .045]T .

Finally, the CoSimRank score S[:, c] of G (Line 9) is

S[:, c] = S(T )[:, c]+∆S[:, c] = [0, .15, 1.345, 0, .03, .0225, .045]T �

Correctness. We next show that F-CoSim correctly returns
the CoSimRank scores S[:, Q] on G.

Theorem 5. Given graph G, the resulting S returned by
Line 10 of F-CoSim is the correct CoSimRank scores over G.

Proof. Let S(T ) be the CoSimRank of the polytree T ,
and A(T ) be the column-normalised adjacency matrix of T .
According to Line 1 of F-CoSim, after T is retrieved from G,
the column-normalised adjacency matrix A of G is decom-
posed into two parts (A(T ) and ∆A):

A = A(T ) +∆A where ∆A , A−A(T ) (20)

Theorem 2 guarantees that the CoSimRank of T , denoted as
S(T ) (, diag(S1, · · · ,SL)), that is obtained by Lines 2–7 of
F-CoSim, is the correct CoSimRank of T , i.e., S(T ) satisfies
the CoSimRank definition:

S(T ) = CA(T )TS(T )A(T ) + I (21)

Moreover, our correctness proof of D-CoSim in Theorem 2
guarantees that, by viewing T as the old graph, and (G⊖T )
as the graph update to T , the value of ∆S, from calling
D-CoSim (Line 8 of F-CoSim), is the correct CoSimRank in-
crements w.r.t. the update (G⊖T ) to T . That is,∆S satisfies
CoSimRank definition:

S(T ) +∆S = C · (A(T ) +∆A)T · (S(T ) +∆S)·
· (A(T ) +∆A) + I (22)

According to Line 9, CoSimRank returned by F-CoSim is:

S = diag(S1, · · · ,SL) +∆S = S(T ) +∆S (23)

Plugging Eqs.(21) and (22) into (23) produces

S = CATSA+ I.

Thus, S satisfies the CoSimRank definition, i.e., S, returned
by F-CoSim, is the correct CoSimRank of G. �



Complexity. Given Q, the time of F-CoSim in each phase

is O(n+m), O(
∑LQ

l=2 nl(nl−1 + nl)), O(K(m+np⊖|Q|)), re-
spectively, where LQ is the maximum level of the query node
of Q in T , and p⊖ is number of update pieces in ∆G. Since
LQ ≤ L ≪ n, nl−1 + nl ≪ n, and p⊖ ≪ m−n in practice, it
requires O(nmax2≤l≤LQ{nl−1+nl}+K(m+np⊖|Q|)) time
in total, as opposed to the O(Kn(m + |Q|n)) time of the
original method to assess n× |Q| pairs of scores S[:, Q].

The memory space of F-CoSim in each phase is O(m+n),

O(m+
∑LQ

l=1 nl
2), O(m+Kn), respectively. Thus, the total

memory is bounded by O(m+ (K +max1≤l≤LQ{nl})n).

5 EXPERIMENTAL EVALUATION

Our evaluations on various datasets verify the superiority of
D-CoSim in dynamic graphs and F-CoSim in static graphs.

The performance efficiency is evaluated by three metrics:
(a) Running Time. On dynamic graphs, D-CoSim quickly
answers CoSimRank search. On static graphs, F-CoSim is
much faster than the best-known CoSimRank approaches.
(b) Memory Space. Both D-CoSim and F-CoSim require
only linear memory, and scale well on million-node graphs.
(c) Accuracy. D-CoSim and F-CoSim do not compromise
any accuracy for speedup.

5.1 Experimental Settings

Datasets. We adopt the following public datasets:

Datasets #-Nodes #-Edges Type

as-735 (AS) 7,716 26,467 Undirected
ca-HepPh (HP) 12,008 237,010 Undirected
email-EuAll (EE) 265,214 420,045 Directed
web-Google (WG) 916,428 5,105,039 Directed
wiki-Talk (WT) 2,394,385 5,021,410 Directed
soc-LiveJournal (LJ) 18,520,486 298,113,762 Directed

• as-735 (AS). It is a communication graph of autonomous
systems, taken from the Border Gateway Protocol logs,
where an edge is a who-talks-to-whom relationship.

• ca-HepPh (HP). It is a collaboration graph taken from
the arXiv High Energy Physics. If two authors (nodes)
co-authored a paper, there is an edge between them.

• email-EuAll (EE). It is an EU email contact graph. Each
node is an email address. If node i sent at least one
message to j, there is an edge i → j in the network.

• web-Google (WG). It is a Google web graph, where each
node is a web page, and an edge is a hyperlink.

• wiki-Talk (WT). In Wikipedia, each user (node) has a
talk page that other users can edit for discussion. In
this graph, an edge i → j means that user i edited
user j’s talk page.

• soc-LiveJournal (LJ). It is a social community network,
where edge i → j is a friendship link from user i to j.

To simulate real evolution on dynamic graphs, we use
RTG (Random Typing Generator) [1] to generate |∆G| dy-
namic updates following linkage generation models [12, 17].

All experiments are conducted on a PC with Intel Core i7-
6700 3.40GHz CPU and 64GB memory compiled by VC++.

Compared Algorithms. We implemented our D-CoSim
(dynamic) and F-CoSim (static), and compared them with
two state-of-art CoSimRank competitors: (a) CSR, a method
by [18] that retrieves a CoSimRank score from the sum of
the dot product of two Personalised PageRank vectors; (b)
CSM, a repeated-squaring method by [27] that cuts down
the number of CoSimRank iterations.

Parameters. We chose the following parameters by default:
(a) the decay factor C = 0.8 and (b) the number of iterations
K = 5, as previously used in [18].

5.2 Experimental Results

5.2.1 Time Efficiency. Figure 3 depicts the time efficiency
of D-CoSim on several dynamic graphs. On each dataset, we
randomly select |Q| = 500 queries, and build |∆G| = 1000
new edge updates. Figure 3a compares the time of D-CoSim
against CSR and CSM to compute CoSimRank changes per
update for each query. We see that D-CoSim is consistently 3-
5 order-of-magnitude faster than CSR (resp.118x faster than
CSM). This is because D-CoSim leverages Theorem 1 that
evaluates only the refreshed areas of CoSimRank scores in
response to graph updates, without the need to recompute
all scores from scratch. Moreover, unlike CSM crashes on
large datasets (e.g., WT, LJ) due to insufficient memory for
repeated squaring memoisation, D-CoSim can update their
scores within one second. Figure 3b further depicts the time
of D-CoSim w.r.t. |∆G|. As |∆G| grows from 500 to 3000
on each dataset, the time of D-CoSim is increasing mildly,
highlighting its scalability w.r.t. the number of edge updates.
It is consistent with the time complexity in Theorem 3 where
D-CoSim is linear to the number of update pieces p (≤ δ).

Figure 4 shows the time efficiency of F-CoSim on static
graphs. Due to space limitations, we only report the results
on three datasets, and the trends on other datasets are sim-
ilar. Figure 4a compares the time of F-CoSim with CSR and
CSM on each dataset. We discern that F-CoSim always out-
performs CSR with a speedup up to 9.8x (on EE). Thus, the
use of our spanning polytree for fast CoSimRank search is
effective (Theorem 4). On HP dataset, CSM is the fastest,
but this method only survives on small-scale graphs, due to
its high memory storage for repeated squaring. In contrast,
F-CoSim scales well on million-edge graphs (e.g., WT, LJ).

Since F-CoSim encompasses three phases (Algorithm 2),
Figure 4b details the time allocated in each phase per dataset.
We see that, among these phases, Phase 2 (computing S(T )
on spanning polytree T ) takes the smallest portion; Phase 1
(finding T from G) the second smallest; Phase 3 (computing
∆S w.r.t. G⊖T ) the largest. This agrees well with our com-
plexity analysis of Algorithm 2, where the time of Phase 2,

O(
∑LQ

l=2 nl(nl−1 + nl)), is independent of the graph size n,
unlike Phases 1 and 3 that hinge on n (≫ nl).

5.2.2 Memory Efficiency & Scalability. Figure 5 depicts
the memory efficiency of D-CoSim and F-CoSim on six real
datasets as compared with CSR and CSM. On each dataset,
we randomly select |Q| = 500 queries. For dynamic graphs,
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Figure 5: Memory Efficiency & Scalability
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we generate |∆G| = 1000 new edge updates to each dataset.
Figure 5a reports the memory of D-CoSim for ∆G updates
to each dataset w.r.t. the query set Q. We see that D-CoSim
and CSR have comparable memory; both increase linearly
with the growing size of graphs, highlighting the scalability.
On small datasets (e.g., AS, HP) when CSM does not fail,
the memory of D-CoSim is almost 2.5 orders of magnitude
smaller than CSM. This is because D-CoSim requires only
linear memory to store auxiliary vectors, as opposed to the
O(n2) memory of CSM for repeated squaring. In Figure 5b,
the memory of F-CoSim on static graphs shows the similar
tendency. Figure 5c shows the memory usage at each phase
of F-CoSim on each dataset. We see that Phase 1 (finding T )
has the lowest memory as it is based on linear BFS search.
Phase 2 (computing S(T ) on T ) requires larger memory than
Phase 1, due to its overheads to store the resulting S(T )[:, Q].
These agree with our memory analysis in Algorithm 2.

5.2.3 Accuracy. We evaluate the accuracy of D-CoSim and
F-CoSim, relative to the original CSR, on real datasets. We
randomly pick up various query sets with its size |Q| varying
from 1000 to 3000. For each query setQ, based on the CoSim-
Rank scores S[:, Q] from D-CoSim (resp.F-CoSim), we mea-
sure their similarity ranking results via NDCG (Normalised
Discounted Cumulative Gain) [24]:

NDCGQ@k = 1
|Q|

∑|Q|
q=1

(
Zk,j

∑k
x=1

2S[x,q]−1
log2(1+x)

)
where Zk,j is a normalization factor that is the DCG rank-
ing results by the original method CSR. Thus, NDCG = 1
implies that the CoSimRank ranking of the compared al-
gorithm perfectly matches that of CSR, with no accuracy
loss. Figure 6 shows the accuracy of D-CoSim and F-CoSim

via NDCG for top k = 1000 CoSimRank ranking scores on
AS. The trends on other datasets are similar. We omit them
here. From the results, we notice that, for each query set Q,
both NDCGs of D-CoSim and F-CoSim are 1s, implying that
D-CoSim and F-CoSim do not sacrifice any accuracy for their
speedup. This verifies the correctness of Theorems 2 and 5.

6 CONCLUSIONS

This paper presents a dynamic scheme, D-CoSim, for fast ac-
curate CoSimRank retrieval on evolving graphs. We also ap-
ply D-CoSim to static graphs, by proposing F-CoSim to speed
up large-scale static CoSimRank retrieval. On dynamic graphs,
we devise a novel approach that (a) bunches all edges of
∆G into pieces {∆Gi} and (b) characterises only the CoSim-
Rank changes in answer to each piece update ∆Gi as the
linear combination of vectors, thus discarding unnecessary
computations. D-CoSim retrieves CoSimRank quickly and ac-
curately on dynamic graphs, with no need to reassess them
from scratch. On static graphs, our fast accurate algorithm,
F-CoSim, greatly speeds up CoSimRank retrieval based on
three ideas: Given graph G, we (a) find a “spanning polytree”
T of G; (b) design an efficient algorithm to retrieve CoSim-
Rank scores S(T ) over T ; and (c) apply D-CoSim to evaluate
the changes to S(T ) in answer to delta graph (G⊖ T ). Our
empirical studies on various real datasets demonstrate that
(a) D-CoSim is 3–5 orders of magnitude faster than the best-
known competitors on large dynamic graphs; (b) F-CoSim
outperforms the state-of-the-art approaches on static graphs
with a speedup up to 9.8 times; (c) D-CoSim and F-CoSim
retain comparable linear memory, and scale on million-node
graphs, with no compromise of any accuracy for speedup.
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