- 1 Accumulation of marine microplastics along a trophic gradient as determined by an Agent-
- 2 Based Model
- 3

4 Rosamund L Griffin*, Iain Green, Richard Stafford

- 5
- 6 Department of Life & Environmental Science, Faculty of Science & Technology, Bournemouth

7 University, Fern Barrow, Poole, Dorset BH12 5BB United Kingdom

8

9 * - Corresponding Author: Rosamund Griffin. Email: rosamundgriffin@gmail.com

10

11 Abstract

12 Microplastics are ubiquitous in the marine environment and are now consistently found in almost all 13 marine animals. This study examines the rate of accumulation in a modelled filter feeder (mussels) 14 both from direct uptake of microplastics and from direct uptake in addition to trophic uptake (via 15 consuming plankton which have consumed microplastic themselves). We show that trophic uptake 16 plays an important role in increasing plastic present in filter feeders, especially when consumption 17 of the plastic does not reduce its overall abundance in the water column (e.g. in areas with high 18 water flow such as estuaries). However, we also show that trophic transfer increases microplastic 19 uptake, even if the amount of plastic is limited and depleted, as long as plankton are able to 20 reproduce (for example, as would happen during a plankton bloom). If both plankton and plastic 21 are limited and reduced in concentration by filter feeding, then no increase in microplastic by 22 trophic transfer occurs, but microplastic still enters the filter feeders. The results have important 23 implications for large filter feeders such as baleen whales, basking and whale sharks, as these 24 animals concentrate their feeding on zooplankton blooms and as a result are likely to consume 25 more plastic than previous studies have predicted.

26

27 Key words: microplastic; plankton; mussel; filter feeder; trophic ecology; trophic transfer

- 28
- 29

30 **1. Introduction**

Plastic, especially microplastics, have become ubiquitous in the marine environment (Eriksen et al. 2014), with recent studies showing their presence in almost all marine animals including those from the deep sea (Taylor et al. 2016). Microplastic ingestion by marine organisms can cause a range of negative effects including endocrine disruption, mutagenicity and carcinogenicity (Rios et al. 2007), which can have repercussions for growth, sexual development, fecundity, morbidity and mortality (reviewed by Cole et al. 2013).

37

38 Trophic transfer of microplastics has been demonstrated in laboratory studies, from zooplankton to 39 mysid shrimp (Setälä et al. 2014) and from mussels to crabs (Farrell and Nelson 2013). However, 40 little is known about the accumulation of microplastics through trophic transfer outside of laboratory 41 studies, partially due to the difficulties of tracking microplastics and small organisms such as 42 plankton through space and time.

43

44 In this study we present an agent-based modelling approach to investigate the role of trophic 45 transfer of microplastics. We modelled plastic microbeads, plastic thread, zooplankton (three 46 'species' with three different feeding preferences for microbeads and other zooplankton) and 47 mussels as agents in the model. As much research has previously been conducted on zooplankton 48 uptake of microbeads, we assumed in the models that microbeads could be consumed by 49 zooplankton and mussels, where as thread could only be consumed directly by mussels; hence 50 comparing thread to microbead concentration in mussels allowed us to assess the effects of tropic 51 transfer (we are subsequently aware of some research indicating thread can be consumed by 52 zooplankton e.g. Dedman, 2014, but in the model, this was not permitted as it allows for 53 comparisons of trophic transfer on uptake). We examined scenarios where filter feeding by 54 mussels would: 1) not affect the concentration of microplastic and zooplankton in the water (i.e. 55 both were highly abundant, or there was continuous movement of water); 2) not effect the 56 concentration of zooplankton, but would reduce the abundance of microplastics (i.e. 'clean' water 57 with little microplastic, but with rapid growth in zooplankton, such as a plankton bloom) and; 3) 58 reduce both the concentration of plastic and of zooplankton as they were consumed.

60 **2. Methods**

61 Agent-based models were built in R (R Core Team 2015; see

62 www.rickstafford.com/plastic_models.html for source code) to simulate the actions and interactions 63 of the following six agents; mussels, selective feeding zooplankton (e.g. nauplii and cirripede 64 nauplii), non-selective zooplankton (e.g. gastropods) and predatory feeding zooplankton (e.g. 65 copepod, decapod and worms), and microplastic (both bead and thread) in order to assess the 66 uptake of microplastics by mussels either directly (by examining thread uptake, which did not pass 67 through zooplankton in the model, see introduction), or by direct and trophic transfer uptake (by 68 examining beads, which were consumed by zooplankton as well as directly by mussels). By 69 modelling thread and beads in this manner, it was possible to examine the differences in uptake 70 between only direct uptake, and uptake through trophic transfer.

71

72 The model was run in a 100 x 100 grid arena and lasted 100 time-steps. Mussels were non-moving 73 and always present (but positions of mussels were randomly generated on the grid), whereas the 74 zooplankton and microplastic moved around and once ingested, in some simulations, were 75 replaced by new agents in random locations (regeneration). Mussels were programmed to uptake 76 beads, threads, and all 3 types of zooplankton, if in the same grid cell or one of the neighbouring 77 nine grid cells to the mussel. Uptake was stochastic with a certain probability defined for likelihood 78 of consumption if the agent to be consumed was in the specified cells. Selective and non-selective 79 feeding zooplankton were programmed to uptake beads only, if both were in the same grid square, 80 and predatory feeding zooplankton were programmed to uptake beads and both selective and non-81 selective feeding zooplankton. In all cases, uptake was not guaranteed, but stochastic and based 82 on probability estimates of uptake of zooplankton and microplastic as defined in Cole et al. (2013), 83 see Table 1 for the probability values used in this study.

84

85 Zooplankton, beads and threads moved by one grid square per time-step (including diagonal

86 movement), with a heading generated from that of the heading of the previous time-step.

87 Following directionality rules used in previous ecological ABM models (Stafford and Davies 2005)

plastic particles could adjust their bearing by up to 90 degrees per time step and plankton by up to
45 degrees per time step. These changes in heading were generated from random numbers drawn
from a uniform distribution.

91

92 Three plastic scenarios were simulated based on the empirical data results; 1 = equal amounts of 93 thread and beads, 2 = more thread then beads and 3 = more beads than threads. Three different 94 ratios of plastic to zooplankton were also conducted based on the empirical data results; 95 Plastic:Plankton ratio 1 = 75:25, 2 = 50:50 and 3 = 25:75. Four zooplankton community structures 96 were used: 1 = medium to high numbers of most species, 2 = medium to high numbers of copepod 97 and cirripede, 3 = low to medium numbers of most species, and 4 = low to medium numbers of 98 copepod, decapod and gastropod. In all cases, the numbers of mussels remained fixed (see Table 99 2 for exact numbers used in each simulation). 100 101 In total 36 scenarios were run, each scenario was run 3 times and a mean taken (total n = 108 102 model runs). Model 1 regenerated both microplastic and zooplankton, so once a plastic bead, 103 thread or plankton agent was consumed, and another reappeared in a random location. Model 2 104 was run to regenerate zooplankton only (hence microplastic in the water column was depleted over 105 time) and Model 3 was run with no regeneration of either zooplankton or microplastic. 106

107 **3. Results**

A number of factors influence microplastic uptake in the models. For model 1, the different input parameters and plastic uptake in each biological agent type are shown in Table 2. Not only does the amount of plastic increase in plankton and mussels with increasing amounts of plastic in the water, but more plankton also result in more plastic accumulating in the mussels.

112

The three Trophic Interaction Agent-based Models, showed different results in total microplastic uptake based on the different regeneration scenarios (Figure 1). When both microplastic and zooplankton were regenerated there was a large increase in the uptake of microplastic in the presence of zooplankton, with three times as much microplastic ingested at some levels of

117 microplastic concentration compared to no regeneration of either plastic or plankton (Figure 1a). 118 This difference was reduced when there was no regeneration of microplastic. However, there was 119 still a higher uptake of microplastic in the presence of zooplankton, with ~ 50% more microplastic 120 ingested if passing through zooplankton as an additional uptake route (Figure 1b). If there is no 121 regeneration of either microplastic or zooplankton then the amount of uptake is similar between 122 beads (which are consumed by zooplankton) and threads (not consumed by zooplankton) 123 indicating no significant increase in microplastic uptake in mussels was occurring through trophic 124 transfer (Figure 1c). The variability of plastic bead concentration in mussels increased with plastic 125 bead concentration in the water due to the changes in the amount of plankton in the model in 126 different scenarios (as seen in Table 2), so while the overall trend was for increases in plastic 127 beads in mussels as their concentration in the water increased, this was modified by plankton 128 density. This created heteroscedasticity of data making it unsuitable for parametric statistical 129 analysis. However, the difference in gradients between beads and threads in models 1 and 2 are 130 clear and do not require statistical verification.

131

4. Discussion

The results demonstrate that under two of the three studied scenarios, the ingestion of microbeads by zooplankton, and subsequent consumption of zooplankton by mussels increased the amount of plastic found in mussels as compared to routes with no trophic intermediate stage present (as determined by thread uptake in the mussels).

137

138 These scenarios where plastic and/or plankton are 'regenerated' after consumption are not 139 ecologically unrealistic. Coral reefs, for example, exist in nutrient poor areas, and the basis of the 140 plankton-based food chain is through plankton continuously drifting over the reef (Odum and Odum 141 1955; Atkinson and Grigg, 1984). Such currents and condition which bring plankton are also likely 142 to carry microplastics. The same is likely to be true of many coastal environments, especially tidal 143 areas such as estuaries, where again, much material is imported with each tidal cycle (Peterson et 144 al. 1985). Both estuaries and coral reefs are also important grounds for commercial fishing and 145 shellfish stocks, meaning that further transfer into humans is then possible.

147	Equally, 'regeneration' of zooplankton would be likely to occur during plankton blooms, as
148	reproduction and growth is normally rapid and opportunistic based on phytoplankton abundance.
149	Hence, even where the amount of plastic of plastic in the water may be limited, high numbers of
150	zooplankton can result in faster rates of uptake than may have been previously thought. This may
151	have implications for plastic uptake in large filter feeders, such as baleen whales and basking or
152	whale sharks, as they are known to selectively target these high abundance patches of
153	zooplankton when feeding (e.g. Sims and Quayle, 1998).
154	
155	Microplastics are another increasingly important stressor on marine ecosystems, already under
156	stress inflicted by factors such as climate change, overfishing and other pollutants (Halpern et al.
157	2008). While there are policies and procedures designed to protect against further plastic pollution,
158	e.g. the EU's Good Environmental Status (Galgani et al. 2013; Wright et al. 2013), these policies
159	only consider the effects of plastics directly in the water column. While further work is necessary to
160	fully quantify the magnitude of trophic transfer in situ, this current study demonstrates the potential
161	increase in uptake that could occur in higher trophic level species. Consequently, the role of trophic
162	transfer needs to be given substantial consideration when developing appropriate limits for
163	microplastic in the ocean.
164	
165	Acknowledgements
166	We would like to thank the reviewers for their helpful comments in revising this manuscript
167	
168	References:
169	
170	Atkinson, M.J., Grigg, R.W. 1984. Model of a coral reef ecosystem II. Gross and net benthic
171	primary production at French Frigate Shoals, Hawaii. Coral Reefs 3, 13-22/
172	
173	Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., Galloway, T. S.,
174	2013. Microplastic Ingestion by Zooplankton. Environ. Sci. Tech. 47, 6646-6655.

- 176 Dedman, C. J. 2014. Investigating microplastic ingestion by zooplankton. MRes Thesis,
- 177 University of Exeter, available from: http://hdl.handle.net/10871/17179
- 178
- 179 Eriksen, M., Lebreton, L.C.M., Carson, H.S., Thiel, M., Moore, C.J., Borerro, J.C. et al. 2014.
- 180 Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over
- 181 250,000 Tons Afloat at Sea. PLoS ONE 9, e111913.
- 182
- Farrell, P., Nelson, K. 2013. Trophic level transfer of microplastic: *Mytilus edulis* (L.) to *Carcinus maenas* (L.). Environ. Poll. 177, 1-3.
- 185
- 186 Galgani, F., Hanke, G., Werner, S., De Vrees, L. 2013. Marine litter within the European Marine
- 187 Strategy Framework Directive. ICES J. Mar. Sci. 70, 1055-1064.
- 188
- 189 Halpern, B. S., McLeod, K. L., Rosenberg, A. A., Crowder, L. B. 2008. Managing for cumulative
- 190 impacts in ecosystem-based management through ocean zoning. Ocean Coast. Manag., 51,
- 191 **203-211**.
- 192
- Odum, H.T., Odum, E.P. 1955. Trophic Structure and Productivity of a Windward Coral Reef
 Community on Eniwetok Atoll. Ecol. Monog. 25, 291-320.
- 195
- 196 Peterson, B. J., Howarth, R. W., Garritt, R. H. 1985. Multiple stable isotopes used to trace the
- 197 flow of organic matter in estuarine food webs. Science 227, 1361-1363.
- 198
- R Core Team 2015. R: A language and environment for statistical computing. R Foundation for
 Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/
- 201
- Rios, L. M., Moore, C., Jones, P. R. 2007. Persistent organic pollutants carried by synthetic
- 203 polymers in the ocean environment. Mar. Poll. Bull. 54, 1230-1237.

204	
205	Setälä, O., Fleming-Lehtinen, V., Lehtiniemi, M. 2014. Ingestion and transfer of microplastics in
206	the planktonic food web. Environ.Poll.185, 77-83.
207	
208	Sims, D. W., Quayle, V. A. 1998. Selective foraging behaviour of basking sharks on zooplankton
209	in a small-scale front. Nature 393, 460-464.
210	
211	Stafford, R., Davies, M. 2005. Examining refuge location mechanisms in intertidal snails using
212	artificial life simulation techniques. Lect. Notes Artif. Intel. 3630, 520-529.
213	
214	Taylor, M. L., Gwinnett, C., Robinson, L. F., Woodall, L. C. 2016. Plastic microfibre ingestion by
215	deep-sea organisms. Scientific reports 6, 33997.
216	
217	Wright, S. L., Thompson, R. C., Galloway, T. S. 2013. Review: The physical impacts of
218	microplastics on marine organisms: a review. Environ. Poll. 178, 483-492.
219	
220	
221	
222	
223	
224	
225	
226	
227	
228	
229	
230	

Table 1. Uptake probabilities (%) used for all scenarios in Model 1, 2 and 3. If random number

was \leq probability when in the same grid cell (or additional 9 neighbouring grid cells for mussels)

then the object would be consumed. Zooplankton feeding rate probabilities taken from Cole et al.

234 (2013)

	Scenario	Probability	
225	Selective plankton feeding on bead	0.8	
237	Non-selective plankton feeding on bead	0.9	
	Predatory plankton feeding on bead	0.8	
238	Predatory plankton feeding on selective plankton	0.7	
239	Predatory plankton feeding on non-selective plankton	0.7	
	Mussel feeding on bead	0.9	
240	Mussel feeding on selective plankton	0.9	
	Mussel feeding on non-selective plankton	0.9	
241	Mussel feeding on predatory plankton	0.9	
211	Mussel feeding on thread	0.9	

- 251 Table 2. The 36 scenarios of different plastic and plankton concentrations used in each model
- and the mean outputs from three replicate runs for each scenario for model 1.

Plastic thread	Plastic bead	Selective plankton	Non- selective plankton	Predatory plankton	Mussels	Plastic in mussels	Plastic thread in	Plastic in Selective plankton	Plastic in non- selective	Plastic in predatory plankton
		• • • •		• • • •			mussels		plankton	
• • • •	200	200	100	200	10	169	56	131	80	378
200	100	• • • •	100	•	10			0.55		5 (2)
400	400	200	100	200	10	357	99	277	154	763
100	100	200	100	200	10	98	23	/4	31	200
100	300	200	100	200	10	294	25	213	108	570
200	600	200	100	200	10	546	49	404	247	1145
200	150	200	100	200	10	131	9	101	61	277
300	100	200	100	200	10	81	92	65 124	36	192
600	200	200	100	200	10	184	169	134	/9	396
150	200	200	100	200	10	39 170	30	45	19	101
200	200	50	50	400	10	1/2	48	29	27	539
400	400	50	50	400	10	338	102	55	49	260
100	200	50	50	400	10	88 251	20	11	12	209
200	500	50	50	400	10	231 500	21 65	33 72	40	001 1645
200	150	50	50	400	10	309	20	20	80 20	1043
200	100	50	50	400	10	122 93	20 73	20	20	423
500	200	50	50	400	10	05 171	142	20	30	526
150	200	50	50	400	10	1/1	145	50	50	122
150	150	100	100	400	10	42	40	66	0 81	132
400	400	100	100	100	10	263	40	104	205	321
400	400	100	100	100	10	203	97 14	21	203	42
100	200	100	100	100	10	120	27	21 86	100	150
200	200 600	100	100	100	10	359	54	289	301	536
200	50	100	100	100	10	32	54 7	20)	26	550 47
250	100	100	100	100	10	58	59	21 47	20 49	84
<u> </u>	200	100	100	100	10	116	140	90	108	167
140	50	100	100	100	10	27	43	22	44	31
200	200	50	150	200	10	150	50	32	117	345
400	400	50	150	200	10	327	111	69	232	689
100	100	50	150	200	10	72	26	19	58	171
100	300	50	150	200	10	212	22	53	188	551
200	600	50	150	200	10	421	43	90	362	1049
50	150	50	150	200	10	121	13	18	82	244
300	100	50	150	200	10	86	74	23	53	167
600	200	50	150	200	10	177	169	36	116	338
150	50	50	150	200	10	33	40	7	25	80

259 Figure 1. Relationship between amount of plastic thread in the water and uptake by mussels

(grey line) compared to the relationship between amount of plastic beads in the water and uptake
by mussels (direct uptake and via plankton, black line). (a) Model 1 – regeneration of consumed
beads and plankton, (b) Model 2 – regeneration of plankton only, (c) Model 3 – no regeneration

