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Numerical results for extremal problem for
eigenvalues of the Laplacian

We consider in this chapter shape optimization problems for Dirichlet and Neumann
eigenvalues,

λ*i := min
{
λi(Ω), Ω ⊂ Rd , |Ω| = 1

}
, i = 1, 2, ... (1)

and
µ*i := max

{
µi(Ω), Ω ⊂ Rd , |Ω| = 1

}
, i = 2, 3, ... (2)

Some of these shape optimizations have already been solved. The �rst Dirichlet
eigenvalue is minimized by the ball, as proven by Faber and Krahn [262, 428]. The
second Dirichlet eigenvalue is minimized by two balls of the same volume [429]. In
two dimensional case, it has long been conjectured that the ball minimizes λ3(Ω), but
there has not been much progress in this direction. For higher eigenvalues, not much
is known and even the existence of minimizers among quasi-open sets has only been
proven quite recently (see Chapter 2) and [146, 496]. It is worth mentioning the work
by Berger [88] who proved that for i > 4, the i-th Dirichlet eigenvalue is not minimized
by any union of balls.

For the Neumann problem, we have µ1(Ω) = 0. The second eigenvalue, µ2(Ω),
is maximized by the ball. The result had been conjectured by Kornhauser and Stak-
gold in [424] and was proved by Szegö in [592] for Lipschitz simply connected planar
domains and generalized byWeinberger in [614] to arbitrary domains, and any dimen-
sion. More recently, Girouard, Nadirashvili and Polterovich proved that the maximum
of µ3(Ω) among simply connected bounded planar domains is attained by two disjoint
balls of equal area [299].

Recently, many works have addressed numerical approaches that propose candi-
dates for the optimizers for these and related spectral problems, and to suggest con-
jectures about their qualitative properties [28, 103, 516, 517, 518, 519].

In the next two sections we describe brie�y two of these approaches which have
been successful for spectral problems. We �rst introduce some global optimization
tools to provide a good initial guess of the optimal pro�le. This step does not require
any topological information on the set but is restricted to a small class of shapes.More-
over, since this approach relies only on the parametrization of the space of shapes, any
global algorithm can be used as a black box solver to �nd a starting candidate for the
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local procedure. We then describe the method of fundamental solutions which is able
in a second stage to both identify and evaluate precisely shapes which are locally op-
timal.

1 Some tools for global numerical optimization in
spectral theory

Global optimality is perhaps one of the most challenging aspects in numerical shape
optimization. Many approaches have been developed to tackle this di�culty: stochas-
tic algorithms, multi scale methods, relaxation, homogenization, etc. In this section
we �rst recall brie�y an historical method developed to apply a genetic algorithm in
the framework of shape optimization. It has the bene�t of dramatically reducing the
number of degrees of freedom, which makes the global optimization more e�cient, it
has the drawback of parametrizing non smooth pro�les.

In the followingwe introduce a very naive approach based on implicit representa-
tion which makes it possible both to reduce the number of unknowns and to generate
smooth shapes. In a second step we describe a new simple idea to restrict the search
space in spectral optimization to one where homogeneous functionals are frequently
involved.

1.1 An historical approach: Genetic algorithm and Voronoi cells

Consider a given grid covering a search domain in whichwe look for an optimal shape
Ω. A purely discrete numerical approach consists of associating to every node of the
grid a boolean value which expresses the fact that the node is or is not in the set Ω.

In the 90’s, Allaire et al. [14] introduced a discretization framework in shape opti-
mization based on Voronoi cells associated to a set of points independent of the grid.
In this setting a grid point of the search space is considered to be a part ofΩ if the seed
of its Voronoi cell has a True boolean value. The interesting part of this method is that
the complexity of the approach is not anymore related to the grid size but only on the
number of seed points. This crucial distinction makes it possible to compute state so-
lutions of partial di�erential equations with a reasonable precision whereas the num-
ber of unknowns is not too large. A drawback of the method is the non smoothness
of Voronoi cells. Due to its polygonal faces, an large number of Voronoi seeds may be
required to approximate smooth shapes. In the speci�c context of eigenvalues where
some smoothness is expected, this kind of discretization is not optimal.
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1.2 Smooth pro�les with few parameters

In this section related to global spectral optimization we consider theminimization of
functional of the type

G(Ω) = F
(
|Ω|, |∂Ω|, {λi(Ω)}1≤i≤k , {µi(Ω)}1≤i≤l

)
(3)

where F is some smooth �xed �nite dimensional function. We address the optimiza-
tion problem

min
Ω

G(Ω). (4)

Depending on the context we may consider additional geometrical constraints im-
posed on the set Ω like a �xedmeasure or boundarymeasure, connectivity, convexity,
etc.

Identifying the global optimal solution of a non convex and sometimes non
smooth cost function is in almost all cases an untenable task. In order to decrease
the complexity of this problem we introduce a reduction of the number mp of param-
eters which still allows a precise computation of the cost function. Since we use black
box stochastic algorithmwe need to reduce the number of parameters tomp ≤ 100 for
instance. More precisely we develop this dimension reduction by introducing the two
following steps.

In the spirit of level set methods, we �rst parameterize the set of shape as the level
sets of truncated Fourier series. Contrary to standard boundary parametrizationwhere
the number of degrees of freedom is related to the number of boundary points in the
mesh, our parametrization has the complexity of the number of terms in the Fourier
series. Moreover, the very basic and crucial observation is the fact that this complexity
is not related to the precision of the eigenvalue approximation.

Our second improvement is related to the reduction of the size of the search space.
We reduce the complexity of the optimization process by substituting the cost evalua-
tion of a given shape by the optimal value associated to the best homothetic connected
components. Essentially it relies on the two following classical properties:

Proposition 1.1 (Homogeneity). Let α > 0 be a real. Then for all integers j,

λj(αΩ) = α−2λj(Ω), µj(αΩ) = α−2µj(Ω), |αΩ| = αd|Ω| and |∂(αΩ)| = αd−1|∂Ω|.
(5)

Notice that homogeneity can be used to a transform constrained problem like

min{λi(Ω), |Ω| = 1}, i = 1, 2, . . . (6)

into an unconstrained one

min{λi(Ω)|Ω|}, i = 1, 2, . . . . (7)

The second property makes it possible to compute more e�ciently optimal pro�les
with multiply connected components:
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Proposition 1.2 (Multiply connected components). Let Ω1, . . . , Ωm be the connected
components of Ω. For i = 1, . . . ,m, let Λi be the set of the eigenvalues of −∆ on Ωi for
Dirichlet or Neumann condition. Then the set of the eigenvalues of ∆ is Λ = ⋃m

i=1 Λi.

We now describe our discretization of the search space for d = 2. The generaliza-
tion to higher dimensions is straightforward. Let us consider coe�cients ai,j such that
]{ai,j} = n (the number of coe�cients). Then, de�ne the Fourier series

Φ{ai,j}(x) =
∑
i,j
ai,j sin(πix1) sin(πjx2) + 1, where x = (x1, x2) ∈ [0, 1]2. (8)

Notice thatweadd the constant value 1 toprevious sumso that the function is non-zero
on ∂Ω. That is the level set domain does not intersect the boundary. We now de�ne
F : Rn → P(R2) by

F({ai,j}) = {x ∈ [0, 1]2, Φ{ai,j}(x) ≤ 0}. (9)

Finally we build the sets
Ω{ai,j} = F({ai,j}). (10)

Notice that the topology or more speci�cally the number of connected components of
Ω{ai,j} is not imposed by the algorithm.

In practice, B = [0, 1]2 is meshed by a Cartesian grid. Φ{ai,j} is evaluated at every
point of the mesh and a linear interpolation is carried out to approximate F({ai,j}).
Through this discretization we associate a polygon Ωpol{ai,j} to every Ω{ai,j}. We then
de�ne the cost function associated to the parameters ai,j by

F({ai,j}) := G(Ωpol{ai,j}) ' G(Ω{ai,j}) = G
(
F({ai,j})

)
.

Where the' symbol expresses the fact we do not optimize the true eigenvalues of the
polygons int this process but rather the �nite element approximation of these eigen-
values. Finally, it is standard to approximate the cost function G(Ωpol{ai,j}) by classical
Finite Element Methods. Notice that every evaluation requires us to construct a new
mesh adapted to the polygon Ωpol{ai,j} since linear interpolation generates meshes of
very bad quality. In all our experiments we �xed approximately the number of sim-
plices per evaluation to obtain comparable results.

1.3 A fundamental complexity reduction: optimal connected
components

We detailed in previous section a way to parametrize multi-connected shapes with
few parameters. As it has been explained, every cost evaluation requires to mesh the
new domain and to solve the associated discrete spectral optimization problem. This
step can be very time-consuming especially in the case of 3 dimension computations.
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To tackle this di�culty, we would like to use the homogeneity of eigenmodes to in-
vestigate homothetical components in one single cost evaluation. Actually, due to the
homogeneity of eigenmodes the computation of these modes associated to one geo-
metrical con�guration can be used to deduce the cost function of any domain made
of homothetic components.

From properties 1.1 and 1.2 we obtain that if Ω = α1Ω1 ∪ α2Ω2 (disjoint union) then

G(α1Ω1 ∪ α2Ω2) = F
(
|Ω|, |∂Ω|, {λi(Ω)}1≤i≤k , {µi(Ω)}1≤i≤l

)
= F(αd1|Ω1| + αd2|Ω2|, αd−1

1 |∂Ω1| + αd−1
2 |∂Ω2|, . . .

{λi(α1Ω1 ∪ α2Ω2)}1≤i≤k , {µi(α1Ω1 ∪ α2Ω2)}1≤i≤l)

The crucial fact observation is that the computation of λj(α1Ω1∪α2Ω2) and µj(α1Ω1∪
α2Ω2) is equivalent to the sorting operation of the union of the two sets{

α−2
1 λi(Ω1); 1 ≤ j ≤ m < k

}
∪
{
α−2

2 λi(Ω2); 1 ≤ j ≤ k − m
}

and {
α−2

1 µj(Ω1); 1 ≤ j ≤ m′ < l
}
∪
{
α−2

2 µj(Ω2); 1 ≤ j ≤ l − m′
}
.

Let Ω be a �xed set with m connected components. Let us associate to Ω a new cost
which is the best value obtained with respect to its homothetical connected compo-
nents. More precisely we de�ne:

G(Ωpol{ai,j}) = min
(α1 ,...,αm)≥0

G
(
α1Ωpol1 ∪ · · · ∪ αmΩpolm

)
(11)

where
Ωpol{ai,j} =

m⋃
i=1
Ωpoli . (12)

Notice that due to the translation invariance of the problem we can always assume
that every connected components are disjoint. As a consequence, we can associate to
a �xed geometrical con�guration with m connected components a new cost de�ned
by (11). This small scale global problem (11) can be solved very e�ciently by using
global algorithm like Lipschitz optimization (see for instance [406]). Moreover, since
the number of unknowns is small (the number of expected connected components)
and the cost evaluation is pretty fast, this global optimization problem can be solved
very quickly with respect to a �nite element evaluation.

2 Numerical approach using the method of
fundamental solutions

The eigenvalue problem for the Laplace operator is equivalent to obtaining the reso-
nant frequencies 0 ≤ κ1 ≤ κ2 ≤ · · · ≤ κp ≤ · · · that lead to non trivial solutions of the
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Helmholtz equation up 6≡ 0 :{
∆up + κ2

pup = 0 in Ω,
up = 0 or ∂nu = 0 on Γ . (13)

Among other numerical approaches, these eigenvalue problems can be solved by the
Method of Fundamental Solutions (MFS) [20, 408]. The MFS is a Tre�tz type method,
where the particular solutions are point sources centered outside the domain. More
precisely, denoting by ‖.‖ the Euclidean norm in Rd, we take a fundamental solution
of the Helmholtz equation

Φκ(x) = i
4H

(1)
0 (κ ‖x‖) (14)

for the two-dimensional case, where H(1)
0 is the �rst Hankel function and

Φκ(x) = eiκ‖x‖
4π ‖x‖ (15)

in the three-dimensional case. We have (∆ + κ2)Φκ = −δ, where δ is the Dirac delta
distribution. For a given frequency κ, we consider a basis built with point sources

ϕj = Φκ(· − yj) (16)

where yj ∈6 Ω̄. By Γ̂ = ∂Ω̂, we will denote an admissible source set, for instance, the
boundary of a bounded open set Ω̂ ⊃ Ω̄, with Γ̂ surrounding ∂Ω.

The MFS approximation is a linear combination
m∑
j=1

αjΦκ(· − yj), (17)

where the source points yj are placed on an admissible source set. The approximation
of an eigenfunction by a MFS linear combination can be justi�ed by density results
(e.g. [20]),

Theorem 2.1. Consider Γ̂ = ∂Ω̂, an admissible source set. Then,

S(Γ̂) = span{Φκ(· − y)|Ω : y ∈ Γ̂}

is dense inHκ(Ω) = {v ∈ H1(Ω) : (∆ + κ2)v = 0}, with the H1(Ω) topology.

Next we give a brief description of the application of the MFS for determining the
eigensolutions for a given shape Ω. For details, see [19] and [25] respectively for the
two and three-dimensional cases. The eigensolutions are obtained in two steps. First,
we calculate an approximate eigenfrequency κ̃ and then, for that frequency, we obtain
the approximation for the eigenfunction.
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We de�ne m collocation points xi almost uniformly distributed on the boundary
∂Ω and for each of those points we de�ne a corresponding source point,

yi = xi + αni ,

where α is a positive parameter and ni is theunitary outwardnormal vector at thepoint
xi. Imposing the Dirichlet boundary conditions at the boundary points we obtain the
system

m∑
j=1

αjΦκ(xi − yj) = 0. (18)

A straightforward procedure for calculating the eigenfrequencies is to �nd the values
κ for which the m × m matrix

A(κ) =
[
Φκ(xi − yj)

]
m×m (19)

is singular. The Neumann case is similar.
To obtain an eigenfunction associated with a certain resonant frequency κ we use

a collocation method on n + 1 points, with x1, · · · , xn on ∂Ω and a point xn+1 ∈ Ω.
The eigenfunction is approximated by an MFS approximation,

ũ(x) =
n+1∑
j=1

αjΦκ(x − yj) (20)

and to exclude the trivial solution ũ(x) ≡ 0, the coe�cients αj are determined by
solving the system

ũ(xi) = δi,n+1, i = 1, . . . , n + 1

where δi,j is the Kronecker delta. An advantage of the Method of Fundamental Solu-
tions approachwith respect to Finite Element Method approach is the fact that we can
calculate rigorous bounds for the errors associated to approximate eigenvalues. In the
Dirichlet case, the error can be estimated by using an a posteriori bound due to Fox,
Henrici andMoler (cf.[272]). This result provides upper bounds for the errors of the ap-
proximations obtained in several methods of particular solutions and was also used
in rigorous proofs (eg. [19, 93, 461]).

Next, we de�ne the class of admissible domains for the shape optimization. Note
that if for some i = 1, 2, ..., the optimizer of the problems (1) or (2) is disconnected, by
Wolf-Keller Theorem (cf. [621]), each of the connected components are optimizers of a
lower eigenvalue. Thus,wewill focus on the numerical solution of the shape optimiza-
tion problem among connected domains and then compare this optimal value against
the optimal value obtained for disconnected sets by using Wolf-Keller theorem.

We consider the functions

γ1(t) = a(1)
0 +

P∑
j=1

a(1)
j cos(jt) +

P∑
j=1

b(1)
j sin(jt)
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and

γ2(t) = a(2)
0 +

P∑
j=1

a(2)
j cos(jt) +

P∑
j=1

b(2)
j sin(jt),

for some P ∈ N and the vector C ∈ R4P+2 with all the coe�cients of these expansions,

C =
(
a(1)

0 , a(1)
1 , ..., a(1)

P , b(1)
1 , ..., b(1)

P , a(2)
0 , a(2)

1 , ..., a(2)
P , b(2)

1 , ..., b(2)
P

)
.

The class of planar admissible domains is the set

V =
{
V ⊂ R2 : ∂V = (γ1(t), γ2(t)) : t ∈ [0, 2π) is a Jordan curve

}
.

For the three dimensional case, we assume thatΩ is star-shaped and its boundary
can be parametrized by

∂Ω =
{
r(θ, ϕ)

(
sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)

)
, ϕ ∈ [0, 2π), θ ∈ [0, π]

}
,

where r is expanded in terms of spherical harmonics

r(θ, ϕ) =
N∑
l=0

l∑
m=−l

al,myml (θ, ϕ),

where

yml (θ, ϕ) =


√

2kml cos(mϕ)Pml (cos(θ)) if m > 0,

k0
l P

0
l (cos(θ)) if m = 0,

√
2kml sin(−mϕ)P−ml (cos(θ)) if m < 0,

Pml is an associated Legendre polynomial and

kml =
√

(2l + 1)(l − |m|)!
4π(l + |m|)! .

Then, we collect all the coe�cients al,m in a single vector

C = (a0,0, a1,−1, a1,0, a1,1, a2,−2, a2,−1, a2,0, a2,1, a2,2, ...) .

The shape optimization is solved by searching for optimal vectors C using a gradi-
ent type method. In this context, a key ingredient is the Hadamard formula of deriva-
tion with respect to the domain (e.g. [361]). Consider an application Ψ(t) such that

Ψ : t ∈ [0, T) → W1,∞(RN ,RN) is di�erentiable at 0 with Ψ(0) = I, Ψ ′(0) = V ,

whereW1,∞(RN ,RN) is the set of bounded Lipschitz maps fromRN into itself, I is the
identity and V is a deformation �eld. We denote by Ωt = Ψ(t)(Ω), λk(t) = λk(Ωt), and
by u an associated normalized eigenfunction. If we assume that Ω is of class C2 and
λk(Ω) is simple, then

λ′k(0) = −
ˆ
∂Ω

(
∂u
∂n

)2
V .ndσ. (21)
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For the Neumann case, assuming that Ω is of class C3, µk is simple and u is the asso-
ciated normalized eigenfunction, we have

µ′k(Ω)(0) =
ˆ
∂Ω

(
|∇u|2 − µku2

)
V .ndσ. (22)

3 The menagerie of the spectrum

In this sectionwe present themain numerical results that we gathered for the solution
of the shape optimization problems (1) and (2). In Figure 1 we plot the minimizers of
the �rst 15 Dirichlet eigenvalues.

Table ?? shows the optimalDirichlet eigenvalues, togetherwith the corresponding
multiplicity of each optimal eigenvalue.

Table 1. The optimal Dirichlet eigenvalues λ*i , for i = 1, 2, ..., 15 and the multiplicity of the optimal
eigenvalue.

i multiplicity λ*i
1 1 18.17
2 2 36.34
3 3 46.13
4 3 64.30
5 2 78.15
6 3 88.48
7 3 106.12
8 3 118.88
9 3 132.34
10 4 142.69
11 4 159.40
12 4 172.88
13 4 186.91
14 4 198.94
15 5 209.62

In Figure 2 we plot the maximizers of the �rst 10 (non trivial) Neumann eigenval-
ues in the class of unions of simply connected domains.

Table ?? shows the optimal Neumann eigenvalues and the corresponding optimal
multiplicity.

Next, we present some numerical results for the shape optimization problems (1)
and (2) with three-dimensional domains. In Figure 3 we plot the 3D minimizers of the
�rst 10 Dirichlet eigenvalues. Table ?? shows the optimal 3D Dirichlet eigenvalues and
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Fig. 1. The minimizers of the �rst 15 Dirichlet eigenvalues.

the corresponding multiplicity. Figure 4 and Table ?? show similar results for Neu-
mann eigenvalues.
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Fig. 2. The maximizers of the �rst 10 (non trivial) Neumann eigenvalues.

4 Open problems

The numerical results that we obtained suggest some conjectures

Open problem 4.1. Prove that the d-dimensional ball minimizes λd+1 among all d-
dimensional sets of a �xed volume.

Open problem 4.2. Prove that the d-dimensional minimizer of λd+2 among all d-
dimensional sets of a �xed volume is the union of two balls whose radii are in the ratio

j d
2 ,1

j d
2 −1,1

,

where jn,k is the k-th zero of the Bessel function Jn.
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Table 2. The optimal Neumann eigenvalues µ*i , for i = 1, 2, ...11 and the corresponding multiplicity.

i multiplicity µ*i
2 2 10.66
3 4 21.28
4 3 32.90
5 3 43.86
6 3 55.17
7 4 67.33
8 6 77.99
9 4 89.38
10 4 101.83
11 5 114.16

Table 3. The optimal 3D Dirichlet eigenvalues λ*i , for i = 1, 2, ...10 and the corresponding multiplic-
ity.

i multiplicity λ*i
1 1 25.65
2 2 40.72
3 2 49.17
4 3 52.47
5 4 63.83
6 3 73.05
7 4 78.35
8 6 83.29
9 5 86.32
10 3 92.33
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Fig. 3. The 3D minimizers of the �rst 10 Dirichlet eigenvalues.

Table 4. The optimal 3D Neumann eigenvalues and the corresponding multiplicity.

i multiplicity µ*i
2 3 11.25
3 6 18.87
4 4 23.52
5 5 29.02
6 5 33.55
7 4 37.83
8 3 41.18
9 3 46.63
10 4 52.49
11 7 55.91
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Fig. 4. The 3D maximizers of the �rst 10 (non trivial) Neumann eigenvalues.






