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Abstract: In this work, we look at a two-sample problem within the framework of Gaussian

graphical models. When the global hypothesis of equality of two distributions is rejected, the

interest is usually in localizing the source of difference. Motivated by the idea that diseases

can be seen as system perturbations, and by the need to distinguish between the origin of

perturbation and components affected by the perturbation, we introduce the concept of a

minimal seed set, and its graphical counterpart a graphical seed set. They intuitively consist

of variables driving the difference between the two conditions. We propose a simple and fast

testing procedure to estimate the graphical seed set from data, and study its finite sample

behavior with a stimulation study. We illustrate our approach in the context of gene set

analysis by means of a publicly available gene expression dataset.

Keywords: Gaussian graphical models, Two sample problem, Decomposition, Hyper Markov

laws, Gene set analysis.

1 Introduction

An immense amount of data from studies of biological systems reshaped our view
of human diseases. The prevailing view is that a living cell is a complex, dynami-
cal system whose functioning is to a large extent determined by interactions of its
components. Diseases are then seen as perturbed states of these systems, and our
knowledge about relevant genetic and environmental factors is often represented in
the form of disease pathways (see for instance KEGG disease database Kanehisa
et al., 2009). Network models are often used to describe these systems, and within
this framework, diseases are represented as network perturbations (Del Sol et al.,
2010).

Living cells are generally quite robust: they are continuously experiencing a wide
range of perturbations, but more often than not, elaborate defense mechanisms allow
cells to react and adapt to changing conditions. However, there are certain pertur-
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bations towards which cells are extremely fragile; consider Huntington’s disease,
sickle cell anemia, and cystic fibrosis, that all develop due to single gene mutations.
In these cases, small, local perturbations trigger a cascade of failures, disrupting
normal cell functioning, and resulting in the development of the disease.

Diseases caused by mutations of single genes – monogenic diseases – are the
exception rather than the rule. The pathogenesis of most chronic diseases: differ-
ent cancers, diabetes, and cardiovascular diseases, involve multiple genes, of which
many are still unknown. In order to advance our knowledge, scientists usually rely
on exploratory research and experimental studies. One possibility is to measure and
compare the abundance of different molecular markers – mRNA, protein or epige-
nomic – between healthy and affected subjects. The aim is to identify differentially
expressed markers between the two groups and recommend them for further study
in subsequent experiments. Provided sufficient statistical power, the set of identi-
fied markers will include the origin of perturbation, or the so-called driver of the
differential behavior, as well as the markers affected by the cascade initiated by that
perturbation. It goes without saying that, in terms of identifying new drug targets,
and developing new therapeutic strategies, it would be highly beneficial to be able
to distinguish between these two types of markers. However, standard statistical
approaches to two sample problems are not designed to answer this question. In
this work, we try to fill in this gap by targeting the problem of identifying the origin
of perturbation within the framework of Gaussian graphical models.

In what follows, we will focus on gene set analysis, although we feel that much
of the methodology developed here is readily applicable in a wide range of other
contexts. The idea of using Gaussian graphical models in the context of gene set
analysis is not new, and most recently, Städler and Mukherjee (2015); Zhao et al.
(2014) and Xia et al. (2015) focused on identifying changes in the interplay between
genes by comparing network structures and precision matrices in two conditions.
Our starting point is different: we assume that the structure of a Gaussian graphical
model is given by expert knowledge and shared across the two conditions. When the
equality of two joint distributions is rejected, the key question is to localize the source
of the difference. Massa et al. (2010) compare marginal distributions associated to
cliques of the underlying graph and identify those cliques for which the hypothesis of
equality is rejected. We go a step further and try to identify, among the genes whose
marginal distribution is different, those that are driving the differential behavior. We
start by formalizing the notion of driver genes and introducing a novel quantity of
interest: the minimal seed set, i.e., the smallest set of variables/genes such that after
conditioning on it, the distribution of the remaining variables remains the same in
two conditions. We then consider its estimation. For a given pair of multivariate
distributions, the number of potential seed sets is exponential in the number of
variables, and hence estimation from observed data would require performing a
large number of tests. We deal with this issue by restricting our search space and
considering only graphical seed sets, i.e. sets obtainable by basic set operations from
cliques of the underlying graph. We then propose a fast and simple testing procedure
that exploits the modularity of graphical models and estimates the graphical seed
set in linear time.

The layout of the paper is as follows. In Section 2, we motivate our work with
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a problem of comparing subjects with and without a specific chromosome rear-
rangement. In Section 3, we introduce the minimal and the graphical seed set. In
Section 4, we describe the main result that underlies our approach – we show how
the global hypothesis of equality of two Gaussian graphical distributions, Markov
with respect to the same graph, can be decomposed into a set of local, independent
hypotheses. In Section 5, we propose an estimator of the graphical seed set, and
study its theoretical properties. The performance of the proposed estimator is eval-
uated through a simulation study in Section 6. The problem introduced in Section 2
is addressed with a proposed approach in Section 7, and a closing discussion is of-
fered in Section 8. Readers less familiar with Gaussian graphical models can find
some essential notions and relevant references in the Appendix.

2 A motivating example

Chromosome rearrangements can have substantial effects on the regulation of gene
expression through a variety of different mechanisms. Therefore, when comparing
populations with and without a given gene rearrangement, sound gene set analysis
tools are expected to flag most pathways including genes with the rearrangement as
statistically significant. As an example, consider the BCR/ABL fusion gene, formed
by rearrangement of the breakpoint cluster region (BCR) on chromosome 22 with
the c-ABL proto-oncogene on chromosome 9. This rearrangement causes produc-
tion of an abnormal tyrosine kinase molecule with increased activity, postulated
to be responsible for the development of leukemia and is present in virtually all
chronic myelogenous leukemia patients. It is also identified in some cases of acute
lymphocytic leukemia (ALL), in which it is associated with poor prognosis.

Martini et al. (2013) consider a well-known dataset (Chiaretti et al., 2005) avail-
able from an R package ALL (Li, 2009), already analyzed in Dudoit and van der Laan
(2008); Chen et al. (2010); Li et al. (2012); Martini et al. (2013). Data refer to gene
expression signatures of two groups of ALL patients: a first group of 37 subjects
with BCR/ABL gene rearrangement, and a second group of 41 subjects without the
BCR/ABL gene rearrangement. By applying the approach of Massa et al. (2010),
almost all pathways containing BCR and/or ABL genes are found to be statistically
different.

Nevertheless, identifying BCR/ABL as a driver of the observed dysregulation
might be difficult. In the same paper, Martini et al. (2013) propose an empirical
algorithm to extract from a dysregulated pathway the portion mostly affected by
the dysregulation. With specific reference to the Chronic myeloid leukemia pathway,
a pathway whose functioning is highly impacted by BCR and ABL genes, the algo-
rithm arrives at identifying 23 genes as involved in the dysregulation. This certainly
allows to zoom into the functioning of the system; still, the special role of ABL and
BCR genes in driving the dysregulation is far from being recognized. Tackling this
limitation is the aim of this paper.
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3 The seed set and the graphical seed set

We start by formalizing the notion of the set of variables driving the difference
between two conditions under study. We limit our attention to normal random
vectors.

Definition 1 (Seed set). Let X(1) and X(2) be two normal random vectors indexed
by a set V . We call the set D ⊆ V the seed set, if

1. the distribution of X
(1)
D differs from that of X

(2)
D ,

2. the conditional distributions X
(1)

D̄
| X(1)

D and X
(2)

D̄
| X(2)

D coincide, where D̄ =
V \D.

Furthermore, we say that D is a minimal seed set, if no proper subset of it is itself
a seed set.

Remarks.

• The minimal seed set is thus the smallest subset of variables that explains the
difference between the two conditions: after conditioning on it, the distribu-
tions of the remaining variables are identical.

• If D is a seed set, then any D′ ⊃ D is also a seed set.

• In case of regular normal distributions, a minimal seed set always exists and
is unique.

• The number of potential seed sets for a pair of p-dimensional distributions is
2p.

• Motivation behind this definition is closely related to the casual concepts of
intervention and invariance; nevertheless, the seed set is defined in purely
mathematical terms.

Since there are 2p potential seed sets for any given pair of p-dimensional dis-
tributions, identifying the minimal seed set on the basis of observed data is com-
putationally challenging for all but small p. However, when comparing two normal
distributions Markov with respect to the same graph, significant computational re-
lief is possible. We therefore turn our attention to Gaussian graphical models and
the identification of the seed set that takes advantage of the graphical structure.

Definition 2 (Graphical seed set). Let D be a minimal seed set for X(1) and
X(2), two Gaussian graphical distributions Markov with respect to a decomposable,
undirected graph G = (V,E), where V is a set of nodes and E is a set of edges. Let
S = {S : S is a separator in G} be a collection of separators in G. Then we call the
set

DG = {v ∈ V | @S ∈ S, s.t v /∈ S and S separates v from D in G} (1)

a graphical seed set.
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Remarks.

• Note that S separates v from D when all paths between v and any element
of D pass through some element of S. We allow for non-empty intersection
between S and D, as well as S = D.

• For v ∈ D, the condition (1) is trivially satisfied (v cannot be separated from
D by any set), and therefore DG ⊇ D.

• When the minimal seed set is a separator, we can set S = D in (1), to obtain
D = DG. In general, D and DG will coincide whenever D can be expressed as
an intersection of two or more cliques. In other instances, DG will be a seed
set, but not a minimal one.

The graphical seed set DG is thus the smallest set containing the seed set D that can
be identified by means of set operations on cliques and separators of G. In general,
DG will be larger than the set of interest, i.e. the minimal seed set D; however,
in what follows we will show that if we focus on DG, we can exploit the graphical
structure and obtain an estimating procedure linear in the number of variables.
Before we have a look at the proposed estimator in Section 5, we dedicate the next
Section to the theoretical result underpinning our approach. In particular, we show
how the global hypothesis of equality of two distributions belonging to the same
Gaussian graphical model decomposes into a set of independent local hypotheses.

4 Decomposition of the global hypothesis of equality of two
Gaussian graphical distributions

Let G = (V,E) be a decomposable undirected graph on p vertices. Let C1, . . . , Ck be
a sequence of its cliques satisfying a running intersection property, and let S2, . . . , Sk
be an associated sequence of separators.

Theorem 1. Let X
(1)
1 , . . . , X

(1)
n1 and X

(2)
1 , . . . , X

(2)
n2 be two random samples from

N(µ(1),Σ(1)) and N(µ(2),Σ(2)), µ(l) ∈ Rp,
(
Σ(l)

)−1 ∈ S+(G), l = 1, 2, and consider
the hypothesis of equality of distributions

H : µ(1) = µ(2) and Σ(1) = Σ(2). (2)

Let λ(V ) denote the log likelihood ratio criterion for testing (2) and let λ(A) denote

the log likelihood ratio criterion for testing HA : µ
(1)
A = µ

(2)
A and Σ

(1)
A = Σ

(2)
A for

A ⊆ V . The following equality holds

λ(V ) = λ(C1) +

k∑
j=2

[λ(Cj)− λ(Sj)] , (3)

Moreover, the k terms on the right hand side of (3) are asymptotically independent
under the null hypothesis.
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It is worth noting that the terms in the summation on the right handside repre-
sent the likelihood ratio test statistic for the test of equality of conditional distribu-
tions XCj\Sj

| XSj , j = 2, . . . , k. This feature plays a crucial role when estimating
DG in Section 5.

Proof. Let λ := λ(V ). We recall the log likelihood ratio statistic for testing H

λ =
2∑
l=1

nl log
|Σ̂|
|Σ̂(l)|

,

where |Σ̂| is determinant of the maximum likelihood estimate of Σ under H, Σ̂, with

Σ̂ =
1

n1 + n2

 n1∑
i=1

(X
(1)
i − X̄)(X

(1)
i − X̄)> +

n2∑
j=1

(X
(2)
j − X̄)(X

(2)
j − X̄)>

 ,
where

X̄ =
1

n1 + n2

(
n1X̄

(1) + n2X̄
(2)
)
, X̄(l) =

1

nl

nl∑
i=1

X
(l)
i , l = 1, 2,

and Σ̂(l), l = 1, 2, are maximum likelihood estimates of Σ(l) under the general alter-
native, given by

Σ̂(l) =
1

nl

nl∑
i=1

(X
(l)
i − X̄

(l))(X
(l)
i − X̄

(l))>, l = 1, 2.

We recall that the asymptotic distribution of λ is chi square with card(E) + 2p
degrees of freedom, where card(E) denotes the cardinality of E.

Since the determinant of every Ω for which Ω−1 ∈ S+(G) can be decomposed
with respect to the graph as |Ω| =

∏k
i=1 |ΩCi |/

∏k
i=2 |ΩSi |, and therefore also the

determinants of Σ̂ and Σ̂(l), l = 1, 2, the above equality can be equivalently written
as

λ =

k∑
i=1

λ(Ci)−
k∑
i=2

λ(Si),

from which the equality (3) follows.

The asymptotic independence of terms in the right-hand side of (3) can be seen as
an immediate consequence of the hyper Markov property and the well known results
regarding the maximum likelihood estimation in Gaussian graphical models (see
Appendix for details). Let us first consider the case k = 2. Let C1, C2 be the two
cliques satisfying the running intersection property, S2 be the associated separator,
A = C1 \ S2, S = S2 and B = C2 \ S2, so that (A,S,B) is a decomposition of G.

It is easy to see that H = H1 ∩H2, where H1 : θ
(1)
A∪S = θ

(2)
A∪S and H2 : θ

(1)
B|S = θ

(2)
B|S

concern variation independent parameters.
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Exploiting the block structure of Σ̂B∪S , we obtain |Σ̂B∪S | = |Σ̂S |/|K̂B|, and the
equality (3) becomes

λ =

2∑
l=1

nl log
|Σ̂A∪S |
|Σ̂(l)
A∪S |

+

2∑
l=1

nl log
|K̂(l)

B |
|K̂B|

. (4)

The first term on the right hand side, λ(A ∪ S), corresponds to the likelihood ratio
test for the hypothesis of equality of marginal distributions induced by A ∪ S, i.e.,

H01 : θ
(1)
A∪S = θ

(2)
A∪S . The second term, that we might informally denote as λ(B | S),

corresponds to the likelihood ratio test for the hypothesis of equality of conditional

distributions induced by variables in B given the variables in S, i.e. H2 : θ
(1)
B|S =

θ
(2)
B|S . It is λ(A ∪ S) = λ(C1) and λ(B | S) = λ(C2) − λ(S2). Thanks to variation

independence of the parameters in H1, H2 and to their L-independence, this implies
that λ(A ∪ S) and λ(B | S) are asymptotically independent not only under H, but
whenever one of the two hypotheses is true, i.e., under H1 ∪H2.

For k > 2, asymptotic independence for all pairs of subsequent components of
(3) is proven analogously, which together with the characterizing property of the chi-
square distribution (Tan, 1977) suffices to prove the joint asymptotic independence.

5 Estimating the graphical seed set

We have seen above that, within the framework of Gaussian graphical models, the
global hypothesis of equality can be decomposed according to a specified perfect
ordering into a set of local independent hypotheses. By independent hypotheses, we
mean that there are no logical relations between them, and that all combinations of
true and false hypotheses are possible. However, the perfect ordering is not unique.
In fact, there are multiple decompositions of the global hypothesis, each correspond-
ing to a different factorization of the same distribution. It is this multiplicity that
we exploit when estimating the graphical seed set.

For a given graph, the enumeration of all decompositions might resemble the
problem of enumerating its junction trees (Thomas and Green, 2009), but a closer
look reveals that it is a far simpler task. Given the uniqueness of the sequence
of separators, it is not difficult to show that there is exactly one decomposition
for each choice of the root clique – the clique labeled C1 – leading to a total of k
decompositions.

Before we show how these different decompositions relate to the graphical seed set
in Proposition 1, we introduce some notation and restate the testing problem (2) in
decision theory terms. Let Θ be the unrestricted parameter space of (µ(l),Σ(l)), l =

1, 2 where
(
Σ(l)

)−1 ∈ S+(G), l = 1, 2; let Θ0 denote the space restricted by H in
(1), and let Θ1 = Θ \Θ0. We want to test H : θ ∈ Θ0 against a general alternative
θ ∈ Θ1. Let the decision taken on H be denoted by d, where d = 0 means that
the null hypothesis is not rejected and d = 1 means that the null hypothesis is
rejected. A test φ is a mapping from the sample space to the set {0, 1} (we rule
out the trivial case that the test makes no decisions). Let d∗ denote the correct
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decision (the truth) for the null hypothesis in (2). As seen in the previous Section,
the null hypothesis can be decomposed into a set of independent local hypotheses,
i.e., H =

⋂k
j=1Hj , and we denote by d∗j the correct decision for Hj , j = 1, . . . k,

so that d∗ = (d∗1, . . . , d
∗
k). To identify the i−th decomposition, obtained when Ci is

set as the root clique, we let Ci,1, . . . , Ci,k denote a sequence of cliques satisfying
the running intersection property. Let Si,2, . . . , Si,k be an associated sequence of
separators, and set Si,1 = ∅, i = 1, . . . , k. In this notation, Hi,j will denote the
j−th null hypothesis in decomposition i, φi,j the corresponding test, and d∗i,j the
associated correct decision.

We now show the connection between the graphical seed set and the decompo-
sitions obtained from the graph G.

Proposition 1. Let d∗i =
(
d∗i,1, . . . , d

∗
i,k

)
be the vector of correct decisions for the

hypotheses Hi,j of equality of distribution of XCi,j\Si,j
| XSi,j in the i−th decompo-

sition. We then have

DG =

k⋂
i=1

⋃
{j: d∗i,j=1}

Ci,j .

Proof. Let P =
⋂k

i=1

⋃
{j: d∗i,j=1}Ci,j . Let DG be the graphical seed set defined in

(1). We want to show P = DG. Let v /∈ DG. Then there is a S ∈ S separating v
from D, and we choose S such that v and S are connected in G. Note that this is
always possible for any v /∈ DG. Let C be a clique containing v and S. Then S must
also be separating C \ S and D. Using the properties of conditional independence
and its connection to the graph separations, we have

L(XC\S | XS) = L(XC\S | XD∪S)

for any XV Markov with respect to G. Since D ∪ S is a seed set, the distribution
L(XC\S | XS) is the same in two conditions and the associated null hypothesis is
true leading to d∗i,j = 0 for some i, j = 1, . . . , k. We therefore have v /∈ P . All the
steps relied on equivalence relations and thus P = DG.

The above proposition gives an oracle procedure for recovering the graphical
seed set from the knowledge of the two joint distributions. In practice, we need to
rely on statistical tests. Let φi = (φi,1, . . . , φi,k) ∈ {0, 1}k be a vector indicating the
results of the statistical tests performed in the i-th decomposition, i = 1, . . . k, with
φi,j = 1 when the hypothesis Hi,j is rejected, and φi,j = 0 otherwise. The following
definition naturally follows.

Definition 3 (Graphical seed set estimator). The random set D̂G, defined as

D̂G =

k⋂
i=1

⋃
{j: φi,j=1}

Ci,j (5)

is an estimator of DG.
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Remark. As already stated, the number of potential seed sets, growing exponen-
tially with the dimension p, renders the estimation of the minimal seed set computa-
tionally expensive. In contrast, thanks to Theorem 1, estimating the graphical seed
set requires computing at most 2k−1 test statistics in the marginal models induced
by cliques and separators. Furthermore, no conditional distribution is actually esti-
mated: all test statistics pertaining to conditional distributions are computed from
those of appropriate marginal models.

5.1 Asymptotic behavior

Estimator D̂G is different from classical estimators in that its values depend on data
through the results of sequences of tests. Properties of the estimator will ultimately
depend on the properties of the tests which are used. A treatment of these properties
in the limit of infinite data benefits from the introduction of a more general notion
of consistency of tests, that we give in general terms as follows.

Definition 4. A sequence of tests φ(n) for the hypothesis H : θ ∈ Θ0 vs H1 : θ ∈ Θ1

is consistent if for each θ ∈ Θ there exists a sequence of significance levels αn s.t.

(1) for each θ ∈ Θ0, limn→∞ Pθ(φ(n) = 1) = 0;

(2) for each θ ∈ Θ1, limn→∞ Pθ(φ(n) = 0) = 0.

In other words, a sequence of tests is consistent if, at least asymptotically, it
reports a correct decision.

Let us now consider testing Hi,j in the above given framework. Let n = n1 + n2

and assume that as n→∞, nl/n→ γl such that 0 < γl < 1, l = 1, 2, and γ1+γ2 = 1.
Moreover, let the test statistic φi,j(n) be defined as

φi,j(n) =

{
0 λi,j;n < qn

1 λi,j;n > qn

where λi,j;n is the log likelihood ratio for Hi,j and qn a suitable sequence of quan-
tiles. Standard results assure that, under the null hypothesis, the sequence λi,j;n
converges to a chi-square distribution with f degrees of freedom, where f is the
difference between the dimensions of the unrestricted parameter space and the re-
stricted parameter space implied by the hypothesis of equality of the distributions
of XCi,j\Si,j

| XSi,j in the two groups. Then, the test that rejects the null hypothesis
if λi,j;n exceeds the upper α-quantile of the chi-square distribution is asymptotically
of level α. We can state the following proposition.

Proposition 2. In the framework of the problem stated above, for each Hi,j , there
exists a sequence of significance levels αn, s.t. the sequence of tests φi,j(n) is con-
sistent.

Proof. Choose αn = (1−FU (nd)), with 0 < d < 1/2, U ∼ χ2
f , and let qn = F−1

U (αn).

Under the null hypothesis, λi,j;n
d→ λ, with λ ∼ χ2

f . Thanks to the Slutsky theorem,
we can write

Pθ∈Θ0(φi,j(n) = 1) = Pθ∈Θ0

(
λi,j;n
nd

> 1

)
−→ 0.
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Furthermore, for each θ1 ∈ Θ1, it is known that the log likelihood ratio test is
degenerate with the order O(

√
n). With the choice of αn above,

Pθ1(φi,j(n) = 0) = Pθ1
(
λi,j;n
nd

< 1

)
−→ 0, ∀θ1 ∈ Θ1.

Theorem 2. The estimator D̂G is a pointwise consistent estimator of DG, i.e.,
Pθ∈Θ(D̂G = DG)→ 1.

Proof. For a fixed i, we have that φi(n) = (φi,1(n), . . . , φi,k(n))→ d∗i = (d∗i,1, . . . , d
∗
i,k),

since the inequality

Pθ∈Θ(φi(n) = d∗i ) ≥ 1−
k∑
j=1

Pθ∈Θ(φi,j(n) 6= d∗i,j)

in conjunction with Proposition 2 implies Pθ∈Θ(φi(n) = d∗i ) −→ 1. Convergence of
D̂G to DG follows straightforwardly.

5.2 Finite sample behavior

With finite samples, it is customary to assign a bound to the probability of incor-
rectly rejecting the null hypothesis by imposing conditions such as Pθ∈Θ0(φi,j(n) =

1) ≤ α. Estimation of DG requires performing a collection of k +
∑k

i=1 ν(Ci) tests,
where ν(Ci) denotes the number of separators contained within the clique Ci. Finite
sample behavior of D̂G thus hinges on the proper control of the multiplicity issue. If
we wish to control the inclusion of false positives in D̂G by controlling the familywise
error rate (FWER), the simplest approach would be to apply the Bonferroni cor-
rection with a factor of k +

∑k
i=1 ν(Ci). However, the Bonferroni correction can be

overly conservative in this situation since intricate logical relations among subsets
of hypotheses result in a high positive dependence between the associated p-values.
To address this issue, we employ the minP method of Westfall and Young (1993),
which uses permutations to obtain the joint distribution of the p-values and, by ac-
counting for the dependence among p-values, attenuates the conservativeness of the
Bonferroni procedure. In our setting, the condition of subset pivotality is satisfied,
and the Westfall and Young procedure controls the FWER in the strong sense.

6 Simulation study

We studied the finite sample behavior of D̂G with a simulation study. The graph
we used, shown in Figure 1, consists of 10 nodes grouped in 5 cliques. We set the
parameters of the first, i.e. control, condition in the following way. The means of 10
variables were drawn randomly from a normal distribution centered at 0.5 (standard
deviation 1). The matrix with all off-diagonal elements equal to 0.4 and all diagonal
elements equal to 1 was modified so that its inverse has zeros corresponding to the
missing edges of G.
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Figure 1: An undirected graph used in the simulation study. The minimal seed set
is set to D = {4, 9, 10}, corresponding to the graphical seed set DG = {4, 6, 9, 10}.

For the second or post-intervention condition, we considered four different sce-
narios: one with no intervention, corresponding to the global null hypothesis, and
three scenarios with interventions of different strength. Namely, the minimal seed
set was set to D = {4, 9, 10}, and in the post-intervention distribution the mean
of the targeted variables was multiplied by a constant λ ∈ {1.1, 1.5, 2} correspond-
ing to a mild, moderate, and strong intervention, respectively. The variance of the
three seed set variables was also manipulated: it was decreased by 50% in the post-
intervention distribution. In this setting, the graphical seed set does not coincide
with the minimal seed set since there is no separator of G that separates node 6
from D. We thus have DG = {4, 6, 9, 10}.

For each combination of the sample size n = 50, 100, 200, and the intervention
scenario, we simulated 1000 pairs of samples. For each simulated pair, we considered
all 5 decompositions of the global null hypothesis, and computed the estimate D̂G.
The FWER was controlled at 5% by the minP method (Westfall and Young, 1993)
with B = 500 permutations. We have thus relied on permutation, rather than
asymptotic p-values. To evaluate the performance of our procedure, we looked at
the number of times the estimated seed set D̂G coincided with the true seed set DG.
The results are shown in Figure 2.

We see that under the global null hypothesis the true seed set, DG = ∅, is
correctly identified approximately 99% of times, irrespective of the sample size. This
is a consequence of the fact that by controlling the FWER, we are controlling the
probability of including false positives in D̂G. On the other hand, not surprisingly,
the performance under the alternative hypothesis depends on the strength of the
intervention. When the intervention is strong, the power of the employed tests
approaches 1 even for the smallest sample size (n = 50), and the seed set is identified
correctly more than 76% of the times. When the intervention is weak, the power to
detect it is low, and larger sample sizes are needed. This is evident from the mild
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Figure 2: Simulation study: The relative frequency of the correct identification of
the graphical seed set for different sample sizes under four different scenarios: no
intervention (H0), mild, moderate and strong intervention.

intervention setting, where even for n = 200, the seed set was identified correctly
only 62.9% of times: in approximately one third of instances the estimated seed set
was {6, 9, 10} which is a subset of the true graphical seed set. This is a consequence
of our choice to control the inclusion of false positives: in case of low power, we are
bound to obtain an estimate which is a subset of the true seed set.

7 Chronic myeloid leukemia

We pick up on the example introduced in Section 2. Following Martini et al. (2013),
we focus our attention on genes participating in the Chronic myeloid leukemia path-
way, reproducing the preprocessing used in the paper. In particular, to derive the
underlying undirected graph, we used the R package graphite (Sales et al., 2016),
which transforms KEGG pathways into graph objects. We moralized and triangu-
lated this graph to obtain a decomposable graph. For graph operations, we relied
on the package gRbase (Dethlefsen and Højsgaard, 2005). The obtained graph con-
sists of three connected components, and for illustration purposes, we restricted our
attention to the largest connected component, consisting of 28 nodes and 16 cliques,
shown in Figure 3 (colors can be ignored for now). The number associated to each
node is a unique gene identifier from the Entrez Gene database at the National Cen-
ter for Biotechnology Information (Maglott et al., 2005). Note that nodes 25 and
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Table 1: Chronic myeloid leukemia dataset: decomposition of a two sample testing
problem. Tests for which the null hypothesis was rejected are highlighted.

No. Test p−value No. Test p−value

1 1147, 207, 3551 0.54 21 207, 5294, 5295, 8503 0.20

2 4790, 4792 | 1147, 3551 0.01 22 1398, 1399, 5294, 5295, 8503, 867, 9846 0.88

3 4193 | 207 0.03 23 207 | 5294, 5295, 8503 0.09

4 5294, 5295, 8503 | 207 0.20 24 1398, 1399, 25, 613, 867, 9846 < 0.01

5 1398, 1399, 867, 9846 | 5294, 5295, 8503 0.92 25 5294, 5295, 8503 | 1398, 1399, 867, 9846 0.64

6 25, 613 | 1398, 1399, 867, 9846 < 0.01 26 25, 2885, 613, 9846 < 0.01

7 2885 | 25, 613, 9846 0.95 27 1398, 1399, 867 | 25, 613, 9846 0.44

8 6776 | 25, 613 < 0.01 28 25, 613, 6776 < 0.01

9 6777 | 25, 613 0.93 29 1398, 1399, 867, 9846 | 25, 613 0.34

10 25759 | 25, 613 0.82 30 25, 613, 6777 < 0.01

11 4609 | 25, 613 0.21 31 25, 25759, 613 < 0.01

12 6654, 6655 | 2885 0.45 32 25, 4609, 613 < 0.01

13 3265, 3845, 4893 | 6654, 6655 0.96 33 2885, 6654, 6655 0.60

14 369 | 3265, 3845, 4893 0.54 34 25, 613, 9846 | 2885 < 0.01

15 5894 | 3265, 3845, 4893 0.49 35 3265, 3845, 4893, 6654, 6655 0.87

16 7157 | 4193 0.16 36 2885 | 6654, 6655 0.96

17 1147, 3551, 4790, 4792 0.05 37 3265, 369, 3845, 4893 0.66

18 207 | 1147, 3551 0.40 38 6654, 6655 | 3265, 3845, 4893 0.91

19 207, 4193 0.05 39 3265, 3845, 4893, 5894 0.63

20 1147, 3551 | 207 0.59 40 4193, 7157 0.01

41 207 | 4193 0.47

613 represent, ABL and BCR genes, respectively.

The hypothesis, shown in (2), of equality of distributions in the two groups is
rejected by the likelihood ratio test (p -value = 3.65 × 10−8). This is, of course,
expected, since the two groups are defined on the basis of differences in genes 25
and 613. To see whether these differences are propagated over to the other genes,
we can perform a test of equality of conditional distributions of the remaining genes
given the central two. The obtained p -value, 6.65 × 10−3, suggests rejecting the
hypothesis of equality. We therefore decomposed the graph into a succession of
cliques, in order to estimate the underlying graphical seed set.

In this case, there are 16 cliques, and thus 16 decompositions of the global null
hypothesis. Across different decompositions, there are 41 unique local hypotheses.
We controlled the FWER at 5% level by the minP method with B = 3000 permuta-
tions. Obtained p-values are shown in Table 1, in which tests whose null hypothesis
is rejected are highlighted (the threshold found by minP method was 2.3 × 10−3).
The results of these tests are then combined according to (5), and the result is rep-
resented in Figure 3. Highlighted nodes (either gray or red) belong to cliques that
result significantly different in two conditions, while the red nodes form the esti-
mated graphical seed set D̂G = {25, 613, 6776}. These three genes, thus, explain the
marked difference between the two groups, but their effect does not seem to prop-
agate towards other genes in the network (the majority of white nodes in Figure
3).

8 Discussion

Motivated by the differential analysis of gene expression data, we have proposed
a method for identifying the set of variables driving the difference between two
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Figure 3: An undirected graph representing the Chronic myeloid leukemia pathway.
Genes belonging to cliques for which the hypothesis of equality of distributions is
rejected are highlighted. Genes belonging to the estimated graphical seed set are
colored red.

multivariate normal distributions Markov with respect to the same graph. Our
approach compares both marginal and conditional distributions between the two
conditions, and uses the resulting evidence to infer the seed set – a set of variables
consisting of potential sources of differential behavior. Such an approach would
in general require an exponential number of tests, but the modularity of graphical
models and the focus on the graphical seed set allow for a linear solution.

The proposed approach assumes that the graphical structure is known a priori
which might be uncommon in practice. To relax this assumption, one could resort
to a sample splitting strategy, in which one half of the data is used for the estimation
of the graphical structure, while the second half is used for hypothesis testing (see
for instance Städler and Mukherjee, 2015). However, estimation of the graphical
structure is a highly complex inferential task, and one should aim to make use of
subject matter knowledge whenever possible.

The basic building block of our method is the likelihood ratio statistic. Maximum
likelihood estimates exist if and only if min{n1, n2} > maxi=1,...,k |Ci|, which implies
that the method is applicable when the largest clique of the underlying graph is small
enough with respect to the sizes of the two samples. Note that this also includes
cases for which max{n1, n2} < p, as long as cliques are sufficiently small.

We focused our attention on the hypothesis of equality of distributions. Anal-
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ogous considerations apply to the hypotheses of equality of means, given that the
covariance matrices are the same, i.e. H : µ(1) = µ(2) given Σ(1) = Σ(2), and the
equality of covariance matrices H : Σ(1) = Σ(2). In case of the latter hypothesis, spe-
cial care is needed when addressing the multiple testing issue: observations are no
longer exchangeable under the null hypothesis rendering the permutation approach
not applicable.

The idea of decomposing the global null hypothesis in a sequence of independent
tests, similar to the one in Section 4, can be found in Anderson (2003, p. 423).
Although there the goal was different – testing the global hypothesis of equality –
the decomposition proposed here can be seen as an extension to Gaussian graphical
models, where cliques play the role of individual variables, and the structure of
conditional independence is used to reduce the dimensionality of the testing problem.

A Basics in graphical models

Here, we briefly review key notions regarding Gaussian graphical models, relevant
for our work. For a detailed exposition, see Lauritzen (1996).

Consider an undirected graph G = (V,E) where V is a set of nodes and E is a set
of edges. A subset of vertices A defines an induced subgraph GA = (A,E ∩A×A).
A subgraph is said to be complete if all pairs of its vertices are connected in G.
A clique is a maximal complete subgraph, that is, it is not a subset of any other
complete subgraph.

Two disjoint subsets A,B ⊂ V are said to be separated by a subset S (disjoint
from A and B) if all paths from A to B contain vertices from S.

A graph G is decomposable if and only if the set of cliques of G can be ordered
so as to satisfy the running intersection property, that is, for every i = 2, . . . , k

if Si = Ci ∩
i−1⋃
j=1

Cj then Si ∈ Cl for some l < i− 1.

Although this ordering is generally not unique, the structure of the graph G uniquely
determines the set of cliques {C1, . . . , Ck} and the set of separators {S2, . . . , Sk}.
For ease of notation, it is often set S1 = ∅, so that the set of separators becomes
{S1, . . . , Sk}.

For simplicity, we consider only graphs consisting of a single connected compo-
nent, although most of the presented notions remain valid for more general graphs.
We also restrict our attention to decomposable graphs, and this assumption is cen-
tral to our approach. We assume throughout that cliques have been ordered in an
order satisfying the running intersection property. Since, in the following, we deal
with different partitions of the set of vertices, we note that such an ordering natu-
rally leads to several partitions of V . Recall that (A,S,B) is said to be a partition
of V if A,S and B are disjoint and V = A∪S ∪B. Partitions of V that correspond
to decompositions of the graph G are of particular interest. For a graph G = (V,E),
a partition (A,S,B) of V is a decomposition of G if A and B are separated by S in
G, and S is complete.
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Denote p = |V | and letX ∼ N(µ,Σ) be a p-variate normal random vector indexed
by vertices of G. If Σ is invertible and such that its inverse, K = Σ−1, has zeroes
corresponding to missing edges of G, we say that X is a Gaussian graphical model.
Let S+(G) denote the set of all symmetric p×p positive definite matrices with zeros
corresponding to the missing edges of G. Moreover, for A ⊂ V , let ΣA denote the
corresponding block submatrix of Σ. In Gaussian graphical models, decompositions
of the graph G correspond to special properties of the induced statistical models
and associated inference procedures, as we will review in what follows.

Consider first the parameter θ = (µ,Σ) of the model. If (A,S,B) is a decompo-
sition of G, then X can partitioned as (XA, XS , XB), where XA ⊥⊥ XB | XS . Here,
the conditional laws L (XB | XA, XS) and L (XB | XS) coincide and are equal to

XB | XS ∼ N
[
µB + ΣBSΣ−1

S (XS − µS) , (KB)−1
]
,

where KB =
(
ΣB − ΣBSΣ−1

S ΣSB

)−1
. Split µ into two components, µ = (µA∪S , µB)

and partition Σ correspondingly. Then, parameters θA∪S = (µA∪S ,ΣA∪S) and

θB|S =
(
µB − ΣBSΣ−1

S µS ,ΣBSΣ−1
S ,K−1

B

)
,

(i.e., parameters of the marginal law of (XA, XS) and of the conditional law of
XB | XS) are variation independent (Barndorff-Nielsen, 2014, p.28). It is worth
noting that, on exploiting the symmetry of A and B with respect to S, we can
analogously say that conditional laws L (XA | XB, XS) and L (XA | XS) coincide
and are equal to

XA | XS ∼ N
[
µA + ΣASΣ−1

S (XS − µS) , (KA)−1
]
,

where KA =
(
ΣA − ΣASΣ−1

S ΣSA

)−1
. Accordingly, parameters θB∪S and θA|S are

variation independent.
Consider now a random sample X1, . . . , Xn from the same model and maxi-

mum likelihood estimation of θ. To estimate θ, we go through the estimation of
θA∪S and θB|S . It is known that, beside being variation independent, these param-
eters are also L-independent since the likelihood function is of the product form:
L(θA∪S , θB|S) = L(θA∪S)L(θB|S), causing the covariance between their maximum

likelihood estimators to vanish asymptotically. Therefore, θ̂A∪S and θ̂B|S are asymp-
totically independent. Note that although this independence is reminiscent of the
strong hyper Markov property, it holds only asymptotically, since the distribution of
the maximum likelihood estimator is not strong hyper Markov unless Σ is diagonal
(Dawid and Lauritzen, 1993). However, the sampling distribution of θ̂ defines a
weak hyper Markov law on the parameter space (Dawid and Lauritzen, 1993). A
weak hyper Markov property ensures that separations in the graph, reflected in the
distribution of the original variables, are also reflected in the distribution of the
maximum likelihood estimator. More precisely, it trivially holds

µ̂A∪S ⊥⊥ µ̂B∪S | µ̂S ,

and, more importantly,
Σ̂A∪S ⊥⊥ Σ̂B∪S | Σ̂S .
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