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SUMMARY 

The cellular prion protein (PrP
C
) is a cell surface glycoprotein predominantly 

expressed in the central nervous system. A modification of the mainly α-helical PrP
C
 

into an isoform enriched in β-strands generates the prion, the infectious particle at the 

basis of fatal prion diseases. In spite of PrP
C
’s intimate involvement in prion 

propagation, its physiological function remains enigmatic. Past observations have 

supported the possibility that PrP
C
 regulates Ca

2+
 homeostasis, a notion that has been 

recently reinforced by the demonstration that PrP
C
 controls Ca

2+
 fluxes in domains 

close to the neuronal plasma membrane, and interacts physically with a ionotropic 

glutamate receptor, thus protecting from glutamate excitotoxicity. Recently, however, 

it has been proposed that PrP
C
 serves as a high-affinity receptor for soluble amyloid-β 

(Aβ) oligomers implicated in Alzheimer’s disease (AD), and this interaction could thus 

be crucial for AD-related synaptic dysfunctions. 

In light of this background, using genetically-encoded Ca
2+

 probes targeting 

different cell domains of cerebellar granule neurons expressing, or not, PrP
C
, this work 

focused on whether PrP
C
 regulates local Ca

2+
 fluxes arising from the activation of store-

operated Ca
2+

 entry (SOCE), and/or of glutamate receptors. We found that, with 

respect to PrP
C
-expressing neurons, the absence of PrP

C
 caused alterations of several 

local Ca
2+

 fluxes, indicating that PrP
C
 could act as a key component of the system(s) 

controlling neuronal Ca
2+

 homeostasis. As to the molecular mechanism enabling PrP
C
 

to exert such control, the results showed the implication of Fyn tyrosine kinase and of 

the Ca
2+

-induced-Ca
2+

-release from the ryanodine receptor. 

The study has also analyzed whether soluble Aβ oligomers could affect the 

PrP
C
-dependent regulation of Ca

2+
 homeostasis. Obtained results have shown that the 

acute treatment of neurons with Aβ oligomers abrogates the control of PrP
C
 over Fyn 

and SOCE, and alters mitochondrial Ca
2+

 uptake after stimulation of ionotropic 

glutamate receptors. This data thus suggests a PrP
C
-dependent mechanism for Aβ-

induced neuronal Ca
2+

 dyshomeostasis. 
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RIASSUNTO 

La proteina prionica (PrP
C
) è una glicoproteina di membrana espressa 

maggiormente nel sistema nervoso centrale. A seguito di una modificazione in 

un’isoforma ricca di foglietti β, essa genera il prione, la particella infettiva responsabile 

delle malattie da prioni. Sebbene la sua implicazione nelle malattie da prioni sia ormai 

acclarata, la funzione di PrP
C
 nelle cellule deve essere ancora chiarita. Osservazioni 

passate hanno evidenziato che PrP
C
 possa essere implicata nell’omeostasi del Ca

2+
. 

Successivamente, tale possibilità è stata supportata anche dalla dimostrazione che 

essa regola i flussi di Ca
2+

 in domini prossimi alla membrana plasmatica dei neuroni e 

dal fatto che interagisca direttamente con un recettore ionotropico del glutammato, 

prevenendo in tal modo l’eccitotossicità indotta dal glutammato. Recentemente, è 

stato anche proposto che la PrP
C
 funga da recettore ad alta affinità per gli oligomeri 

solubili del peptide amiloide β (Aβ) implicati nella malattia di Alzheimer (AD) e che 

l’interazione PrP
C
- Aβ sia cruciale per la disfunzione neuronale osservata nella malattia. 

Alla luce di queste nozioni, questa tesi ha analizzato se la PrP
C
 regoli l’ingresso 

di Ca
2+

 indotto dalla deplezione dei depositi intracellulari (SOCE) o dalla stimolazione 

dei recettori del glutammato, utilizzando a tal fine neuroni granulari di cervelletto 

isolati da topi esprimenti, o no, la PrP
C
 e sonde sensibili al Ca

2+
 indirizzate a specifici 

compartimenti neuronali. 

Questo studio ha dimostrato che, rispetto ai neuroni con la PrP
C
, l’assenza di 

PrP
C
 causa alterazioni in molti flussi locali di Ca

2+
, a indicare come la PrP

C
 possa essere 

implicata nei complessi sistemi adibiti al controllo dell’omeostasi neuronale del Ca
2+

. 

Abbiamo inoltre trovato come ciò passi attraverso la modulazione della tirosin chinasi 

Fyn e del rilascio del Ca
2+

-indotto dal Ca
2+

 da parte del recettore rianodinico. 

Il lavoro ha inoltre analizzato se gli oligomeri solubili del peptide Aβ alterino il 

controllo esercitato dalla PrP
C
 sull’omeostasi del Ca

2+
. I risultati ottenuti hanno 

evidenziato che il trattamento acuto dei neuroni con tali oligomeri altera la 

regolazione della PrP
C
 sul SOCE e su Fyn e l’ingresso di Ca

2+
 nel mitocondrio a seguito 

dell’attivazione dei recettori ionotropici del glutammato. Questi dati suggeriscono 

pertanto l’esistenza di un meccanismo PrP
C
-dipendente che causa dis-omeostasi 

neuronale del Ca
2+

 indotta dal peptide Aβ. 
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1 INTRODUCTION 

1.1 PRIONS AND PRION DISEASES 

Prion diseases, also known as transmissible spongiform encephalopaties (TSE), 

are a group of fatal neurodegenerative disorders that include Creutzfeldt-Jacob 

disease, fatal familial insomnia, kuru and Gerstmann-Straussler-Scheinker in humans, 

bovine spongiform encephalopaty in cattle, and scrapie in sheep and goats. TSE are 

typically characterized by neuronal loss, astrogliosis, vacuolization, and a variable 

degree of cerebral accumulation of amyloid plaques that closely resemble those 

observed in other neurodegenerative disorders, e.g., Alzheimer’s and Parkinson’s 

disease (AD and PD). 

TSE’s etiology is diverse, spanning from familial to infectious, although for the 

most part is sporadic. In the past century, scrapie was the first TSE to be thoroughly 

studied. Its unusual infectious mode of transmission finally led J.S. Griffith (1967) to 

propose the hypothesis for scrapie transmission - incredibly unortodox for those times 

but also for many subsequent years - the so called “protein only” hypothesis, which 

dictates that only a protein, i.e., with no aid from nucleic acids, was capable to 

“replicate” and, thus, to spread biological information in another organism. After 

decades of skepticism, S. Prusiner and coworkers (1984) eventually provided the 

experimental proof for the validity of Griffith’s hypothesis, coining the term prion (the 

acronym for ‘proteinaceous and infectious particle’) for this unconventional infectious 

agent. Specifically, they established that TSE pathogenesis is not determined by 

common infectious bacteria or viruses, but by a conformational conversion of a normal 

protein (the cellular prion protein, PrP
C
) into an aberrant (PrP

Sc
) isoform. PrP

Sc
 is the 

major component of the prion, which possesses physico-chemical and biological 

properties different from PrP
C
, such as resistance to proteases, neurotoxic features 

and, most remarkably, the capacity to self-propagate into host organisms through an 

auto-catalytic mechanism in which pre-formed PrP
Sc

 promote the PrP
C
-PrP

Sc
 

conversion. 

Much data has been accumulated over the years to support the “protein only” 

hypothesis, including other “unorthodox” prion aspects. One of these is the 

observation that PrP
Sc

 can give rise to different disease phenotypes that are faithfully 

propagated (Bruce and Fraser, 1991), which suggests the existence of prion strains 

distinguishable by hystopathological features, biochemical and physico-chemical 

properties, and by the incubation period of the disease. Recently, it was demonstrated 
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the capacity of prions to “adapt” to the environment, thereby providing an explanation 

for the long incubation time needed for prions of an animal species to trigger 

morbidity in another animal species (Li et al., 2010). 

However, despite the now recognized implication of PrP
C
 in the onset and 

transmission of prion diseases, the mechanism of prion-associated neurodegeneration 

and the physiological function of PrP
C
 are still unclear after decades of intensive 

research. At large, it is now accepted that both these issues are intimately related, and 

that knowledge of the physiology of PrP
C
 could be crucial for the understanding of the 

process of neurodegeneration and, hence, for the design of effective therapeutic 

interventions. 

1.2 THE CELLULAR PRION PROTEIN 

1.2.1 Structural and molecular biology of PrPC 

PrP
C
 is a highly conserved sialoglycoprotein of about 250 aminoacids (aa) in its 

mature form, attached to the outer surface of the plasma membrane (PM) via a C-

terminal glycosilphosphatidylinositol (GPI) anchor (Stahl et al., 1990) (Fig. 1). PrP
C
, 

which is expressed in almost all tissues of vertebrates, is particularly rich in 

postsynaptic density (PSD) of the central nervous system (CNS) (Um et al., 2012). 

The gene that codes for PrP
C
 (Prnp) is well conserved among species and 

contains either three (in rat, mouse, bovine and sheep), or two (in hamster and 

humans) exons, of which a single one encodes PrP
C
. In humans, Prnp is located in the 

short arm of chromosome 20 (Sparkes et al., 1986), and the two exons are separated 

by one intron: exon one contains the promoter and termination site, while exon two 

harbours the open reading frame (Lee et al., 1998). The control of Prnp expression has 

been attributed to sequences within the 5’-flanking region of the first intron, and to 3’-

untranslated sequences. In spite of the high Prnp conservation, mice devoid of PrP
C
 

(PrP-KO) develop normally and apparently show only minor abnormalities, including 

some deficits in spatial learning, increased excitability of hippocampal neurons and 

modification in the circadian sleep rhythm (Collinge et al., 1994; Sakaguchi et al., 

1996). The polypeptide coded by Prnp is subjected to several post-translational 

modifications: removal of the N-terminal signal peptide (aa 1-22), and of 

approximately 20 aa at the C-terminus (aa 231-253) to allow the GPI attachement 

(Stahl et al., 1990); the N-glycosilation at two asparagine residues (Asn181, 197) in the 

endoplasmic reticulum (ER); removal of mannose residues and addition of complex 

oligosaccharidic chains in the Golgi apparatus (Fig. 2). 
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Figure 1. Location of PrP in cells. PrP
C 

secondary structure is fully explained further on and in Fig. 4 

(forms.asm.org). 

 

181   197

 

Figure 2. Schematic representation of the mature human PrP
C
. Mature PrP

C
 is the product of many 

post-translational modifications. The following domains are highlighted: the signal peptide (1-22) for ER 

import, and the C-end sequence (231-253), both of which are removed during PrP
C
 maturation; the 

conserved octapeptide repeats (OP-repeat region) (in violet) (60-91); B1 (128-131), and B2 (161-164) β-

strands ( blue boxes); the a-helical region composed of helices H1 (144-154), H2 (173-194), and H3 (200-

220) (yellow boxes); Asn181 and 197 for the attachment of glycans; the disulfide bridge (S-S) between 

Cys180 and 213; the attachment of the GPI moiety (GPI-anchored signal) at residue 230 (modified from 

Kojima et al., 2014). 

 

NMR and biochemical studies of recombinant PrP have established that the 

mature protein consists of a flexible N-terminal (of approximately 100 aa) and of a 

globular domain (of about 100 aa) arranged in three helices and two antiparallel β 

sheets (Fig. 3), which is further stabilized by a single disulfide bond (Riek et al., 1996; 

Zahn et al., 2000). The N-terminal contains five repetitions of eight aa (PHGGGWGQ) 

(octarepeats, OR) that can coordinate up-to six Cu
2+

 (Brown et al., 1997). A 

hydrophobic region, located between the OR and the first α-helix (aa 106-126) is 

considered a possible trans-membrane domain, and exerts neurotoxic functions 

(Forloni et al., 1993). 
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Figure 3. NMR structure of PrP
C
. The figure shows the two principal domains, the unstructured N-

terminus (in blue) and the globular C-terminus (in red) of PrP
C
 (modified from Aguzzi and Heikenwalder, 

2006). 

 

The globular half of PrP
C
 is highly conserved among mammals, and is found in 

non-, mono-, or diglycosylated isoforms, corresponding to the variable occupancy of 

residues Asn-181 and Asn-197 (Haraguchi et al., 1989). The role of PrP
C
 glycosylation 

has been investigated both for the susceptibility to conformational conversions, and 

for TSE diverse forms. According to molecular dynamics simulations (Lawson et al., 

2005), attached N-glycans may modulate PrP
C
 stability, and/or could affect other 

aspects of PrP
C
 biology, such as the intracellular trafficking and the binding to ligands. 

After the maturation process, the protein moves along the secretory pathway 

to eventually reach, and bind to, the external leaflet of the PM exploiting the GPI 

moiety. Like other GPI-anchored proteins, PrP
C
 is located to sphingolipid- and 

cholesterol-abundant microdomains, known as detergent-resistant patches, or lipid 

rafts (Simons and Toomre, 2000), which many studies indicate as putative centres for 

signal transduction events. It remains to be tested whether the GPI-anchoring 

modulates other biological properties of PrP
C
, as shown for the fibroblast GPI-growth 

factor (Kohl et al., 2002). 
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1.2.2 From PrPC to PrPSc 

As mentioned, aberrant PrP
Sc

 isoforms originate solely from a conformational 

conversion of PrP
C
. Accordingly, PrP

C
 and PrP

Sc
 share the primary sequence and post-

translational modifications, but have a different secondary structure. In particular, 

atomic force microscopy (AFM) studies have shown that, whereas in PrP
C
 the α-helix 

and β-strand content accounts for 30% and 3%, respectively, the conversion of 

different PrP
C
 segments to β-strands increases the β-sheet percentage of PrP

Sc
 up to 

40% (Fig. 4) (Pan et al., 1993; Safar et al., 1993). Such a conformational switch is 

responsible for the above-reported novel biological properties. Notably, detectability 

of a proteinase K-resistant PrP form is taken as proof for the presence of PrP
Sc

, and 

thus of prion infection. Investigation of the steps required for prion propagation, 

carried out mainly in transgenic (Tg) mice expressing chimeric mouse–hamster–mouse 

or mouse–human–mouse PrP transgenes, has indicated that residues 90-140 could 

play a key role in the PrP
C
-PrP

Sc
 interaction and conformational transition (Scott et al., 

1993; Telling et al., 1995). 

 

 

Figure 4. Models for the structure of PrP
C
 (left) and PrP

Sc
(right). The α-helical and β-strand regions are 

shown in green and blue, respectively. It is to be noted the PrP
Sc

 enrichement in the β-sheet content 

(www.bio.davidson.edu). 

 

Starting from the necessary presence of PrP
C
 (PrP-KO mice are not susceptible 

to prion invasion), the mechanism of PrP
C
-PrP

Sc
 conversion is not yet fully established. 

Along the years, the refolding and the seeding models have been proposed to explain 

PrP
Sc

 formation and aggregation that proceed in an exponential manner. According to 

the refolding model, monomeric (or low level oligomeric) PrP
Sc

 converts single PrP
C
 

molecules into the thermodynamically more stable PrP
Sc

 conformation, possibly with 
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the aid of a chaperone (protein X) (Eigen, 1996; Caughey et al., 1995; Kocisko et al., 

1994). This model assumes that aggregated forms are not essential, i.e., fibrils would 

be only a side product, in agreement with the observation that many TSE present no 

amyloid aggregates. In contrast, the seeding model proposes a fast equilibrium 

between the two PrP isoforms, in which, however, PrP
C

 is highly favoured 

thermodynamically. Thus, only in the presence of a stable nucleus of PrP
Sc

 aggregates, 

PrP
C
 can be trapped in the unfavourable (PrP

Sc
) conformation and be removed from 

equilibrium. In addition, once reaching a high mass, the breaking off of the aggregates 

would amplify the PrP
C
-PrP

Sc
 conversion. 

The mechanisms of prion-induced neurodegeneration are unclear. Different 

hypothesis has been postulated. One suggests that neuronal damage is linked to the 

direct toxicity of aggregated PrP
Sc

 (gain of function hypothesis). Alternatively, a loss of 

PrP
C
 function (loss of function hypothesis) is indicated as the cause of 

neurodegeneration. Neither of them has been conclusively proved, despite the fact 

that the systematic examination of the brain of deceased patients has revealed no 

spatial correlation between neuronal apoptosis and PrP
Sc

 deposition (Chretien et al., 

1999; Dorandeu et al., 1998). 

A third possibility, somehow referring to the loss of function hypothesis, 

recently proposed that PrP
C
 acts as high affinity surface binding partner for misfolded 

β sheet-enriched aggregates, including PrP
Sc

 oligomers (Lauren et al., 2009; 

Resenberger et al., 2011). In this way, PrP
C
 would transduce the neurotoxic signal of 

oligomers into neurons, loosing, in parallel, its native role. In this context, it is good to 

mention the demonstration that in prion-infected Tg mice the absence of membrane-

bound PrP
C
 renders impossible PrP

Sc
-induced synaptic dysfunction and clinical syntoms 

(Chesebro et al., 2005), indicating the strict requirement of an integral PrP
C
 to mediate 

PrP
Sc

 toxicity. 

1.2.3 The physiology of PrPC 

The function played by PrP
C
 in cells is still elusive, in spite of the multiple roles 

ascribed so far to the protein. These include involvement in: (i), defence mechanisms 

against oxidative stress and apoptotic processes; (ii), Cu
2+

 uptake and metabolism; (iii), 

cell adhesion, differentiation, proliferation and migration, which PrP
C
 would 

accomplish after interacting with extracellular partners, or by taking part in multi-

component signaling complexes at the cell surface. A summary of the major putative 
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functions of PrP
C
 will now be reported (for comprehensive reviews see Aguzzi et al., 

2008; Linden et al., 2008). 

1- Implication of PrPC in cell protection and in other neuronal aspects 

One major feature emerging from the vast array of the proposed roles is that 

PrP
C
 is neuroprotective, particularly against internal, or environmental, stress that 

could initiate an apoptotic program. One of the clearest examples, obtained from 

comparing wild type (WT) and PrP-KO neurons, is the protection exerted by PrP
C
 in 

cultured human fetal neurons triggered to apoptosis (by the pro-apoptotic protein 

Bax) (Roucou et al., 2004). Among other examples, it is good to recall that PrP
C
 is up-

regulated after cerebral ischemia, and that PrP
C
 amounts inversely correlate with 

damage severity induced in rat brains by in vivo focal ischemia (Weise et al., 2004; 

Shyu et al., 2005). Other lines of evidence suggest that PrP
C
 acts against oxidative 

stress. A support to this possibility is that isolated PrP-KO neurons are more 

susceptible to treatment with agents inducing reactive oxygen species (ROS), i.e., H2O2, 

xanthine oxidase and Cu
2+

 (Brown et al., 1997; Brown et al., 2002), and have decreased 

levels of anti-oxidant enzymes, such as Cu
2+

/Zn
2+

 superoxide dismutase (SOD), catalase 

and glutathione reductase. As to SOD, it was proposed that PrP
C
 influences its activity 

also by promoting Cu
2+ 

internalization into cells possibly by binding Cu
2+

 at the OR 

region (Brown et al., 1997; Brown and Besinger, 1998). Along this line, it was suggested 

that PrP
C
 binds and internalizes also Fe

3+
 (Singh et al., 2009), in light of the altered Fe

3+
 

homeostasis detected in prion-infected cells. 

Following interaction with cell adhesion molecules, and/or through the 

interaction with laminin, PrP
C
 has been implicated in cell adhesion, recognition and 

differentiation (Graner et al., 2000). Further, interactions with the mature 67 kDa-

receptor (and its 37 kDa-precursor) for laminin, and with glycosamminoglycans, has led 

to the hypothesis that PrP
C
 acts in neuronal differentiation and axon growth (Caughey 

et al., 1994; Rieger et al., 1997; Gauczynski et al., 2001; Hundt et al., 2001; Pan et al., 

2002), and that PrP
C
 binding with the secreted cochaperone stress-inducible protein 1 

promotes neuritogenesis (Lopes et al., 2005). Several observations suggest that PrP
C
 

could play a role also in synaptic structure and function and, consequently, in learning 

and memory consolidation (Hansen et al., 2008), in accord with the synaptic pathology 

that characterizes prion diseases (Jeffrey et al., 2000). 

To properly localize PrP
C
, light and electron microscopy immunocytochemical 

studies, together with the use of PrP–EGFP, have indicated that PrP
C
 is concentrated 
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along axons and in pre-synaptic terminals (Laine et al., 2001), although other studies 

suggest that it preferentially localizes to PSD (Collins et al., 2006; Um et al., 2012). In 

addition, PrP
C
 is subjected to anterograde and retrograde axonal transport (Moya et 

al., 2000; Borchelt et al., 1994) while PrP–EGFP fusion proteins were visualized in what 

appeared to be axonally-transported synaptic vesicles.  

Consistent with a synaptic localization and function, it was found that addition 

of recombinant PrP to cultured neurons induced rapid elaboration of axons and 

dendrites, increased number of synaptic contacts, as well as potentiation of 

acetylcholine release at the neuromuscular junction (Re et al., 2006). 

2- PrPC and signal transduction 

In front of such a multifaceted behavior, the most sensible possibility is that 

PrP
C
 participates in signal transduction centres, as already suggested for other GPI-

anchored proteins (Simons and Ikonen, 1997). Accordingly, several putative partners  

of PrP
C
 (for details see Linden et al., 2008) and different intracellular effectors have 

been proposed, including Fyn, a member of the Src family of tyrosine kinases (SFK), 

mitogen-activated kinases, extracellular regulated kinases 1/2 (ERK1/2), Akt, and PKA. 

For example, perturbation of the ERK1/2 signalling pathways has been reported 

following ischemic challenge in PrP-KO brains with respect to the WT counterparts, 

with increased post-ischemic caspase-3 activation, and exacerbation of neuronal 

damage (Spudich et al., 2005; Weise et al., 2006). 

However, multiple are the indications that focus on Fyn tyrosine kinase (highly 

expressed in neurons) as the preferential downstream effector of PrP
C
 in the 

regulation of key processes, ranging from embryogenesis and neuritogenesis to, at 

large, neuroprotective signaling. One example is the antibody-mediated cross-linking 

of PrP
C
 (in 1C11 cell line) that, converging to ERK1/2 through Fyn signaling, finally 

modulates cell survival (Mouillet-Richard et al., 2000). Using the same experimental 

cell model,  antibody ligation of PrP
C
 also resulted in the Fyn-dependent activation of 

NADPH oxidase (Schneider et al., 2003), ultimately generating ROS-mediated 

downstream signalling (Pradines et al., 2009). Likewise, a PrP
C
-dependent activation of 

Fyn (Kanaani et al., 2005; Santuccione et al., 2005), and ERK1/2 (but also PKA) (Chen et 

al., 2003), was documented in other neuronal paradigms (Toni et al., 2006) and non-

neuronal cells (Jurkat and T cells; Stuermer et al., 2004). 
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1.3 INTRACELLULAR CALCIUM HOMEOSTASIS 

Because the present Ph.D. thesis is intimately releted to Ca
2+

 signals, the PrP
C
-

Ca
2+

 connection is now preceded by a brief overview of how Ca
2+

 homeostasis is 

governed in neurons. 

1.3.1 Calcium homeostasis and signaling 

Ca
2+

 is the most important carrier of biological signals in cells, capable to convey 

messages to a wide range of key processes, which span from the survival to the death 

of the cell once the control of Ca
2+

 homeostasis is disrupted. At resting condition (Fig. 

5), the cytosolic free Ca
2+

 concentration ([Ca
2+

]cyt) is about 10
-7

 M, which is about ten 

thousand times less than the extracellular concentration of the ion. Elevation of 

[Ca
2+

]cyt (>100 nM) - achieved by activating external Ca
2+

 entry or by discharging Ca
2+

 

stores as illustrated in Fig. 5 - represents therefore a powerful signal that can control 

both short term (contractile, secretory, or metabolic responses) and long term 

(regulation of transcription, growth, and cell division) processes (Berridge et al., 2003). 

However, by exploiting different means (pumps and carriers, see Fig. 5) the cell 

immediately removes Ca
2+

 signals and restores basal [Ca
2+

]cyt. Thus, at any moment in 

time, the level of [Ca
2+

]cyt is tightly and finely tuned.  

In neurons, external Ca
2+

 entry is mediated by PM channels named voltage (VGCC)-, 

or ligand (e.g., glutamate)–gated, or store-operated (SOCC), Ca
2+

 channels. Also, 

stimulation of G protein-coupled receptors (e.g., metabotropic glutamate receptors, 

mGluRs) leads to increased [Ca
2+

]cyt by generating inositol-1,4,5- trisphosphate (IP3) 

that binds to the IP3-sensitive receptor (IP3R) of the ER membrane to release the 

stored Ca
2+

. Instead, the ryanodine receptor (RyR), which is Ca
2+

-sensitive, serves to 

amplify Ca
2+

 signals arising from the IP3R, or the extracellular pool, through a 

mechanism termed Ca
2+ 

induced-Ca
2+

 release (CICR) (Berridge, 1998). Cytosolic Ca
2+

 

can also enter into mitochondria, thereby activating Ca
2+

-dependent enzymes 

(dehydrogenases and phosphatases) and ATP production (Duchen, 2000) (Fig. 5). 

During the course of a typical Ca
2+

 transient, the reaction that cause an increase 

in [Ca
2+

]cyt are counteracted by the reactions that cause a decrease in [Ca
2+

]cyt, during 

which time various pumps and exchanger remove Ca
2+

 from cytosol. While sarco-

endoplasmic reticulum Ca
2+

 pump (SERCA) can accumulate Ca
2+

 in the ER lumen, there 

are two main mechanisms that extrude Ca
2+

 out off the cells, the plasma membrane 

Ca
2+

 pump (PMCA) and the Na
+
/Ca

2+
 exchanger (NCX). The diverse PMCA, SERCA and 
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NCX molecular toolkit, enables cells to select the combination of off reactions that 

exactly meats their Ca
2+

-signalling requirements (Berridge et al., 2003). 

 

 

Figure 5. Ca
2+

 homeostasis. Cytosolic Ca
2+

 elevation is induced by a range of stimuli that activate 

external Ca
2+

 entry through various types of channels (voltage-, receptor- or store-gated), or that 

discharge intracellular stores, after formation of the appropriate second messenger activating the ER 

inositol-1,4,5-trisphosphate-sensitive receptor (IP3R) or the ryanodine receptor (RyR). Counterbalancing 

mechanisms then reduce cytosolic Ca
2+

, i.e., plasma membrane and sarco-endoplasmic reticulum 

(SERCA) Ca
2+

 pumps, and the Na
+
/Ca

2+
 exchanger (NCX). Mitochondria can take up Ca

2+
 using the Ca

2+ 

uniporter (MCU), while Ca
2+

 release is accomplished through the mitochondrial NCX and, in the case of 

Ca
2+

 overload, through the opening of the permeability transition pore (PTP) (Syntichaki and 

Tavernarakis, 2003). 

 

Clearly, a multifaced picture arises from all above-described Ca
2+

 fluxes, which 

comprehends the modulation of membrane excitability and enzyme activity, gene 

expression, mitochondrial functions, production of reactive oxygen and nitrogen 

species, and apoptosis in the case of free mitochondrial Ca
2+

 concentration [Ca
2+

]mit 

overload (Berridge et al., 2000). 
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1.3.2 Store-operated calcium entry 

Store-operated Ca
2+

 entry (SOCE) has been discovered well after the external 

Ca
2+

 entry through classical voltage– or ligand- gated channels. Yet, is presently a well 

established mechanism through which depletion of intracellular Ca
2+

 stores leads to 

the opening of SOCC, allowing external Ca
2+

 entry and replenishment of the ER-Ca
2+

 

store. This “new” type of channel was first described in non-neuronal cells (e.g., 

limphocytes), but its importance is now increasingly recognized also in neurons. 

The first model of this process (previously defined capacitative Ca
2+

 entry) was 

proposed by Putney et al. (1993) after observing that SERCA inhibitors (e.g., 

thapsigargin) were inducing external Ca
2+

 entry without involving the typical cell 

surface channel-receptors. After as much as 20 years, SOCE mechanistic details were 

finally unveiled, through the identification (using RNA-interference screens) of two 

protein families: that of ER stromal interaction molecules (STIM) (with STIM1 and 

STIM2 isoforms), and that of the PM Orai proteins (with Orai1-3 isoforms). 

STIM1 and STIM2 are expressed in primary lymphocytes, e.g., T and B-cells, at 

lower levels in many organs, and at appreciable levels also in the central and the 

peripheral nervous system (Williams et al., 2001; Wissenbach et al., 2007; Dziadek and 

Johnstone, 2007). Extensive Nothern blot analyses suggest an ubiquitous expression of 

also Orai1 and Orai3 proteins, and that Orai2 is predominantly expressed in the brain 

(Gwack et al., 2007; Wissenbach et al., 2007). Because of the presence of a single EF-

hand Ca
2+

-binding motif, STIM1 and 2 sense luminal Ca
2+ 

changes albeit with different 

sensitivity, entailing a role in, and/or a different contribution to, SOCE activation by the 

two isoforms. Regarding STIM1, whose EF-hand binds Ca
2+

 with low affinity (ideal to 

sense substantial changes of ER Ca
2+

 concentration, [Ca
2+

]er), the protein is likely 

uniformly distributed in the ER membrane at resting conditions (Fig. 6, left panel), 

whereas it oligomerizes upon Ca
2+

 depletion in membrane punctae iuxtaposed to the 

PM. Eventually, this membrane apposition leads to the Orai-pore opening, possibly 

through a protein-protein interaction (Fig. 6, right panel) (Liou et al., 2005; Zhang et 

al., 2005). Instead, the EF hand of STIM2 is sensitive to mild reductions of [Ca
2+

]er, so 

that STIM2 could form “punctae” already at resting [Ca
2+

]er. 

Given the mentioned wide expression of STIM and Orai proteins, SOCE is a 

process probably occurring in all cells, although its relevance in neurons has been 

disputed in light of the redundant VGCC presence in these cells. However, it has been 

proposed that, once activated, STIM1 could inhibit VGCC (Wang et al., 2010; Park et 

al., 2010) nullifying, in this way, the unnecessary promotion of two parallel means of 
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external Ca
2+

 entry. A corollary information regarding SOCE machinery is the recent 

proposition by Lalonde and coworkers (2014) that, in addition to mantaining filled ER-

Ca
2+

 stores, active neuronal STIM regulates also gene transcription. 

 

STIM1/2

STIM1/2

Orai1/2/3Orai1/2/3

ERER

 

Figure 6. Molecular coupling between STIM and Orai in the “SOCE machinery”. At resting conditions 

(left panel), STIM proteins are uniformely distributed in the ER membrane, whereas, upon ER Ca
2+

 

depletion (right panel), they oligomerize into punctae in domains very close to the PM, where they 

activate Orai proteins, representing the pore of the channel. In this way Ca
2+

 (violet circles) enters into 

the cell through SOCC to replenish ER-Ca
2+

 stores (modified from Cahalan, 2010). 

 

The mechanism of SOCE is under the tight control of post-translational 

modifications of its machinery components. In particular, the function of STIM1 has 

been reported to be influenced by glycosylation and phosphorylation processes. In 

fact, STIM1 harbours several potential target residues for different kinases in its 

cytosolic C-terminus domain (Olsen et al., 2006). Accordingly, Guisado and coworkers 

(2010) have demonstrated the phosphorylation of Ser519, 575 and 628 by ERK1/2 (in 

HEK 293T cells), and Lopez et al. (2012) the phosphorylation of Tyrosines (Tyr) by SFK 

members occurring upon Ca
2+

 store depletion. The latter partecipation was confirmed 

by others who demonstrated a reduction of SOCE by the tyrosine kinase inhibitors 

genistein, or PP2, suggesting that the activity of tyrosine kinases on STIM1 positively 

regulates SOCE (Zuo et al., 2011). 
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1.3.3 Glutamate-mediated calcium fluxes 

The impact of glutamate in the mammalian brain and spinal cord has been 

known since the 1950s (Hayashi 1954; Curtis and Watkins 1960), within the notion that 

glutamate is the principal excitatory transmitter of the vertebrates’ nervous system. It 

follows that the level of extracellular glutamate must be tightly regulated, and indeed 

there are multiple processes regulating its release into, and re-uptake from, the 

synaptic cleft. In presynaptic terminals, Ca
2+

 influx (thorugh VGCC) triggers the release 

of glutamate stored in vescicles, allowing the binding of glutamate to postsynaptic 

receptors and the generation of excitatory postsynaptic potentials. 

Although glutamate is crucial for neurons to communicate, the overactivation 

of glutamate receptors (GluRs) - and the consequent Ca
2+

 overload - exerts dangerous 

effects that may provoke neuronal damage (Rothman et al., 1987). Understandibly, 

glutamate could be implicated in acute and chronic CNS-degenerative disorders, as 

suggested (Berridge, 2014). 

Mammalian GluRs are classified on the basis of their action, and can be divided 

into two broad categories: ionotropic (iGluRs) and metabotropic (mGluRs). iGluRs are 

non selective cationic channels that open following a conformational change 

subsequent to glutamate binding. Pharmacological studies have documented that 

iGluRs can be discriminated upon the response to the following agonists: N-methyl-D-

aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), 

and kainate. Conversely, mGluRs belong to the G protein-coupled receptor family, 

which activate, or inhibit, the formation of second messengers (Fig. 7). 

 

 

Figure 7. Glutamate receptors. Once bound to glutamate, iGluRs (in blue, green and violet) move cations 

(Ca
2+

, Na
+
) into cells, whereas mGluRs (in orange) activate the formation of second messengers (modified 

from Tom Salt’s Lab home page). 
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The NMDA-receptor (NMDA-R) has a relatively higher permeability and affinity 

(EC50, 1 μM) to Ca
2+

than the other iGluRs, although it is also permeable to Na
+
. It can 

be antagonised by a growing number of competitive and non-competitive inhibitors, it 

is blocked by Mg
2+

 in a voltage-dependent manner (Johnson and Ascher, 1990), and 

requires glycine as co-agonist. It has also modulatory sites for polyamines, reducing 

agents, Zn
2+

 and H
+
 (Niciu et al., 2012). Molecular biology techniques have revealed 

that NMDA-Rs are composed of two obligatory NR1 subunits that coassemble with two 

NR2 subunits into a tetrameric complex. Four different genes coding for NR2 subunit 

(NR2A-D) are present in the mammalian brain. It is thought that neonatal NMDA-Rs 

comprise mainly the B-type subunit, while adult synapses preferentially harbour the A-

type subunit (Cull-Candy and Lezskiewicz, 2004), likely reflecting the functional 

properties of the NMDA-R at different times of development. Also, the presence of the 

NR2D subunit impacts slower kinetic properties to the channel than the other subunits 

(Cull-Candy and Lezskiewicz, 2004), while the NR2C subunit reduces the sensitivity to 

Mg
2+

(Candy et al., 2001). 

As to AMPA-(AMPA-R) and kainate-(kainate-R) receptors, originally classified by 

their activation by quisqualate and kainate, four subunits (GluR1-4) belong to the 

former, and five (GluR5-7 and KA1-2) to the latter, receptor. Both these subunit groups 

can form homomeric or heteromeric assemblies (with other members of the groups). 

The most notable modification in the function of AMPA-R is provided by the Ca
2+

-

impermeable GluR2 subunit (Dingledine et al., 1999). 

As expected, iGluRs are tightly controlled by kinases (Wang et al., 1994a; Wang 

et al., 1994b; Knapp et al., 1990) whose action has important consequences for 

neuronal functions. For example, the phosphorylation at Ser845 of the GluR1 subunit 

of AMPA-R increases the channel open probability (Knapp et al., 1990), while the 

action of CAMKII and PKC is implicated in long-term potentiation (LTP). Also the 

properties of NMDA-Rs are controlled by phosphorylation. While the effect of PKA and 

CAMKII is not completely understood, the tyrosine phosphorylation by SFK members, 

in particular by Fyn, is known to play a role in LTP induction and to enhance synaptic 

excitatory postsynaptic currents (Lu et al., 1998). 

mGluRs are divided into three groups according to the sensitivity to agonist 

molecules and to the coupling to signal transduction mechanisms. Group I comprises 

mGluR1 and mGluR5, which are coupled to the phosphoinositide hydrolysis and are 

selectively activated by 3,5-dihydroxyphenylglycine (DHPG); group II comprises 

mGluR2 and mGluR3, which inhibit adenylate cyclase and activated by 1-

aminocyclopentane-1,3-dicarboxylic acid (ACPD); group III consists of mGluR4 and 
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mGluR6-8, which are also negatively coupled to adenylate cyclase and are activated by 

2-amino-4-phosphobutyrate (Ferraguti and Shigemoto, 2006). 

1.3.4 PrPC and calcium 

To possibly explain the multiple roles attributed to PrP
C
, it has been proposed 

that PrP
C
 controls Ca

2+
 homeostasis (Sorgato and Bertoli, 2009). In fact, like PrP

C
, Ca

2+
 

controls a plethora of cell functions, and is both beneficial and detrimental to the cell 

life. 

Many past studies have addressed the connection of PrP
C
/PrP

Sc
 to Ca

2+
 

dyshomeostasis. For example, Prusiner and coworkers reported a marked reduction of 

bradikynin-induced Ca
2+

 responses in neuronal cell lines chronically infected with 

prions, which was linked to the downregulation of a VGCC sub-type (Kristensson et al., 

1993; Wong et al., 1996). Other studies have highlited the alteration of Ca
2+ 

homeostasis in animal and cell models of prion infection, with impairment of Ca
2+

-

dependent neuronal excitability, LTP and synaptic plasticity (reviewed in Peggion et al., 

2011). 

Similar disturbances were reported to occur in PrP-KO hippocampal slices, e.g., 

the significantly weakened LTP and reduced slow after hyperpolarization [with respect 

to wild type (WT) neurons] (Mallucci et al., 2002; Powell et al., 2008), probably arising 

from compromised iGluRs and Ca
2+

-activated K
+ 

channels, respectively, with respect to 

the WT counterpart. Instead, Zamponi and coworkers (2008) have demonstrated that 

PrP
C
 downregulates the activity of the NMDA-R by physically interacting with the 2D 

regulatory subunit (Fig. 8). Thus, in the absence of PrP
C
, the large influx of Ca

2+
 and Na

+
 

would account not only for the augmented excitability of PrP-KO neurons, but also 

explain the increased vulnerability of PrP-KO mice to NMDA- and kainate-induced 

excitotoxicity (Khosravani et al., 2008; Rangel et al., 2007), epileptic seizures (Walz et 

al., 1999) and ischemic brain injury (Spudich et al., 2005). 

The PrP
C
-dependent modulation of Ca

2+
 homeostasis have been investigated 

also in our laboratory, using a Ca
2+

-sensitive probe targeted to specific domains of WT 

and PrP-KO primary cerebellar granule neurons (CGN). In particular, it was found that, 

after SOCE, PrP-KO CGN displayed a dramatic increased Ca
2+ 

transients near the PM 

and a reduced steady-state ER Ca
2+

 levels with respect to WT neurons and that the 

latter event could be likely attributed to the decreased expression of PMCA and SERCA 

pumps (Lazzari et al., 2011). 
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Figure 8. NMDA-R inhibition by PrP
C
. In WT neurons (left) PrP

C
 silences the NR2D subunit of the NMDA-R 

preventing Ca
2+

 entry, while in PrP-KO neurons (right) the NMDA-R opens more readily leading to 

massive Ca
2+

 entry under conditions of excessive glutamate presence (modified from JCB.rupress.org). 

 

1.4 ALZHEIMER’S DISEASE 

AD is a progressive neurodegenerative disorder characterized by an age-

dependent loss of memory and cognitive impairment. It can be classified into two 

forms: sporadic, which accounts for the vast majority of cases (with aging representing 

the main risk factor), and familial, caused by autosomal dominant gene mutations. 

Both types of AD share clinical and neuropathological features, including neuritic 

alterations, reactive gliosis and the presence of two distinct structures, the 

intracellular “tangles” and the extracellular amyloid plaques (Eckert et al., 2001). 

Tangles are abnormal fibres composed by the hyperphosphorylated tau protein, while 

amyloid plaques are composed primarily by the amyloid beta protein (Abeta), which is 

a predominantly 40-42 aa-long peptide derived from the proteolytic processing of the 

amyloid precursor protein (APP). 

1.4.1 Generation of Abeta fragments 

Abeta is generated by the cleveage of APP, a glycoprotein ubiquitously present 

in human tissues and localized to the PM and to the membrane of organelles, such as 

the ER and the Golgi apparatus. Curiously, APP was also reported in the outer 

(Anandatheerthavarada et al., 2003; Devi et al., 2006) and the inner (Manczac et al., 

2006) mitochondrial membranes. 

APP can undergo two proteolytic paths, named non-amyloidogenic and 

amyloidogenic. In the former, the first cut is catalized by an α-secretase (belonging to 

the ADAM family of disintegrin and metelloprotease), which, by cleaving APP within 
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the Abeta aa sequence, forms the small membrane-anchored C83 fragment and the 

soluble (s) sAPPα. The C83 fragment is subsequently cleaved by the γ-secretase, a 

multimeric complex made of (PS1 and PS2) presenilin proteins and nicastrin (Edbauer 

et al., 2003), to form the P3 fragment and the APP intracellular domain (AICD). In the 

amyloidogenic pathway, first the activity of the β-secretase and then of the γ-secretase 

generate the so-called Abeta fragments. The β-secretase acts at APP’s N-terminus 

forming the 99 aa fragment C99 and sAPPβ. C99 is subsequently cleaved by the γ-

secretase, finally yielding  the Abeta fragment and AICD (Selkoe, 2000) (Fig. 9). 

 

 

Figure 9. The non-amyloidogenic and amyloidogenic pathways of APP processing. APP is firstly cleaved 

by either α- or β-secretase. Cleavage by α-secretase generates sAPPα and C83 (on the left), while 

cleavage by β-secretase generates sAPPβ and C99 (on the right). C83 and C99 are then cleaved by the γ-

secretase generating AICD and Abeta, or the P3 fragment, involved in the amyloidogenic and non-

amyloidogenic pathway respectively (American Society for Clinical investigation). 

 

The amyloidogenic cleveage of APP results in several Abeta isoforms. Of these, 

Abeta 40 (Aβ1-40) and Abeta 42 (Aβ1-42) are the most commonly found. Aβ1-42 is the 

fragment that aggregates more rapidly - in fact is the one predominantly found in the 

amyloid plaques - given its random coil-rich structure prone to form β sheet-rich 

oligomers of increasing mass (El-Agnaf et al., 2000; Walsh and Selkoe, 2007; Klein, 

2002). However, recent analyses using size-exclusion chromatography, gel 

electrophoresis, and AFM have demonstrated that there are several stable types of 

soluble oligomers: naturally occurring soluble dimers or trimers, Abeta-derived 

diffusible ligands, Abeta globulomers, and protofibrils (Yu et al., 2009). Increasing 
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evidence suggests that, instead of amyloid deposits, the soluble oligomers are the true 

cause to synaptic dysfunction and neuronal degeneration (Walsh and Selkoe, 2007). 

Accordingly, it was reported that the naturally secreted sodium dodecyl-sulphate 

(SDS)-stable low mass oligomers (dimers, trimers, or tetramers), but not Abeta 

monomers or larger aggregates, inhibit LTP and cause loss of dendritic spines and 

synapses (Sivanesan et al., 2013). In addition, each low mass oligomer could act at 

different times and bring differential consequences on neuronal survival, by affecting, 

for example, kinases and phosphatases already recognised as intracellular effectors of 

Abeta (Zhu et al., 2003). Consequent to this hypothesis, Abeta oligomers isolated 

directly from human AD brains were found to exert equal toxicity as syntethic Abeta 

forms (Shankar et al., 2008). 

Apparently, Abeta oligomers may greatly increase vulnerability to oxidative and 

metabolic stress. Indeed, neurons from AD patients exhibit abnormally high amounts 

of oxidized proteins, lipids and DNA (Butterfield et al., 2001), which - one or the other - 

impair the function of several proteins, e.g., ion-motive ATPases, glucose and 

glutamate transporters, but may also impair G-binding proteins (Mattson, 1997). By 

disturbing cellular ion homeostasis and energy metabolism, Abeta oligomers can also 

render neurons vulnerable to excitotoxicity and apoptosis (Mattson, 2004; Li et al., 

2009). 

As to the physiological role of these fragments that - it is good to remind - are 

generated by a double enzymatic action, there is emerging evidence that they are 

involved in the regulation of neuronal (Ca
2+

 and K
+
) channels (Ramsden et al., 2001; 

Plant et al., 2006). These findings, therefore, suggest that Abetas become toxic only 

when their level abnormally increases in the extracellular space, possibly as a result of 

an imbalance between production and clearance. 

1.4.2 Abeta and calcium 

It has been claimed that Abeta impinges, directly or indirectly, on Ca
2+

 signaling 

through (at least) three different mechanisms: (i), formation of PM pores; (ii), 

disruption of the membrane lipid integrity; (iii), a direct action on ion channels. The 

pore-forming mechanism for Abeta has been supported by studies employing AFM (Lin 

et al., 2001), electron microscopy (Lashuel et al., 2002; Lashuel et al., 2003), and high 

resolution transmission electron microscopy, which have detected Abeta pores 

distributed in the cell membrane of post-mortem neurons of AD patients (Inoue, 

2008). Concerning the second mechanism, electron microscopy techniques have 
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shown that Abeta oligomers interact with several types of membrane lipids (Decout et 

al., 1998; Terzi et al., 1997; Avdulov et al., 1997), while fluorescence spectroscopy has 

revealed that Abeta induced substantial changes in synaptic membrane fluidity by 

affecting both the bulk lipid milieu and the overall lipid architecture. As to the third 

mechanism, it is supposed to represent one of the earliest and primary Abeta-caused 

adverse events. Already in 1989, Khachaturian has proposed that substantial changes 

in Ca
2+

 homeostasis could provide the common pathway for aging and AD-associated 

neuropathological changes. 

Recently, memantine has been approved by the FDA for treating patients with 

moderate-to-severe AD. Because memantine antagonizes the NMDA-R, its approved 

application illustrates the potential involvement of altered Ca
2+

 signalling in AD clinical 

manifestations. More precisely, Abeta oligomers apparently interact with various Ca
2+

-

permeable channels, including most VGCC, nicotinic acetilcholine channels, iGluRs, 

dopamine and serotonin receptors and intracellular IP3Rs (Rovira et al., 2002; 

Stutzmann, 2005). More subtle interactions of Abeta with Ca
2+

-regulating G protein-

coupled receptors have also been uncovered, given that incubation with Abeta 

oligomers enhances both the expression of mGluR5, and the Ca
2+

 response to DHPG 

(Casley et al., 2009). 

1.4.3 Abeta and PrPC 

An intringuing connection between PrP
C
 and AD is the proposition that PrP

C
 

acts as a high affinity receptor for Aβ1-42 soluble oligomers and mediates their 

neurotoxic effects into neurons (Fig. 10). This link was found by Strittmatter and 

coworkers (Lauren et al., 2009), demonstrating that Aβ1-42 oligomers bind to PrP
C
 with 

nanomolar affinity and that this docking (which accounts for approximately 50% of the 

membrane-bound Abeta) inhibits LTP in murine hippocampal slices. This phenotype, 

which is absent in PrP-KO slices, can be rescued by adding, for example, a monoclonal 

antibody (6D11) against PrP
C
 residues 93-109, the putative Aβ1-42 binding site (Lauren 

et al., 2009). Interestingly, it was also found that PrP
C
 binds others oligomers made of 

misfolded, β-enriched proteins (Fig. 10) (Resenberger et al., 2011), thus placing PrP
C
 at 

the center of different neurodegenerative disorders.  

Others have confirmed that Aβ1-42 oligomers bind to the central region of PrP
C
 

with high affinity (Balducci et al., 2010; Calella et al., 2010), but the notion that PrP
C
 is 

required for Abeta-mediated cognitive impairment and cell death has been strongly 

questioned, with reports favouring (Chen et al., 2010; Chung et al., 2010; Gimbel et al., 
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2010), or denying (Kessels et al., 2010; Balducci et al., 2010), this hypothesis. A likely 

explanation for the different observations may reside in the used cell/animal AD 

model, and in administred Abeta preparations (Yu et al., 2009). 

 

 

Figure 10. PrP
C
 as a receptor for Abeta oligomers and PrP

Sc
. PrP

C
 is proposed to act as a high affinity 

surface binding partner for Abeta (on the left) and PrP
Sc

 (on the right) oligomers, thereby transducing 

their toxic signal into neurons (modified from www.sciencedirect.com). 

 

Fyn has been recognized as an important partner in the neuronal impairment 

induced by PrP
C
-Abeta complexes. Indeed, Um et al. (2012) have demonstrated that 

soluble Abeta assemblies, synthetic or derived from AD brains, interact with PrP
C
 to 

activate Fyn that, in turn, phosphorylates the NR2B subunit of the NMDA-R. Eventually 

this causes the displacement of the NMDA-R from the PM, provokes loss of dendritic 

spines and alters the Ca
2+

 signaling (Um et al., 2012)(Fig. 11). 
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Figure 11. Model for Abeta oligomer-induced synaptic dysfunctions. The binding between PrP
C
 and 

Abeta leads to the activation of Fyn and to the consequent NMDA-R redistribution, Ca
2+ 

signaling 

alterations, spine loss and death in neurons, and AD pathology in mice (modified from 

medicine.yale.edu). 

 

The location of PrP
C
 and Fyn to the opposite sides of the PM impedes that the 

two proteins interact directly. Indeed, proteomic analysis of PSD, which is enriched in 

both PrP
C
 and Fyn, and immunoprecipitation assays, have identified mGluR5 as the 

structural and functional link between PrP
C
 and Fyn (Um et al., 2013). 
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2 AIM OF THE STUDY 

The issue at the center of the present Ph.D. thesis has dealt with the role 

exerted by PrP
C
 in neurons. In spite of long standing efforts and the proposed plethora 

of functions, what PrP
C
 effectively does in cells is still largely undefined. 

The work focused on the possible control of Ca
2+

 homeostasis by PrP
C
, using 

primary neuronal cultures expressing, or not PrP
C
, and Ca

2+
-sensitive probes targeted 

to specific cell domains. In particular, the first part of the study dealt with local Ca
2+

 

fluxes originating from SOCE, while the second part has analyzed Ca
2+

 movements 

triggered by the opening of iGluRs. In addition, effort was given to identifying proteins 

downhill of PrP
C
 that could aid PrP

C
 in the control of Ca

2+
 homeostasis.  

In light of the proposition that PrP
C
 acts as a binding partner for misfolded 

aggregates, both the first and the second part of the thesis have analyzed whether 

soluble Aβ1-42 oligomers were capable to impair the putative control of PrP
C
 over 

neuronal Ca
2+

 fluxes. 
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3 MATERIALS AND METHODS 

3.1 ANIMALS 

We used transgenic (Tg46, have indicated with PrP-Tg) and PrP-KO (line F10) 

mice, kindly provided by the M.R.C. Prion Unit, London, UK. The F10 PrP-KO mice was 

generated by crossing PrP
0/0 

mice of the Zurich I line with WT FVB mice, after which 

PrP
+/-

 were crossed with each other to obtain a PrP-KO progeny with an almost pure 

(>99%) FVB genotype. Instead of WT FVB mice, in this thesis the PrP-Tg line was used 

as control, given that these mice were obtained by reintroducing the PrP transgene 

into the PrP-KO genotype. 

All aspects of animal care and experimentation were performed in compliance 

with European and Italian (D.L. 116/92) laws concerning the care and use of laboratory 

animals. The authors’ Institution has been acknowledged by the Italian Ministry of 

Health, and by the Ethical Committee of the University of Padova, for the use of mice 

for experimental purposes. 

3.2 PRIMARY CULTURES OF CEREBELLAR GRANULE NEURONS 

Each culture was prepared by combining cerebella obtained from 7 day-old 

mice, killed by decapitation after anesthesia with methoxyflurane. Cerebella, deprived 

from meningeal layers and blood vessels, were minced in an ice-cold buffer [124 mM 

NaCl, 5.4 mM KCl, 1 mM NaH2PO4, 0.5 mM MgSO4, 3.6 mM dextrose, 0.3% (w/v) 

bovine serum albumin (BSA), 25 mM HEPES/KOH (pH 7.4)], and were then added with 

trypsin (0.8 mg/mL) and DNAse, whose activity was stopped by adding in two steps 

suitable inhibitors (trypsin inhibitor, Sigma; deoxy-ribonuclease I, Roche Corporation). 

After sedimenting the cell debris, the dissociated CGN-containing supernatant was 

added with an equal volume of the above buffer (containing also 1.2 mM MgSO4 and 

1.4 mM CaCl2) and centrifuged (180 g, 10 min). Finally, the pellet was gently 

resuspended in the Minimum Essential Medium Eagle (Sigma), supplemented with 

10% heat-inactivated foetal bovine serum (FBS; Euroclone), 2 mM L-glutamine (Gibco), 

0.1 mg/mL gentamycin (Gibco), and KCl (25 mM). 

After seeding cells at a density of: (i), 9 x 10
5
 (onto poly-L-lysine-coated 13-mm 

coverslips) for luminometer assays; (ii), 6 x 10
5
 (onto poly-L-lysine-coated 13-mm 

coverslips) for immunofluorescence assays; (iii), 3 x 10
6
 (onto 35-mm poly-L-lysine-

coated plates) for biochemical assays; (iv), 1.2 x 10
6
 (onto 35-mm poly-L-lysine-coated 

plates) for fluorescence and transmission electron microscopy assays, CGN were 
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cultured at 37 °C and 5% CO2 atmosphere. Lentiviral particles (see below) were added 

to cells 24 h after plating, and after additional 24 h cytosine arabinoside (0.04 mM, 

Sigma) was added to impede proliferation of non-neural cells. After further 48 h, CGN 

were used for experiments at (at least) >97% purity, as proved by the 

immunocytochemical test for the presence of astrocytes (Lazzari et al., 2011). 

3.3 CONSTRUCTION OF LENTIVIRAL VECTORS AND CELL INFECTION 

To follow Ca
2+

 fluctuations in specific CGN compartments, we exploited a 

lentiviral expression system to transduce cells with chimeric constructs encoding the 

Ca
2+

-probe aequorin (AEQ) tagged with the influenza virus hemagglutinin (HA) epitope, 

and linked to sequences addressing the protein to the cytosolic domains proximal to 

the PM (AEQpm, Marsault et al., 1997), the cytosol (AEQcyt, Brini et al., 1995), the ER 

lumen (AEQer, Montero et al., 1995), and the mitochondrial matrix (AEQmit, Rizzuto et 

al., 1992). Lentiviral vectors for AEQpm, AEQer and AEQmit were generated as 

described (Lim et al., 2008; Lazzari et al., 2011), using an AEQ mutant with reduced 

Ca
2+

 affinity that allows measurements of [Ca
2+

] >10 µM (Kendall et al., 1992). 

Conversely, to detect variations of cytosolic [Ca
2+

], a chimeric construct of WT 

AEQ fused to the monomeric red fluorescent protein (mRFP) was used. To generate 

the AEQcyt lentiviral vector, two PCR reactions were performed. In the first PCR, the 

mRFP sequence was amplified without the stop codon using the pCDNA3-mRFP 

plasmid (Clontech) as template, and the following primers: 

XbaI-mRFP (forward, CGTCTAGAATGGCCTCCTCCGAGGAC)  

mRFP-BglII (reverse, GAGGCGCCGGTGGAGTGGAGATCTCG) 

In the second PCR, the HA-AEQ cassette was amplified using the pCDNA1-

AEQcyt plasmid (Brini et al., 1995) as template, and the following primers: 

BglII-AEQ (forward, CGAGATCTCGAGCTCAAGCTTTATGA)  

AEQ-SalI (reverse, GGTATCGATAAGCTTGATGTCGACGC). 

PCR products were digested with XbaI and BglII for mRFP and with BglII and SalI 

for HA-AEQ, and the resulting fragments were assembled into the XbaI- and SalI-

digested backbone of the lentiviral vector pRRLsin.PPTs.hCMV.GFP.pre, in a three-step 

ligation reaction. 
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Lentiviral particles were produced as described in Follenzi and Naldini (2002). 

Briefly, HEK293T packaging cells (15 x 10
6
 cells in 150 mm culture plates), cultured in 

Dulbecco’s modified Eagle’s medium (Sigma) supplemented with 10% FBS, 2 mM L-

glutamine, 40 lg/mL penicillin/streptomycin (Euroclone), were co-transfected (24 h 

after plating) with plasmids pMDLg/pRRE, pMD2.VSVG, pRSV-Rev and the desidered 

pLV-AEQ construct, by means of the calcium-phosphate transfection method. After 10 

h, the transfection medium was replaced with fresh culture medium, and cells were 

grown for 72 h, after which the culture medium was collected. Viral particles were 

harvested by ultracentrifugation (50,000 g, 2 h), resuspended in 0.2 mL of phosphate 

buffer saline (PBS), and stored at -80 °C until use. 

3.4 AEQUORIN-BASED CALCIUM MEASUREMENTS 

AEQ (isolated from the luminescent jellyfish Aequorea Victoria) is a 189 aa-long 

protein containing three high affinity Ca
2+

 binding sites (EF-hand type) and a binding 

site for its prostetic group, coelenterazine. Upon Ca
2+

 binding, the protein undergoes a 

conformational change that triggers the oxidation of coelenterazine to coelenteramide 

with emission of light (λmax = 469nm). In our experiments, apo-AEQs were 

reconstituted into the active forms by adding coelenterazine just before Ca
2+

 

measurements. 

All experiments were performed by means of a computer-assisted luminometer 

equipped with a perfusion system. Depending on the type of measurement, neurons 

were treated as described below. All experiments ended by lysing cells with digitonin 

(100 M, Sigma) in a hypotonic Ca
2+

-rich solution (10 mM CaCl2 in H2O) to discharge 

the remaining AEQ pool. The light signal was digitalized and stored for subsequent 

analyses. Luminescence data were calibrated off-line into [Ca
2+

] values, using a 

computer algorithm based on the Ca
2+

 response curve of AEQ (Brini et al., 1995). 

3.4.1 Calcium transients after activation of SOCE or VGCC 

To measuring Ca
2+

 movements elicited by SOCE with AEQpm, AEQcyt and 

AEQmit, CGN were incubated (1 h, 37 °C, 5% CO2) in a modified Krebs-Ringer buffer 

[(KRB, 125 mM NaCl, 5 mM KCl, 1 mM Na3PO4, 1 mM MgSO4, 5.5 mM glucose, 20 mM 

HEPES (pH 7.4)] supplemented with EGTA (100 µM, to deplete Ca
2+ 

from cells), and 

coelenterazine (5 µM, Santa Cruz). After transferring the cell-containing coverslip to the 

thermostatted chamber of the luminometer, experiments started by perfusing cells 

with KRB, first containing EGTA (100 µM), then CaCl2 (1 mM). To monitor Ca
2+

 fluxes 



Materials and methods 

 

 

28 

elicited by VGCC, CGN were perfused with different [K
+
]-containing KRB buffers (see 

text) (keeping the final total [K
+
 plus Na

+
] at 130 mM) and CaCl2 (1 mM). If needed, 

VGCC inhibitors [nifedipine (10 µM in 0.1% dimethylsulfoxide (DMSO), Sigma) or NiCl2 

(50 µM or 1 mM, Sigma)], or the SFK inhibitor PP2 (10 µM in 0.04% DMSO, Tocris 

Bioscience), were added before activating VGCC and/or SOCE. When measuring 

[Ca
2+

]er, CGN were washed three times with KRB supplemented with EGTA (1 mM), left 

10 min at 37 °C (5% CO2), and incubated (1 h, 4 °C) in KRB supplemented with 

ionomycin (5 µM, Sigma), EGTA (500 µM) and a modified coelenterazine 

(coelenterazine n, 5 µM, Sigma), whose reduced Ca
2+

 affinity allows detection of high 

[Ca
2+

]er. After transferring the coverslip to the luminometer chamber, experiments 

started by perfusing cells with KRB containing (in sequence): EGTA (500 µM), (2 min); 

2% (w/v) BSA and EGTA (1 mM) (3 min); EGTA (500 µM) (2 min); CaCl2 (1 mM). It is to 

be noted that, despite few different steps, the procedure to deplete ER Ca
2+

 store 

ensured that CGN were subjected to similar conditions to those employed when 

measuring [Ca
2+

] in the other tested domains before SOCE. 

3.4.2 Calcium transients after stimulating GluRs 

To measuring Ca
2+

 transients elicited by active iGluRs, or mGluRs, CGN were 

incubated (1 h, 37 °C, 5% CO2) in KRB supplemented with EGTA (100 µM) and 

coelenterazine (5 µM). After transferring the coverslips to the thermostatted chamber 

of the luminometer, experiments started by perfusing cells with KRB, first containing 

EGTA (100 µM), then CaCl2 (1 mM), and finally with Mg
2+

-free KRB containing CaCl2 (1 

mM), glutamate (100 μM, Sigma) and glycine (10 μM, Sigma), or NMDA (50 μM, Sigma) 

plus glycine, to activate all glutamate receptors, or only the NMDA-R, respectively. To 

stimulate specifically AMPA/kainate/mGluRs, CGN were first perfused with KRB 

containing CaCl2 (1 mM) and then with KRB containing CaCl2 (1 mM), AMPA (100 μM, 

Tocris Bioscience) kainate (30 μM, Tocris Bioscience), or the mGluR1,5 agonist DHPG 

(100 μM, Tocris Bioscience), respectively. In some experiments AEQcyt and AEQmit 

were reconstituted in KRB containing CaCl2 (1 mM) but no difference was observed in 

Ca
2+

 transients with respect to when the protocol to reconstitute AEQpm in EGTA-

containing KRB was used. To inhibit RyR, ryanodine (50 μM in 0.2% DMSO, Tocris 

Bioscience) was added before (during the perfusion step with the Mg
2+

-free, and CaCl2 

1 mM-containing KRB) and during glutamate addition. 
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3.5 ABETA PEPTIDES 

3.5.1 Preparation and characterization of Aβ1-42 peptides 

Chemically synthetized human Aβ1-42 peptides (Keck Laboratories, U.S.A.) were 

dissolved (1 mg/mL), and incubated (1 h, RT), in 1,1,1,3,3,3-hexafluoro-2-propanol. The 

suspension was divided into solvent-free (by evaporation) aliquots (each with about 50 

g of peptide) and stored (at -80 °C). Just before use, peptides were dissolved in 50 

L of 20 mM NaOH, sonicated (15 min on ice in a bath sonicator), diluted (with PBS to 

a final volume of 250 L), and centrifuged (14,000 g, 5 min) to remove insoluble 

aggregates. After determining their concentration spectrophotometrically (at 214 nm), 

Aβ1-42 peptides were aged to form oligomers (1 h, 37 °C), and then administered to CGN 

during the AEQ reconstitution step (see above) at a final concentration of 5 M of 

monomer equivalent. 

To characterize Aβ1-42 oligomerised state by Western blot (WB), ∼300 ng 

samples, collected both before and after each oligomerization process, were diluted in 

a sample buffer containing 12% SDS (w/v), 6% mercaptoethanol (v/v), 30% glycerol 

(w/v), 0.05% Coomassie blue, 150 mM Tris/HCl (pH 7.0), and run in a (6M) urea-

containing tricine gel (16% (w/v) acrylamide) (Schägger, 2006). Proteins were then 

electro-blotted onto polyvinylidene fluoride (PVDF) membranes (0.22 µm pore size, 

Millipore Corporation, Bedford, MA, USA), and membranes were incubated first (1 h, 

RT) with a blocking solution containing non-fat dry milk (5% (w/v) (Bio-Rad 

Laboratories, Hercules, CA, USA) diluted in Tris-buffered saline (TBS) added with 0.02% 

(w/v) Tween-20 (TBS-T 0.02%), and then (over-night, 4 °C) with a monoclonal (m) 

antibody (Ab), see below) to Aβ1-42. After three 10 min-washes with TBS-T 0.02%, 

membranes were treated (1 h, RT) with a horseradish peroxidase-conjugated anti-

mouse IgG secondary polyclonal (p) Ab. Immunoreactive bands were visualized and 

digitalized by means of a digital Kodak Image Station, using an enhanced 

chemiluminescence reagent kit (Millipore Corporation). For densitometric analysis, 

band intensities were evaluated by the Kodak 1D image analysis software. 
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3.6 FLUORESCENCE MICROSCOPY 

3.6.1 Measurement of mitochondrial membrane potential 

The membrane potential of CGN mitochondria (Δψm) was measured using the 

(PM-permeable) cationic tetramethylrhodamine methyl ester probe (TMRM, λexc = 548 

nm, λem = 574 nm), which accumulates electrophoretically into the mitochondrial 

matrix. 

To analze Δψm under the conditions experienced by CGN immediately before 

activation of external Ca
2+

 entry, CGN were first incubated (1 h, 37 °C, 5% CO2) with KRB 

containing CaCl2 (1 mM), and then (30 min, 37°C, 5% CO2) with TMRM (10nM, 

Molecular Probes) in KRB containing CaCl2 (1 mM) and finally in Mg
2+

 free-KRB. 

Coverslip images were collected with an inverted microscope (Olympus IMT-2) 

equipped with a (75W) xenon lamp to provide fluorescence light, a 16 bit digital cooled 

CCD camera (provided with a cooling system Miromax, Princeton Instruments), a 40 x 

oil objective, and appropriate excitation and emission filters. Several fields were 

acquired from each coverslip before and after addition of trifluorocarbonylcyanide 

phenylhydrazone (FCCP) (5 μM, Sigma) that, by collapsing the Δψm, releases the probe 

from mitochondria.  

Images were analyzed using the Image J software. Fluorescence intensity was 

measured in regions rich in mitochondria. For each analyzed coverslip, the TMRM 

fluorescence intensity was calculated as the difference between the mean fluorescence 

intensity before and after of FCCP addition. 

3.6.2 Immunofluorescence 

The number of mitochondria in CGN was analyzed under the condition used to 

stimulate glutamate/NMDA-Rs and using the mitochondrial protein TOM20 as marker. 

CGN were first incubated (1 h, 37°C, 5% CO2) in KRB containing CaCl2 (1 mM), then 

fixed with paraformaldehyde 4% (20 min, RT) and permeabilized with ice cold Triton 

0.1% (w/v) in PBS (10 min, 4°C). Then CGN were incubated (overnight, 4 °C) with a pAb 

against TOM20 (Santa Cruz Biotechnology) diluted in BSA [1% (w/v) in PBS]. After 3x10 

min washes (with PBS), cells were incubated (30 min, RT) with the secondary anti-

rabbit Ab Alexa Fluor 555 (Molecular probes) [(1:100 in BSA 1% (w/v in PBS)], and 

washed again (3x10 min with PBS). Finally, coverslips were mounted onto glass slides 

using moviol reagent (Sigma), and images were collected using a confocal microscope 

(Leica SP5) provided with a 63x oil objective and appropriate emission filters. 
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Images were analyzed using the Image J software. Given that CGN have a tiny 

neuronal dendrite network, the fluorescence of TOM20 was analyzed only in regions of 

the cell soma. Acquired fluorescence was then diminished to the corresponding 

number of pixels (contained in the analyzed area), and the result subtracted by the 

normalized fluorescence intensity of the background, i.e., belonging to an unspecific 

fluorescent region. 

3.7 TRANSMISSION ELECTRON MICROSCOPY 

To evaluate the number and distance of mitochondria from the PM, CGN were 

fixed in glutaraldehyde (3.9% w/v in a sodium cacodylate buffer, pH 7.4), and 

embedded in Epon 812 resin. Semi-thin (1 µm) and ultra-thin (80 nm) cross-sections 

were cut with an ultra-microtome (Ultratome V, LKB). The semi-thin sections were 

stained with toluidine blue, and pictures were taken at a light microscope (5000B, 

Leica) equipped with a digital photocamera (DFC 480, Leica). Ultra-thin sections were 

mounted on copper grids, contrasted with uranyl acetate (1%) and lead citrate (1%), 

and examined at a transmission electron microscope (Tecnai G2, FEI) operating at 100 

kV. Images were acquired using a digital camera (F114, Tvips) and a dedicated software 

(TIA, FEI). 

Images were analyzed using the Image J software. The number of mitochondria 

was analyzed in the soma and in the dendrites normalized to the corresponding area, 

and the distance of mitochondria from the nearest rim of the PM was evaluated.  

3.8 SEMI-QUANTITATIVE PCR 

3.8.1 RNA extraction and cDNA synthesis 

Total RNA extraction from CGN was performed using the Trizol reagent 

(Invitrogen), a monophasic solution of phenol and guanidine isothiocyanate, according 

to the manufacturer instructions. Briefly, cells were lysed directly in the 3.5 mm 

culture dish by adding 1 ml of Trizol and by passing the lysate several times through a 

pipette. Homogenized samples were incubated (5 min, RT) to permit the complete 

dissociation of nucleoprotein complexes. After the addition of 0.2 ml of chloroform, 

RNA-containing tubes were shaken vigorously and incubated (3 min, RT), and samples 

centrifuged at (12,000 g, 15 min, 4 °C) to separate the different phases of the mixture. 

Of these, the upper aqueous phase was transferred into a new tube. RNAs were 

precipitated by adding 0.5 ml of isopropyl alcohol. After incubation (10 min, RT), 

samples were centrifuged again (12,000 g, 15 min, 4 °C) and the supernatant was 
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discarded. RNA precipitate was washed with 70% ethanol and dissolved in 40 μl of 

RNase-free DEPC (diethylpyrocarbonate)-treated water (Amersham). 

Reverse transcription reactions were performed using 1 μg of total RNA 

pretreated with DNAse I (Invitrogen), to eliminate the contaminating DNA. After 

addition of dNTP and oligo dT to prime the first strand cDNA synthesis, RNA was 

denatured (5 min 65 °C) and then placed on ice. Reverse transcriptase III (Invitrogen) 

was then added and the mixture incubated to synthesize cDNA (5 min, 25 °C; 1 h 50 °C; 

15 min 70 °C). 

3.8.2 PCR 

Each PCR reaction was run in a 20 μl volume by combining 1 μl of cDNA, 1 μM 

of forward and reverse primers (Sigma Genosys), 0.25 μM of each dNTP (Euroclone), 2 

mM MgCl2, and 0.025U/μl Taq polimerase (Euroclone) in a buffer containing 150 mM 

TRIS/HCl, 500 mM KCl, 0.1% v/v Tween 20 (Euroclone). Amplification steps (using 

Applied Biosystems thermal cycler) were as follows: starting: 95 °C  5 min; denaturing: 

95 °C 45 sec; annealing: 64 °C 30 sec x 35 cycles; extending: 72 °C 60 sec; completing 

the amplicons: 72 °C 10 min; finalling: 4 °C. 

The sequence of forward and reverse primers used for mGluR1, mGluR5 and 

GAPDH were as follows: 

mGluR1 F: 5’GGTCCCTTCTGACACTTTGC 3’; R: 5’CATTCCACTCTGCCGTAAT 3’ 

mGluR5 F: 5’GCCATGGTAGACATAGTGAAG3’; R: 5’TAAGAGTGGGCGATGCAAAT3’ 

GAPDH F: 5’CAAGGTCATCCATGACAACTT3’; R: 5’GGGCCATCCACAGTCTTCTG3’ 

To visualize PCR products, amplified DNA was run on agarose gel in the 

presence of ethidium bromide. Briefly, the loading buffer was added to the samples 

loaded on a 2% agarose gel in 1x TAE buffer (40mM Tris/acetate, 1mM EDTA), in the 

presence of 0.25 μg/mL ethidium bromide. The gel was immersed in the running buffer 

(TAE 1x) and subjected to an electric field (100 V, 20 min). Bands were visualized with a 

fluorescence reader (Euroclone) and images  analyzed using the Image J software. 



Materials and methods 

 

 

33 

3.9 WESTERN BLOT ANALYSIS 

3.9.1 Sample preparation 

CGN, incubated (1h, 37 °C, 5% CO2) in KRB supplemented with CaCl2 (1 mM), 

were homogenized in a buffer containing 10% glycerol (w/v), 2% (w/v) SDS, 62.5 mM 

Tris/HCl (pH 6.8), 1.8 M urea, 5 mM NaVO4, protease and phosphatase inhibitor 

cocktails (Roche), and boiled (5 min). The total protein content was determined by the 

Lowry method (Total Protein Kit, Micro Lowry, Peterson’s Modification, Sigma), using 

BSA as standard. Dithiothreitol (50 mM) and bromophenol-blue (0.004% (w/v)) were 

added to samples just before gel loading. 

3.9.2 SDS-polyacrylamide gel electrophoresis (SDS-Page) and immunoblot 

Electrophoresis was performed on polyacrylamide gels (prepared in 1-mm thick 

glass slabs) with 10% acrylamide in the separating gel and 5% acrylamide in the 

stacking gel. The following solutions were used for the preparation of gels and the 

electrophoresis: acrylamide/bisacrylamide: 30% acrylamide and 0.8% bisacrylamide; 

lower Tris-HCl: 1.5 M Tris-HCl and 0.4% SDS, pH 8.8; upper Tris-HCl: 0.5 M Tris-HCl and 

0.4% SDS, pH 6.8; running buffer: 0.1 M Tris-HCl, 0.77 M glycine and 0.4% SDS, pH 8.3. 

Polymerization was obtained by adding TEMED (Sigma) and ammonium 

persulfate 0.1 mg/ml (Sigma). Samples (20 µg of proteins in each lane) were run on the 

gel using an Electrophoresis Power Supply (BioRad), providing a constant voltage of 150 

V in the stacking gel and 200 V in the separating gel. 

Proteins were then electro-blotted onto PVDF membranes (0.22 µm pore size, 

Bio-Rad), which were subsequently Coomassie blue-stained to verify equal loading and 

transfer. Membranes were incubated (1 h, RT) with a blocking solution (TBS-T), and 5% 

(w/v) non-fat dry milk, or 3% (w/v) BSA, followed by addition of the appropriate 

primary antibody (see below) (4 °C, over-night). After three 10 min-washes (with TBS-

T), membranes were incubated (1 h, RT) with a horseradish peroxidase-conjugated 

anti-rabbit or anti-mouse IgG secondary antibody (Santa Cruz Biotechnology, cat. n. sc-

2004 and sc-2005, respectively). 

Used antibodies were (dilution in parentheses): anti-Fyn pAb (1:1000; Cell 

Signaling Technology, cat. n. 4023); anti-phosphorylated (p-) SFK pAb (recognizing p-

Y416, 1:1000; Cell Signaling Technology, cat. n. 2101); anti phospho Tyrosine (p-Tyr) 

mAb (1:1000; Millipore cat. n. 05-947); anti-Aβ mAb 6E10 (1:1000; Covance, cat. n. 
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SIG-39320), anti SDH (subunit A) pAb (1.1000; Sigma, cat. n. SAB1100429); anti MCU 

pAb (1.1000; Sigma cat.n. HPA016480). 

Immunoreactive bands were visualized and digitalized by means of a digital 

Kodak Image Station, using an enhanced chemiluminescence reagent kit (Millipore 

Corporation). For densitometric analyses, band intensities were normalized to the 

optical density of the corresponding lane stained with Coomassie blue. 

 

3.10 STATISTICAL ANALYSIS 

Values will be reported as mean ± SEM. Data analysis was performed as 

described in Lazzari et al. (2011). Statistics was based on two-sample Student’s t-test, 

with a p-value <0.05 being considered statistically significant (*p<0.05, **p<0.01, 

***p<0.001, ****p<10
-5

) 
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4 RESULTS –PART 1 

4.1 PrP
C
 CONTROLS LOCAL CALCIUM FLUXES FOLLOWING SOCE 

4.1.1 PrPC attenuates SOCE and SOCE-induced mitochondrial Ca2+ uptake 

We have previously observed that the presence of PrP
C
 attenuates SOCE in CGN 

(Lazzari et al., 2011). In particular, using the AEQpm probe, we found that PrP-KO CGN 

had larger and more persistent Ca
2+

 elevations in PM micro-domains compared to CGN 

derived from WT (FVB) mice. In this work, the study was extended to monitor whether 

PrP
C
 was also controlling cytosolic and mitochondrial Ca

2+
 transients after SOCE. To 

exclude potential interference by the different (<1%) genetic background between WT 

(FVB) and PrP-KO mice, another variance of this work was that the isogenic line PrP-Tg, 

provided the control, given that in this line the expression of normal amounts of PrP
C
 

was rescued over the PrP-KO genotype. 

To activate SOCE, after depletion of Ca
2+

 stores (with EGTA 100 µM), CGN were 

perfused with 1 mM CaCl2. Fig. 12 reports Ca
2+

 fluctuations in PM micro-domains (A), in 

the cytosol (B) and in the mitochondrial matrix (C), as detected by AEQpm, AEQcyt and 

AEQmit, respectively. The rise of [Ca
2+

]pm had a significantly higher (30%) peak value in 

PrP-KO CGN (black) than in PrP-Tg CGN (grey) (Fig. 12A), confirming that the absence of 

PrP
C
 leads to a higher Ca

2+
replenishment of PM micro-domains. Similarly, PrP-KO CGN 

exhibited higher Ca
2+

 transients also in the cytosol (Fig. 12B) and in the mitochondrial 

matrix (Fig. 12C), possibly due to both the increased Ca
2+

 entry through SOCC (Fig. 12A) 

and to the lower buffer capacity of the ER. In fact, the PrP-KO ER accumulated 

approximately 20% less Ca
2+

 than the PrP-Tg ER (Fig. 13). 
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Figure 12. Ca
2+

 transients in CGN domains after SOCE. CGN were first incubated with EGTA (100 μM) 

and then perfused with CaCl2 (1 mM). Both the mean of the recorded traces (left panels), and the bar 

diagrams reporting the mean peak values of Ca
2+

 transients (right panels), indicate that PrP-KO (black) 

have higher Ca
2+

 fluxes than control PrP-Tg CGN (grey) near the PM (A), in the cytosol (B), and in the 

mitochondrial matrix (C). Here and after reported values are mean ± SEM, numbers inside bars indicate 

number of replicates. Peak values: in PM microdomains, 20.45 ± 0.41 μM in PrP-Tg CGN; 27.33 ± 1.04 μM 
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in PrP-KO CGN; in the cytosol, 1.06 ± 0.03 in PrP-Tg CGN; 1.27 ± 0.06 μM in PrP-KO CGN; in mitochondria, 

21.63 ± 0.67 μM in PrP-Tg CGN; 26.15 ± 0.67 μM in PrP-KO CGN. ***p<0.001; ****p<10
-5

 Student’s t-test. 
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Figure 13. Steady state Ca
2+

 levels in the lumen of the ER after SOCE. CGN were first incubated with 

EGTA (500 μM) and the Ca
2+

 ionophore ionomycin (5 μM), after which ER Ca
2+

 refilling was achieved by 

perfusing CGN with CaCl2 (1 mM). Both the mean of the recorded traces (left panel), and the bar diagram 

reporting the mean steady state ER Ca
2+

 level (right panel), indicate that [Ca
2+

]er is lower in PrP-KO CGN 

(black). Peak values: 238.42 ± 10.71 μM in PrP-Tg CGN; 210.47 ± 8.30 μM in PrP-KO CGN. *p<0.05 

Student’s t-test. 

4.1.2 VGCC do not contribute to the observed Ca2+ transients  

To prove that Ca
2+

 replenishment of PM micro-domains could be imputed only 

to SOCE, we performed a set of controls to exclude that SOCC-mediated Ca
2+

 entry 

provoked a (local) membrane depolarization leading to the activation of VGCC. VGCC 

exist in several subtypes that can be broadly divided into two groups upon their 

activation by voltage: the group (T-type VGCC) activated by mild, and that activated by 

large, membrane depolarization (L/P/R-type VGCC) (Connor et al., 1987; Catterall et 

al., 2005). These conditions were experimentally mimicked using a perfusion solution 

containing 25 mM and 125 mM K
+
, respectively. We found no AEQpm-detectable Ca

2+
 

transients in both CGN genotypes using 25 mM K
+
 (data not shown). Instead, perfusion 

with 125 mM K
+
 induced a similar (albeit smaller than with SOCE, ∼ 3 µM) Ca

2+
 peak in 

both CGN genotypes (Fig. 14), implying that PrP
C
 was not involved in controlling L/P/R 

type-VGCC in our cell paradigms, contrary to previous suggestions (Herms et al., 2000; 

Korte et al., 2003). 
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Figure 14. [Ca
2+

]pm transients after perfusing CGN with the 125 mM K
+
 depolarizing solution. Both the 

mean of the recorded traces (left panel), and the bar diagram (right panel) reporting the mean [Ca
2+

]pm 

peak values, indicate that the 125 mM K
+
-depolarizing protocol elicits [Ca

2+
]pm peaks of similar amplitude 

in both types of neurons, although with values much smaller compared to those measured after SOCE. 

Peak values: 2.51 ± 0.17 μM in PrP-Tg CGN; 2.54 ± 0.22 μM in PrP-KO CGN. 

 

To block VGCC, we used nifedipine (10 μM), a specific inhibitor of the L type-

VGCC, or NiCl2 (50 μM or 1 mM), which inhibits all high voltage-activated VGCC. The 

obtained results demonstrate that both inhibitors had a similar effect, independently 

of the CGN genotype, i.e., approx. 20% inhibition by nifedipine and 95% inhibition by 1 

mM NiCl2 (Fig. 15A). However, when the inhibitors were added to neurons under the 

specific conditions employed to activate SOCE, we found that in both control and PrP-

KO CGN they induced no statistically significant diminution of the Ca
2+

 transients 

observed in their absence (Fig. 15B). Altogether, these results clearly indicate that the 

contribution of VGCC to the PM-Ca
2+

 transients observed upon SOCE stimulation is, if 

any, minimal. 
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Figure 15. [Ca
2+

]pm peaks elicited by VGCC (A) or SOCC (B) in the absence, or in the presence, of VGCC 

inhibitors. (A), CGN were subjected to the strong depolarizing stimulus by 125 mM K
+
, in the absence 

(cntr), or in the presence, of nifedipine (10 μM) or NiCl2 (50 μM, 1mM). (B), The same inhibitors were 

absent (cntr), or present, when CGN were specifically treated to activate SOCE. Clearly, these molecules 

reduce [Ca
2+

]pm when VGCC are specifically activated (A), but not when SOCE-activating protocol is 

applied (B). Normalized peak values: (A), 100 ± 2.7% in untreated PrP-Tg CGN; 82 ± 4.58% in PrP-Tg CGN 

with nifedipine; 102 ± 8.91% in PrP-Tg CGN with NiCl2 50 μM; 10 ± 14.91% in PrP-Tg CGN with NiCl2 

1mM; 100 ± 12.82% in untreated PrP-KO CGN; 62 ± 8.62% in PrP-KO CGN with nifedipine; 88 ± 7.47% in 

PrP-KO CGN with NiCl2 50 μM; 6.6 ± 14.99% in PrP-KO CGN with NiCl2 1mM; (B), 100 ± 5.37% in 

untreated PrP-Tg CGN; 96.7 ± 8.23% in PrP-Tg CGN with nifedipine; 103.9 ± 8.28% in PrP-Tg CGN with 

NiCl2 50 μM; 101.5 ± 9.02% in PrP-Tg CGN with NiCl2 1mM; 100 ± 5.62% in untreated PrP-KO CGN; 120 ± 

6.03% in PrP-KO CGN with nifedipine; 89.6 ± 20.8% in PrP-KO CGN with NiCl2 50 μM; 89.4 ± 15.7% in PrP-

KOCGN with NiCl2 1 mM. *p<0.05; ****p<10
-5

 Student’s t-test. 

 

4.1.3 Fyn is the link between PrPC and SOCE 

Multiple lines of evidence have linked PrP
C
 to Fyn (Mouillet-Richard et al., 2000; 

Santuccione et al., 2005), a member of the SFK expressed in neurons at high levels (Um 

et al., 2012). Depending on the used cell line, examples are the activation of Fyn 

following the antibody-mediated clustering of PrP
C
 at the cell surface (Pantera et al., 

2004), and/or the binding of synthetic Aβ oligomers to PrP
C
 (Um et al., 2012). 

In light of this data, we asked the question of whether Fyn signaling could be 

also involved in the regulation that PrP
C
 exerts on SOCE. To this end, we analyzed the 

phosphorylated, active state of Fyn in control and PrP-KO CGN under basal conditions 
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(i.e., in the presence of 1 mM CaCl2). As reported in Fig. 16, WB analyses of 

phosphorylated Fyn (on Tyr 416) showed that PrP-KO CGN constitutively displayed 

higher levels of the active enzyme than control neurons. The same result was obtained 

by treating CGN with EGTA (100 μM), thus mimicking the conditions at which Ca
2+

 

measurements were made (data not shown). 
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Figure 16. Fyn phosphorylation is higher in PrP-KO CGN than in PrP-Tg CGN under basal conditions. 

CGN proteins were analyzed by WB (after 96h from plating) in the presence of CaCl2 1 mM. The upper 

panel reports a representative WB of p-SFK and of total Fyn (both run in duplicate) of PrP-Tg and PrP-KO 

CGN, while the lower panel reports the densitometric analysis of anti p-SFK immunosignal normalized to 

that of total Fyn. **p<0.01 Student’s t-test. 

 

This result is further corroborated by the finding that total tyrosine-

phosphorylated proteins were higher in PrP-KO neurons, both under basal conditions 

(i.e., in the presence of 1 mM CaCl2) (Fig. 17), and in the presence of EGTA (100 μM) 

(data not shown). 
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Figure 17. Tyr-phosphorylated proteins are higher in PrP-KO than in PrP-Tg CGN. CGN, treated with or 

without the SFK inhibitor PP2 (10 μM), were subjected to WB analyses. The upper panels report a 

representative WB for p-Tyr of untreated (-) (top left), or PP2-treated (+) (top right), PrP-Tg and PrP-KO 

CGN, while the lower panel reports the densitometric analysis of p-Tyr immuno-signal of untreated (cntr) 

or PP2-treated (PP2) CGN, normalized to the density of the Coomassie blue staining. **p<0.01;****p<10
-

5
 Student’s t-test. 

 

Because of previous demonstrations showing that the pharmacological 

inhibition, or deletion, of tyrosine kinases reduces SOCE-induced Ca
2+

 transients in 

certain cell types (Zuo et al., 2011; Lee et al., 2006; Lopez et al., 2012), we examined if 

and how the specific inhibition of tyrosine kinases by PP2 was affecting SOCE. Fig. 18 

shows that PP2 reduced the [Ca
2+

]pm peak in both CGN types, and that it nullified the 

difference displayed by untreated PrP-KO and control neurons. These results strongly 

support the existence of an inverse relationship between the presence of PrP
C
 and Fyn 

activation, and that PrP
C
 restricts SOCE by downregulating the Fyn signaling pathway. 
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Figure 18. PrP
C
 controls SOCE by modulating Fyn activity. After depleting neurons of Ca

2+
 to activate 

SOCE, CGN were perfused with CaCl2 (1 mM) in the absence (cntr) or in the presence (PP2) of PP2 (10 

μM). From the bar diagram, reporting the mean peak values of [Ca
2+

]pm transients, it is evident  that PP2 

decreases [Ca
2+

]pm peak, abrogating in this way the difference observed in untreated PrP-Tg and PrP-KO 

CGN. Peak values: 20.45 ± 0.41 μM in untreated PrP-Tg CGN; 15.60 ± 1.31 in PP2-treated PrP-Tg CGN; 

27.33 ± 1.04 μM in untreated PrP-KO CGN; 17.84 ± 1.33 in PP2-treated PrP-KO CGN. **p<0.01; 

***p<0.001; ****p<10
-5

 Student’s t-test. 

4.1.4 Aβ1-42 oligomers impair PrPC-dependent control of SOCE  

Following the notion that PrP
C
 binds soluble oligomeric Abeta, and that PrP

C
-

Abeta interaction may be crucial for AD-related neuronal impairment (Um and 

Strittmatter, 2013), we monitored PM Ca
2+

 transients to assess whether soluble Aβ1-42 

oligomers perturbed the control of PrP
C
 over SOCE. 

To start, we qualitatively characterized the used Aβ1-42 oligomers by WB before 

and after the aging process (1h, 37° C) which Aβ1-42 fragments were subjected to. As 

shown in Fig. 19, already freshly dissolved Aβ1-42 peptides (of approximately 5 kDa 

molecular mass in their monomeric form) migrated in different oligomerized forms, 

i.e., monomers, dimers, trimers and higher mass oligomers, and that the latter ones 

were efficiently increased in amounts by the aging process. 

Fig. 20, reporting the effect on SOCE by soluble Aβ1-42  oligomers added to CGN, 

shows that, compared to the untreated counterpart, they augmented PM Ca
2+

 peaks of 

PrP-Tg CGN to the same value detected in untreated PrP-KO CGN. Because no 

statistically significant effect was evident in Aβ1-42-treated PrP-KO CGN, this result 

indicates that Aβ1-42-induced dysregulation of SOCE was strictly PrP
C
-dependent. 
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Figure 19. The “aging” of Aβ1-42 increases the formation of high mass species. A representative WB of 

chemically synthesized Aβ1-42 subjected (lane 2), or not (lane 1), to the aging process (1 h, 37° C) indicates 

that aging process increases the presence of high mass species. 
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Figure 20. Soluble Aβ1-42 oligomers alter the PrP
C
-dependent control of SOCE. After incubation in the 

absence (cntr) or in the presence (+Aβ) of soluble Aβ1-42 oligomers (5 μM), CGN were treated to activate 

SOCE. Both the mean of the recorded traces (upper panels) and the bar diagrams (lower panel) reporting 

the mean [Ca
2+

]pm peak values,  indicate that treatment with soluble Aβ1-42  oligomers increased [Ca
2+

]pm 

peak values only in PrP-Tg CGN. Peak values: 20.45 ± 0.41 μM in untreated PrP-Tg CGN; 27.36 ± 2.45 in 

Aβ1-42 treated PrP-Tg CGN; 27.33 ± 1.04 μM in untreated PrP-KO CGN; 28.84 ± 1.79 in Aβ1-42 treated PrP-

KO CGN. ***p<0.001;****p<10
-5

 Student’s t-test. 
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Importantly, we found that the capacity of Aβ1-42 oligomers to disturb SOCE was 

paralleled by the effect on Fyn, given that they increased the level of active Fyn in PrP-

Tg CGN, but left unaltered that of PrP-KO neurons (Fig. 21). It is therefore possible to 

conclude that oligomeric Aβ1-42 increased SOCE by impairing the PrP
C
-dependent 

downregulation of Fyn. 
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Figure 21. Soluble Aβ1-42 oligomers enhance Fyn phosphorylation in a PrP
C
-dependent way. The upper 

panel reports a representative WB of p-SFK and of total Fyn of untreated (-), or Aβ1-42-treated (+), PrP-Tg 

and PrP-KO CGN. The lower panel reports the densitometric analysis of the anti p-SFK immunosignal 

normalized to that of total Fyn. *p<0.05; **p<0.01 Student’s t-test. 
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5 CONCLUSIONS-PART 1 

The conclusion that one can draw from this part of the work is that, by limiting 

Ca
2+

 influx through SOCE, PrP
C
 also limits the ion accumulation in the cytosol and in 

mitochondria. These results thus reinforce the notion of the pro-life behavior of PrP
C
 in 

neurons which are extremely sensible to Ca
2+

 dysomeostasis. 

Our data have also shown that the regulation of SOCE by PrP
C
 occurs through 

Fyn tyrosine kinase, which can therefore represent the molecular intermediate of the 

PrP
C
-SOCE linkage. In particular, our data suggest that PrP

C
 constitutively limits Fyn 

activity. 

This function of PrP
C
 may have important consequences in neurodegeneration, 

especially with respect to the alleged action of the protein as a receptor for Aβ1-42 

oligomers (and other neurotoxic entities) for the transduction of their toxic message 

into neurons. One possibility is that Aβ1-42-PrP
C
 docking directly activates Fyn, as 

already suggested. Alternatively, however, the demonstrated parallelism between Aβ1-

42-treated and PrP-KO neurons suggests that Aβ1-42 oligomers alter/displace PrP
C
, thus 

rendering PrP
C
 no longer able to control Fyn activity. 
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6 RESULTS –PART 2 

6.1 PrP
C
 CONTROLS CALCIUM FLUXES THROUGH IONOTROPIC GLUTAMATE RECEPTORS  

6.1.1 PrPC reduces Ca2+ fluxes after stimulation of the NMDA and AMPA receptors 

Because of the capacity of PrP
C
 to downregulate hippocampal NMDA-Rs 

(Khosravani et al., 2008), we analyzed whether this was true also in our experimental 

paradigms. 

Fig. 22 reports Ca
2+

 fluxes detected by AEQpm (A), AEQcyt (B) and AEQmit (C), 

after addition of NMDA (50 μM) [and glycine (10 μM)], showing that the presence of 

PrP
C 

(grey) strongly diminished the rise of [Ca
2+

]pm (by 100%) and of [Ca
2+

]cyt (by 25%) 

compared to PrP-KO CGN (black). Instead, when monitoring [Ca
2+

]mit, an opposite 

picture emerged, i.e., PrP-Tg CGN accumulated ∼ 20% more Ca
2+

 than PrP-KO neurons. 

A similar trend of Ca
2+ 

fluxes was observed using AMPA as agonist (Fig. 23), in terms of 

lower and higher Ca
2+

 transients in PM-microdomains and mitochondria, respectively, 

displayed by PrP-Tg CGN compared to PrP-KO neurons. Likewise, although elicited Ca
2+

 

peaks were of much smaller magnitude, these results were replicated using kainate to 

stimulate the third iGluR type (data not shown). 

Two aspects of these results warrant consideration. The first one is the 

unprecedented observation that (at least in our cell model) the ablation of PrP
C
 

enhances the activity not only of the NMDA-R but also of the other iGluRs. The second 

aspect of Fig. 22 in need of further consideration is why PrP-KO mitochondria 

accumulated less Ca
2+

 than PrP-Tg mitochondria, despite the higher external Ca
2+ 

entry. To clarify this point, we carried out different types of experiments, reported in 

the following sections. 
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Figure 22. Ca
2+

 transients in CGN domains after stimulation of the NMDA-R. Both the mean of the 

recorded traces (left panels), and the bar diagrams reporting the mean peak values of Ca
2+

 transients 

(right panels), indicate that PrP-KO (black) have higher Ca
2+

 fluxes than control PrP-Tg CGN (grey) near 

the PM (A) and in the cytosol (B). In the case of mitochondrial Ca
2+

 uptake (C), less Ca
2+

 is accumulated by 

PrP-KO CGN. Peak values: in PM micro-domains, 1.04 ± 0.07 μM in PrP-Tg CGN; 2.09 ± 0.11 μM in PrP-KO 

CGN; in the cytosol, 1.07 ± 0.04 μM in PrP-Tg CGN; 1.33 ± 0.01 μM in PrP-KO CGN; in mitochondria, 45.32 

± 3.09 μM in PrP-Tg CGN; 38.23 ± 1.61 μM in PrP-KO CGN. *p<0.05; ****p<10
-5

 Student’s t-test. 
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Figure 23. Ca
2+

 transients in CGN domains after stimulation of the AMPA-R. In the presence of the 

AMPA agonist founded Ca
2+

 transients indicate that PrP-KO (black) have higher [Ca
2+

]pm, similar [Ca
2+

]cyt  

and lower [Ca
2+

]mit  peaks compared to PrP-Tg CGN (grey). Peak values: in PM microdomains, 1.28 ± 0.17 

μM in PrP-Tg CGN; 2.33 ± 0.24 μM in PrP-KO CGN; in the cytosol, 0.95 ± 0.24 μM in PrP-Tg CGN; 0.94 ± 

0.24 μM in PrP-KO CGN; in mitochondria, 16.04 ± 1.02 μM in PrP-Tg CGN; 9.17 ± 1.04 μM in PrP-KO CGN. 

***p<0.001; ****p<10
-5

 Student’s t-test. 
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6.1.2 Biochemical, morphological and functional analyses of mitochondria from 

PrP-Tg and PrP-KO CGN 

First, we analyzed some mitochondrial parameters of the two CGN types, which 

showed that the number [assayed by WB (Fig. 24), immunofluorescence (Fig. 25), and 

electron microscopy (Fig. 26)], membrane potential [using the potentiomentric probe, 

TMRM (Fig. 27)], and expression of the Ca
2+

 uniport [MCU, (Fig. 28)], of mitochondria 

were independent of the presence of PrP
C
. 
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Figure 24. Expression of succinate dehydrogenase in PrP-Tg and PrP-KO CGN. CGN proteins were 

analyzed by WB 96h after CGN plating, under basal conditions. The upper panel reports a representative 

WB of succinate dehydrogenase (SDH) (run in triplicate for each PrP genotypes) of PrP-Tg and PrP-KO 

CGN. The lower panel reports the densitometric analysis of the anti-SDH immunosignal normalized to 

that of total proteins stained with Ponceau red. 
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Figure 25. TOM20 fluorescence in PrP-Tg and PrP-KO. The upper panels report images of TOM20 

fluorescence of both CGN genotypes under basal conditions. The lower panel reports the quantification 

analysis of TOM20 fluorescence normalized to the corresponding selected area. 
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Figure 26. Electron microscopy-based analysis of the number of mitochondria of PrP-Tg and PrP-KO 

CGN. Upper panels report electron microscopy images of both CGN genotypes under basal conditions, 

while lower panel reports the quantification analysis of the number of mitochondria normalized to the 

corresponding area. 
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Figure 27. TMRM-based analysis of mitochondrial membrane potential in PrP-Tg and PrP-KO CGN. 

Images of TMRM fluorescence of both CGN genotypes under basal conditions, in the presence (A) and in 

the absence of Mg
2+

 (B) (upper panels), to mimick the conditions in which AMPA-R and NMDA-R are 

respectively activated during Ca
2+

 measurements. Bar diagrams (low panels), reporting the mean 

normalized TMRM fluorescence, indicate that PrP-Tg and PrP-KO have the same mitochondrial 

membrane potential. 
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Figure 28. Expression of mitochondrial Ca
2+

 uniporter in PrP-Tg and PrP-KO CGN. CGN proteins were 

analyzed by WB 96h after CGN plating, under basal conditions. The upper panel reports a representative 

WB of mitochondrial Ca
2+

 uniporter (MCU) (run in duplicate for each PrP genotypes) of PrP-Tg and PrP-

KO CGN. The lower panel reports the densitometric analysis of the anti-MCU immunosignal normalized 

to that of total proteins stained with Coomassie blue. 
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Instead, using electron microscopy, we observed that the mean distance of 

mitochondria from the PM was ∼ 30% higher in PrP-KO CGN than in control neurons 

(Fig. 29). Retraction of PrP-KO mitochondria from the PM, the site of Ca
2+

 entry 

through iGluRs, could thus reasonably explain the results of Fig. 22C and 23C, i.e., that 

PrP-KO mitochondria were less “sensitive” than PrP-Tg mitochondria to the small Ca
2+

 

quantity entering neurons after NMDA or AMPA (or kainate) addition. 
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Figure 29. The mean distance of mitochondria from PM is higher in PrP-KO CGN. Electron microscopy 

images (upper panel) and the bar diagram, reporting the mean normalized distance of mitochondria 

from the PM of the two CGN genotypes (lower panel), indicate that mitochondria of PrP-KO CGN (black) 

are more retracted from the PM than control neurons (grey). **p<0.01 Student’s t-test. 
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6.1.3 The decrease of Ca2+ entry by PrPC after glutamate reduces CICR 

Next, we stimulated CGN with glutamate that, being the physiologic agonist, 

would simultaneously activate all iGluRs and also mGluRs if present (Prezeau et al., 

1994). As expected, following exposure to glutamate, PrP-KO CGN had more abundant 

Ca
2+

 transients (Fig. 30, black) at the PM and in the cytosol compared to control 

neurons (grey) (by 70% and 20%, respectively) (Figs. 30A and 30B). In both PrP 

genotypes, the mitochondrial Ca
2+

 uptake was increased with respect to the mere 

addition of NMDA (or AMPA), but – quite surprisingly – it was higher (by 40%) in PrP-KO 

CGN than in PrP-Tg neurons (Fig. 30C). The most sensible explanation for these findings 

entails that, following the stimulation of the IP3-producing mGluR1 and mGluR5, the 

close apposition of ER and mitochondrial membranes (Rizzuto et al., 1998) allowed 

mitochondria to take up the Ca
2+

 released by IP3-sensitive ER channels. 

We tested this hypothesis by adding the mGluR1 and mGluR5 agonist, DHPG, 

which, however, produced only a minor mitochondrial Ca
2+

 uptake (Fig. 31). This result 

is in line with WB and semi-quantitative RT-PCR approaches showing that in CGN 

mGluR5 was present in extremely low amounts (data not shown). Conversely, mGluR1 

was detected in our model cells, although data of Fig. 31 suggest that it was not fully 

operative under the employed conditions. Taken together, these findings indicate that 

the activity of IP3-producing mGluRs is unlikely to contribute to glutamate-induced Ca
2+

 

uptake by CGN mitochondria. 
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Figure 30. Ca
2+

 transients in CGN domains after glutamate addition. Both the mean of the recorded 

traces (left panels), and the bar diagrams reporting the mean peak values of Ca
2+

 transients (right 

panels), indicate that PrP-KO (black) have higher Ca
2+

 fluxes than control PrP-Tg CGN (grey) near the PM 

(A), in the cytosol (B), and in the mitochondrial matrix (C). Peak values: in PM micro-domains, 3.29 ± 0.12 

μM in PrP-Tg CGN; 5.59 ± 0.18 μM in PrP-KO CGN; in the cytosol, 1.99 ± 0.06 μM in PrP-Tg CGN; 2.28 ± 

0.11 μM in PrP-KO CGN; in mitochondria, 97.51 ± 4.88 μM in PrP-Tg CGN; 139.93 ± 4.95 μM in PrP-KO 

CGN. **p<0.01 ; ****p<10
-5

 Student’s t-test. 
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Figure 31. Ca
2+

 transients in mitochondria of CGN after treatment with mGluR1-5 agonist DHPG. Both 

the mean of the recorded traces (left panel), and the bar diagram reporting the mean peak values of Ca
2+

 

transients (right panel), indicate that DHPG induces only a small and similar response (compared to the 

values obtained with glutamate) in the two CGN genotypes. Peaks values: 1.83 ± 0.49 μM in PrP-Tg CGN; 

2.36 ± 0.51 μM in PrP-KO CGN. 

 

We finally explored whether the CICR process [mediated by the RyR-channel 

present in CGN (data not shown)] could have been responsible for (part of) the 

observed mitochondrial Ca
2+

 accumulation. To this end, glutamate-induced [Ca
2+

]mit 

was tested in the presence of a ryanodine concentration (50 μM) known to inhibit 

RyRs (Sutko et al., 1997). Fig. 32 shows that ryanodine produced a drastic reduction of 

the [Ca
2+

]mit transient almost solely in PrP-KO CGN. 
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Figure 32. PrP
C
 indirectly reduces CICR. CGN were perfused with a Mg

2+
-free solution containing CaCl2 (1 

mM), glutamate (100 μM) [plus glycine (10 μM)], in the absence (cntr) or the presence (Ryanodine) of 

ryanodine (50μM). From the bar diagram, reporting the mean peak values of [Ca
2+

]mit transients, it is 

evident that treatment with ryanodine decreases [Ca
2+

]mit peak, abrogating the difference observed in 

untreated PrP-Tg and PrP-KO CGN. Peak values: 97.51 ± 4.88 μM in untreated PrP-Tg CGN; 82 ± 6.75 μM 

in ryanodine-treated PrP-Tg CGN; 139.93 ± 4.95 μM in untreated PrP-KO CGN; 89.09 ± 7.71 μM in 

ryanodine-treated PrP-KO CGN. *p<0.05  ***p<0.001 ; ****p<10
-5

 Student’s t-test. 
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This suggests that glutamate triggers CICR in PrP-KO neurons thanks to the 

substantial Ca
2+

 amount (∼5.5 µM) entering through all iGluRs, and that the quantity of 

Ca
2+

 entering PrP-Tg CGN under these conditions (∼3 µM) [or neurons of both PrP 

genotypes after stimulation of a single iGluR (∼1-2 µM, Figs. 22, 23)] was insufficient to 

effectively elicit CICR. 

The soundness of this conclusion is proved by the simultaneous exposure of 

CGN to the three iGluR agonists. With this protocol we observed that [Ca
2+

]pm 

transients were comparable to those elicited by glutamate (Fig. 33A), and thus capable 

to trigger a higher mitochondrial Ca
2+

 uptake in PrP-KO than in PrP-Tg CGN (Fig. 33B). 

 

0

4

8

0 50 100 150

PrP-Tg

PrP-KO

t (s)

[C
a

2
+
] p

m
(μ

M
)

A CaCl2 1 mM (Mg2+ free)

NMDA+AMPA+Kainate+Gly

0

4

8

PrP-Tg PrP-KOPrP-Tg PrP-KO

1112

p
e

a
k

[C
a

2
+
] p

m
(μ

M
)

****

 

0

50

100

150

0 50 100 150

t (s)

CaCl2 1 mM (Mg2+ free)

NMDA+AMPA+Kainate+Gly

PrP-Tg

PrP-KO

[C
a

2
+
] m

it
(μ

M
)

p
e

a
k

[C
a

2
+
] m

it
(μ

M
)

0

50

100

150

PrP-Tg PrP-KOPrP-Tg PrP-KO

813

****

B

 

Figure 33. Ca
2+

 transients in CGN domains after stimulation of all iGluRs. Both the mean of the recorded 

traces (left panels), and the bar diagrams reporting the mean peak values of Ca
2+

 transients (right 

panels), indicate that PrP-KO (black) have higher [Ca
2+

]pm and [Ca
2+

]mit  peaks compared to PrP-Tg CGN 

(grey) after addition of NMDA (50 μM) [plus glicyne (10 μM)], AMPA (100 μM), kainate (30 μM). Peak 

values: in PM microdomains, 4.21 ± 0.18 μM in PrP-Tg CGN; 7.36 ± 0.53 μM in PrP-KO CGN; in 

mitochondria, 64.63 ± 6.82 μM in PrP-Tg CGN; 90.77 ± 5.13 μM in PrP-KO CGN. ****p<10
-5

 Student’s t-

test. 
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6.1.4 Aβ1-42 oligomers impair mitochondrial Ca2+ uptake in CGN treated with NMDA 

or glutamate in a PrPC-dependent way 

When CGN were exposed to soluble Aβ1-42 oligomers, the stimulation with 

glutamate (or NMDA) resulted in a significant decrease of [Ca
2+

]mit in PrP-Tg CGN, but 

not in PrP-KO neurons (Figs. 34 and 35). However, differently from what observed in 

the case of SOCE, no alteration was found in sub-PM or cytosolic Ca
2+

 transients 

compared to untreated neurons, irrespective of the PrP genotype (data not shown). 
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Figure 34. Aβ1-42 oligomers alter mitochondrial Ca
2+

 accumulation after NMDA-R stimulation, in a PrP
C
-

dependent way. CGN were perfused with a Mg
2+

-free solution containing CaCl2 (1 mM), NMDA (50 μM) 

[plus glycine (10 μM)] in in the absence (cntr) or in the presence (+Aβ) of soluble Aβ1-42 oligomers (5 μM). 

Both the mean of the recorded traces (upper panels) and the bar diagrams (lower panel), reporting the 

mean [Ca
2+

]mit peak values, indicate that treatment with soluble Aβ1-42  oligomers reduces [Ca
2+

]mit peak 

values only in PrP-Tg CGN. Peak values: 38.23 ± 1.61 μM in untreated PrP-KO CGN; 33.46 ± 4.01 in Aβ1-42-

treated PrP-KO CGN; 45.32 ± 3.09 μM in untreated PrP-Tg CGN; 32.03 ± 0.95 in Aβ1-42 -treated PrP-Tg 

CGN). *p<0.05 Student’s t-test. 
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Figure 35. Aβ1-42 oligomers alter mitochondrial Ca
2+

 accumulation after glutamate addition, in a PrP
C
-

dependent way. CGN were perfused with a Mg
2+

-free solution containing CaCl2 (1 mM), glutamate (100 

μM) and glycine (10 μM), in the absence (cntr) or in the presence (+Aβ) of soluble Aβ1-42 oligomers (5 

μM). Both the mean of the recorded traces (upper panels) and the bar diagrams (lower panel), reporting 

the mean [Ca
2+

]mit. Peak values: 97.51 ± 4.88 μM in untreated PrP-Tg CGN; 65.32 ± 13.90 in Aβ1-42 -

treated PrP-Tg CGN; 139.92 ± 4.96 μM in untreated PrP-KO CGN; 147.90 ± 18.41 in Aβ1-42-treated PrP-KO 

CGN. *p<0.05;****p<10
-5

 Student’s t-test. 

 

These results indicate that Aβ1-42 oligomers influence mitochondrial Ca
2+

 uptake 

following iGluRs stimulation in a PrP
C
-dependent way, but the mechanism of this 

action clearly differs from that proposed to explain the Aβ1-42 effect on SOCE (i.e., a 

Fyn-dependent increase of Ca
2+

 entry from the extra-cellular space), and needs further 

investigation. 
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7 CONCLUSIONS –PART 2 

The results of this second part of the thesis allow us to conclude that PrP
C
 is 

intimately involved in limiting the Ca
2+

 quantity entering into neurons, because it is 

capable to downregulate the activity of all three iGluRs in addition to SOCE. By 

controlling many transmembrane routes of Ca
2+

 entry, this aspect adds further 

importance to PrP
C
 as safeguard protein against neuronal excitability, which is further 

supported by the finding that PrP
C
 can also restrict mitochondrial Ca

2+
 uptake by 

indirectly controlling CICR through the limitation of iGluR-mediated Ca
2+

 entry.  

Equally interesting is the finding that mitochondria of PrP-KO CGN are retracted 

from the PM, implying that PrP
C
 could be implicated in the control of mitochondrial 

movements. This may have important consequences for neurons and deserves further 

investigation, since an impaired trafficking of mitochondria could be prodromal to 

neuronal dysfunctions and, possibly, to neurodegenerative processes. 

We found that soluble Aβ1-42 was affecting Ca
2+ 

fluxes also when CGN were 

stimulated by glutamate (or iGluRs agonist), and that this effect was dependent on the 

presence of PrP
C
. This observation reinforces the notion that Aβ oligomers convey 

their neurotoxic message by binding to PrP
C
 and suggest that this may occur through 

the (PrP
C
-dependent) alteration of neuronal Ca

2+
 handling. The mechanistic details of 

such an Aβ1-42-PrP
C
-glutamate triangle, however, remain to be elucidated. 
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8 GENERAL DISCUSSION AND FUTURE PERSPECTIVES 

The work presented in this Ph.D. thesis has provided novel findings that further 

support the neuroprotective role of PrP
C
 against dangerous Ca

2+ 
overload. This 

conclusion was achieved by combining the use of primary isogenic CGN expressing, or 

not, PrP
C
, with Ca

2+
 probes allowing detection of compartmentalized Ca

2+
 oscillations, 

and with a few biochemical and morphological investigations. 

The most important phenomenological result of the study refers to the capacity of PrP
C
 

to reduce Ca
2+

 entry into neurons through different types of Ca
2+

 channels (SOCC and 

iGluRs), and – consequently – the accumulation of Ca
2+

 by mitochondria. This data 

highlights the ample spectrum of pathways governed (directly or indirectly) by PrP
C
 to 

protecting neurons against uncontrolled Ca
2+

 signals that may undermine neuronal 

functions and plasticity, and promote neuronal death, particularly in 

neurodegenerative disorders. 

Mechanistically, we were able to correlate the PrP-dependent downregulation 

of SOCE to the control of Fyn activation. Fyn, a member of the SFK family, has long 

been suspected to act as downstream effector of PrP
C
 in regulating key processes, 

ranging from embryogenesis and neuritogenesis, to, at large, neuroprotective signaling 

(Mouillet-Richard et al., 2000; Graner et al., 2000; Chiarini et al., 2002; ). To note, 

however, that, contrary to these past observations, for the first time to our knowledge 

we have provided evidence that PrP
C
 downregulates Fyn under basal conditions, 

highlighting in this way that the control of Fyn is part of the physiological function of 

PrP
C
. In light of the renowned implication of Fyn in regulating NMDA-R activity (Khor 

and Sepurg, 1996; Tezuka et al., 1999; Xu et al., 2006), it is fair to speculate that Fyn 

could also be the intermediate between PrP
C
 and NMDA-Rs. Some preliminary data of 

the effect of SFK inhibitors on NMDA-mediated Ca
2+

 entry are in favour of this 

possibility although more detailed experiments are needed to establish the underlying 

mechanism. This will include immunocytochemistry and/or biochemical tools aiming at 

clarifying whether the NR2B subunit of the receptor is the one phosphorylated by Fyn 

in a PrP
C
-dependent way – as already shown in the presence of Abeta oligomers (Um et 

al., 2012) – and if the degree of Fyn activation is correlatable with the residency of the 

NMDA-R at the PM under our experimental conditions. 

As to the influence of PrP
C
 on mitochondrial Ca

2+ 
uptake, data obtained with 

glutamate, or by stimulating specific iGluRs, have disclosed that it is accomplished by 

at least two ways, i.e., the attenuation of Ca
2+

 entry from the extracellular matrix, and 

the control of CICR. The two processes are known to be closely interconnected, in that 
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CICR can amplify PM Ca
2+ 

signal, but the novel aspect provided by this work is that PrP
C
 

is apparently at the top of the entire mechanism and that, by firstly limiting 

extracellular Ca
2+ 

entry, it ultimately finely controls the quantity of Ca
2+ 

taken up by 

mitochondria. This is extremely important for the cell life, since mitochondrial Ca
2+ 

overload may initiate apoptosis. Mitochondria accumulate a substantial Ca
2+ 

quantity 

also after SOCE. Under these conditions, however, ER Ca
2+

 stores are empty and 

mitochondria would then take up Ca
2+ 

only from the cytosol. The higher amount 

detected in PrP-KO mitochondria could be explained not only by the larger Ca
2+ 

influx 

through SOCC but also by the lower quantities of SERCA (and PMCA) pumps in these 

neurons (Lazzari et al., 2011), both of which increase [Ca
2+

]cyt. 

However, to fully understand the control of PrP
C
 over mitochondrial Ca

2+ 

accumulation, one needs to consider another unexpected result emerged from 

camparing control and PrP-KO CGN by electron microscopy of, i.e., that PrP
C
 “keeps in 

place” mitochondria close to the PM. Although previous studies have correlated PrP
C
 

to different aspects of mitochondrial physiology (Miele et al., 2002, Paterson et al., 

2007), none of them has tackled the issue of if and how PrP
C
 impinges on 

mitochondrial distribution. Our finding suggests that the physiological function of PrP
C
 

includes the correct trafficking of mitochondria, although also in this case further 

investigations are needed to analyze in detail the underlying mechanism. 

In conclusion, our results indicate that PrP
C
 is constitutively implicated in crucial 

physiological aspects, such as Fyn activation and Ca
2+

 homeostasis, opening the 

possibility that their PrP
C
-mediated dysregulation impact profoundly into the life of 

neurons. This is likely to occur in prion disorders, in which functional PrP
C
 is 

continuously recruited into prions, but may be particularly relevant also for those 

disease-related species, like Aβ oligomers, which exploit PrP
C
 as surface binding 

partner for the downstream transduction of their toxicity. In AD, both Ca
2+

 

dyshomeostasis (Green and LaFerla, 2008), and aberrant Fyn signaling (Lambert et al., 

1998) were proposed to mediate the deleterious effects of oligomeric Aβ. Accordingly, 

it was shown that Fyn is activated after Aβ docking to PrP
C
 in hippocampal neurons, 

and that in these cells it forms super-molecular complexes with PrP
C
 (Larson et al., 

2012; Um et al., 2012) by the intervention of mGluR5 in connecting Fyn and PrP
C
 on 

the opposite sides of the PM (Um et al., 2013). Clearly, the undetectable expression of 

mGluR5 in CGN suggests that in these neurons a different mechanism is involved. 

We also provided further evidence that PrP
C
 may act as receptor for soluble 

Aβ1-42 oligomers, since the treatment of PrP-Tg CGN with these peptide disrupt the 

PrP
C
-Fyn-SOCE triangle, and more in general, the PrP

C
-dependent control of Ca

2+
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homeostasis. Considering the influence of PrP
C
 on Fyn, our findings partly resemble 

Fyn activation by PrP
C
 cross-linking (Mouillet-Richard et al., 2000) or PrP

C
-NCAM 

clustering (Santuccione et al., 2005), but disclose a different underlying mechanism, 

whereby the interaction of PrP
C
 with extracellular ligands releases the basal 

attenuation by PrP
C
 of Fyn rather than the ligand-PrP

C
 complex directly promoting Fyn 

activation. Accordingly, one initial step of oligomeric Aβ1-42 toxicity could involve PrP
C
 

displacement from the role of sentinel against neuronal Ca
2+

 overloads. Additional 

studies are needed to clarify whether this effect is consequent to a structural 

modification of PrP
C
, or a dislodgment from natural proteinaceous partners, or a 

modification of the membrane lipid architecture surrounding the protein.  

Whichever the reason, a documented consequence of oligomeric Aβ1-42 in CGN 

is increased SOCE, altered mitochondrial Ca
2+

 uptake upon SOCE or after stimulation 

with glutamate or NMDA, unrestricted Fyn activity, and higher amounts of p-Tyr 

proteins. However, because PrP-KO mice show no gross phenotype, nor overt signs of 

neurodegeneration, the alterations reported in this work cannot be sufficient to 

account for AD pathology. Nonetheless, they could act as necessary events that, 

combined with other PrP
C
-dependent and/or PrP

C
-independent insults, could 

eventually contribute to AD-related neuronal damage. 

 

SERCA

ER

Orai

MCU

IP3R

iGluRs

STIM

PrPC

Fyn

RyR

P

P

Aβ1-42

CICR

?

?

 

Figure 36. A possible mechanism by which PrP
C
 controls Ca

2+
 homeostasis in CGN. The prime action of 

PrP
C
 is the downregulation of Fyn activity through a putative ligand. The consequent lower 

phosphorylation of STIM (bleu circles) (which in turn affects Orai), and probably of iGluRs, reduces Ca
2+

 

entry (red circles) and the Ca
2+

 accumulation by mitochondria directly (in the case of SOCE) and through 

CICR (in the case of iGluRs). Aβ1-42 (grey circles), by binding PrP
C
, abrogates the control exerted by PrP

C
 on 

Fyn, which phosphorylates and activates SOCC, leading to an increased Ca
2+

 entry into the cell. Possibly 

this mechanism could be true also for iGluRs but needs to be confirmed by other experiments. 
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