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“…e	mi	parve	che	il	trattare	dell’utilizzazione	dell’energia	solare	dal	punto	di	vista	

fotochimico,	poteva	costituire	argomento	di	generale	interesse	...	chè	la	vita	e	la	

civiltà	dureranno	finchè	splende	il	sole.”	

	

	

“…	and	I	thought	that	exploiting	sun	light	from	a	photochemical	point	of	view,	

could	be	a	general	interest	topic	…	since	life	and	civilization	will	last	as	long	as	the	

sun	shines”	

	

	

	

Bologna,	1912	

G.	Ciamician	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

“…<<	Donna,	chi	cerchi?	>>…la	definizione	stessa	dell'uomo	è:	un	essere	di	ricerca,	

con	un	punto	di	domanda	piantato	in	fondo	al	cuore…”	

	

“…<<	woman,	who	you	are	looking	for?	>>	…indeed,	the	definition	of	human	being	

is:	a	being	in	research,	with	a	question	mark	set	deep	in	his	heart..”	

	



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Alla	mia	stupenda	e	forte	mamma	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



Molecular	catalysis	towards	artificial	photosynthesis	

Ph.D.	Thesis,	Irene	Bazzan,	Università	degli	studi	di	Padova,	Italy	

	

The	21st	century	is	a	time	of	unprecedented	uncertainty	for	the	energy	sector:	a	

secure,	 clean,	 continuous	 and	 equally	 distributed	 source	 of	 energy	 is	

fundamental	 to	 global	 economic	 growth	 and	 human	 development.	 Nowadays,	

being	 able	 to	 find	 a	 real	 substitute	 to	 fossil	 fuels	 represents	 a	 fascinating	

challenge.	Among	possible	alternatives,	renewable	sources	seems	to	better	fit	the	

energetic	demand	and	solar	energy	is	by	far	the	largest	exploitable.	However,	it	

has	 to	 be	 captured,	 converted	 and	 conveniently	 stored.	 Inspired	 by	 Nature,	

artificial	 photosynthesis	 is	 a	 process	 aimed	 at	 efficiently	 converting	 sunlight	

energy	into	alternative	fuels	such	as	hydrogen	or	other	different	reduced	form	of	

carbon.	This	artificial	system	is	characterized	by	an	articulate	scheme	of	events,	

terminating	with	redox	reactions	that	need	to	be	efficiently	catalysed.	

The	 project	 of	 this	 thesis	 aims	 to	 study	 the	 development	 of	 new	 catalytic,	

molecular	 and	 Earth‐abundant	 based	 systems	 for	 redox	 processes	 in	 artificial	

photosynthesis.	For	our	goals,	photo‐activated	systems	are	preferred	in	order	to	

better	mimic	 the	 light‐driven	 activation	 in	 an	 ideal	 artificial	 device.	Moreover,	

multi	 and	 mono	 metallic	 active	 sites	 in	 catalysts	 structure	 are	 considered,	

inspired	by	several	efficient	examples	 in	 literature.	The	work	is	mainly	focused	

on	 water	 oxidation	 reaction,	 being	 still	 considered	 the	 bottleneck	 of	 artificial	

photosynthesis;	 however	 also	 preliminary	 studies	 on	CO2	 reduction	 have	 been	

examined.		

First,	 a	 Cobalt‐based	 oxo	 cluster,	 [Co4(3‐O)4(‐O2CCH3)4(pyridine)4]	 has	 been	

studied	 as	 a	molecular	 catalyst	 for	water	 oxidation	 in	 a	 light	 activated	 system	

with	 Ru(bpy)32+	 as	 photosensitizer	 and	 S2O82‐	 as	 sacrificial	 donor.	 The	 species	

has	 been	 characterized	 through	 different	 analytic	 techniques	 and	 tuning	

electronic	 substituents	 properties,	 structure‐activity	 correlations	 have	 been	

investigated	 by	 cyclic	 voltammetry	 and	 laser	 flash	 photolysis.	 Moreover,	 a	

synthetic	approach	to	modify	the	structure	of	the	species	has	been	evaluated	in	

order	to	design	no	covalent	dyads	between	the	catalyst	and	the	photosensitizer	

exploiting		interactions.	



Other	 Cobalt‐based	 species	 with	 high	 nuclearity	 and	 totally	 inorganic	 ligands	

(polyoxometalates,	 POMs)	 have	 been	 studied	 in	 water	 oxidation	 catalysis.	 In	

particular,	 complexes	 [Co9(H2O)6(OH)3(PW9O34)3]16‐,	

[Co6(H2O)30{Co9Cl2(OH)3(H2O)9(SiW8O31)3}]5‐	 and	 [{Co4(OH)3PO4}4(PW9O34)4]16‐	

have	 been	 investigated	 with	 laser	 flash	 photolysis	 and	 in	 the	 photo‐activated	

system.	 Interesting	 mechanistic	 insights	 have	 been	 reached	 thanks	 to	 the	

analysis	of	these	species.	

Moreover,	 during	 the	 thesis	work	 a	 novel	 single	 site	 Copper‐based	 compound	

with	 a	 tetraazacyclotetradecane	 ligand	 has	 been	 proposed	 as	 water	 oxidation	

catalyst.	 In	 particular,	 the	 species	 has	 been	 characterized	 among	 the	

electrochemical	system	and	the	catalytic	behaviour	has	been	explored	by	means	

cyclic	voltammetry,	electrolysis	and	photoelectrochemical	experiments.	With	the	

aim	of	the	development	of	a	sunlight	activated	water	splitting	device,	for	the	first	

time	 in	 this	 thesis	 work	 a	 Copper	 molecular	 species	 has	 been	 examined	 in	

combination	with	 light.	 Results	 seem	 to	 be	 preliminary	 interesting	 for	 further	

studies	on	azamacrocyclic	Copper‐based	molecular	species.	

Finally,	 dealing	 with	 the	 catalysis	 of	 CO2	 reduction	 some	 studies	 have	 been	

performed	 with	 a	 POM‐based	 complex,	 [Cu(SiW11O39)]6‐.	 Cyclic	 voltammetry	

experiments	have	been	run	in	order	to	evaluate	the	possible	catalytic	activity	of	

the	compound	in	CO2	reduction.	

The	 aim	 of	 this	 thesis	 work	 is	 to	 suggest	 a	 method	 to	 achieve	 a	 better	

understanding	of	the	analysed	topic	through	optimized	experimental	conditions	

and	mechanistic	insights.	

	

	

	

	

	

	

	

	

	

	



Catalisi	molecolare	per	fotosintesi	artificiale	

Tesi	di	dottorato,	Irene	Bazzan,	Università	degli	studi	di	Padova,	Italia	

	

Il	 21°	 secolo	 appare	 come	 un	 momento	 di	 enorme	 incertezza	 per	 il	 settore	

energetico:	 un’energia	 sicura,	 pulita,	 continua	 ed	 equamente	 distribuita	 risulta	

necessaria	per	la	crescita	economica	e	lo	sviluppo	della	società	umana.	Riuscire	a	

trovare	 un’adatta	 alternativa	 ai	 combustibili	 fossili	 costituisce	 una	 sfida	

affascinante	 per	 l’avanzamento	 scientifico.	 Considerando	 diverse	 possibilità,	 le	

risorse	rinnovabili	sembrano	essere	in	grado	di	rispondere	meglio	alla	richiesta	

energetica	 e	 fra	 queste,	 l’energia	 solare	 è	 sicuramente	 la	 più	 sfruttabile,	 però	

deve	 essere	 raccolta,	 convertita	 e	 conservata.	 Ispirandosi	 alla	 Natura,	 la	

fotosintesi	 artificiale	 è	 una	 soluzione	 in	 grado	 di	 convertire	 efficientemente	

l’energia	derivante	dalla	luce	solare	in	combustibili	alternativi	come	idrogeno	o	

altre	forme	ridotte	di	carbonio.	Questo	sistema	artificiale	presenta	una	struttura	

articolata	 di	 eventi,	 che	 terminano	 con	 reazioni	 di	 ossidoriduzione	 che	

necessitano	un’efficiente	catalisi.	

All’interno	del	 panorama	descritto,	 questo	 progetto	 di	 tesi	 è	 quindi	 focalizzato	

nello	 sviluppo	 di	 nuovi	 sistemi	 molecolari	 basati	 su	 metalli	 abbondanti	 sulla	

superficie	 terrestre	 in	 grado	 di	 catalizzare	 processi	 redox	 coinvolti	 nella	

fotosintesi	artificiale.	Lo	studio	di	sistemi	foto	indotti	è	stato	privilegiato,	poiché	

si	avvicina	maggiormente	all’	attivazione	da	parte	della	luce	di	un	ideale	sistema	

artificiale.	 Inoltre,	 ispirandosi	 ai	 numerosi	 esempi	 presenti	 in	 letteratura,	 i	

catalizzatori	 considerati	 sono	basati	 su	 strutture	 con	 centri	 attivi	 sia	multi	 che	

mono	 metallici.	 Il	 lavoro	 è	 maggiormente	 focalizzato	 sulla	 reazione	 di	

ossidazione	 dell’acqua,	 considerata	 ancora	 la	 problematica	 maggiore	 nel	

processo	 di	 fotosintesi	 artificiale,	 ma	 sono	 stati	 presi	 in	 considerazione	 anche	

studi	preliminari	per	la	catalisi	della	reazione	di	riduzione	di	CO2.	

Inizialmente,	 un	 osso	 cluster	 di	 Cobalto,	 [Co4(3‐O)4(‐O2CCH3)4(pyridine)4]	 è	

stato	esaminato	 come	catalizzatore	molecolare	 	 in	un	 sistema	 foto	attivato	 con	

Ru(bpy)32+	 come	 fotosensibilizzatore	 e	 S2O82‐	 come	 donatore	 sacrificale.	 La	

specie	è	 stata	 caratterizzata	mediante	diverse	 tecniche	analitiche	e	variando	 le	

proprietà	 elettroniche	 dei	 sostituenti,	 correlazioni	 fra	 la	 struttura	 e	 l’attività	

sono	 state	 investigate	 con	voltammetria	 ciclica	 e	 laser	 flash	 fotolisi.	 Inoltre,	 un	



approccio	 sintetico	 volto	 alla	 modifica	 strutturale	 del	 catalizzatore	 è	 stato	

valutato	 per	 progettare	 diadi	 non	 covalenti	 tra	 la	 specie	 stessa	 e	 il	

fotosensibilizzatore	sfruttando	interazioni	.		

Altre	 specie	 ad	 alta	 nuclearità,	 contenenti	 Cobalto	 e	 con	 leganti	 totalmente	

inorganici	 (poliossometallati,	 POMs)	 sono	 stati	 valutati	 per	 la	 catalisi	 di	

ossidazione	dell’acqua.	 In	particolare	i	complessi	[Co9(H2O)6(OH)3(PW9O34)3]16‐,	

[Co6(H2O)30{Co9Cl2(OH)3(H2O)9(SiW8O31)3}]5‐	 e	 [{Co4(OH)3PO4}4(PW9O34)4]16‐	

sono	 stati	 investigati	 nel	 sistema	 foto	 attivato	 e	 con	 laser	 flash	 fotolisi.	

Interessanti	informazioni	di	meccanismo	sono	state	ottenute	grazie	allo	studio	di	

questi	composti.	

Inoltre,	durante	il	lavoro	di	tesi	un	nuovo	composto	basato	su	un	unico	atomo	di	

Rame	e	un	legante	tetraazaciclotetradecano	è	stato	proposto	come	catalizzatore	

per	 ossidazione	 dell’acqua.	 In	 particolare,	 la	 specie	 è	 stata	 caratterizzata	 nel	

sistema	 elettrochimico	 e	 la	 sua	 attività	 catalitica	 è	 stata	 valutata	 mediante	

voltammetria	ciclica,	elettrolisi	ed	esperimenti	fotoelettrochimici.	Con	lo	sguardo	

volto	allo	sviluppo	di	un	dispositivo	per	water	splitting	attivato	dalla	luce	solare,	

in	questa	tesi	per	la	prima	volta	è	stata	esaminata	una	specie	molecolare	di	Rame	

in	combinazione	con	la	luce.	I	risultati	ottenuti	sembrano	aprire	la	strada	a	nuove	

linee	 di	 ricerca	 legate	 a	 specie	 molecolari	 di	 Rame	 con	 leganti	 macrociclici	

azotati.	

Infine,	 per	 quanto	 riguarda	 la	 catalisi	 della	 reazione	 di	 riduzione	 di	 CO2,	 un	

complesso	 di	 Rame	 con	 legante	 POM	 è	 stato	 selezionato,	 [Cu(SiW11O39)]6‐,	 ed	

esperimenti	 di	 voltammetria	 ciclica	 sono	 stati	 effettuati	 per	 valutarne	 l’attività	

catalitica.	

Questo	lavoro	di	tesi	si	propone	di	indicare	un	metodo	di	lavoro	per	ottenere	una	

migliore	comprensione	dell’argomento	trattato,	attraverso	l’ottimizzazione	delle	

condizioni	 sperimentali	 e	 approfondimenti	 riguardanti	 il	 meccanismo	 dei	

processi	in	esame.	
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1.	CHAPTER	

General	introduction	

	

1.1	Energy	issue:	a	general	overview	

This	 is	 a	 time	 of	 unprecedented	 uncertainty	 for	 the	 energy	 sector:	 a	 secure,	

reliable,	affordable,	clean	and	equitable	energy	supply	 is	 fundamental	 to	global	

economic	growth	and	human	development	and	presents	a	real	challenge.	(1)	

During	 the	20th	century	 fossil	 fuels	offered	great	opportunities	 to	 technological	

innovation	 and	 to	 the	 energetic	market	 and	 they	 are	 still	 the	most	 important	

present	 energy	 source.	 Even	 though	 all	 the	 success	 they	 have	 brought	 to	 our	

modern	society,	their	exploitation	caused	new	energetic	issues.		

1)	 During	 this	 century,	 humanity	 will	 face	 the	 problem	 of	 fossil	 fuel	 harmful	

effects,	such	as	pollution	that	threatens	human	health	and	greenhouse	gases	(in	

particular	carbon	dioxide,	CO2)	associated	with	global	warming.	(2)	

2)	 In	 addition,	world	 energy	 demand	 is	 expected	 to	 increase	 every	 year:	 as	

reported	 by	 the	 Eurostat	 agency,	 between	 2005	 and	 2011	 global	 energetic	

consumption	 passed	 from	11	 billions	 toe	 (tons	 of	 oil	 equivalent;	 about	 16	TW	

per	 year)	 to	 13	 billions	 toe	 (about	 20	 TW	 per	 year),	 among	 which	 82%	 was	

provided	by	 fossil	 fuels,	Fig.	1.1.	 In	 this	 time	frame	China	showed	an	 increased	

consumption	by	more	than	a	half,	while	Japan,	Canada,	USA	and	EU‐28	recorded	

lower	values,	due	to	the	concurrent	global	financial	and	economic	crisis.	(3)	

	
Fig.	1.1:	A	table	resuming	the	global	gross	inland	consumption	between	2005	and	2011	(3)	
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3)	As	visible	in	details	for	2011,	the	distribution	of	energy	production	doesn’t	

match	 with	 its	 gross	 in	 land	 consumption.	 The	 energy	 prices	 and	 its	 high	

associated	 volatility	 have	 become	 the	 most	 critical	 uncertainty	 for	 energy	

leaders.	

	

a)	production	 b)	consumption	

Fig.	1.2:	Parallel	representation	in	pie	charts	of	a)	world	energy	production	divided	by	region	

and	b)	world	gross	inland	consumption	by	region	(4)	

	

In	Fig.	1.3	the	energy	dependency	indicator	reveals	the	countries	that	were	net	

exporters	in	the	period	from	2005	to	2011.	Japan,	South	Korea,	Turkey	and	the	

EU‐28	had	energy	dependency	ratios	in	excess	of	50	%	in	2011,	 indicating	that	

more	than	half	of	their	gross	inland	consumption	was	met	by	imports.	Australia’s	

net	 exports	 exceeded	 its	 consumption	 resulting	 in	 an	energy	dependency	 ratio	

that	was	below	‐100	%,	while	Saudi	Arabia’s	net	exports	were	more	than	twice	

as	high	as	its	gross	inland	consumption.	(3)	It	is	easy	to	conclude	that	this	energy	

source	distribution	can	let	to	peculiar	politic	and	economic	issues.	Holding	most	

of	 the	energy	sources,	 few	countries	nowadays	have	already	a	crucial	power	 in	

global	affaires.	
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Fig.	1.3:	Comparison	of	different	countries	energy	dependency	between	2005	and	2011	(3)	

	

4)	On	 the	 fossil	fuels	availability,	 sources	are	divided	 in	 two	major	 schools	of	

thoughts:	 some	 assure	 that	 fossil	 energy	 reserves	 are	 still	 present	 in	 different	

forms	and	available	to	supply	the	future	energy	demand	for	several	centuries.	(6)	

Others	 state	 that	 the	 fossil	 fuels	 reserves	 will	 not	more	 be	 able	 to	 satisfy	 the	

increasing	request	 in	terms	of	oil	and	natural	gas	and	humanity	has	to	 face	the	

problem	of	found	alternative	energetic	sources.	(2,	5)	

However,	even	if	there	are	still	fossil	energy	reserves	available,	without	a	change	

of	 direction,	 on	 timescale	 CO2	 anthropogenic	 emissions	 will	 cumulate	 in	 the	

atmosphere	letting	to	climate,	environmental	and	human	health	issues.	(6)	

	

In	a	world	becoming	more	interconnected,	where	new	technologies	foster	faster	

innovations,	 we	 need	 additional	 investments	 and	 incentives.	 Not	 only	 for	 the	

growing	population	(7)	but	also	for	the	developing	countries	that	grow	more	and	

more	 energetic	 demand	 to	 satisfy	 their	 advancement	 and	 progress.	 Any	 long‐

term	solution	relies	on	 the	 identification	and	exploitation	of	alternative	energy	

sources,	ideally	abundant,	cheap,	clean	and	widespread	on	Earth.	

Among	possible	alternatives,	renewable	energies	seem	to	be	the	most	interesting	

approach	 and	 solar	 energy	 is	 by	 far	 the	 largest	 exploitable	 resource.	 The	 sun	

continuously	 irradiates	 the	 Earth	 with	 a	 huge	 amount	 of	 energy	 in	 form	 of	
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electromagnetic	 radiation	 equal	 to	 1.2×105	 TW	 per	 year,	 four	 orders	 of	

magnitude	higher	than	the	current	globally	required	quantity.	(8,	9)	

Solar	 energy	has	 an	 important	 role	 to	play	 in	 reducing	 future	 carbon	emission	

and	ensuring	a	 suitable	energy	 future	but	 since	 it	 is	diffuse	and	 intermittent	 it	

requires	to	be	captured,	converted	and	stored.	The	most	attractive	way	to	energy	

conversion	and	storage	is	in	the	form	of	chemical	bonds	as	Nature	has	acted	for	

million	of	years	with	photosynthesis.		

	

1.2	Natural	photosynthesis	

	

In	natural	photosynthesis	a	complex	reactions	scheme	converts	H2O	and	CO2	in	

O2	and	sugars	through	sun	light.		

6	H2O	+	6	CO2	+	h	→	C6H12O6	+	6	O2	 (1.1)

Even	 if	 the	 absorbed	 light	 by	 photosynthetic	 organism	 belongs	 to	 the	 whole	

visible	solar	radiation,	the	wavelengths	actually	used	for	this	conversion	dwells	

only	the	red	region	of	the	spectrum.	The	energy	of	two	“red”	photons	(800	nm,	

energy	ca	1.55	eV)	(10)	is	needed	for	every	electron/proton	extraction	from	water	

and	CO2	reduction.	These	tasks	are	accomplished	by	two	different	photosystems:	

i)	 photosystem	 II	 (PSII)	 able	 to	 exploit	 light	 to	 permit	 the	 extraction	 of	

electrons/protons	 from	 water	 and	 ii)	photosystem	 I	 (PSI)	 which	 uses	 light	 to	

provide	additional	energy	in	order	to	drive	the	CO2	fixation	process.	

Natural	 photosynthesis	 shows	 the	possibility	 to	 convert	 sunlight	 into	 chemical	

fuels;	 this	means	absorption	of	 the	 light,	 transfer	the	energy	and	store	 it	 in	the	

form	of	chemical	bonds.	 In	green	plants	chlorophyll	and	other	pigments,	which	

lie	 in	 the	 chloroplasts	 of	 leaves,	 absorb	 solar	 light,	 which	 is	 then	 efficiently	

transferred	 to	 the	 enzyme	 PSII.	 The	 latter	 is	 a	 multi	 subunit	 complex	 able	 to	

carry	 out	 the	 catalytic	 conversion	 of	water	 into	 oxygen,	 protons	 and	 reducing	

electrons,	 the	 so	 called	 “water	 splitting	 reaction”.	 The	 PSII	 complex	 combines	

different	components	and	it	 is	 the	reaction	centre	where	the	charge	separation	

happens.	Its	units	are	able	to	separate	and	stabilize	electrons	and	holes	produced	

during	 this	 initial	 process	 where	 the	 light	 energy	 is	 converted	 into	 an	

electrochemical	 potential.	 (8,	9)	 The	 P680,	 a	 chlorophyll	 molecule,	 is	 turned	 into	

P680•+	 a	 species	 with	 a	 high	 oxidizing	 power,	 while	 the	 reducing	 equivalent	 is	
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transferred	 along	 an	 electron	 transport	 chain	 to	PSI	where	 it	 is	 excited	by	 the	

second	“red”	photon	absorbed.	Thus,	Nature	is	able	to	accumulate	enough	energy	

to	drive	also	the	fixation	of	CO2	through	this	organized	scheme.	

	
Fig.	1.4:	Schematic	representation	of	the	membrane	inside	chloroplasts	showing	the	four	protein	

complexes	involved	in	the	photosynthetic	light	reactions	among	which	PSII	and	PSI	are	described	

in	this	work	(11)	

	

	These	natural	photosystems	are	efficient	molecular	photovoltaic	nanomachines,	

since	the	light‐driven	electron/proton	transfer	from	H2O	to	CO2	involves	a	great	

number	 of	 cofactors	 both	 in	 PSII	 and	 PSI	 proteins.	 (9)	 Natural	 strategy	 and	

organization	could	be	incorporate	into	the	design	of	an	“artificial	device”,	it	may	

be	 possible	 to	 develop	 an	 artificial,	 efficient	 and	molecular‐based	 solar	 energy	

converting	technology.	(12)	

	

1.2.1	Water	splitting	

	

Compared	to	other	photosystems,	PSII	turns	out	to	be	unique	for	its	redox	skills:	

indeed	it	carries	out	the	water	splitting,	which	is	the	most	appealing	reaction	for	

scientists	in	order	to	mimic	nature	and	design	an	artificial	device.	

Therefore,	many	research	groups	 (8,	13,	14,	15,	16,	17)	have	been	studying	 the	way	 in	

which	 Nature	 approaches	 this	 issue	 because	 better	 understanding	 can	 help	

developing	 of	 more	 appropriated	 bioinspired	 systems.	 In	 particular,	 the	

identification	 of	 PSII	 structural	 details	 has	 provided	 information	 about	 the	

involvement	 of	 supramolecular	 architectures	 with	 a	 perfect	 organization	 in	

spaces	(Fig.	1.5),	energy	and	time,	useful	for	the	sequential	processes	involved.	
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a)	 b)	

Fig.	1.5:	Pictures	showing	a)	PSII	structure	complexity,	(13)	b)	OEC	spatial	arrangement	(17)	

The	major	actors	in	natural	water	splitting	consist	in	i)	a	multimer	of	chlorophyll,	

P680,	 ii)	 a	 redox	 active	 tyrosine	 aminoacid,	 TyrZ,	 and	 iii)	 the	 oxygen‐evolving	

center	(OEC)	a	cluster	with	four	Mn	atoms	and	a	Ca	atom	connected	in	a	cubane‐

like	structure	trough	μ‐oxo	bridges	(Fig.	1.5	b)).	(16,	17)	

The	main	events	involve:	

1)	P680	after	absorption	of	a	photon,	directly	transferred	by	the	antenna	units	of	

the	 chlorophyll,	 changes	 to	 its	 P680+	 form,	 one	 of	 the	 most	 oxidizing	 species	

present	in	Nature,	(reduction	potential	of	ca	+1.2	V	vs	NHE).		

2)	P680+	 is	 then	reduced	by	a	TyrZ	 residue,	 forming	a	 tyrosine	based	radical;	as	

the	TyrZ	 is	 linked	with	 an	histidine	 through	 a	hydrogen	bond,	 the	oxidation	of	

TyrZ	and	deprotonation	occur	at	the	same	time,	with	release	of	the	proton	to	the	

His	residue.	

3)	the	tyrosine	radical	oxidizes	the	OEC.	

4)	steps	1‐3	are	cyclically	repeated	four	times	in	order	to	allow	the	OEC	to	reach	

its	 active	 state,	 that	 performs	 water	 oxidation	 and	 the	 release	 of	 molecular	

oxygen;	this	process	is	known	as	the	Kok	cycle,	Fig.	1.6.	(18)	The	OEC	undergoes	to	

five	oxidation	states,	labelled	Si	(i=	0‐4),	where	the	suffix	i	 indicates	the	level	of	

oxidation	of	 the	OEC,	and	S4	being	 the	active	 intermediate	needed	 for	 the	one‐

step,	four‐electron	oxidation	of	water	leading	to	oxygen	evolution.		
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Fig.	1.6:	Classical	S‐state	cycle	of	photosynthetic	(10)	(Kok	cycle)	

The	OEC	has	been	hardly	studied	and	the	structure	is	now	well	elucidated	(15,	16,	

17,	19)	in	the	cubane‐like	structure	of	Mn	and	Ca	atoms	and	the	protein	entourage.	

It	is	a	quite	perfect	result	of	natural	evolution	where	the	number	and	the	setting	

of	metal	centres	can	be	connected	with	the	multielectron	processes.	However	the	

precise	natural	mechanism	is	still	quite	blurred	and	other	deeper	future	studies	

could	give	useful	insights	for	the	design	of	nature	mimic	devices.	Moreover,	the	

harsh	oxidizing	conditions	under	which	the	OEC	works	are	quite	demanding	in	

terms	of	 chemical	 resistance	of	 the	molecular	 components	 involved.	To	bypass	

the	 inevitable	 long‐term	 oxidative	 degradation	 of	 organic	 molecules,	 Nature	

devised	 a	 strategy	 of	 continuous	 replacement	 and	 repair	 of	 the	 molecular	

machinery	of	the	OEC:	the	catalytic	centre	is	resynthesized	every	thirty	minutes	

to	compensate	the	self‐caused	oxidation	damage.	(20)	

	

1.3	A	step	forward:	the	artificial	system		

	

“…the	solar	energy	that	reaches	a	small	tropic	country…is	equal	annually	to	the	energy	produced	by	

the	entire	amount	of	coal	mined	in	the	world!	For	our	purposes	the	fundamental	problem	from	the	

technical	point	of	view	is	how	to	fix	the	solar	energy	through	suitable	photochemical	reactions…By	

using	suitable	catalysts,	it	should	be	possible	to	transform	the	mixture	of	water	and	carbon	dioxide	

into	oxygen	and	methane,	or	to	cause	other	endo‐energetic	processes…”	

(G.	Ciamician,	1912)	

	

Being	inspired	by	Nature,	we	can	think	to	an	artificial	system	able	to	efficiently	

converting	 sunlight	 energy	 in	 alternative	 fuels	 such	 as	 hydrogen	 or	 other	

different	 reduced	 form	 of	 carbon	 (from	 the	 fixation	 of	 atmospheric	 CO2):	

artificial	photosynthesis.	
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In	 order	 to	 design	 an	 artificial	 device	 able	 to	 mimic	 natural	 photosynthesis,	

research	 has	 to	 consider	 all	 the	 functional	 steps	 involved,	 such	 as	 light	

absorption,	energy	transfer,	electron	transfer	and	redox	catalysis	with	the	aim	to	

assemble	them	in	the	most	efficient	way.		

	
Fig.	1.7:	Schematic	rapresentation	of	artificial	photosynthesis	architecture	

	

A	 possible,	 articulate	 architecture	 of	 tasks	 with	 their	 related	 assembly	 for	

artificial	photosynthesis	 is	 illustrated	in	Fig.	1.7.	The	first	of	 these	steps	 is	 light	

absorption	by	an	antenna	complex	and	energy	 transfer	 to	a	photosensitizer	(P,	

Eq.	1.2).	In	its	excite	state,	P	induces	an	electron	transfer	from	a	suitable	donor	

(D)	to	an	acceptor	(A),	leading	to	an	overall	charge	separation	(Eq.	1.3‐4).		

D	–	P	–	A	→	D	–	P*–	A	 (1.2)

D	–	P*–	A	→	D	–	P+	–	A–	→	D+	–	P	–	A–	 (1.3)

D	–	P*–	A	→	D+	–	P	–	A	→	D+	–	P	–	A–	 (1.4)

	

Once	 charge	 separation	 is	 reached,	 it	 is	 important	 to	 preserve	 it	 as	 long	 as	

possible	in	order	to	enable	electron	transfer	and	activate	the	redox	systems.	(21)	

Electrons	 related	 to	 A–	 are	 transferred	 to	 a	 reduction	 catalyst	 catred	 which	

promotes	 a	 reductive	 process	 for	 protons	 or	 CO2	 (Eq.	 1.5‐6),	 while	 holes	

(electrons	 lacks)	 in	 D+	 are	 transferred	 to	 an	 oxidation	 catalyst	 catox	 able	 to	

extract	electrons	from	water	leading	oxygen	(Eq.	1.7‐8).	

n	A–	+	catred	→	n	A	+	catredn‐	 (1.5)	

catredn‐	+	CO2	→	catred	+	CO/HCOOH/…	 (1.6)	

catredn‐	+	2	H+	→	catred	+	H2	 (1.6b)

4	D+	+	catox	→	4	D	+	catox4+	 (1.7)	

catox4+	+	2	H2O	→	catox	+	O2	+	4H+	 (1.8)	
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Thus,	the	presence	of	good	catalysts	is	required	for	both	oxidation	and	reduction	

reactions:	catalysts	can	assist	the	electrons	and	holes	transfer	from	D/A	moieties	

to	avoid	recombination,	which	brings	to	deactivation	of	the	system.	In	section	1.4	

the	 issues	 related	 to	 the	 redox	 reaction	 involving	 water	 oxidation	 and	 CO2	

reduction	will	be	presented	in	more	details.		

	

1.4	Water	oxidation	and	CO2	reduction	

	

As	 already	 pointed	 out	 in	 the	 section	 before,	 artificial	 photosynthesis	 is	

characterized	 by	 an	 articulate	 reactions	 scheme,	 terminating	 with	 redox	

reactions.	 In	 particular,	 two	 of	 them	 display	 a	major	 interest:	 water	 oxidation	

and	 CO2	 reduction.	 This	 work	 will	 focus	 on	 the	 better	 understanding	 and	

investigation	of	the	catalysis	of	such	reactions.	Therefore,	a	brief	presentation	of	

these	redox	reactions	will	be	given	in	this	section;	section	1.5	will	be	dedicated	

to	the	analytical	techniques	and	the	parameters	to	evaluate	catalysts;	 finally,	 in	

section	 1.6	 and	 1.7	 the	 state	 of	 the	 art	 of	 water	 oxidation	 and	 CO2	 reduction	

catalysts	will	be	presented.	

	

1.4.1	Water	Oxidation		

	

At	 present	 water	 oxidation	 is	 considered	 the	 bottleneck	 of	 artificial	

photosynthesis	because	it	is	a	very	complex	process.	It	deals	with	issues	of:	

	

 thermodynamic:	 the	 semi	 reaction	 (Eq.	 1.9)	 exhibits	 a	 standard	

potential	of	1.23	V	vs	NHE	(at	pH	=	0);	

2	H2O	→	O2	+	4	H+	+	4	e‐	 (1.9)

	

 kinetic:	it	is	a	complex	process	involving	multi	electrons	and	protons	

transfer	 with	 breaking	 bonds	 and	 formation	 of	 new	 ones,	 implying	

high	activation	barriers	and	slow	reactions.	

	

Therefore	an	 ideal	artificial	devices	 tightly	requires	a	Water	Oxidation	Catalyst	

(WOC).	 The	 WOC	 can	 be	 design	 to	 supply	 the	 oxidative	 equivalents	 and	 to	
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control	 the	 neutrality	 of	 charge	 in	 the	 system	with	 simultaneous	 electron	 and	

proton	 transfer	 (PCET),	 requiring	 less	 energy	 than	 the	 usual	 single	 electron	

transfer.		

	

1.4.2	CO2	reduction	

	

A	principal	issue	in	CO2	reduction	is	that	the	first	one‐electron	reduction	of	CO2	

to	CO2•−	is	highly	unfavourable,	which	occurs	at	a	very	negative	potential	E0	=	‐

1.90	V	vs	NHE.	(22)	In	addition,	there	is	a	large	kinetic	issue	for	the	one‐electron	

reduction	because	of	the	structural	changes	that	the	linear	CO2	molecule	has	to	

overcome	to	transform	in	its	reduction	products.	(23)	

On	 the	 other	 hand,	 multi	 electron	 reductions	 (Eq.	 1.10‐14)	 are	

thermodynamically	 more	 favoured	 but	 these	 reactions	 increase	 the	 activation	

energy	cost	and	usually	do	not	take	place	in	the	absence	of	catalysts.		

A	second	major	issue	in	CO2	reduction	is	its	selectivity:	the	reduction	of	CO2	may	

lead	 to	 CO,	HCOOH,	HCOH,	 CH3OH,	 CH4,	 or	 higher	 hydrocarbons	 (Eq.	 1.10‐14).	

Furthermore,	 in	 protic	 solvents,	 hydrogen	 evolution	 (Eq.	 1.15)	 is	 often	

competitive	and	favored	over	CO2	reduction.	(24)	

	

CO2	+	2	H+	+	2	e‐	→	CO	+	H2O	 E	=	−0.53	V	vs	NHE	(pH	=	7)	 (1.10)

CO2	+	2	H+	+	2	e‐	→	HCOOH E	=	−0.61	V	vs	NHE	(pH	=	7)	 (1.11)

CO2	+	4	H+	+	4	e‐	→	HCOH	+	H2O	 E	=	−0.48	V	vs	NHE	(pH	=	7)	 (1.12)

CO2	+	6	H+	+	6	e‐	→	CH3OH	+	H2O	 E	=	−0.38	V	vs	NHE	(pH	=	7)	 (1.13)

CO2	+	8	H+	+	8	e‐	→	CH4	+	2	H2O	 E	=	−0.24	V	vs	NHE	(pH	=	7)	 (1.14)

2	H+	+	2	e‐	→	H2	 E	=	−0.42	V	vs	NHE	(pH	=	7)	 (1.15)

	

1.5	Overview	of	common	catalytic	systems	

	

A	 huge	 amount	 of	 compounds	 have	 been	 considered	 in	 literature	 for	 water	

oxidation	or	CO2	 reduction	 catalysis,	with	 the	 aim	 to	 find	best	 components	 for	

artificial	photosynthesis	devices.	Some	of	these	catalysts	will	be	introduced	and	

described	in	sections	1.6	and	1.7.	
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In	order	to	evaluate	these	species,	different	systems	are	exploited	where	water	

oxidation	or	CO2	are	studied	separately.	Although	this	does	not	exactly	mimic	the	

conditions	 employed	 in	 a	 potential	 artificial	 photosynthesis	 cell,	 using	 these	

different	approaches	enables	rapid	screening	and	tuning	of	catalysts.	(25)	

	

1.5.1	Electrochemical	system	

	

Electrochemical	methods	are	among	the	most	employed	for	screening	catalysts	

activity.	 There	 are	 different	 useful	 techniques	 such	 as	 cyclic	 voltammetry	 (CV)	

and	 electrolysis	 to	 obtain	 performance	 catalysts	 parameters	moreover,	 photo‐

electrochemistry,	 which	 matches	 the	 interaction	 of	 light	 with	 electrochemical	

systems.		

CV	 is	 the	 most	 commonly	 employed	 electroanalytical	 technique	 for	 studying	

molecular	electrocatalysts:	at	a	working	electrode	(WE),	the	potential	is	ramped	

linearly	versus	time.	Unlike	linear	voltammetry,	after	the	set	potential	is	reached	

in	a	cyclic	experiment,	the	working	electrode	potential	is	ramped	in	the	opposite	

direction	 to	 return	 to	 the	 starting	 value.	 The	 current	 recorded	 at	 the	working	

electrode	is	plotted	versus	the	value	of	the	potential,	reported	versus	a	standard	

reference.	 Instead,	 electrolysis	 experiments	 provide	 an	 applied	 constant	

potential	 to	 a	 solution	 over	 time	 in	 order	 to	 record	 the	 value	 of	 the	 current	

passed	 at	 the	WE	 and	 simultaneously	 the	 charge	 obtained	 during	 the	 process.	

Finally,	 during	 a	 photoelectrochemical	 experiment	 at	 the	working	 electrode,	 a	

semiconductor	(SC),	is	recorded	the	current	due	to	a	charge	separation	induced	

by	the	absorption	of	light	among	the	suitable	band	gap	of	the	employed	SC.	

The	catalysts	can	be	studied	in	solution	or	assembled	onto	a	conducting	material.	

The	 first	 method	 is	 simpler	 than	 the	 second,	 which	 requires	 considerable	

expertise	and	equipment,	which	explains	the	limited	number	of	examples	where	

catalysts	have	been	functionalized	on	a	conducting	surface	for	electrochemical	or	

photo‐electrochemical	H2O	oxidation	and	CO2	reduction.	(26)	

The	catalyst	of	interest	can	be	assembled	on	the	conducting	surface	by	different	

methods,	such	as	physic‐sorption	or	covalent	attachment.	The	functional	groups	

that	 have	 been	 used	 for	 covalently	 interfacing	 the	 catalyst	 with	 different	
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conducting	materials	are	either	carboxylate	(−COO−)	or	phosphonate	(−PO3).	(27,	

28)  

	

1.5.2	Chemical	agent	system	

	

Another	 method	 to	 evaluate	 the	 activity	 of	 potential	 catalysts,	 which	 is	

particularly	exploited	for	water	oxidation,	is	the	employment	of	chemical	redox	

agents.	In	particular,	for	testing	WOCs	a	widely	used	method	is	the	addition	of	an	

oxidant	in	an	aqueous	solution	containing	the	metal	complex.	One	of	the	oxidant	

prerequisite	 is	 to	display	a	higher	redox	potential	 than	 the	O2/H2O	couple	 (Eq.	

1.9)	and	a	higher	redox	potential	than	the	active	form	of	the	investigated	WOC.	

(29)		

A	widely	 used	 oxidant	 in	 catalysts	 screening	 is	 ceric	 ammonium	 nitrate	 (CAN,	

Ce(NH4)2(NO3)6,	CeIV).	(30)	This	strong	one‐electron	oxidant	has	a	redox	potential	

of	 about	 +1.70	 V	 vs	NHE	 (31)	 and	weak	 absorption	 in	 the	 UV‐Vis	 region	 hence	

exploitable	 in	 various	 spectroscopic	 techniques	 for	 mechanistic	 studies.	

Moreover,	 it	 is	 a	 suitable	 candidate	 to	 study	 WOCs	 activity	 because	 it	 is	

commercially	available	and	stable	in	aqueous	acidic	solutions.	

4	CeIV	+	2	H2O		 	
4	CeIII	+	O2	+	4	H+	 (1.16)

However,	 CAN	 presents	 some	 disadvantages:	 it	 requires	 strong	 acidic	 solution	

(pH	<	1),	 not	 a	 suitable	 condition	 for	 all	 catalysts.	 Furthermore,	 recently	 some	

studies	underlined	 that	 the	nitrate	anion	 in	CAN	can	be	 involved	 in	promotion	

oxygen	 atom	 transfer.	 (32)	 CAN	 showed	 to	 be	 not	 innocent	 in	 the	 O2	 evolution	

mechanism	 because	 one	 of	 the	 oxygen	 atoms	 may	 originate	 from	 the	 nitrate	

instead	of	H2O,	precluding	real	water	oxidation.	

Potassium	peroxymonosulfate	(Oxone)	is	another	powerful	oxidant	with	+1.82	V	

vs	 NHE	 as	 oxidation	 potential.	 (33)	 Otherwise	 from	 CAN,	 Oxone	 is	 stable	 in	

solution	up	to	about	pH	6	and	it	is	able	to	act	as	two‐electron	oxidant.	(29,	34)	

WOCs	 activity	 has	 been	 analysed	 also	 with	 sodium	 periodate,	 NaIO4,	 a	 two‐

electron	oxidant	with	an	oxidation	potential	of	+1.6	V	vs	NHE	at	pH	1,	potentially	

exploitable	in	solutions	up	to	neutral	pH.	(35)	

(Cat)
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Other	 different	 peroxides	 have	 been	 employed	 to	 drive	 water	 oxidation,	 as	

sodium	hypochlorite	under	alkaline	conditions,	(29)	although	some	care	needs	to	

be	considered,	concerning	the	origin	of	the	evolved	O2	and	the	ambiguity	of	their	

benefit	in	the	evaluation	of	a	potential	WOC.	(25)	

Among	 other	 possibilities,	 [Ru(bpy)3]3+	 has	 been	 explored	 as	 one	 electron	

oxidant.	 It	 exhibits	 a	 potential	 of	 +1.26	 V	 vs	 NHE	 and	 it	 can	 run	 in	 neutral	

conditions.	The	 low	redox	potential	makes	 it	still	uncommon	because	 it	cannot	

permit	to	activate	the	majority	of	developed	WOCs.	Moreover,	the	compound	is	

more	expensive	if	compared	with	other	oxidants	and	it	slowly	decomposes	at	pH	

>	4.	(36)		

	

1.5.3	Photo‐catalytic	system	

	

In	a	photo‐catalytic	system,	the	oxidant	or	reducing	agent	is	formed	in	situ,	after	

light	 absorption	 by	 a	 suitable	 photosensitizer.	 A	 common	 set	 up	 foresees	 the	

involvement	 of	 a	 three	 components	 system:	 catalyst/	 photosensitizer	 (PS)/	

sacrificial	 electron	 acceptor	 for	water	 oxidation,	 catalyst/photosensitizer	 (PS)/	

sacrificial	electron	donor	for	CO2	reduction.	Adding	a	sacrificial	electron	acceptor	

for	 WO	 or	 donor	 for	 CO2,	 this	 light‐driven	 system	 with	 a	 multi	 component	

scheme	 lets	 to	allow	 the	 catalytic	 cycle	 removing	or	providing	electrons	 to	 the	

catalyst.	

For	 WOCs	 screening,	 the	 photosensitizer	 [Ru(bpy)3]2+	 is	 largely	 exploited	 in	

combination	with	 sodium	 persulfate	 (Na2S2O8)	 as	 sacrificial	 electron	 acceptor.	

(37)	 After	 light	 excitation	 (Eq.	 1.17),	 this	 system	 proceeds	 via	 an	 oxidative	

quenching	 of	 the	 photoexcited	 state	 [Ru(bpy)3]2+*	 by	 S2O82−	 (Eq.	 1.18)	 ,	 to	

produce	[Ru(bpy)3]3+,	sulfate,	and	a	sulfate	radical	(SO4•−).	The	sulfate	radical	is	a	

strong	oxidant	by	 itself	and	has	sufficient	potential	 (E°	>	2.40	V	vs	NHE)	 (38)	 to	

directly	oxidize	[Ru(bpy)3]2+	to	generate	a	second	equivalent	of	[Ru(bpy)3]3+	(Eq.	

1.19).	 Four	 equivalents	 of	 the	 photogenerated	 [Ru(bpy)3]3+,	 oxidizes	 then	 the	

WOC	(Eq.	1.20)	although,	it	is	important	to	note	that	direct	oxidation	of	the	WOC	

by	 sulfate	 radical	 may	 occur	 (Eq.	 1.21).	 After	 accumulation	 of	 four	 holes,	 the	

WOC	oxidizes	water	(Eq.	1.22).		
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PS	+	h	→	PS	*	 (1.17)

PS	*	+	S2O82−	→	PS+	+	SO42‐	+	SO4•−	 (1.18)

PS	+	SO4•−	→	PS+	+	SO42‐	 (1.19)

PS+	+	WOC	→	PS	+	WOC+	 (1.20)

WOC	+	SO4•−	→	WOC+	+	SO42‐	 (1.21)

WOC4+	+	H2O	→	WOC	+	O2	+	4	H+	 (1.22)

	

To	 ensure	 that	 the	 sulfate	 radical	 preferentially	 reacts	 with	 [Ru(bpy)3]2+,	 it	 is	

vital	 to	 conduct	 the	 photocatalytic	 H2O	 oxidation	 experiments	 with	 a	

significantly	 higher	 concentration	 of	 the	 photosensitizer	 than	 the	 WOC	 being	

studied.	(10,	25)	As	an	alternative	to	using	persulfate	in	similar	system,	as	electron	

acceptor	CoIII	has	also	been	explored.	(39)	

The	 photoactivated	 cycles	 for	 CO2	 reduction	 operate	 with	 a	 similar	 scheme,	

where	 a	 sacrificial	 electron	 donor	 is	 used	 instead	 of	 the	 sacrificial	 electron	

acceptor.	 The	 sacrificial	 electron	 donors	 usually	 employed	 are	 amines,	 or	

ascorbic	acid.	

	

1.5.4	Evaluation	parameters	for	catalysts	performance	

	

From	 the	 systems	 described	 above,	 several	 parameters	 describing	 catalyst	

performance	 can	be	extracted.	Direct	 comparison	between	different	 systems	 is	

often	difficult	because	of	the	large	variety	of	experimental	conditions;	hence,	it	is	

very	 important	 to	 reports	 catalytic	 performances	 together	 with	 details	 of	

reaction	 conditions	 and	 analysis	 methods	 employed	 in	 order	 to	 more	 readily	

compare	catalysts.	(40)		

Regarding	electrochemical	methods	useful	parameters	to	consider	are:		

 the	 overpotential	 (η):	 this	 indicates	 the	 additional	 potential	 needed	 to	

drive	 a	 redox	 reaction	 at	 a	 specific	 rate,	 beyond	 the	 thermodynamic	

requirement.	(41)	It	is	also	described	as	the	difference	between	the	applied	

potential	and	the	standard	potential	for	the	examined	reaction.		

 the	 turnover	 frequency	 (TOF)	 (42)	 is	 the	 number	 of	 moles	 of	 product	

evolved	per	unit	 of	 time	per	mole	of	 catalyst,	 and	quantifies	 the	 rate	 of	

catalytic	activity.	In	electrochemical	experiments	the	TOF	depends	on	the	
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applied	 potential,	 while	 recently	 the	 TOF0,	 defined	 as	 the	 TOF	

extrapolated	 at	 overpotential	 =	 0,	 has	 been	 proposed	 as	 universal	

parameter	to	compare	different	catalysts.	(43)	

 the	Faradaic	efficiency	in	bulk	electrolysis,	is	defined	as	the	ratio	between	

the	moles	 of	 product	 and	 the	 total	 charge	 transferred	 at	 the	 electrode,	

multiplied	by	the	number	of	electrons	involved	in	the	reaction.	

	

Concerning	homogeneous	 solution	 systems	 (oxidant	 agent	 and	photo‐activated	

systems)	the	parameters	more	evaluated	are:	

 the	 turnover	number	 (TON)	refers	 to	 the	 ratio	between	 the	moles	of	 the	

product	per	mole	of	catalyst	used.	

 the	TOF	is	the	number	of	TON	per	time.	

 the	chemical	yield	is	obtained	by	the	ratio	between	moles	of	product	and	

moles	 of	 sacrificial	 agent.	 This	parameter	 is	 useful	 since	 the	quantity	 of	

this	species	is	limiting	for	the	whole	efficiency	of	the	system.	

 the	electron‐transfer	 rate	 constant,	 in	particular	 for	water	oxidation	 the	

constant	rate	of	hole	scavenging	 between	 the	 active	 photosensitizer	 and	

the	 catalyst.	 This	 is	 an	 important	 parameter	 affecting	 the	 total	 light‐

driven	system,	the	faster	is	the	electron	transfer	the	higher	efficiency	and	

stability.	

 the	 quantum	yield	 is	 the	 ratio	 between	 the	 molar	 concentration	 of	 the	

products	and	the	photons	flux	

	

1.6	WOCs:	state	of	the	art		

	

Water	 oxidation	 requires	 the	 removal	 of	 four	 electrons	 from	 two	 water	

molecules,	 and	 rearrangement	 of	 bonds,	 breaking	 the	 four	 O‐H	 bonds	 and	

forming	a	O−O	bond:	these	tasks	are	definitely	not	easily	accomplished.	The	high	

activation	barrier	requires	the	involvement	of	catalysts	capable	of	accumulating	

four	 oxidizing	 equivalents	 and	 ideally	 operating	 close	 to	 the	 thermodynamic	

potential	of	H2O	oxidation.	An	ideal	WOC	should	be	fast,	amenable	to	interfacing	

with	photosensitizing	materials,	and	stable	to	oxidative,	hydrolytic,	and	thermal	
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degradation	during	 turnover.	 (44)	The	search	 for	novel	and	 improved	WOCs	has	

led	to	the	development	of	a	number	of	homogeneous	and	heterogeneous	WOCs.		

In	fact,	it	is	possible	to	classify	two	different	families	of	WOCs:	i)	heterogeneous	

systems	(usually	derivatives	of	metal	oxides),	which	provide	 low	cost	and	easy	

synthesis	process	and	 ii)	homogeneous,	molecular	catalysts,	which	enhance	the	

activity	and	allow	deeper	mechanistic	understanding.		

Since	this	work	will	deal	with	molecular	WOCs,	the	state‐of‐the‐art	for	this	class	

of	 catalyst	 will	 be	 presented	 in	 detail;	 heterogeneous	 catalysts,	 such	 as	 metal	

oxide‐based	WOCs	will	be	also	briefly	introduced	in	section	1.6.1.	

	

1.6.1	Oxides	as	WOCs	

	

Even	if	 this	work	will	not	concern	heterogeneous	matter,	 the	state	of	the	art	of	

metal	oxides	will	be	briefly	describe	since	literature	reports	several	examples	of	

such	catalytic	species	for	water	oxidation.	

In	particular,	Iridium	and	Ruthenium	oxides	(IrO2	and	RuO2)	represent	so	far	the	

most	 efficient	 species	 in	 this	 field.	 Moreover,	 their	 performances	 have	 been	

improved	within	nanoparticles	 system	 in	order	 to	maximize	 the	 active	 surface	

and	therefore	the	efficiency.	(45,	46)	

Iridium:	 Nowadays,	 some	 remarkable	 examples	 for	 light‐induced	 water	

oxidation	 system	 are	 present:	 a	 combination	 of	 citrate	 stabilized	 IrO2	 colloids	

with	Ru(bpy)32+	in	aqueous	buffer	at	pH	=	5	reached	the	value	of	TON	=	100.	(47)	

Afterwards,	 the	polymerization	of	 the	sensitizer	promoted	the	heterogeneity	of	

the	system	yielding	to	a	TOF	=	160	s‐1	per	surface	of	Iridium	atom.	(48,	49)	Further	

improvements	 have	 been	 obtained	 reducing	 the	 dimensions	 of	 colloids	 and	

promoting	electron	transfer	in	a	covalently	assembled	sensitizer‐catalyst	system.	

(50)	 Indeed,	 ET	 from	 catalyst	 IrIV	 to	 RuIII	 sensitizer	 occurred	 with	 a	 first	 rate	

constant	of	8×102	s‐1	with	O2	releasing.	

These	 achievements	 gave	 the	 access	 to	 the	 developement	 of	 a	

photoelectrochemical	 cell	 for	 water	 splitting	 using	 low	 applied	 voltage.	 (51)	 In	

such	 system,	 Fig.	 1.8,	 IrO2	 nanoparticles	 are	 covalently	 bound	 to	 a	

nanostructured	TiO2	film,	through	a	RuII	bipyridine	derivative	used	as	dye.		
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Fig.	1.8:	Pictures	showing	a	schematic	representation	of	the	water	splitting	dye	sensitized	solar	

cell.	(51)	

	

Despite	the	covalent	linkage	upgrade	of	the	system,	there	is	no	improvement	in	

the	photoinduced	ET	rate	between	the	catalyst	IrO2	and	Ru‐based	dye,	remaining	

the	 limiting	 factor	 of	 the	 process	 and	 curbing	 the	 quantum	 efficiency	 of	 the	

system	to	1‐2%.	Considering	this	low	value,	further	advances	can	be	proposed	in	

the	molecular	components	targets.	Puntoriero	et	al.	combined	IrO2	nanoparticles	

with	 a	 dendrimeric	 tetranuclear	 Ru{(μ‐dpp)Ru(bpy)2}38+	 (dpp	 =	 diphenyl‐	

phosphinate	anion	,	bpy	=	2,2’‐bipyridine)	as	the	sensitizer	in	order	to	maximize	

the	 absorption	 of	 solar	 radiation	with	 better	 fitting	 in	 oxidation	 potentials	 for	

faster	 photoinduced	 ET.	 (52,	53)	 This	 system	 achieved	 an	 overall	 quantum	

efficiency	 of	 3%,	 preserving	 the	 sensitizer	 from	 irreversible	 degradation	 thus	

gaining	more	long‐term	activity	and	efficiency.	Another	step	forward	deals	with	

the	use	of	nanostructured	hematite	α‐Fe2O3	with	IrO2	nanoparticles	deposited	by	

electrophoresis.	(54)	

Ruthenium:	The	catalytic	activity	of	RuO2	in	water	oxidation	was	first	reported	

by	Grätzel	et	al.	in	1979:	(55)	the	colloidal	nanoparticles	were	active	in	presence	

of	CeIV	as	oxidant	enhancing	the	performance	of	bulk	RuO2	powder	by	two	order	

of	 magnitude	 the	 oxidation	 rate.	 These	 were	 then	 tested	 in	 a	 photo‐induced	

system	using	Ru(bpy)32+	as	sensitizer	and	dimethylviologen	as	sacrificial	oxidant.	

(56)	Other	studies	on	the	integration	of	RuO2	within	light	activated	systems	have	

been	 achieved	 both	 in	 homogeneous	 solution	 and	 by	 devising	 a	 photoactive	

heterogeneous	 material.	 (57,	58)	 Interestingly,	 a	 photo‐driven	 oxygenic‐gel	 was	

generated	upon	assembling	nano‐RuO2	particles,	with	a	cross‐linked	polycationic	

matrix	incorporating	the	ruthenium	sensitizer.	A	different	strategy	involves	the	
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use	of	 a	Nafion	 film	embedding	a	RuO2/Ru(bpy)32+	 composite,	which	was	 then	

screened	for	electrocatalytic	water	oxidation.	(58)	

	

Earth‐abundant	metal	oxides	 constitute	 an	 attractive	 alternative	 to	 IrO2	 and	

RuO2,	due	 to	 their	abundance	and	 limited	cost.	While	 their	activity	was	known	

already	from	the	eighties,	 (59,	60)	they	have	regained	new	interest	in	the	last	few	

years	compared	with	their	noble	metals	analogs.	(61)	

A	brief	summery	of	these	oxides	is	presented	in	Tab.	1.1,	indicating	the	systems	

where	they	are	analyzed	and	a	short	overview	of	their	properties.	

	

catalyst	 system properties	 ref.
Mn

MnIIIoxides	 electrochemical	
onset	electrolysis	

+1.35	V,	overpotential	
590	mV	

(64)	

CaMnOx,	amorphous	 sacrificial	oxidant	(CeIV) TOF	=	2×10‐3	s‐1	 (65)

LiMn2O4,	spinel	
light‐driven,	

([Ru(bpy)3]2+/NaS2O8)
TOF	=	3×10‐5	s‐1	 (67)	

nano	Mn	oxide	
clusters@mesoporous	

silica	

light‐driven,	
([Ru(bpy)3]2+/NaS2O8)	

TOF	up	to	3330	s‐1,	
overpotential	350	mV	 (68)	

Fe

Ta/Al‐Fe2O3	 photoelectrochemical	

Ta	doping	increases	
the	Al‐Fe2O3	

performance,	pH	=	
9.3‐13.3	

(78)	

Co

Co‐P	oxide	 electrochemical	
overpotential	280	mV,	

pH	=	7	
(70‐
75)	

Ni

Ni‐B	oxide	 electrochemical	 overpotential	425	mV,	
pH	=	9.2	 (77)	

Cu
CuII	oxide	film	from	

CuSO4	
electrochemical	 overpotential	700	mV,	

pH	=	10.8	 (79)	

	

Tab.	1.1:	Overview	on	oxides	catalyst	and	their	properties,	potentials	are	reported	vs	Normal	

Hydrogen	Electrode	(NHE)	

	

Manganese	 oxides	 have	 been	 widely	 investigated	 in	 water	 oxidation	 for	 their	

close	structural	similarities	with	the	natural	OEC.	Electrochemical	studies	were	

performed	with	different	Manganese	 oxides,	 in	 particular	 in	 alkaline	media,	 to	

investigate	water	oxidation	 catalytic	 activity.	 (62)	The	different	 activity	with	pH	
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values	 is	 related	 to	 the	 instability	 of	 Mn3+,	 active	 as	 precursor	 for	 the	 water	

oxidation,	 which	 is	 stabilized	 in	 alkaline	 conditions	 by	 a	 comproportionation	

reaction.	 In	 acidic/neutral	 media,	 Mn3+	 ions	 are	 unstable	 due	 to	 their	

disproportionation	into	Mn2+	and	Mn4+.	(63)	

Dau	 et	 al.	 developed	 further	 studies	 at	 neutral	 pH,	 where	 they	 were	 able	 to	

control	the	nature	of	the	electrodeposited	material	changing	the	voltage	protocol	

obtaining	an	active	species	different	from	an	initially	inactive	Mn	oxide.	(64)	This	

catalyst	 consists	 of	 nanoparticles	 with	 a	 complex	 fine‐structure.	 The	

characterization	of	this	material	and	comparison	with	inactive	species	enabled	to	

identify	 some	 pivotal	 skills	 linking	 structure	 and	 activity.	 Dau	 and	 coworkers	

suggested	 that	 the	 voltage‐cycling	 protocol	 resulted	 in	 the	 formation	 of	 MnIII	

sites	preventing	 formation	of	ordered	and	unreactive	MnIVO2.	The	O2	evolution	

was	 detected	 at	 a	 potential	 of	 +1.35	 V	 vs	 NHE,	 while	 a	 TOF	 =	 0.01	 s‐1	 per	

deposited	Mn	ion	was	reported.	The	electrodes	showed	an	overpotential	of	590	

mV	to	reach	a	current	density	of	1	mA×cm‐2.	

Catalytic	 water	 oxidation	 was	 tested	 by	 Najafpour	 et	 al.	 with	 CaMnOx	 in	 the	

presence	of	CeIV	as	the	sacrificial	oxidant:	the	observed	TOF	(mol	O2	per	mol	Mn	

per	 second)	 was	 about	 2×10‐3	 s‐1,	 four	 times	 higher	 than	 the	 best	 turnover	

frequency	 reported	 for	 a	manganese	 compound.	 (65)	 These	 achievements	were	

functional	for	the	design	of	Mn	oxide	monosheets	forming	layers	in	the	presence	

of	4‐aminophenol.	These	aggregates	represent	 the	 first	attempt	 to	synthesize	a	

self‐assembled	 layered	 hybrid	 of	 phenol	 and	 MnIII,	 IV	 to	 mimic	 the	 oxygen	

evolving	 center	 of	 Photosystem	 II.	 (66)	 Regarding	 light‐induced	 systems	 with	

Ru(bpy)32+	 as	 sensitizer	 and	 NaS2O8	 as	 electron	 acceptor	 some	 studies	 were	

published.	Dismukes	et	al.	reported	a	MnOx	active	water	oxidation	catalyst	rising	

from	treatments	of	a	nanocrystalline	spinel	LiMn2O4	precursor.	 (67)	Maintaining	

the	spinel	structure,	the	cubical	cores	become	active	at	pH	=	5.8	upon	loss	of	the	

Lithium	 atoms,	 displaying	 a	 TOF	 =	 3×10‐5	 s‐1	 per	 Mn	 centre.	 At	 the	 same	 pH	

conditions	(pH	=	5)	Frei	at	al.	obtained	good	results	synthetizing	nanostructured	

Manganese	oxide	clusters	supported	on	mesoporous	silica.	This	scaffold	protects	

the	 active	 Mn	 centres	 from	 deactivation	 and	 assures	 stable	 dispersion	 of	 the	

catalyst	maximizing	activity.	(68)	The	system	reached	a	TOF	3330	s‐1	per	catalyst	

cluster	 with	 a	 modest	 overpotential	 of	 350	 mV.	 Moreover,	 the	 group	 of	 Kurz	



	20	

investigated	 in	 light‐driven	 water	 oxidation	 the	 calcium	 MnIII	 oxide	 hydrates,	

CaMn2O4·xH2O,	using	the	[RuII(bpy)3]2+/[CoIII(NH3)5Cl]2+	system.	(69)	Even	though	

they	were	able	to	record	O2	evolution	during	the	first	three	minutes,	they	could	

not	 quantify	 the	 gas	 with	 GC	 analysis	 due	 to	 irreproducible	 long‐term	

experiments.	

An	 important	 breakthrough	 in	 Cobalt‐based	 water	 oxidation	 catalysis	 was	

achieved	by	Matthew	Kanan	and	Daniel	Nocera,	at	the	Massachusetts	Institute	of	

Technology	 (Boston,	 U.S.A.).	 They	 obtained	 an	 active	 film,	 a	 mixture	 of	 CoIII	

phosphates,	 (70)	 hydroxides	 and	 oxides	 by	 electrodeposition	 onto	 conductive	

glass	slides	of	a	neutral	aqueous	solution	containing	CoII	and	phosphate	ions	(71,	

72,	73).	Self‐assembling	is	one	of	the	novel	and	attractive	skill	of	this	film,	prepared	

under	mild	conditions	with	control	of	the	control	of	the	thickness	by	tuning	the	

electrodeposition	time.		

	

	 	

a)	 b)	

Fig.	1.9:	a)	Scanning	electron	microscopy	(SEM)	image	of	a	cobalt	phosphate	(Co–Pi)	film	for	

electrocatalytic	water	oxidation;	(72)	b)	edge‐sharing	molecular	cobaltate	cluster	as	the	proposed	

model	for	the	surface	catalyst	(73)	

Water	oxidation	catalysis	on	this	film	occurs	electrochemically	at	neutral	pH	and	

at	a	modest	280	mV	overpotential,	and	bulk	electrolysis	at	+1.29	V	vs	NHE	leads	

to	 prolonged	 oxygen	 evolution.	 Exploiting	 Electron	 Paramagnetic	 Resonance	

(EPR)	some	insights	into	the	catalytic	mechanism	were	reached.	The	evidence	of	

low‐spin	 CoIV	 formation	 during	 the	 electro‐preparation	 of	 the	 film	 allows	

considering	the	involvement	of	proton‐coupled	oxidation	to	form	CoIV	oxo	units	

responsible	for	Oxygen	generation,	with	phosphate	residues	as	proton	acceptors.	

(74,	75)	 The	 long‐term	 film	 stability	 is	 guaranteed	 by	 self‐repairing	 of	 the	mixed	

oxide.	
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a)	 b)	

	

Fig.	1.10:	a)	Representation	of	the	catalytic	scheme	involving	a	CoII/III/IV	manifold,	(75)	b)	picture	

of	the	“artificial	leaf”	(73)	

	

Nocera’s	cobalt	oxide	had	been	proposed	for	the	design	of	the	so‐called	“artificial	

leaf”.	 The	 devices	 is	 realized	 interfacing	 the	 Co	 mixed	 oxide	 and	 a	 Ni‐Mo‐Zn	

composed	with	a	triple	junction	amorphous	Si	solar	cell,	(76)	and	was	proposed	as	

a	first	step	in	low‐cost	system	engineering	and	manufacturing.	(73)	

With	similar	approach	Nocera	et	al.	proposed	a	Nickel	based	oxide	with	similar	

properties	to	those	of	the	Cobalt	based	one,	by	electrodeposition	from	dilute	Ni2+	

solutions	 in	borate	electrolyte	at	pH	9.2.	 (77)	A	current	density	of	1	mAcm‐2	was	

recorded	for	the	Ni‐B	oxide	at	an	overpotential	of	about	425	mV.	The	long‐term	

stability	and	the	absence	of	corrosion	make	this	catalyst	a	valid	alternative	to	the	

Cobalt	film.	

Recently,	 Iron	 and	 Copper	 oxides	 have	 been	 considered	 in	 catalytic	 water	

oxidation	although	studies	are	so	far	developed	only	in	alkaline	media.		

A	 new	 type	 of	 ternary	 iron	 oxides,	 Ta/Al‐Fe2O3	 has	 been	 employed	 as	

photoanode	for	solar	water	splitting	on	FTO	substrate.	(78)	Using	visible	light	the	

photocurrent	 of	 the	 (0.25	%)Ta/(10	%)Al‐Fe2O3	 film	 increases	 by	 15	 times	 at	

+0.55	 V	 vs	 NHE	 in	 aqueous	 NaOH.	 The	 result	 is	 attributed	 to	 catalytic	 water	

oxidation	 occurring	 at	 the	 doped	 electrode,	which	 shows	 also	 a	 shift	 to	 lower	

energy	 band	 value	 of	 about	 50	 mV	 and	 a	 reduced	 anodic	 overpotential	

comparing	with	the	corresponding	no	Ta‐doped	photoanode.	

Studying	 electrochemical	 activity	 of	 CuII	 salts,	 Meyer	 et	 al.	 observed	 the	

formation	of	a	solid	at	the	surface	of	ITO	electrodes,	(79)	in	the	presence	of	high	

concentration	of	CuII	ions	in	carbonate	solutions	(pH	=	10.8)	when	an	anodic	bias	

was	applied	to	the	electrode.	This	material	was	electrochemically	active	in	water	

oxidation	 to	O2;	 electrolysis	 experiments	 at	 the	 onset	 of	 +1.30	 V	 vs	NHE,	with	

CuSO4	3	mM	in	Na2CO3	solution	reported	an	overpotential	of	about	700	mV.	After	
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6	 hours	 of	 stable	 current	 the	 scanning	 electron	 microscopy	 (SEM)	 and	 X‐ray	

photoelectron	spectroscopy	(XPS)	measurements	confirmed	 the	presence	of	an	

amorphous	solid	containing	Copper	and	Oxygen.	

	

1.6.2	Molecular	WOCs	

	

Molecular	WOCs	are	particularly	appealing	for	some	important	reasons.	1)	The	

properties	of	a	molecular	WOC	are	potentially	tunable	by	molecular	design,	 (10)	

2)	 they	 can	 reach	 outstanding	 reactivity,	 overcoming	 metal	 oxides.	 3)	 The	

mechanistic	 understanding	 of	 the	 catalytic	 reaction	 is	 facilitated	 by	 the	

molecular	 system,	 potentially	 enabling	 the	 development	 of	 more	 efficient	

catalysts.	4)	 In	a	 light‐driven	process,	molecular	WOCs	allow	a	more	controlled	

interface	between	the	photosensitizer	and	the	catalyst,	(80,	81,	82)	thus	boosting	the	

kinetic	of	the	involved	electron	transfers.	(51)	

In	molecular	catalysis,	a	complicated	and	frequent	issue	is	whether	the	primary	

compound	is	the	actual	catalyst	or	it	is	just	a	precursor	of	the	real	active	species.	

In	 fact,	 as	 a	 consequence	 of	 strongly	 oxidative	 experimental	 conditions	 often	

catalysts	are	susceptible	to,	generally	irreversible,	transformations.	(61,	83)	This	is	

a	 fundamental	 key	 to	 understand	 the	 catalytic	 process	 and	 a	 prerequisite	 for	

further	 improvement	of	 the	real	catalyst	 itself.	The	evolution	of	 the	system	can	

concern	 small	 amount	 of	 the	 pristine	 species,	 involving	 formation	 of	

coordination	 polymer,	 metal	 or	 metal‐oxide	 particles,	 in	 the	 form	 of	 colloids,	

films	 or	 powders.	 Thus,	 the	 development	 of	 molecular	 catalysts	 requires	 an	

accurate	study	and	a	careful	characterization	of	the	species	during	the	catalytic	

process.	

As	 already	 anticipated	 above,	 this	work	will	 deal	 in	 particular	with	molecular	

WOCs,	 therefore	 an	 ample	 state‐of‐the‐art	 will	 be	 presented.	 For	 easiness	 of	

reading,	 species	will	be	 classified	 considering	 the	nature	of	 the	 catalytic	metal,	

and	an	excursus	of	 the	most	 attractive	 examples	will	 be	 illustrated	 in	order	 to	

give	an	overview	of	the	domain	where	this	work	is	placed.	
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1.6.2.1	Ruthenium	

	

Although	 Ruthenium	 is	 not	 present	 in	 the	 active	 site	 of	 the	 natural	 OEC,	 its	

versatile	redox	and	coordination	chemistry	lead	to	the	particular	interest	in	this	

metal,	 and	 indeed	 several	 studies	 have	 been	 conducted,	 reporting	 the	

development	of	molecular	catalysts	 for	water	oxidation	based	on	mononuclear,	

dinuclear	and	multinuclear	Ruthenium	complexes.	

Concerning	 such	 species,	 a	 milestone	 consists	 in	 the	 [(bpy)2(H2O)‐Ru‐O‐

Ru(H2O)(bpy)2]4+	(bpy	=	bipyridine),	the	first	molecular	water	oxidation	catalyst,	

known	as	“blue	dimer”	and	reported	by	Meyer	et	al.	in	1982.	(84)	

	
Fig.	1.11:	Structure	of	the	Ruthenium	“blue	dimer”	as	perchlorate,	dehydrate	salt:	[(bpy)2(H2O)‐

RuIII‐O‐RuIII(OH2)(bpy)2](ClO4)4	·	2H2O	(85)	

	

This	 compound	 is	 able	 to	 catalyse	water	oxidation	 in	presence	of	 an	 sacrificial	

electron	 acceptor	 such	 as	 Ce(IV)	 or	 via	 electrochemical	 process.	 Although	 the	

modest	 turnover	 number	 (TON)	 of	 13.2,	 (86)	 and	 turnover	 frequency	 (TOF)	 of	

4.2×10‐3	s‐1,	 (87)	 these	results	proved	that	the	difficult	multielectron	oxidation	of	

H2O	to	O2	was	indeed	possible.		

After	 the	 “blue	 dimer”,	 several	 efforts	 have	 been	 dedicated	 to	 improve	 the	

activity	and	stability	of	this	dinuclear	species	intervening	on	ligand	environment;	

this	is	indeed	a	definite	proof	of	the	potential	of	molecular	Llobet	et	al.	proposed	

in	 2004	 the	 [RuII(tpy)(H2O)]2(‐bpp)]3+	 complex	 (tpy	 =	 2,2':6',2''‐terpyridine;	

bpp	 =	 bis(2‐pyridyl)‐3,5‐pyrazolate)	 as	 molecular	 WOC,	 Fig.	 1.12	 a).	 (88)	 The	

catalytic	 activity	was	 tested	with	CeIV	 as	 sacrificial	 oxidant	 in	 triflic	 acid	 and	 a	

TON	of	 about	18.6	 and	TOF	of	 1.4×10‐2	s‐1	was	obtained.	However,	 even	 if	 this	

system	enhanced	 the	 “blue	dimer”	 activity,	 the	 low	performance	was	alleviated	
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by	supporting	the	catalyst	onto	a	solid	phase.	The	anchoring	highly	improved	the	

species	capability	to	oxidize	water	to	oxygen	achieving	a	TON	of	250.			

Later,	 in	 2012	 Sun,	 Llobet	 and	 coworkers	 published	 a	 novel,	 single	 site	

Ruthenium‐based	WOC,	achieving	high	TOF	comparable	with	OEC	values.	(89)	The	

[Ru(bda)(isoq)2]	 (H2bda	 =	 2,2’‐bipyridine‐6,6’‐dicarboxylic	 acid;	 isoq	 =	

isoquinoline),	Fig.	1.12	b),	shows	a	TOF	of	303	s‐1	combined	with	a	high	chemical	

stability	 (TON	=	8360)	 for	water	oxidation	with	CeIV	as	sacrificial	oxidant.	This	

study	enlightened	some	insights	of	the	mechanism,	especially	in	the	formation	of	

the	 O‐O	 bond,	 which	 requires	 a	 bimolecular	 event	 involving	 two	 catalyst	

molecules.		

	
	

a)	 b)

Fig.	1.12:	Structure	of	a)	[RuII(tpy)(H2O)]2(‐bpp)]3+	complex	and	b)	the	mononuclear	

Ruthenium	complex	[Ru(bda)(isoq)2]	(24)	

	

Although	organic	ligands	give	the	possibility	of	a	fine	catalyst	tuning,	they	can	be	

limitedly	robust	in	the	harsh,	oxidative	conditions	required	for	water	oxidation,	

compromising	 their	 long‐term	performance.	 Indeed,	 alternative	 ligand	 families	

were	 considered,	 and	 in	 particular	 a	 class	 of	 totally	 inorganic	 ligands:	 the	

polyoxometallates	(POMs).	These	are	polyanionic	molecular	oxo‐clusters	formed	

by	 the	condensation	of	oxo	groups	and	early	 transition	metals,	 in	 their	highest	

oxidation	state	(VV,	NbV,	TaV,	MoVI,	WVI).	Thanks	to	their	properties,	POMs	have	

applications	 in	 several	 research	 fields	 including	 medicine,	 magnetism,	 high	

performance	materials	 and	 catalysis.	 (90)	 In	 particular,	 they	 can	 act	 as	 ligands	

towards	 a	 variety	 of	 other	 transition	metals,	 often	 showing	 catalytic	 activities:	

(91)	in	Fig.	1.13	some	relevant	structures	of	POM	ligands	are	introduced.	(10)	
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Fig.	1.13:	Relevant	structures	of	polyoxometallate	(POM)	ligands.	Light	blue:	tungsten;	red:	

oxygen;	purple:	oxygen	atoms	of	the	coordination	site	(10)	

	

The	 great	 stability	 of	 POMs	 ligands	 and	 of	 their	 transition	 metal	 complexes	

towards	 oxidizing	 conditions	 is	 related	 to	 their	 structure,	 since	 the	 transition	

metals	that	constitute	the	POM	architecture	are	usually	in	their	highest	oxidation	

states	 (d0	 electronic	 configuration,	 i.e.	WVI,	 MoVI	 or	 VV),	 and	 therefore	 inert	 to	

oxidation.	 However	 POMs	may	 be	 sensitive	 to	 pH	 conditions,	 that	 need	 to	 be	

optimized	 in	 order	 to	 avoid	 hydrolytic	 degradation,	 especially	 favored	 in	

alkaline,	aqueous	solution.	A	careful	control	of	the	ionic	strength	and	counter‐ion	

nature	 is	 usually	 required	 for	 boosting	 the	 catalytic	 efficiency.	 Another	

important	 property	 of	 POMs	 ligands,	 particularly	 relevant	 for	 water	 oxidation	

chemistry,	 is	 their	 capability	 of	 coordinating	 multimetal	 cores.	 (92,	93)	 Indeed,	

lacunary	POMs	can	coordinate	several	transition	metal	centers,	according	to	the	

size	of	the	lacunary	site	and	to	the	number	of	available	nucleophilic	oxygens.	

In	2008,	a	breakthrough	was	achieved	 in	 the	 field	of	water	oxidation	catalysis,	

employing	 POM	 ligands:	 at	 the	 same	 time,	 following	 different	 synthetic	

strategies,	two	different	research	groups	reported	a	tetra‐ruthenium	compound	

obtained	 from	 the	 lacunary	 POM	 [γ‐SiW10O36]8‐.	 (94,	95)	 The	 resulting	 species	

{Ru4(μ‐O)4(μ‐OH)2(H2O)4[γ‐SiW10O36]2}10‐	 (Ru4POM),	 Fig.	 1.14,	 presents	 an	

adamantane‐like	 structural	 motif	 of	 the	 ruthenium‐oxo	 core,	 that	 can	 be	

reminiscent	of	the	natural	OEC	in	PSII.	
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Fig.	1.14:	Structure	of	{Ru4(‐OH)2(‐O)4(H2O)4[‐SiW10O36]}10‐,	Ru4POM.	Light	blue:	tungsten;	

orange:	ruthenium;	gray:	silicon;	red:	oxygen.	

	

Ru4POM	turned	out	 to	evolve	oxygen	from	water	 in	 the	presence	of	a	chemical	

oxidant	 such	 as	 CeIV	 with	 up	 to	 500	 turnover	 and	 a	 TOF	 of	 1.25×10‐1	 s‐1.	

Moreover,	 at	 neutral	 pH	 and	 with	 the	 photogenerated	 oxidant	 Ru(bpy)33+,	

Ru4POM	 reaches	 350	 TONs	 and	 the	 oxygen	 evolution	 is	 limited	 only	 by	 the	

oxidative	instability	of	the	sensitizer.	(96,	97,	98)	As	observed	in	cyclic	voltammetry	

(CV)	experiments,	(99,	100)	Ru4POM	undergoes	several	redox	events	associated	to	

oxidation	of	the	RuIV	centres	to	higher	oxidation	states,	until	the	species	reaches	

the	active	form	capable	of	oxidizing	water.	In	such	kind	of	processes,	the	Oxygen‐

Oxygen	 bond	 formation	 is	 often	 recognized	 as	 the	 rate	 limiting	 step.	 (101)	

Concerning	Ru4POM,	 the	most	plausible	proposed	mechanism	 foresees	a	water	

nucleophilic	 attack	 to	 a	 high	 valent	 Ruthenium‐oxo	 (or	 hydroxo)	 moiety,	

resulting	in	a	metal	hydroperoxo	formation.	(99)		

Exploiting	 its	 polyanionic	 nature,	 Ru4POM	 has	 been	 supported	 onto	 different	

nanostructured	 materials	 (102,	103,	104)	 where	 it	 retains	 its	 activity	 even	 in	

heterogeneous	conditions.		

Finally,	it	is	interesting	to	note	that	the	tetraruthenate	core	can	be	considered	a	

minimal,	 optimize	 fragment	 of	 a	 ruthenium	 oxide	 phase.	 Indeed,	 it	 presents	

structural	 and	 functional	 properties	 that	 can	 be	 associated	 to	 a	 metal	 oxide	

fragment.	 Suchlike	 relationship	 between	 molecular	 and	 extended	 species,	 still	

scarcely	 investigated	 in	 literature,	 has	 a	 powerful	 potential,	 since	 it	

demonstrates	that	knowledge	on	molecular	species	can	be	transferred	to	metal	

oxide	systems.		
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1.6.2.2	Iridium	

	

The	first	example	of	Iridium	based,	molecular	WOCs	was	reported	by	Bernhard	

et	al.	who	identified	a	family	of	cyclometalated	Iridium	complexes,	composed	by	

bis‐phenylpyridines	 groups,	 [Ir(phenylpyridine)2(H2O)2],	 Fig.	 1.15.	 (105)	 Such	

catalysts,	using	CeIV	as	oxidant,	reach	TOF	of	1.5×10‐3	s‐1	and	TON	of	2500.	

	

	

	

Fig.	1.15:	Structure	of		the	described	oxidation	catalyst,	[Ir(5‐R1,4‘‐R2,2‐phenylpyridine)2(OH2)2]+	

(105)	

	

The	 nature	 and	 behavior	 of	 catalyst	 ligands	 is	 fundamental	 for	 the	 catalysis	

because	i)	they	give	access	to	multi‐redox	states,	which	can	be	promoted	within	

a	stable	molecular	entourage,	 (106)	 ii)	 they	can	prevent	the	formation	of	Iridium	

oxide	colloids,	which	competes	for	water	oxidation.	(107)	After	Bernhard’s	report,	

different	 groups	 considered	 Iridium	 complexes	with	 several	 classes	 of	 ligands	

such	 as:	 substituted	 bipyridine,	 ( 108 )	 2‐phenylpyridine	 and	

pentamethylcyclopentadienyl	 (Cp*),	 ( 109 )	 substituted	 pyridine,	 ( 110 )	

ethylenediaminotetraacetate	 (EDTA),	 (111)	 polyoxometallates	 (112)	 and	 carbenes.		

(113)	 Nowadays,	 Iridium	 species	 retain	 great	 interest	 due	 to	 the	 high	 turnover	

numbers	(upto	104)	and	turnover	frequencies	(upto	1.5	s‐1).	(113a)	Very	recently,	

they	 have	 been	 also	 used	 within	 the	 Ru(bpy)32+/Na2S2O8	 light‐driven	 system	

reaching	a	TON	of	9.3	and	TOF	of		4.85×10‐3	s‐1.	(113g)	

Following	 studies	 from	 Brudvig’s	 group	 showed	 that	 molecular	 species	 were	

precursors	of	the	real	catalyst,	upon	electrochemical	oxidation.	[Cp*Ir(H2O)3]SO4	

and	[(Cp*Ir)2(OH)3]‐OH	complexes	deposit	onto	the	anode	an	amorphous	robust	

Iridium	 oxide	 significantly	 more	 active	 as	 WOC	 than	 crystalline	 IrO2.	 No	

deactivation	 or	 significant	 corrosion	 of	 the	 new	 species	 were	 observed	 for	 at	

least	70	h.	Further	studies	will	underline	the	pivotal	starting	molecular	nature	of	
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the	 catalyst	 precursor.	 (114)	 A	 major	 concern	 in	 the	 use	 of	 Iridium	 based	

molecular	 WOC	 was	 indeed	 the	 nature	 of	 the	 actual	 species	 carrying	 on	 the	

catalysis.	 Recently,	 Brudvig	 et	 al.	 proposed	 a	 common,	 active	 intermediate	 in	

chemical	 or	 electrochemical	 water	 oxidation	 starting	 with	 Iridium	 precursors,	

bases	on	a	dinuclear	core	where	the	two	Iridium	atoms	are	connected	via	two	‐

oxo	bridges.	(115)	A	bis	‐oxo	iridium	dimer	was	considered	as	the	active	species	

by	Hetterscheid,	Koper	et	al.	in	electrochemical	water	oxidation	on	gold	surfaces	

by	 an	 Iridium‐N‐dimethylimidazolin‐2‐ylidene	 species,	 by	 surface	 enhanced	

raman	spectroscopy.	(116)		

	

1.6.2.3	Earth	abundant	metals	

	

Although	 the	 high	 performance	 of	 noble	 metal‐based	 WOCs,	 their	 limited	

abundance	on	the	Earth’s	crust,	their	high	price	and	toxicity	confine	them	to	the	

use	 on	 a	 large	 scale.	 Thus,	 the	 development	 of	 WOCs	 based	 on	 first‐row	

transition	metals	is	particularly	appealing.		

Some	examples	of	catalysts	with	Manganese,	Iron,	Cobalt,	Nickel	and	Copper	will	

be	 presented,	 lingering	 on	 different	 kinds	 of	 ligands	 and	 metal	 nuclearity.	 In	

particular,	 in	order	 to	 further	outline	 the	specific	subjects	related	 to	this	work,	

Co	and	Cu	based	catalysts	will	be	highlighted.	

	

Manganese	

In	Nature,	 the	Mn	cluster	 in	the	OEC	is	kept	together	by	several	bridging	μ‐oxo	

ligands,	 and	 is	 further	 stabilized	 by	 surrounding	 amino	 acids	 containing	

imidazole	 and	 tyrosine	 functionalities.	 This	 efficient	 stabilization	 allows	 the	

cluster	to	cycle	up	to	106	times	between	the	five	oxidation	states	of	the	Kok	cycle	

during	 the	 oxidation	 of	H2O,	 reaching	 an	 outstanding	TOF	 of	 400	 s‐1	 (see	 1.3).	

However,	due	to	the	presence	of	highly	oxidizing	species	throughout	this	cycle,	

damage	is	regularly	inflicted	on	the	surrounding	peptide	structures.	(117)	

In	 order	 to	 mimic	 structure,	 activity	 of	 the	 PSII‐OEC	 and	 inspired	 by	 Nature,	

researchers	 have	 dedicated	 major	 efforts	 toward	 the	 synthesis	 of	 Mn‐based	

WOCs.	 Besides	 its	 natural	 abundance,	 Manganese	 has	 a	 low	 cost,	 and	 is	 also	

environmentally	benign.	Furthermore,	it	has	a	large	redox	chemistry,	with	access	
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to	a	wide	range	of	oxidation	states	with	strong	oxidizing	power.	Unfortunately,	

this	 involves	an	 intrinsic	 instability	of	 these	high‐valent	 species,	which	 require	

for	effective	ligand	stabilization	to	prevent	them	from	decomposing.	In	addition,	

the	strongly	oxidizing	property	of	such	Manganese	species	requires	robust	and	

stable	 ligand	 scaffolds	 against	 oxidative	 degradation.	 (25)	 Indeed,	 Mn‐based	

molecular	WOCs	are	confined	to	few	examples.	

The	first	functional	model	with	di‐‐oxo	Mn	units	able	to	catalyse	homogeneous	

O2	 evolution	 is	 the	 dimer	 [H2O(terpy)Mn(‐O2)Mn(terpy)OH2](NO3)3	 ,	 (terpy	 =	

2,2’6,2”‐terpyridine)	 presented	 by	 Limburg	 et	 al.	 (118)	 The	 conditions	 involved	

the	use	of	sacrificial	donors	as	NaOCl	or	KaHSO5	in	aqueous	solution	at	pH	=	8.6	

and	 4.5	 respectively,	 while	 decomposition	 to	 MnO4‐	 was	 observed	 in	 the	

presence	of	CeIV.	However,	recently	Dau	and	coworkers	have	questioned	on	the	

molecular	 nature	 of	 the	 catalytic	 species,	 ascribing	 the	 activity	 to	 the	

transformation	 into	 layered	 type	 Mn	 oxide	 particles,	 on	 the	 basis	 of	 EXAFS	

experiments.	(119)	

One	elaborate	dimeric	 complex	was	 reported	by	 the	group	of	Åkermark	as	 the	

most	 stable	WOC	based	on	Manganese.	 (120)	 Such	 species	consists	of	 imidazole,	

carboxylate	 and	 Oxygen	 ligands	 bridging	 two	 metal	 centers.	 Catalytic	 water	

oxidation	was	observed	with	photogenerated	[Ru(bpy)3]3+	as	oxidant	at	neutral	

pH.	Anyway,	the	system	presented	quite	low	efficiency	with	a	TOF	of	0.03	s‐1	and	

TON	=	25.	

A	 tetrametallic	 complex	 was	 introduced	 by	 Dismukes	 and	 coworkers,	 who	

described	 a	 cubane	 like	 [Mn4O4(dpp)6]	 and	 [Mn4O4(Me‐dpp)6],	 (dpp	 =	

diphenylphosphinate	 anion;	 Me‐dpp	 =	 bis(tolyl)phosphinate)	 releasing	

molecular	oxygen	in	gas	phase	upon	UV	light	absorption.	(121,	122)	Further	studies	

enabled	 to	overcome	 the	poor	 solubility	of	 such	cubane	derivatives:	 they	were	

supported	 onto	 conducting	 fluorinated	 membranes	 that	 could	 be	 used	 as	

heterogeneous	 catalytic	materials.	 As	 a	 Nafion	 composite	 [Mn4O4(MeO‐dpp)6]+	

(MeO‐dpp	=	bis(4‐methoxyphenyl)phosphinate),	Fig.	1.16	a)	is	proposed	to	drive	

oxygen	 evolution	 under	 white	 light	 and	 applied	 potential.	 (123)	 An	 initial	

photocurrent	density	of	9	Acm‐2	is	reported	at	pH	11	and	at	an	applied	potential	

of	+1.2	V	vs	NHE,	when	the	electrode	is	 illuminated	with	>	275	nm	white	 light.	

The	 photocurrent	 was	 accompanied	 by	 oxygen	 evolution	 with	 almost	
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quantitative	Faradaic	efficiency	and	about	1000	TON	per	Mn4O4	after	65	hours	

electrolysis.		

	 	

a)	 b)	

Fig.	1.16:	Schematic	representation	of	a)[Mn4O4(MeO‐dpp)6]+	species	(123)	and	b)	the	

photoanode	showing	the	proposed	operations	of	the	device	(124)		

	

Moreover,	 the	 hybrid	 nafion‐[Mn4O4(MeO‐dpp)6]+	 was	 used	 to	 develop	 a	

photoanode	 where	 solar	 power	 promotes	 the	 ET	 from	 the	 catalyst	 to	 the	

electrode,	 avoiding	 the	 application	 of	 an	 external	 bias	 (Fig.	 1.16	 b)).	 (124)	 Such	

system	 is	 constituted	 by	 a	 conductive	 fluorine	 tin	 oxide	 (FTO)	 coated	 glass,	

where	 a	 titania	 layer	 sensitized	 with	 Ru(bpy)2(bpy(COO)2),	 (bpy	 =	 2,2’	

bipyridine;	bpy(COO)2	=	4,4’‐dicarboxy‐2,2’‐bipyridine),	 is	deposited	and	finally	

coated	with	 nafion‐[Mn4O4(MeO‐dpp)6]+	material.	 The	molecular	 nature	 of	 the	

catalyst	was	subsequently	questioned	by	Spiccia	et	al.,	who	reported	in	situ	X‐ray	

absorption	 experiments	 and	 transmission	 electron	 microscopy	 (TEM)	 studies	

demonstrating	dissociation	of	 the	Mn	cubane	cluster	 in	MnII	 compounds	 in	 the	

Nafion	membrane,	which	are	reoxidized	in	disperded	nanoparticles	of	a	MnIII/IV	

oxide	 phase.	 (125)	 The	Mn	 cubane	 turned	 out	 to	 be	 the	 precursor	 of	 the	 actual	

WOC.	

Very	 recently	 Bonchio	 et	 al.	 published	 new	 interesting	 results	 on	 a	

tetramanganese	 species	 stabilized	by	a	hybrid	organic‐inorganic	 set	of	 ligands,	

the	[MnIII3MnIVO3(CH3COO)3(A‐α‐SiW9O34)]6‐	(Mn4POM),	Fig.	1.17.	(126)	

	
Fig.	1.17:	Structure	of	Mn4POM,	Balls:	calcium	yellow,	carbon	dark	grey,	manganese(III)	blue,	

manganese(IV)	light	blue,	oxygen	red;	polyhedra	:	SiO4	green,	WO6	red	(126)	
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This	species	states	an	unprecedented	structural	mimic	of	the	OEC	in	its	reduced	

S0	 state.	 The	 ligands	 entourage	 helps	 the	 access	 of	 Mn	 high	 oxidation	 states	

needed	 for	 the	 catalysis	 and	 oxygen	 evolving.	 CV	 experiments	 showed	 in	 the	

oxidative	scan	an	anodic	wave	at	+1.07	V	vs	NHE	ascribable	to	a	multi‐electron	

oxidation	 of	 the	 Mn	 core,	 followed	 by	 an	 intense	 catalytic	 wave	 due	 to	 water	

oxidation	 at	 +1.45	 V	 vs	 NHE	 with	 an	 overpotential	 of	 530	 mV.	 Moreover,	

Mn4POM	 was	 investigated	 in	 a	 light	 activated	 cycle,	 with	 Ru(bpy)32+	 as	 the	

photosensitizer	 and	 S2O82‐	 as	 the	 sacrificial	 electron	 acceptor.	 Laser	 flash	

photolysis	 studies	 evidenced	 the	 occurrence	 of	 three	 fast	 electron	 transfers	

(within	 50	 ms)	 from	 Mn4POM	 to	 photogenerated	 RuIII(bpy)33+,	 leading	 to	 the	

formation	of	the	three‐oxidized	species	of	Mn4POM.	This	was	a	further	similarity	

to	the	natural	OEC,	where	three	fast	oxidations	during	the	Kok	cycle	 transform	

the	 S0	 into	 the	 S3	 state.	 Finally,	 in	 such	 photo	 activated	 system,	 in	

NaHCO3/Na2SiF6	 buffer	 (pH	 =	 5.2)	 and	 using	 the	 system	Ru(bpy)32+/S2O82‐	 the	

catalyst	evolves	oxygen	showing	per	Mn4POM	a	TOF	up	to	2.84×10‐3	s‐1,	a	TON	of	

ca	5.2	and	a	quantum	efficiency	of	1.7%.	

	

Iron	

Because	of	 its	 low	cost,	 low	toxicity,	and	high	natural	availability,	 Iron	has	also	

been	considered	as	a	promising	metal	for	the	construction	of	artificial	WOCs.		

In	2010,	the	group	of	Bernhard	and	Collins	reported	different	 Iron	macrocyclic	

complexes,	 [FeIII(taml)]−	 (taml	=	 tetra	amido	macrocyclic	 ligand),	among	which	

some	of	them	were	able	to	act	as	WOCs	using	CeIV	as	sacrificial	oxidant.	(127)	The	

best	 values	 of	 TOF	 obtained	 is	 1.3	 s‐1	 and	 TON	 =	 16,	 however	 the	 species	

decomposes	rapidly,	most	likely	due	to	ligand	oxidation.	

Another	 important	 example	 of	 Iron	 based	 WOC	 tested	 with	 CeIV	 or	 NaIO4	 as	

sacrificial	 oxidants	 was	 published	 by	 Costas	 et	 al.	 (128)	 The	 Fe	 complex	 cis‐

Fe(mcp)OTf2	 (mcp	 =	 N,N′‐dimethyl‐N,N′‐bis(2‐pyridylmethyl)‐cyclohexane‐1,2‐

diamine;	 OTf	 =	 trifluoromethanesulfonate)	 achieved	 TON	 of	 1000	 and	 TOF	 of	

0.23	 s‐1.	 Lau	 et	 al.	 confirmed	 the	 molecular	 nature	 of	 the	 catalytic	 species	 in	

acidic	conditions,	while	at	higher	pH	values	they	showed	the	formation	of	Fe2O3,	

after	hydrolysis	acting	as	real	catalyst	for	water	oxidation.	(129)	
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Cobalt	

Although	CoII	aquo	ions	have	been	known	to	catalyze	water	oxidation	since	the	

1980s,	(35,	59,	60)	the	interest	in	molecular	cobalt‐based	WOCs	was	quite	low	until	

when	 Nocera	 and	 co‐workers	 showed	 that	 an	 in	 situ	 generated	 cobalt‐based	

WOC	oxide	was	capable	of	operating	under	neutral	conditions.	

Since	 then,	 the	 development	 of	 molecular	 cobalt‐based	 WOCs	 has	 progressed	

very	rapidly,	with	respect	to	other	first‐row	transition	metals.		

The	group	of	Berlinguette	reported	 in	2011	the	 first	example	of	a	well‐defined	

and	stable	coordination	compound:	the	[Co(PY5)(OH2)](ClO4)2,	Fig.	1.18,	a	single	

site	CoII	molecular	complex	bearing	a	pentadentate	ligand	able	to	catalyse	water	

oxidation.	(130,	131)		

	
Fig.	1.18:	Molecular	representation	of	[Co(PY5)(OH2)](ClO4)2,	counteranion	and	hydrogen	atoms	

are	omitted	for	clarity	(130)	

	

The	 catalyst	 stability	 has	 been	 investigated	 in	 electrochemical	 process,	 where	

Oxygen	evolution	was	confirmed	at	an	applied	potential	of	+1.59	V	vs	NHE	over	

10	minutes	and	a	TOF	of	79	s‐1	was	reported.		

Another	 interesting	 and	 bifunctional	 Cobalt	 corrole	 complex	 [Co(tpfc)(pyr)2],	

(tpfc	 =	 5,10,15‐tris‐(pentafluorophenyl)corrole;	 pyr	 =	 pyridine)	 for	 both	

electrochemical	O2	evolution	and	H2	production	was	very	 recently	 reported	by	

Lei	et	al.	 (132)	The	electrochemical	results	confirmed	that	this	species	possessed	

sufficient	oxidizing	power	 to	 function	as	a	potential	WOC.	 In	aqueous	 solution,	

the	 catalyst	 was	 deposited	 on	 an	 ITO‐coated	 glass	 electrode	 giving	 a	 film,	 the	

electrode	was	subsequently	 immersed	 into	a	phosphate	buffer	 solution	 (0.1	M,	

pH	=	7.0).	A	rise	of	the	current	began	at	+1.36	V	vs	NHE,	attributed	to	catalytic	

H2O	 oxidation,	 with	 an	 overpotential	 of	 540	mV.	 The	 TOF	 of	 the	 process	 was	

determined	at	+1.61	V	vs	NHE	to	be	0.20	s−1.	

Recently,	the	group	of	Groves	reported	on	a	series	of	single‐site	cobalt	porphyrin	

complexes	 functioning	 as	 electrochemical	 WOCs	 in	 neutral	 pH.	 (133)	 CoIII‐
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5,10,15,20‐tetrakis(1,3‐dimethylimidazolium‐2‐yl)porphyrin	 with	 a	 highly	

electron‐deficient	 ligand	 structure	 showed	 to	 be	 the	 most	 active	 catalyst,	

reaching	 a	 Faradaic	 efficiency	 of	 about	 90%	 and	 TOF	 =	 1.4×103	 s‐1.	

Electrochemical	 experiments	 conducted	 in	 a	 0.2	M	 aqueous	 sodium	phosphate	

solution	at	pH	7	gave	rise	to	a	strong	catalytic	current	with	an	onset	potential	of		

+1.41	 V	 vs	NHE	 and	 high	 O2	 evolution	 over	 several	 hours	without	 any	 loss	 of	

catalytic	current.	

Similar	 complexes	 capable	 of	 catalyzing	 light‐driven	 WO	 are	 the	

cobalt−porphyrin	 species	 recently	 reported	 by	 the	 group	 of	 Sakai.	 (134)	 These	

catalysts	 are	 similar	 in	 structure,	 containing	 a	 CoIII	 center	 stabilized	 by	 a	

porphyrin	ligand	that	varies	only	in	the	aryl	groups	(N‐methylpyridine,	benzoic	

acid,	benzenesulfonic	acid)	located	at	the	four	meso‐positions.	The	catalysis	was	

performed	 at	 pH	11,	 in	 phosphate	 buffer,	with	 [Ru(bpy)3]2+	 as	 photosensitizer	

and	 Na2S2O8	 as	 sacrificial	 electron	 acceptor,	 which	 resulted	 in	 TOFs	 between	

0.118	and	0.170	s−1	and	TONs	between	89	and	122.		

So	far,	another	molecular	cobalt‐based	species	was	reported	by	the	group	of	Lau	

to	 catalyze	 both	 water	 reduction	 and	 oxidation	 without	 the	 need	 of	

electrochemical	 conditions.	 (135)	 The	 trans‐[Co(qpy)(OH2)2]2+	 complex	 (qpy	 =	

2,2′:6′,2′′:6′′,2′′′‐quaterpyridine)	 species	 proved	 to	 be	 compatible	with	 the	mild	

system	[Ru(bpy)3]2+/S2O8‐2,	allowing	H2O	oxidation	to	be	driven	in	borate	buffer	

(pH	=	8).	Measurements	of	O2	evolution	recorded	a	TON	of	335,	obtained	after	

irradiating	the	reaction	(λ	=	457	nm)	for	about	90	minutes.	

Concerning	 a	 different	 ligand	 environment,	 the	 [Co4(H2O)2(α‐PW9O34)2]10‐	

(Co4POM),	Fig.	1.19,	was	introduced	by	Hill	and	co‐workers	as	the	first	carbon‐

free	homogeneous	WOC	containing	abundant	metals.	(136)	

	

	
Fig.	1.19:	Structure	of	[Co4(H2O)2(α‐PW9O34)2]10‐,	Co4POM.	Light	blue:	tungsten;	green:	cobalt;	

gray:	phosphorous;	red:	oxygen	(10)	
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The	four	central	Co	atoms	are	bridged	by	oxo‐groups,	sandwiched	between	two	

lacunary	 PW9O349‐	 fragments	 and	 the	 unshared	 vertices	 of	 two	 Co	 ions	 are	

occupied	 by	 coordinated	 water	 molecules.	 CV	 of	 Co4POM	 showed	 an	 intense	

catalytic	 current	 at	 +1.3	 V	 vs	 NHE	 and	 pH	 =	 8.	 Further,	 using	 Ru(bpy)33+	 as	

chemical	oxidant	in	large	concentration,	oxygen	evolution	was	observed	at	pH	=	

8	with	maximum	values	of	TON	of	1000	over	3	minutes,	and	TOF	of	 	5	s‐1.	The	

Co4POM	catalyst	had	been	tested	also	in	the	photoactivated	[Ru(bpy)3]2+/NaS2O8	

system	obtaining	a	TON	of	about	220.	(137)	The	authors	provided	different	points	

of	evidence	for	the	stability	of	the	species	during	the	catalytic	activity.	Otherwise	

later,	two	different	groups	have	been	advanced	a	concern	regarding	the	nature	of	

the	 real	 WOC.	 Stracke	 and	 Finke	 found	 out	 that	 this	 tetra	 cobalt	 POM	

decomposes	 during	 electrocatalytic	 water	 oxidation	 to	 generate	 a	 CoOx	 film,	

which	 becomes	 the	 major	 catalyst.	 (138)	 Natali	 et	 al.	 analysed	 the	 same	

photocatalytic	 conditions	 reported	 by	Hill	 and	 co‐workers	 taking	 advantage	 of	

laser	 flash	 photolysis	 technique.	 The	 study	 evidenced	 that	 the	 rate	 of	 electron	

transfer	from	Co4POM	to	photogenerated	RuIII(bpy)33+	increases	upon	aging	the	

Co4POM	 in	 aqueous	 buffer	 for	 some	 minutes.	 The	 initial,	 negligible	 rate	 of	

electron	 transfer	 suggests	 that	 pristine	 Co4POM	 cannot	 be	 operative	 in	 the	

photocatalytic	cycle,	while	its	transformation	leads	to	a	more	active	species.	(139)		

Very	recently	Hill	et	al.	reported	another	Co4POM	WOC	based	on	vanadates:	the	

Na10[Co4(H2O)2(VW9O34)2]·35	H2O.	 (140)	This	species	 is	able	to	perform	catalytic	

water	 oxidation	 both	 in	 dark	 and	 in	 light‐driven	 system.	 Using	 Ru(bpy)33+	 as	

stoichiometric	 oxidant	 in	 dark	 high	 TOFs	 in	 the	 range	 of	 1.6‐2.2×103	 s‐1	 were	

founded,	 in	 the	 photo‐induced	 catalytic	 process	 a	 quantum	 yield	 of	 oxygen	

formation	of	about	68%	was	achieved.	Several	proofs	were	collected	in	order	to	

attest	the	molecular	nature	of	the	active	WOC.	

	

As	 a	 final	 remark,	 the	 question	 about	 the	 actual	 nature	 of	 the	 catalyst	 is	 of	

particular	relevance	for	Cobalt	based	water	oxidation	catalyst,	since	Cobalt	based	

oxides	 are	 very	 efficient	WOC.	 Therefore,	 the	 possible	 presence	 of	 active	 CoOx	

phases	upon	transformation	of	the	molecular	active	species	needs	to	be	carefully	

investigated.	 Oxidative	 decomposition	 of	 the	 organic	 ligands,	 (141)	 or	 solution	
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equilibria	liberating	Co2+	ions	could	be	the	primary	events,	yielding	Cobalt	oxide	

formation.	(136)	

As	a	consequence:	1)	it	is	important	to	screen	different	experimental	conditions	

for	each	catalytic	reaction.	Indeed,	a	process	for	the	same	molecular	catalyst	can	

be	homogeneous	in	a	particular	set	of	conditions	and	heterogeneous	for	another	

one.	 Furthermore,	 2)	 even	 if	 the	molecular	 starting	 compound	 is	 transformed	

into	a	solid‐state	or	colloidal	catalyst,	the	ligands	of	the	precursor	may	influence	

the	formation	and	the	nature	of	the	final	catalyst.	This	could	allow	for	a	selective	

tuning	 of	 the	 structure	 and	 the	 activity	 of	 the	 heterogeneous	 system.	 3)	The	

stability	 of	 molecular	 compounds	 can	 be	 enhanced	 through	 interactions	 with	

surfaces,	 through	 covalent	 bonds	 or	 simple	 adsorption.	 Sometimes	 this	

stabilizing	effect	 is	only	partial,	 retaining	some	of	 the	structural	 features	of	 the	

precursor	 but	 can	 lead	 to	 a	 total	 different	 and	 enhanced	 activity.	 4)	 The	

characterization	 of	 the	 catalytic	 process,	 homogeneous	 or	 heterogeneous,	

requires	a	 complete	 set	of	 experimental	 evidences:	 the	 full	 investigation	of	 the	

catalytically	 active	 species	 is	 the	 only	 way	 for	 a	 rational	 optimization	 of	 the	

systems.	(61)	

	

Nickel	

Very	 recently	 a	 study	 on	 a	 NiII	 based	WOC	 has	 been	 published	 by	 Zhang	 and	

coworkers.	 The	 catalyst,	 based	 on	 the	 macrocyclic	 ligand	 5,5,7,12,12,14‐

hexamethyl‐1,4,8,11‐tetraazacyclotetradecane,	 which	 already	 showed	 ability	 of	

electrochemically	 reducing	water	 to	H2,	was	 observed	 also	 to	 oxidize	water	 at	

neutral	 pH.	 (142)	 The	 overpotential	 obtained	 is	 170	 mV,	 much	 lower	 than	 the	

typical	 values	 for	 many	 homogeneous	 WOCs	 (300‐600	 mV).	 After	 6	 hours	 of	

controlled	 potential	 electrolysis	 at	 +1.55	 V	 vs	 NHE,	 the	 current	 reaches	 0.9	

mAcm‐2	and	73	mols	of	O2	were	detected,	with	a	Faradaic	efficiency	of	97.5%	

and	15	TON.	The	authors	noted	that	after	the	experiments	the	catalyst	integrity	

was	 confirmed	 with	 different	 techniques	 and	 supported	 their	 mechanistic	

hypothesis	with	DFT	calculations,	that	support	formation	of	the	O‐O	bond	from	

the	cis‐isomer	of	the	catalyst	through	a	water	nucleophilic	attack.	
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Copper			

The	 investigation	 of	 copper‐based	WOCs	 is	 emerging	 as	 a	 novel	 research	 area	

showing	a	promising	potential.	So	 far,	 studies	are	dealing	with	electrochemical	

activation	of	the	catalysts.		

The	group	of	Mayer	reported	the	first	example	of	a	homogeneous	WOC	Copper	

catalyst	 in	 2012.	 (143)	 The	 (bpy)Cu(OH)2	 (bpy	 =	 2,2’‐bipyridine)	 complex	 could	

self‐assemble	in	aqueous	solutions,	giving	rise	to	an	active	WOC,	Fig.	1.20	a).	CV	

measurements	 of	 the	 Copper−bpy	 revealed	 that	 it	 exhibited	 a	 large,	 pH‐

dependent,	 and	 irreversible	 wave	 at	 +1.30−1.50	 V	 vs	 NHE.	 Bubbles	 formation	

was	 observed	 at	 the	 electrode	 surface	 over	 multiple	 scans.	 With	 electrolysis	

experiments	on	 the	basis	of	 the	Faradaic	efficiency,	 the	authors	concluded	 that	

30	 equivalents	 of	 O2	were	 generated	 based	 on	 the	 total	 amount	 of	 Cu,	 with	 a	

calculated	 TOF	 up	 to	 100	 s‐1.	 However,	 it	 was	 assumed	 that	 only	 the	 Copper	

species	in	close	proximity	of	the	electrode	surface	were	catalytically	active.	The	

linear	 dependence	 of	 catalytic	 current	 on	 the	 Cu	 concentration	 proved	 the	

molecular	nature	of	the	electrocatalyst	and	a	single	site	mechanism.	

	
	

a)	 b)	

Fig.	1.20:	Structure	of	catalysts	a)	(bpy)Cu(OH)2	at	cited	pH	(143)	and	b)	[(TGG4‐)CuII‐OH2]2‐	(145)	

	

More	 recently,	 Chen	 and	 Meyer	 published	 that	 simple	 Cu	 salts	 were	

electrochemically	 active	 WOCs.	 (144)	 CuII	 salts	 in	 aqueous	 buffered	 solutions	

dramatically	enhanced	the	current	at	the	onset	potential	for	the	catalytic	process	

of	 +1.05	 V	 vs	NHE	 at	 pH	 10.8,	with	 an	 overpotential	 of	 450	mV.	 The	 catalytic	

current	was	second	order	in	Cu	concentration	and	stable	for	at	least	6	hours.		

Later,	the	group	of	Meyer	studied	also	the	water	oxidation	catalyzed	by	a	Copper	

complex	 containing	 a	 triglycylglycine	 macrocyclic	 ligand	 (TGG4‐),	 [(TGG4‐)CuII‐
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OH2]2‐	Fig.	1.20	b).	(145)	The	species	was	isolated	and	demonstrated	ability	to	self‐

assemble	 in	 solution	 at	 pH	 =	 11	 from	 Cu(OH)2	 and	 the	macrocyclic	 ligand.	 In	

same	 conditions	 the	 CV	 of	 the	 catalyst	 showed	 a	 well‐defined	 and	 reversible	

wave	at	+0.58	V	vs	NHE	,	more	the	onset	potential	for	electrochemical	oxidation	

occurred	at	+1.10	V	vs	NHE,	corresponding	to	an	overpotential	of	520	mV.	Upon	

electrolysis	over	a	period	of	8	hours,	the	total	oxygen	evolved	was	measured	by	

gas	chromatography	giving	39	mols,	a	Faradaic	efficiency	of	99%	and	a	TON	=	

13.	The	TOF	was	then	calculated	to	be	33	s‐1.	

Finally,	starting	from	Mayer’s	catalyst	but	following	a	biomimetic	approach,	Lin	

et	al.	developed	a	WOC	designed	with	a	particular	ligand,	which	should	provide	a	

non‐innocent	 redox	 environment.	 (146)	 CVs	 of	 CuL	 (L	 =	 6,6′‐dihydroxy‐2,2′‐

bipyridine)	show	irreversible	catalytic	current,	occurring	with	an	onset	potential	

of	+0.8	V	vs	NHE	at	pH	=	12−14	and	low	overpotential	of	510−560	mV.	Thus,	the	

new	 ligand	 stabilizes	 high‐valent	 intermediates,	 lowering	 the	 overpotential	 for	

the	 reaction	 of	 water	 oxidation.	 Lin	 and	 coworkers	 demonstrated	 that	

incorporation	of	redox‐accessible	ligand	frameworks	into	metal	complexes	could	

be	a	viable	strategy	for	constructing	efficient	WOCs.	

	

In	Tab.	1.2	the	molecular	WOC	are	briefly	summarized	as	well	as	the	conditions	

of	studies	and	particular	skills.		

catalyst system properties	 ref
Ru

	
[(bpy)2(H2O)‐Ru‐O‐
Ru(H2O)(bpy)2]4+	

sacrificial	oxidant	
(CeIV)	

TON	=	13.2,		
TOF	=	4.2×10‐3	s‐1	

(85‐
87)	

	
[RuII(tpy)(H2O)]2(‐bpp)]3+	

sacrificial	oxidant	
(CeIV)	

TON	=	18.6,		
TOF	=	1.4×10‐2	s‐1	 (88)	
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[Ru(bda)(isoq)2]	

sacrificial	oxidant	
(CeIV)	

TON	=	8.4,		
TOF	=	303	s‐1	 (89)	

	
{Ru4(μ‐O)4(μ‐OH)2(H2O)4[γ‐

SiW10O36]2}10‐	

sacrificial	oxidant	
(CeIV)	 TOF	=	1.25×10‐1	s‐1	

(94‐
98)	light‐driven,	

([Ru(bpy)3]2+/NaS2O8)
TON	=	350	

Ir
	

	
[Ir(5‐R1,4‘‐R2,2‐

phenylpyridine)2(OH2)2]+	

sacrificial	oxidant	
(CeIV)	

TON	=	2500,		
TOF	=	1.5×10‐3	s‐1	 (105)

	
N‐heterocyclic	dicarbene	IrIII	

sacrificial	oxidant	
(CeIV)	

TON	=	2800,		
TOF	=	0.20	s‐1	

(113)
light‐driven,	

([Ru(bpy)3]2+/NaS2O8)
TON	=	9.3,		

TOF	=	4.85×10‐3	s‐1	

Mn
	

	
[H2O(terpy)Mn(‐

O2)Mn(terpy)OH2](NO3)3	

sacrificial	oxidant	
(NaOCl	or	KaHSO5)	

pH	=	8.6	and	4.5	
respectively	

	
but	molecular	nature	
doubted	by	Dau	

(118)

	
[Mn2II,III(H2L)(OAc)(OCH3)]	

light‐driven,	
([Ru(bpy)3]2+/NaS2O8)

TON	=	25,		
TOF	=	0.03	s‐1	 (120)
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[Mn4O4(MeO‐dpp)6]+	

photoelectrochemical	

pH	=	11,	applied	
potential	of	+1.2	V;	

TON	=	1000,		
65	h	electrolysis	

(123)

	
[MnIII3MnIVO3(CH3COO)3(A‐α‐

SiW9O34)]6‐	

electrochemical	 overpotential	530	
mV	

(126)
light‐driven,	

([Ru(bpy)3]2+/NaS2O8)

pH	=	5.2	
TOF	=	0.71×10‐3	s‐1	
quantum	efficiency	=	

1.7%	

Fe

	
[FeIII(taml)]−	

sacrificial	oxidant	
(CeIV)	

TON	=	16,	TOF	=	1.3	
s‐1	 (127)

X	=	OTf	
[Fe(OTf)2(mcp)]	

sacrificial	oxidant	
(CeIV	and	NaIO4)	

TON	=	1050	with	
NaIO4,		

TOF	=	0.23	s‐1	with	
CeIV	
	

molecular	nature	at	
low	pH	confirmed	by	

Lau	

(128)

Co

	
[Co(PY5)(OH2)](ClO4)2	

electrochemical	 TOF	=	79	s‐1	 (130‐
131)	

[Co(tpfc)(pyr)2]	

electrochemical	
TOF	=	0.20	s−1	

overpotential	=	540	
mV	

(132)

	
CoIII‐5,10,15,20‐tetrakis(1,3‐
dimethylimidazolium‐2‐

yl)porphyrin	

electrochemical	

TOF	=	1.4×103	s‐1,		
pH	=	7,		

Faradaic	efficiency	=	
90	%	

(133)
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cobalt−porphyrin	species	with	
different	aryl	groups	

light‐driven,	
([Ru(bpy)3]2+/NaS2O8)

TON	=	89‐122	after	
30	min,	TOF	=	0.118‐
0.170	s−1,	pH	=	11	

(134)

	
trans‐[Co(qpy)(OH2)2]2+	

light‐driven,	
([Ru(bpy)3]2+/NaS2O8)

TON	=	335,		
pH	=	8	 (135)

	
[Co4(H2O)2(α‐PW9O34)2]10‐	

sacrificial	oxidant	
(Ru(bpy)33+)	

(at	high	conc	of	
oxidant)	TON	=	1000,	
TOF	=	5	s−1,	pH	=	8	

(136‐
137)	light‐driven,	

([Ru(bpy)3]2+/NaS2O8)
TON	=	220,	pH	=	8	

molecular	nature	denied	by	Strake,	Finke,	
Natali	et	al.

	

	
Na10[Co4(H2O)2(VW9O34)2]·35	

H2O	

sacrificial	oxidant	
(Ru(bpy)33+)	

TOF	=	1.6‐2.2×103	s‐1	 (140)

Ni

	
NiIImacrocyclic	ligand	

electrochemical	

TON	=	15,	
overpotential	=	170	

mV,	pH	=7,	
Faradaic	efficiency	=	

97.5	%	

(142)

Cu
	

	
(bpy)Cu(OH)2	

electrochemical	 TOF	=	100	s‐1,	
pH	>	12	 (143)

	
[(TGG4‐)CuII‐OH2]2‐	

electrochemical	

TON	=	13,	TOF	33	s‐1,	
overpotential	520	
mV	,	self‐assembling	

at	pH	=	11,	
Faradaic	efficiency	=	

99%	

(145)

	

	
Cu(dihydroxybipy)	

electrochemical	
overpotential	510‐

560	mV	,		
pH	=	12‐14	

(146)

Tab.	1.2:	Overview	on	oxides	catalyst	and	their	properties,	potentials	are	reported	vs	Normal	

Hydrogen	Electrode	(NHE)	



	 41

	

1.7	State	of	the	art:	CO2	reduction	catalysts	

	

Among	 the	 analysis	 of	 the	 catalysed	 CO2	 reduction,	 the	 state	 of	 the	 art	will	 be	

focused	 on	 molecular	 species.	 Indeed,	 this	 work	 aims	 to	 be	 a	 preliminary	

approach	 to	 this	 articulate	 and	 wide	 area	 of	 artificial	 photosynthesis.	 As	 our	

laboratory	skills	and	knowledge	highlight	molecular	 compounds	 the	study	was	

addressed	to	this	direction.	

The	catalysts	will	be	presented	dividing	complexes	on	the	nature	of	the	metal	on	

which	they	are	based:	noble	and	Earth‐abundant	metals.	

	

1.7.1	Noble	metals‐based	catalysts	

	

The	tricarbonil	Rhenium	complexes	are	a	big	group	of	catalysts	having	received	

great	 attention	 for	 both	 photochemical	 and	 electrochemical	 CO2	 catalytic	

reduction.	 Lehn	 et	 al.	 first	 analysed	 the	 [ReI(bpy)(CO)3Cl]	 species	 (147)	 in	

homogeneous	 conditions,	 achieving	 quantum	 yield	 of	 14%	 and	 Faradaic	

efficiency	 of	 98%.	 Then	 Ishitani’s	 group	 analysed	 similar	 catalyst,	 the	

[Re(bpy)(CO)3{P(OEt)3}]+,	 achieving	 a	 quantum	 yield	 of	 0.38.	 (148)	 Moreover,	

among	different	mechanistic	 insights	a	systematic	study	of	electrochemical	CO2	

reduction	 catalysed	 by	 Re(CO)3LCl	 (L	 =	 bpy,	 dcbpy,	 dmbpy,	 4,4’‐di‐tert‐butyl‐

bpy,	or	4,4’‐dimethoxy‐bpy)	underlined	the	relevant	effect	of	electron	donating	

or	withdrawing	nature	of	4,4’	positioned	bipyridine	ligands.	(149)	Furthermore,	in	

the	photochemical	system	these	catalysts	have	been	addressed	to	the	design	of	

dyads	 where	 the	 Rhenium	 complex	 is	 covalently	 linked	 to	 a	 photosensitizer,	

generally	 derivatives	 of	 Ru(bpy)32+.	 The	 goal	 of	 this	 approach	 consists	 in	

enhancing	the	ET	rate	from	the	sensitizer	to	the	catalyst	in	order	to	promote	the	

entire	process	and	maximize	the	quantum	yield.		

Another	noble	metal‐based	catalyst	 is	the	[IrIII(tpy)(ppy)Cl]+	(tpy	=	terpyridine,	

ppy	=	2‐phenylpyridine)	proposed	by	Ishitani	et	al.	(150)	The	compound	catalyses	

selectively	 the	 reduction	 of	 CO2	 to	 CO	 under	 visible	 light	 at	 480	 nm	 in	 the	

presence	of	a	sacrificial	electron	donor,	no	additional	photosensitizer	is	needed.	

In	 particular,	 the	modified	 [IrIII(tpy)(Me‐ppy)Cl]+	 reported	 a	 quantum	 yield	 of	
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0.21,	 which	 is	 the	 best	 value	 present	 in	 literature	 for	 homogeneous	

photocatalytic	system	using	low‐energy	visible	light.	

In	 the	 class	 of	 CO2	 reduction	 catalysts,	 there	 are	 some	 other	 few	 examples	 of	

polypyridyl	 complexes	with	 Ruthenium	 and	Osmium.	 The	 [Ru(bpy)2(CO)2]2+	 is	

used	 in	 protic	 solvents	 to	 obtain	 carbon	 monoxide	 and	 formic	 acid	 from	 the	

electro	or	photochemical	activation	of	CO2.	(151)	From	the	dicationic	species	in	CV	

experiments	 the	 neutral	 [Ru(bpy)2(CO)]	 is	 formed	 with	 an	 irreversible	 two	

electrons	process	at	‐0.76	V	vs	NHE	and	evolution	of	CO.	

In	addition,	cis‐[Os(bpy)2(CO)H]+	has	been	studied	for	the	activation	of	CO2	to	CO	

as	major	product	and	formate.	(152)	

Du	 Bois	 et	 al.	 showed	 other	 organic	 ligands	 as	 phosphine	 exploitable	 in	 the	

synthesis	 of	 Pt	 complexes	 generally	 represented	 as	 [PdII(PR3)(CH3CN)](BF4)2.	

(153)	The	phosphine	potential	is	the	control	on	the	number	and	position	of	solvent	

molecules	able	to	coordinate	on	the	metallic	centre,	while	the	CO2	is	linked	when	

the	 PdII	 is	 reduced	 to	 PdI.	 This	 class	 of	 catalysts	 is	 highly	 selective	 for	 the	

production	 of	 CO,	 more	 the	 dimeric	 complexes	 turned	 out	 to	 enhance	 the	

catalytic	reaction.	

Regarding	 Ruthenium,	 Neumann	 et	 al.	 reported	 the	 POM	 species	

[RuIII(H2O)(SiW11O39)]5‐,	 (154)	 which	 catalyses	 the	 reduction	 of	 CO2,	 after	 its	

coordination,	 in	 the	presence	of	amines	as	electron	donors	 in	a	photoactivated	

system.	The	system	presents	low	efficiency	but	opened	the	perspective	to	a	new	

class	of	totally	inorganic	catalysts.	

	

1.7.2	Earth‐abundant	catalysts	

	

Among	 tricarbonyl	 bipyridyl	 complexes	 seen	 above,	 there	 is	 an	 interesting	

example	also	with	an	Earth‐abundant	metal:	the	MnI(bpy)(CO)3Br	is	reported	to	

be	the	precursor	of	an	active	species	able	to	electrocatalyse	CO2	reduction.	 (155)	

The	MnI	complex	yields	CO	as	major	product	with	a	TON	of	13,	the	value	is	highly	

enhanced	 in	 the	 photocatalytic	 system	 in	 presence	 of	 mixed	 solvent	 N,N’‐

dimethylformamide	 and	 triethanolamine	 and	 [Ru(dmb)3]2+/1‐benzyl‐1,4‐

dihydronicotinamide	as	photosensitizer/reductant.	The	formic	acid	is	produced	

with	 great	 selectivity	 achieving	 a	 TON	 of	 149	 irradiating	with	monochromatic	
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light	(	=	480	nm)	and	under	CO2	atmosphere.	(156)	In	both	cases	the	formation	of	

a	dimeric	species	 is	 the	key	of	 the	process,	even	 if	 the	 identification	of	 the	real	

catalyst	 is	still	 in	progress	since	 the	major	product	changes	according	with	 the	

system	studied.	

Porphyrin	metal	 complexes	 occupy	 large	 space	 in	 literature,	 in	 particular	 Iron	

and	Cobalt	species	are	widely	studied.	It	has	been	reported	that	FeII	porphyrin,	

when	 reduced	 to	 Fe0,	 yields	 to	 a	 durable,	 efficient	 and	 CO‐selective	 CO2	

electroreduction.	However,	a	real	breakthrough	was	introduced	by	the	group	of	

Savéant	with	the	modified	Fe‐tetracarboxyphenyl	porphyrine	(Fe‐TPP).	(157)	The	

modification	consists	in	adding	phenolic	groups	in	all	ortho	and	ortho’	position	of	

the	phenyl	groups	of	TPP	Fig.	1.21	a).	They	were	able	to	reach	a	Faradaic	yield	of	

90%	in	CO,	a	TON	=	50×106	over	4	hours	of	electrolysis	at	a	low	overpotential	of	

465	 mV,	 without	 catalyst	 degradation.	 The	 high	 performance	 is	 reasonably	

ascribed	 to	 the	 introduced	 local	 concentration	 of	 protons	 due	 to	 the	 phenolic	

substituents.	

	

	

a)	 b)	

Fig.	1.21:	Structure	of	a)	the	Iron	5,	10,	15,	20‐tetrakis(2’,6’‐dihydroxylphenyl)‐porphyrin	(157)	

and	b)	the	Ni(cyclam)2+	catalyst	

	

Another	 example	 of	 highly	 selective‐CO	 and	 stable	 catalyst	 for	 the	

electroreduction	of	CO2	is	Ni(cyclam)2+	(cyclam	=	1,4,8,11‐tetraazatetradecane),	

Fig.	 1.21	 b).	 (158)	 No	 relevant	 deactivation	 was	 observed	 after	 thousands	 of	

catalytic	 cycles	 and	 later	 different	 groups	 reported	 observations	 on	 the	

mechanistic	 pathways.	 (159)	 Abba	 et	 al.	 also	 suggested	 that	 the	 cyclam	 and	

azacyclam	 framework	 is	 fundamental	 to	 enhance	 the	efficiency	of	Ni(cyclam)2+	
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catalyst	 and	 its	 structural	 derivatives.	 (160)	 They	 found	 out	 that	 even	 small	

geometrical	variations	of	the	ligands	can	inhibit	the	electrocatalytic	activity.	

Other	 examples	 of	 catalysts	 are	 based	 on	 tetraazamacrocycles,	 phtalocyanine	

and	corroles	but	they	are	reported	to	be	less	active	towards	CO2	electroreduction	

than	their	porphyrine		analogues.	(161)	

	

Nowadays	the	development	of	CO2	reduction	catalysts	seems	to	be	still	far	from	

the	 commercialization	 of	 devices;	 literature	 suggests	 some	 possible	 ideas	 for	

new	progress	focus	on	1)	the	enhance	of	the	catalytic	activity	and	stability,	2)	the	

implement	of	the	understanding	through	experiments	and	theoretical	modelling,	

3)	 the	 improvement	 of	 electrodes,	 reactors,	 and	 system	 designs	 for	 practical	

applications.	(161)		

	

	
1.8	Aim	of	this	thesis		

	

The	main	goal	of	this	thesis	is	the	development	and	the	study	of	catalytic	redox	

processes	 involved	 in	 artificial	 photosynthesis.	 Both	 water	 oxidation	 and	 CO2	

reduction	 have	 been	 treated	 with	 a	 particular	 care	 for	 “green”	 solution.	 This	

work	 is	 particularly	 focused	 on	 Earth‐abundant	metals,	 and	 on	 light	 activated	

catalysis.		

The	 final	 purpose	 is	 not	 only	present	unique	 solutions	 to	 the	 energy	 issue	but	

rather	 a	 method	 to	 reach	 a	 better	 understanding	 through	 optimized	

experimental	 conditions	 and	 mechanistic	 insights.	 Indeed	 with	 these	

instruments	 in	 our	 hands	 we	 can	 think	 how	 to	 evolve	 the	 direction	 of	 the	

research.	
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2.	CHAPTER		

Cobalt	molecular	species	

	

2.1	Introduction	

	

The	work	of	this	thesis	is	focused	on	the	study	of	Earth‐abundant	species	and	in	

particular	this	chapter	and	the	next	one	are	related	to	Cobalt	species.	As	already	

introduced	in	Chapter	1,	artificial	photosynthesis	needs	the	presence	of	catalytic	

systems	 in	 order	 to	 perform	 its	 associated	 redox	 events.	 As	 a	 matter	 of	 fact,	

water	oxidation	is	considered	so	far	the	real	bottleneck	of	the	entire	process	and	

it	requires	more	studies	in	order	to	improve	its	efficiency.		

As	 explained	 above,	 in	 this	work	we	 underline	molecular	 species:	 1)	 to	 clarify	

mechanistic	 insights	 tuning	structure	and	properties,	2)	 to	achieve	 information	

of	different	systems	and	3)	possibly	give	an	overview	to	design	a	final	device.	

In	particular,	during	the	Ph.D.	we	analysed	and	characterized	some	Cobalt‐based	

molecular	 WOC:	 1)	 a	 cubane‐like	 species	 (see	 section	 2.2)	 and	 2)	 a	 Co‐based	

multinuclear	 compound	 with	 a	 totally	 inorganic	 polyoxometallate	 ligand	 (see	

Chapter	3).	

	

2.2	A	Cobalt‐based	cubane	as	WOC	

	

During	the	first	part	of	 this	work	attention	has	been	focused	on	a	Cobalt‐based	

oxo	cluster,	water	oxidation	catalyst	with	formula	[Co4O4(O2CCH3)(py)4]	(1,	py	=	

pyridine).	This	species	was	introduced	in	literature	some	years	ago	and	used	as	

catalyst	in	oxidation	processes.	(1,	2)	

	
Fig.	2.1:	Rapresentation	of	1,	blue:	Cobalt,	red:	Oxygen,	pink:	Nitrogen,	grey:	Carbon,	Hydrogen	

are	no	shown	for	clarity	reasons	
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The	X‐ray	analysis	of	1	 shows	a	cubane‐like	structure	Co4O4,	 stabilized	by	 four	

acetates	ligands	bridging	two	Co	atoms	and	four	pyridines	as	apical	ligands	of	Co.	

We	decided	to	investigate	this	molecule	in	water	oxidation	catalysis	for	several	

reasons:	 1)	 the	 cubane‐like	 architecture	 in	 the	 coordination	 of	 Co	 atoms	 was	

already	 proposed	 as	 a	 model	 of	 the	 OEC	 cluster,	 2)	1	 can	 be	 considered	 as	 a	

molecular	fragment	of	the	Co‐Pi	oxide,	the	Nocera’s	catalyst,	(3)	so	far	one	of	the	

most	performing	WOC,	3)	Cobalt	is	an	Earth‐abundant	metal,	with	low	cost,	4)	its	

catalytic	 activity	 in	 oxidation	 of	 organic	 molecules	 was	 already	 know,	 (2)	 5)	

organic	 ligands	 can	 be	 tuned	 in	 order	 to	 study	 possible	 structure‐activity	

correlation.	

The	species	was	synthesized	and	characterized	following	procedures	reported	in	

literature,	(2)	and	 the	 identity	 of	 the	 species	was	 confirmed	by	 1H‐NMR,	UV‐Vis,	

FT‐IR	and	ESI‐MS	techniques.	(see	section	6.1)		

At	first,	we	focused	on	electrochemical	characterization	of	1,	by	means	of	cyclic	

voltammetry	(CV)	in	aqueous	solution	at	pH	=	7	(phosphate	buffer	0.2	M).	

	

	
Fig.	2.2:	Cyclic	voltammetry	of	1	in	aqueous	media:	phosphate	buffer	0.2	M,	pH	=	7,	[cat]	=	0.5	

mM,	WE:	glassy	carbon	(d	=	3mm),	CE:	Pt	wire,	RE:	Ag/AgCl,	scan	rate:	100	mV/s	

	

The	anodic	scan	shows	a	first	reversible	wave	at	E1/2	=	1.05	V	vs	Ag/AgCl,	due	to	

the	oxidation	of	one	of	the	CoIII	centres	to	CoIV.	This	process	is	then	followed	by	

an	intense	wave	due	to	water	oxidation,	starting	at	an	onset	of	1.17	V	vs	Ag/AgCl	

and	 reaching	 a	 current	 peak	 at	 1.3	 V.	 The	 overpotential	 for	 water	 oxidation	
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catalysed	 by	1	can	 be	determined	 by	 the	 difference	 between	 the	 experimental	

potential	measured	 at	 the	 onset	 of	 the	 catalytic	wave	 and	 the	 thermodynamic	

potential	for	water	oxidation	(0.62	V	vs	Ag/AgCl	at	pH	=	7).	In	these	conditions,	

an	overpotential	of	550	mV	was	obtained,	which	is	comparable	to	other	Co‐based	

system	present	in	literature,	but	significantly	higher	than	the	one	measured	for	

the	Cobalt	 oxide	 catalyst	of	280	mV.	 (4,	5)	The	overpotential	 is	 a	 very	 important	

parameter	 in	 order	 to	 evaluate	WOC	activity:	 the	 lowest	 the	overpotential,	 the	

best	is	the	catalyst,	because	it	means	that	less	energy	is	required	to	activate	the	

electrochemical	process.		

Moving	 from	 the	 CV	 characterization,	 the	 activity	 of	 1	 was	 investigated	 in	 a	

photo‐activated	system,	 (6)	which	 is	mimicking	 the	 light	driven	activation	 in	an	

ideal	photoactivated	device	for	artificial	photosynthesis.	

Light‐driven	 water	 oxidation	 catalysis	 was	 investigated	 considering	 a	 system	

widely	 used	 in	 literature,	 (7)	 exploiting	 Ru(bpy)32+	 (bpy	 =	 2,2’‐	 bipyridine)	 as	

photosensitizer	and	Sodium	persulfate	 (NaS2O8)	 as	 sacrificial	 oxidant	 (electron	

acceptor).		

Ru(bpy)32+	+	h	→	*Ru(bpy)32+	 (2.1)

*	Ru(bpy)32+		+	S2O82−	→	Ru(bpy)33+	+	SO42‐	+	SO4•−	 (2.2)

Ru(bpy)32+	+	SO4•−	→	Ru(bpy)33+	+	SO42‐	 (2.3)

Ru(bpy)33+	+	1	→	Ru(bpy)32+	+	1+	 (2.4)

14+	+	2	H2O	→	1	+	O2	+	4	H+	 (2.5)

	

	
Fig.	2.3:	Schematic	representation	of	the	photo‐induced	system		

	

The	 reaction	 scheme	 of	 the	 light‐driven	 system	 is	 represent	 in	 Fig.	 2.3:	 after	

	

Ru(bpy)3
3+ 

*Ru(bpy)3
2+ Ru(bpy)3

2+ 

	 	

½	S2O8
2‐ 

SO4
2‐ 

½	H2O 

¼	O2 

h 
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absorption	of	one	photon,	Ru(bpy)32+	is	promoted	to	its	excited	state	*Ru(bpy)32+	

(Eq.	 2.1),	 which	 then	 reacts	 transferring	 an	 electron	 to	 persulfate	 (oxidative	

quenching	of	*Ru(bpy)32+).	The	result	of	this	electron	transfer	is	the	formation	of	

the	 oxidized	 form	 of	 the	 photosensitizer,	 Ru(bpy)33+,	 with	 contemporary	

formation	of	a	sulfate	ion	SO42‐,	and	a	sulfate	radical	SO4•−	(Eq.	2.2).	These	latters	

derive	 from	 breaking	 of	 the	 O‐O	 bond	 in	 persulfate,	 upon	 addition	 of	 one	

electron.	The	sulfate	radical	SO4•−	is	a	strong	oxidizing	species	(E	=	2.4	V	vs	NHE),	

and	 reacts	with	 a	 second	molecule	of	Ru(bpy)33+,	 forming	SO42‐	and	Ru(bpy)33+	

(Eq.	 2.3).	 Therefore,	 the	 net	 result	 from	 the	 absorption	 of	 one	 photon	 is	 the	

conversion	 of	 two	 Ru(bpy)32+	 to	 Ru(bpy)33+,	 and	 transformation	 of	 persulfate	

into	sulfate	ions.		

Then,	Ru(bpy)33+	acts	as	a	photogenerated	oxidant,	oxidizing	the	catalyst	1	(Eq.	

2.4),	until	 it	 reaches	 the	active	 form,	 capable	of	oxidizing	water.	A	high	 rate	of	

reaction	between	Ru(bpy)33+	and	the	catalyst	is	important	to	guarantee	stability	

of	 the	 photosensitizer,	 since	 Ru(bpy)33+	 is	 susceptible	 to	 self	 degradation,	 by	

auto‐oxidation	of	 the	bpy	organic	 ligands.	As	a	 final	remark,	a	comment	on	 the	

role	 of	 the	 sulfate	 radical	 should	 be	 given.	 As	mentioned	 above,	 this	 is	 a	 high	

oxidizing	 species,	 and	 in	principle	 it	 could	 react	 directly	with	 the	 catalyst;	 this	

will	be	also	the	case	for	1	(vide	infra).	

In	 Fig.	 2.4	 a	 typical	 O2	 evolution	 kinetic	 is	 reported,	 where	 the	 gas	 formation	

starts	once	the	solution	containing	the	three	components	1	/	Ru(bpy)32+	/	S2O82‐	

is	irradiated,	and	stops	after	about	one	hour,	due	to	photosensitizer	degradation.	

The	common	parameters	used	to	evaluate	a	catalyst	activity	in	this	system	are:	

1)	 the	 turn	 over	 number	 (TON),	 2)	 the	 turn	 over	 frequency	 (TOF)	 and	 3)	 the	

quantum	yield	(QY).	

	
Fig.	2.4:	Example	of	O2	evolution	kinetic,	in	borate	buffer	80	mM,	pH	=	8,	[1]	=	1.5	mM,	[Rubpy]=	

1	mM,	[S2O82‐]	=	9	mM	
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A	deep	screening	of	different	conditions	on	this	system	has	been	done,	changing	

the	 concentration	of	 the	 catalyst	 and	 the	nature	of	 the	 aqueous	buffer	used	 as	

solvent.	The	presence	of	a	buffer	solution	avoids	a	deep	decrease	of	the	pH,	since	

the	 production	 of	 O2	 is	 contemporary	 with	 formation	 of	 H+.	 In	 particular,	 we	

focused	the	attention	on	phosphate	buffer	40	mM	pH	=	7	and	borate	buffer	80	

mM	pH	=	8;	the	catalyst	concentrations	tested	were	in	the	range	of	5‐100	M,	see	

Tab.	2.1.	(6)	Herein,	our	results	are	compared	with	those	simultaneously	reported	

by	 the	 group	 of	 Prof.	 C.	 Dismukes	 (Princeton	 University)	 (8)	 with	 the	 same	

catalyst.	

In	the	system	S2O82‐/	Ru(bpy)32+/1,	depending	on	the	conditions	the	number	of	

TON	 changes,	 reaching	 a	 maximum	 value	 of	 40	 at	 pH	 =	 7,	 the	 production	 of	

oxygen	 is	 limited	 by	 the	 photodegradation	 of	 Ru(bpy)32+,	 verified	 by	 UV‐Vis	

spectroscopy	where	a	partial	 abatement	of	 its	 characteristic	 absorption	at	450	

nm	 is	observed.	The	maximum	value	of	TOF	achieved	 is	0.95×10‐2	 s‐1,	which	 is	

comparable	to	the	other	photo‐induced	Co‐based	systems.	(9)	

	

  (ref. 6)  Dismukes et al. (ref. 8) 

Reaction	
conditions	

[1]	=	5‐100	M	
(8	different	concentrations);	

[Ru(bpy)3]2+	=	1	mM;	
[S2O8]2‐	=	5	mM;	

in	20	mM	phosphate	buffer	
pH		=	7	or	80	mM	borate	

buffer	pH	=	8	

[1]	=	50	M;	
[Ru(bpy)3]2+	=	0.5	mM;	
[S2O8]2‐	=	35	mM;	
[SO4]2‐	=	70	mM;	

in	HCO3‐	buffer	pH	=	7;	
SiF62‐	buffer	pH	=	5.8	and	

4.8	

TON	 12‐40	at	pH	7;	
23‐37	at	pH	8	(after	35	min)	

40	(after	60	min)	

TOF	 0.02	s‐1	*	(per	catalyst	mole)	
(0.95×10‐2	s‐1)	

0.02	s‐1	(per	catalyst	
mole)	

Quantum	yield	 0.10‐0.23	at	pH	7;	
0.18‐0.30	at	pH	8	 ‐‐‐	

Chemical	yield	 30‐50%	at	pH	7;	
28‐34%	at	pH	8	 11	%	

	

Tab.	2.1:	Sum	up	of	more	interesting	features	in	photoactivated	catalytic	system	with	[1]	

compared	with	other	data	presented	in	literature	in	quite	similar	conditions,	(*	=	Condition	of	

maximum	Ф:	[Co4cubane]	=	1.87	x	10‐5	M;	[Ru(bpy)3]2+	=	1	mM;	[S2O8]2‐	=	5	mM,	in	borate	buffer	

80	mM,	pH	=	8)	
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An	important	parameter	in	light‐driven	water	oxidation	is	the	quantum	yield	()	

of	the	process,	defined	as	the	ratio	between	the	amount	of	generated	O2	and	the	

photons	absorbed	by	the	system.	(10)	In	particular,	the	dependence	of	from	the	

concentration	of	1	displays	a	bell‐shaped	profile	in	both	tested	media	(Fig.	2.5).	

Moreover,	 the	 maximum	 in	 the	 two	 conditions	 is	 obtained	 at	 different	

concentration	of	1	 (20	M	at	pH	=	8	and	70	M	at	pH	=	7).	 It	 is	also	worth	 to	

mention	 that	 in	 borate	 buffer,	 the	 system	 reaches	 a	 notable	 quantum	 yield	 of	

0.30,	 which	 is	 one	 of	 the	 highest	 values	 reported	 so	 far	 with	 Ru(bpy)32+	 as	

photosensitizer.	

	
Fig.	2.5:	Dependence	of	photochemical	quantum	yield	for	oxygen	production	vs	catalyst	

concentration.	[Ru(bpy)32+]	=	1	mM,	[S2O82‐]	=	5	mM,	excitation	wavelength	is	450	nm.	Triangles	

are	data	in	borate	buffer	at	pH	=	8,	squares	are	data	in	phosphate	buffer	at	pH	=	7	(6)	

	

The	 bell	 shaped	 profiles	 in	 Fig.	 2.5	 are	 likely	 explained	 by	 side	 reactions	

involving	 oxidized	 forms	 of	 the	 catalyst,	 more	 competitive	 at	 high	 catalyst	

concentration.	 (6)	 In	 particular,	 direct	 quenching	 of	 the	 excited	 state	 of	 the	

photosensitizer	 *Ru(bpy)32+	 	 by	 intermediates	 of	 1	 may	 occur,	 leading	 to	

unproductive	light	absorption.		

	

The	high	efficiency	of	the	system	S2O82‐/Ru(bpy)32+/1	prompted	us	to	investigate	

some	features	of	the	photoactivated	cycle.	In	particular,	the	most	critical	step	of	

such	systems	is	recognized	to	be	the	kinetics	of	electron	transfer	events	from	the	

catalyst	 to	 the	 oxidized	 photosensitizer,	 Ru(bpy)33+.	 These	 were	 measured	 by	
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laser	 flash	 photolysis	 experiments	 in	 collaboration	 with	 the	 group	 of	 Prof.	

Scandola	in	Ferrara.	Bimolecular	rate	constants	for	this	process	(Eq.	2.4)	turned	

out	to	be	1.2×107	M‐1s‐1	and	1.6×107	M‐1s‐1	at	pH	=	7	and	8,	respectively.	These	

values	 are	 one	 order	 of	 magnitude	 higher	 than	 those	 reported	 using	 Iridium	

oxide	 nanoparticles,	 known	 as	 one	 of	 the	 most	 efficient	 catalysts	 for	 water	

oxidation.	(11)	

The	 rate	 constant	 of	 the	 ET	 (Eq.	 2.4)	 is	 very	 important	 in	 order	 to	 limit	

photosensitizer	decomposition,	due	to	the	presence	of	parallel	reactions	such	as	

auto‐oxidation	of	 its	organic	 ligand.	These	side	pathways	 imply	 lower	quantum	

yield	and	partial	deactivation	of	the	photo‐catalytic	capacity	in	the	whole	system.	

As	a	 final	 remark,	a	 role	of	 the	sulfate	radical	SO42‐	needs	 to	be	considering	 for	

oxidizing	1	to	the	active	form,	capable	of	oxidizing	water.	Indeed,	the	reduction	

potential	of	Ru(bpy)33+/2+	is	1.06	vs	Ag/AgCl,	apparently	not	enough	high	to	carry	

on	water	oxidation	with	1,	beginning	at	ca	1.15	V	vs	Ag/AgCl	(pH	=	7)	and	at	ca	

1.10	V	vs	Ag/AgCl	(pH	=	8).	Therefore,	direct	oxidation	of	1	by	SO42‐	is	occurring.	

	

2.3	Structure‐activity	correlation	

	

Exploiting	 the	 interesting	results	and	 the	molecular	nature	of	1,	we	 thought	 to	

modify	the	structure	of	the	compound	in	order	to	tune	its	reactivity,	focusing	in	

particular	on	the	organic	ligands.	(12)	

We	 considered	 different	 para‐substituted	 pyridines	 as	 terminal	 ligands	 of	 the	

cubane	 cluster,	 to	 exert	 a	 direct	 conjugation	 to	 the	 Co4O4	 cluster;	 moreover	

pyridines	 are	 recognized	 as	 less	 labile	 than	 acetates.	 (13)	 For	 this	 aim	 the	

isostructural	 series	 with	 formula	 [CoIII4(μ‐O)4(μ‐CH3COO)4(p‐NC5H4X)4],	

hereafter	 1‐X	 (X	 =	 Me,	 t‐Bu,	 OMe,	 Br,	 COOMe,	 CN),	 were	 synthesized	 and	

screened	as	WOC	under	dark	and	illumination	conditions.	The	1‐X	species	were	

obtained	according	to	slight	changes	of	the	literature	protocol	for	1,	while	their	

identity	and	stability	in	solution	were	confirmed	by	1H‐NMR,	ESI‐MS,	UV‐Vis	and	

FT‐IR	techniques.	

The	effect	of	X	on	the	catalyst	has	been	evaluated	in	electrochemical	and	photo‐

induced	systems	and	below,	in	the	next	sections,	results	of	the	structure‐activity	

correlation	are	 reported	and	discussed.	With	 respect	 to	 the	studies	 in	aqueous	
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buffer	 at	 pH	 =	 7‐8	 cited	 in	 section	 2.2,	 we	 decided	 to	 use	 mixed	 solvent	

conditions	(1:1,	acetonitrile:borate	buffer	10	mM	at	pH	=	8).	The	advantages	of	

this	medium	are	related	to	the	longer	stability	of	the	photosensitizer,	one	of	the	

most	relevant	causes	of	inhibition	in	oxygen	formation.	Indeed,	it	is	known	that	

one	of	the	degradation	pathways	for	Ru(bpy)33+	is	provided	by	a	first	step	of	OH‐	

ions	 attack	 on	 bpy	 ligands,	 thus	 moving	 to	 a	 mixed	 solvent	 reduces	 the	

probability	of	such	events.	

	

2.3.1	Electrochemical	potentials	

	

Inspection	 of	 the	 1‐X	 WOC	 properties	 was	 initially	 addressed	 under	 dark	

conditions,	 by	 means	 of	 cyclic	 voltammetry.	 Under	 anodic	 scan,	 the	 first	

observed	event	deals	with	one	electron	waves,	due	to	the	oxidation	of	the	initial	

state	of	the	cubane	(where	all	the	Cobalt	centers	have	an	oxidation	state	III,	Co4III,	

identified	as	S0,	in	analogy	with	the	natural	OEC)	to	a	mixed	valent	intermediate,	

where	one	of	 the	atoms	 in	cubane	cluster	 is	oxidized	 to	 the	 IV	state	 (Co3IIICoIV,	

identified	as	S1).	This	process	is	reversible	for	all	the	1‐X	species,	and	the	value	

of	the	reduction	potential	changes	with	the	nature	of	X,	with	lower	values	of	E1/2	

observed	 for	 electron	 donating	 substituents,	 and	 higher	 values	 observed	 for	

electron‐withdrawing	groups	(Fig.	2.6).	

	
Fig.	2.6:	Cyclic	voltammograms	of	2	mM	1‐X	in	1:1=	CH3CN:	40	mM	phosphate	buffer,	pH	=	7	(in	

the	absence	of	1‐X	no	appreciable	current	is	observed	in	this	potential	range).	WE:	glassy	carbon	

(d	=	3	mm),	CE:	Pt	wire,	RE:	Ag/AgCl,	scan	rate:	100	mV/s	(12)	

	

Interestingly,	 a	 correlation	 between	 the	 reduction	 potential	 values	 in	 the	 1‐X	

series	with	the	Hammett	parameter		can	be	obtained:	the	plot	of	EX	[E	=	E1/2	
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(1)‐	 E1/2	 (1‐X)]	 versus	 X	 turned	 out	 to	 exhibit	 a	 linear	 dependence	 with	 a	

negative	slope,	Fig.	2.7.	Hence,	we	could	conclude	that	the	first	redox	event	in	the	

cubane	series	1‐X	 is	 correlated	with	 the	electronic	nature	of	 the	substituent	 in	

para	position	of	the	pyridinic	ligands.	

	

Fig.	2.7:	Plot	of	E	(E	=	E1/2	for	1‐H1+/0	‐	E1/2	for	1‐X1+/0	in	1:1,	acetonitrile:10	mM	borate	buffer	

pH	=	8)	vs	the		Hammett	constant;	for	X	=	CN	and	COOMe	the	E1/2	values	refer	to	50:50,	

acetonitrile:40	mM	phosphate	buffer	pH	=	7	(12)	

2.3.2	ET	constant	rate	

	

The	 variance	 of	 the	 first	 oxidation	 potential	 in	 1‐X	 series	 influences	 also	 the	

light‐driven	system	and	in	particular	the	rate	of	the	ET	from	the	catalyst	to	the	

oxidized	photosensitizer,	Ru(bpy)33+	(Eq.	2.4).	We	considered	kH	the	bimolecular	

rate	constant	for	the	process	involving	1	as	catalyst	and	kX	 the	constant	among	

the	 series	 of	 substituted	1‐X	 complexes	 (Tab.	 2.2);	 the	 ET	 rate	 constants	 have	

been	 obtained	 by	 laser	 flash	 photolysis	 in	 collaboration	with	 Prof.	 Scandola	 at	

the	University	of	Ferrara.		

Xa  E1/2 (mV)b mVc k (108 M‐1s‐1)d e

OMe	 877	 570	 2.51	 0.40f	

t‐Bu	 855	 500	 1.39	 0.05	

Me	 880	 520	 1.92	 0.15	

H	 926	 550	 1.33	 0.13	

Br	 990	 530	 0.60	 0.16	

COOMe	 1040g	 510	 0.70	 0.23	

CN	 1081g	 510	 0.14	 0.13	
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Tab.	2.2	a	substituent	in	para	position	on	the	pyridine	ligand.	b	E1/2	(1‐X+/1‐X)	in	1:1	ACN/10	mM	aqueous	

borate	buffer	(pH	=	8)	vs	Ag/AgCl.	c	overpotential	of	water	discharge	in	0.2	M	aqueous	phosphate	buffer	(pH	

=	7),	determined	at	an	anodic	current	value	of	50	A	(current	density	=	0.7	mA·cm‐2)	with	a	scan	rate	=	100	

mV/s.	d	bimolecular	rate	constant	for	ET	in	Eq.	2.4	for	1‐X		in	1:1,	acetonitrile	:10	mM	aqueous	borate	buffer	

(pH	=	8).	e	quantum	yield	()	obtained	for	the	photochemically‐driven	process	(exc	=	450	nm),	determined	

over	the	first	30	minutes	of	reaction.	f	maximum	value	observed	with	freshly	prepared	solutions	of	1‐OCH3.	

g	E1/2	in	1:1	ACN/10	mM	aqueous	phosphate	buffer	(pH	=	7)	since	the	waves	in	1:1	ACN/	10	mM	borate	

buffer	(pH	=	8)	are	not	resolved	due	to	overlapping	with	water	oxidation	discharge	

	

With	 the	 available	 data,	 we	 obtained	 a	 linear	 trend	 plotting	 log(kX/kH)	 vs	

Hammett	,	Fig.	2.8.	

	

Fig.	2.8:	Hammett	linear	free	energy	relationship	plot	of	photoinduced	ET	rate	constants	

between	Ru(bpy)33+	and	1‐X	(12)	

	

In	 the	 plot,	 the	 negative	 slop	 is	 indicative	 of	 an	 enhancement	 of	 the	 photo‐

induced	ET	performed	by	electron‐rich	pyridines.	Hence,	we	can	conclude	 that	

the	process	 is	controlled	by	 thermodynamic,	since	reactions	are	 faster	 for	easy	

oxidable	species	but	also	 influenced	by	electronic	and	steric	effects	 involved	 in	

supramolecular	 interactions:	 this	 outcome	 can	 be	 responsible	 of	 the	 linearity	

deviation	observed	for	1‐tBu	and	1‐COOCH3,	as	appreciable	in	Fig.	2.7.	

Furthermore,	 in	 the	 mixed	 solvent,	 it	 is	 possible	 to	 appreciate	 that	 the	

bimolecular	constant	rate	kH,	for	the	ET	between	Ru(bpy)33+	and	1	is	one	order	of	

magnitude	 higher	 than	 in	 aqueous	 solution	 (1.3×108	M‐1s‐1	 in	 1:1,	 acetonitrile:	

borate	 buffer	 10	 mM,	 pH	 =	 8).	 This	 result	 owes	 with	 the	 increase	 into	 the	

difference	 between	 potentials	 of	 couples	 Ru(bpy)33+/2+	 and	 1+/1	 in	 mixed	

solvent,	giving	a	more	exergonic	process	for	Eq.	2.4,	hence	defining	more	driving	

force	for	this	reaction.	
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2.3.3	Photo	induced	kinetic	experiments	

	

Besides	the	electrochemical	and	kinetic	parameters	related	to	the	first	oxidation	

event	on	1,	leading	to	1+,	it	is	interesting	to	explore	also	how	the	substituents	X	

influence	the	catalytic	activity	in	water	oxidation.	From	the	electrochemical	point	

of	view,	the	overpotential	for	the	substituted	1‐X	lies	in	a	narrow	range	between	

500	and	570	mV	without	a	visible	 correlation	with	Hammett	Tab.	2.2).	This	

may	 suggest	 that	 in	 the	 overall	 catalytic	 cycle	 some	 steps	 could	 be	 favored	 by	

electron‐donor,	other	by	electron‐withdrawing	substituents.		

The	catalytic	activity	was	then	studied	in	the	photo‐activated	system	described	

above,	in	mixed	solvent	and	in	collaboration	with	the	group	of	Prof.	Campagna	in	

Messina.	In	these	conditions	the	efficiency	of	the	system	is	higher:	the	persulfate	

is	completely	consumed	in	3	hours,	achieving	a	TON	of	140	for	1‐X	(Fig.	2.9).	As	

already	 mentioned,	 the	 improvement	 of	 the	 performance	 is	 likely	 due	 to	 the	

stabilization	 of	 the	 photosensitizer	 in	 the	 mixed	 solvent.	 Considering	 the	

substituent	 effect,	 insertion	 of	 the	 quantum	 yield	 in	 a	 Hammett	 plot	 fails	 to	

reveal	 a	 specific	 trend	 of	 activity	 in	 the	 series	 1‐X,	 as	 observed	 in	 the	

overpotential	evaluation.		

	
Fig.	2.9:	Oxygen	production	kinetics	by	representative	1‐X	catalysts	used	in	this	work	(X	is	

shown	in	panel).	[1‐X]	=	18	M,	[Ru(bpy)32+]=	1	mM,	[S2O82‐]	=	5	mM	in	1:1,	acetonitrile:10	mM	

borate	buffer	(2	ml,	pH=8),	irr	>	400	nm.	A	total	of	140	TONs	is	reached	upon	quantitative	

conversion	of	sacrificial	persulfate.	(12)	

	

Interestingly,	 in	 the	 described	 experimental	 conditions,	 a	 very	 high	 quantum	

yield	was	found	with	1‐OCH3,	reaching	a	value	of	0.40,	which	is	so	far	the	best	

value	reported	in	literature	for	water	oxidation	light‐driven	system.		
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2.4	 An	 open	 question:	 is	 cubane	 1	 a	 real	 molecular	 catalyst	 for	 water	

oxidation?	

	

The	development	of	molecular	species	able	to	catalyse	water	oxidation	is	really	

attractive	 because	 they	 provide	 tunable	 media	 to	 understand	 mechanism	 and	

identify	 the	reactive	 intermediates.	However,	a	 recurring	 issue	comes	 from	the	

question	 whether	 the	 catalyst	 retains	 its	 homogeneous	 nature	 or	 a	

heterogeneous	catalytically	active	species	is	produced	in	situ.	(14)	

Very	 recently,	 Nocera	 et	 al.	 have	 published	 new	 results	 affirming	 through	

different	 techniques	 that	 the	catalytic	activity	of	1	 in	water	oxidation	 is	due	 to	

CoII	 impurities.	 (15)	 They	 have	 reported	 that	 the	 product	 obtained	 from	 the	

literature	synthetic	procedure	(2)	contains	impurities,	which	can	be	removed	by	

silica	 chromatography.	 Comparing	 the	 CV	 of	 the	 product	 prepared	 via	 the	

literature	 procedure	 (crude‐1)	 and	 of	 the	 product	 isolated	 after	 flash	

chromatography	(pure‐1),	a	very	different	behaviour	 is	observed,	since	 lack	of	

the	 catalytic	wave	 is	 found	with	pure‐1	 (Fig.	 2.10).	 The	 authors	 state	 that	 the	

absence	 of	 a	 catalytic	 wave	 for	 pure‐1,	 is	 indicative	 of	 the	 presence	 of	 CoII	

impurities	in	crude‐1,	acting	as	a	source	for	the	formation	of	the	active	WOC	Co‐

Pi	in	sufficient	oxidative	conditions.	(13)		

	
Fig.	2.10:	CVs	of	crude‐1	(dashed	black	line)	and	pure‐1	(solid	red	line)	1	mM	in	0.2	M	KPi	

buffer,	pH	=	7.	Two	scans	are	presented	for	crude‐1	demonstrating	the	loss	of	activity	upon	the	

second	scan	(15)	

	

However,	 the	 authors	 observed	 a	 residual	 activity	 of	 pure‐1	 in	 the	

photoactivated	cycle,	adopting	the	conditions	used	by	Dismukes	et	al.	(8)	
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This	 scenario	 leaves	 an	 open	 issue,	 whether	1	 behaves	 or	 not	 as	 a	 molecular	

WOC.	This	requires	further	investigations	since	pure‐1	has	not	been	analysed	in	

the	 photocatalytic	 system	with	 the	mixed	 solvent,	 employed	 above.	 Therefore,	

we	 repeated	 the	 purification	 procedure	 suggested	 by	 Nocera	 et	 al.,	 obtaining	

pure‐1	 and	 we	 characterized	 it	 by	 CV	 in	 0.2	 M	 phosphate	 buffer,	 pH	 =	 7,	

confirming	 the	 absence	 of	 a	 catalytic	 wave	 (Fig.	 2.11	 a)).	 However,	 when	

performed	 in	1:1	 acetonitrile:	 10	mM	borate	buffer,	 pH	=	8,	 an	 anodic	wave	 is	

appearing	at	E	=	1.2	V,	immediately	after	the	reversible	wave	due	to	1	→	1+	event	

occurring	at	E	=	0.93	V	vs	Ag/AgCl	(Fig.	2.11	b)).	

	

a)	

	

b)	

	
	

Fig.	2.11:	CV	of	[pure‐1]	=	1	mM	in	a)	0.2	M	phosphate	buffer,	pH	=	7	and	b)	in	1:1	

acetonitrile:10	mM	borate	buffer,	pH	=	8.	WE:	glassy	carbon	(d	=	3	mm),	CE:	Pt	wire,	RE:	Ag/AgCl,	

scan	rate:	100	mV/s	
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The	photoactivated	system	S2O82‐/Ru(bpy)32+/	pure‐1,	where	Nocera	et	al.	found	

oxygen	activity,	is	currently	under	investigation	in	the	mixed	solvent.	

	

One	possible	approach,	to	understand	the	role	played	by	the	species	1,	could	be	

to	verify	its	fate	under	operating	conditions:	a	preliminary	study	on	1	has	been	

developed	through	a	labelling	experiment,	followed	by	ESI‐MS.	In	particular,	we	

have	 run	photocatalysis	 in	 labelled	water	 (H218O	at	5%),	 verifying	 the	possible	

incorporation	of	18O	in	the	catalyst	structure	and	recording	the	mass	spectrum	of	

the	species	at	different	illumination	time	(t	=	0,	5,	10,	20	and	60	minutes).	During	

the	whole	light‐driven	experiment,	we	observed	the	persisting	of	the	peak	at	853	

m/z	(indicative	of	 the	1‐H+),	with	 the	mass	distribution	of	 this	peak	remaining	

the	 same	 showing	 the	 stability	 of	 the	 cluster,	 see	 Fig.	 2.12.	 The	 only	 change	

appears	 in	 the	 spectrum	 after	 about	 five	 minutes	 of	 illumination	 due	 to	 the	

presence	 of	 a	 peak	 at	m/z	 =	 852,	 ascribable	 to	 the	 formation	 of	1+,	 the	mixed	

valent	Co3IIICoIV	species	formed	after	the	first	oxidation	step	from	the	parent	1.	

	

	

a)	t0	 b)	5’	

c)	10’	 d)	20’	
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Fig.	2.12:	Electronspray	ionization	mass	spectra	analysis	of	pure‐1	in	the	photocatalytic	system	

at	time	=	a)	0	(in	dark),	b)	5,	c)	10,	d)	20,	e)	60	minutes,	f)	mass	distribution	calculated	with	and	

without	18O.	[1]	=	58	M	in	Co,	[Ru(bpy)32+]=	1	mM,	[S2O82‐]	=	5	mM	in	10	mM	borate	buffer	

(pH=8),	light	source	monochromatic	LEDs	(irr	=	450	nm)	

	

Moreover,	no	changes	 in	mass	distribution	were	observed	along	 the	spectra	of	

Fig.	2.12	a)‐e),	indicating	no	incorporation	of	18O	from	water	in	the	Co4O4	moiety	

in	1.	In	Fig.	2.12	f)	the	mass	distribution	calculated	for	1	with	(red	histograms)	

and	 without	 (blue	 histograms)	 labelled	 Oxygen	 in	 the	 Co4O4	 core:	 the	

experimental	 data	 fit	 the	 theoretical	 prediction	 without	 18O	 incorporation.	

Indeed,	 focusing	on	 the	peak	at	m/z	=	M+2,	 it	 shows	an	appreciable	difference	

between	 the	 two	 possible	 situations:	 in	 the	 presence	 of	 18O	 exchange	 the	

intensity	of	the	M+2	peak	is	equivalent	to	the	intensity	of	the	M+1,	which	is	not	

our	case.	This	means	that:	1)	in	photo	catalytic	conditions	oxygen	from	the	oxo‐

cluster	is	not	involved	and	2)	water	provides	for	O2	formation,	3)	the	structure	of	

1	is	stable	in	the	adopted	photocatalytic	conditions.	Therefore,	a	possible	role	of	

1	as	competent	WOC	can	not	be	excluded.		

The	 conclusion	 drawn	 by	 experimental	 data	 can	 be	 indicative	 of	 a	mechanism	

similar	 to	 the	 so‐called	 “roller	 coaster”	 proposed	 by	 Sala	 et	 al.	 (16)	 We	

hypothesize	 a	 partial	 removal	 of	 an	 acetate	 group	 from	 the	 structure	 with	 a	

consequent	 coordination	 of	 a	 water	 molecule	 on	 a	 Co	 atom	 then,	 after	 the	

oxidation	 and	 formation	 of	 an	 oxo	 complex,	 the	 water	 nucleophilic	 attack	 is	

expected.	 The	 process	 should	 conclude	 with	 releasing	 of	 oxygen	 after	 proton	

removal,	as	schematically	represented	in	Fig.	2.13.		
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Fig.	2.13:	Schematic	representation	of	a	possible	mechanism	of	water	oxidation	by	1	

	

Further	 studies	 will	 be	 performed	 in	 the	 characterization	 of	 1	 along	 the	

photocatalytic	 cycle,	 in	 order	 to	 understand	 the	 real	 catalytic	 system	 and	

whether	or	not	 the	presence	of	 the	species	1	 is	pivotal	 in	 the	mechanism.	EPR	

analysis	and	EXAFS	studies	on	the	Co	K	edge	are	already	planned.		

However,	even	though	the	debate	on	the	real	nature	of	the	catalyst	is	open,	there	

are	some	aspects	of	our	previous	work	that	preserve	their	integrity,	in	particular	

the	correlations	between	the	electronic	effect	of	the	substituent	in	para‐position	

on	the	pyridines	and:	1)	the	first	oxidation	potential	of	the	Co4O4	1	core,	2)	the	

ET	 constant	 rate	 in	 the	 light‐driven	 system	 between	 the	 photosensitizer	

Ru(bpy)32+	and	1	species.	

	

2.5	Dyads	photosensitizer‐catalyst	

	

Considering	the	catalytic	activity	of	the	species	1,	we	found	attractive	to	design	

possible	 photosensitizer‐catalyst	 dyads	 in	 order	 to:	 1)	 rise	 the	 ET	 rate,	

fundamental	parameter	for	the	efficiency	of	the	light‐driven	system,	2)	assemble	

the	 entire	 process	 onto	 a	 semiconductor,	 to	 create	 a	 photoelectrode	 able	 to	

oxidize	water.	This	device	 coupled	with	 a	 similar	 artifice	 for	 the	production	of	

hydrogen	 could	 be	 employed	 to	 perform	 the	 photo‐assisted	 water	 splitting,	

which	is	the	final	goal	of	artificial	photosynthesis.	
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2.5.1	Dyads:	no	covalent	interactions	

	

At	 the	beginning	of	 this	 study,	we	 considered	 to	 verify	 interactions	between	1	

and	 Ru(bpy)32+	 in	 solution;	 indeed	 the	 possibility	 of	 a	 specific	 interaction	

between	the	 two	species	emerged	 from	the	high	ET	constant	rate	evaluated	by	

flash	photolysis	experiments,	see	Section	2.2.	

The	approach	of	 fluorescence/phosphorescence	 titrations	was	selected	and	the	

experiments	were	performed,	exploiting	the	photosensitizer	emission.		

a)	

	

b)	

	
Fig.	2.14:	Quenching	titration	experiment	of	the	Ru(bpy)32+	emission,	adding	aliquots	of	1;	2	mL	

[Ru(bpy)32+]	=	10‐5	M	in	acetonitrile;	λexc	=	450	nm:	a)	intensity	vs	λ	b)	plot	intensity	(λ	=	610	

nm)	vs	equivalents	of	1	

	

In	 Fig.	 2.14	 a)	 a	 typical	 titration	 is	 reported:	 it	 is	 possible	 to	 appreciate	 the	

quenching	of	 the	phosphorescence	of	*Ru(bpy)32+	adding	 increasing	aliquots	of	

1.	From	the	plot	of	the	phosphorescence	intensity	versus	number	of	equivalents	

of	1,	Fig.	2.14	b),	a	slight	change	in	the	slope	resulting	after	one	equivalent	of	1	

can	 be	 indicative	 of	 an	 average	 1:1	 interaction	 between	 the	 two	 species.	
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Considering	a	Stern‐Volmer	procedure,	 the	data	processing	brings	 to	a	binding	

constant	 (KSV)	 of	 about	 3.2×104	 M‐1.	 The	 value	 of	 the	 KSV	 is	 comparable	 with	

other	 examples	 reported	 in	 literature	 for	 interactions	 between	 Ru(bpy)32+	

species	and	other	benzylic	systems.	(17)	

For	data	processing,	we	consider	the	dynamic	quenching,	hence	 intermolecular	

deactivation	of	the	sensitizer	emission.	In	order	to	obtain	the	KSV	with	the	Stern‐

Volmer	equation,	we	plot	the	ratio	between	initial	value	of	the	emission	and	its	

intensity	during	 the	 titration	versus	 the	quencher	concentration,	 in	our	case	1.	

The	slope	of	the	linear	trend	is	KSV	considered	a	good	approximation	of	the	real	

binding	constant,	Kb,	which	also	counts	the	lifetime	of	the	excited	state.	

	

Stern‐Volmer	equation:	 I0/I	=	1+	KSV×	[Q]	 (2.6)

Binding	constant	equation:	 I0/I	=	1+	Kb×	0×	[Q]	 (2.7)

In	 Eq.	 2.6‐7,	 I	 is	 the	 intensity	 of	 the	 recorded	 emission	 of	 Ru(bpy)32+,	 Q	 is	 the	

quencher	(1	in	this	case)	and	0	is	the	life	time	of	Ru(bpy)32+.	

	

The	 study	 was	 then	 extended	 to	 the	 series	 1‐X	 in	 two	 different	 solvents:	

phosphate	buffer	and	acetonitrile	 in	order	 to	evaluate	 the	different	substituent	

effect	in	the	association	with	the	sensitizer.	Once	more,	data	had	been	processed	

with	 Stern‐Volmer,	 binding	 constants	 were	 obtained	 by	 the	 slope	 of	 the	 plot	

normalized	 emission	 intensity	 versus	 quencher	 concentration:	 the	 values	 are	

reported	in	Tab.	2.3	and	show	a	very	slight	trend	of	KSV	increase	moving	to	more	

electron‐withdrawing	groups.	

	

Xa  KSV (M
‐1, ACN) KSV (M

‐1, phosphate buffer) 

OMe	 2.20×104	 1.10×104	
t‐Bu	 1.12×104	 1.50×104	
Me	 9.57×103	 1.46×103	
H	 3.21×104	 3.14×103	
Br	 1.66×104	 ‐b	

COOMe	 1.76×104	 2.48×104	
CN	 2.43×104	 1.93×104	

	

Tab.	2.3:	Values	of	KSV	for	the	sensitizer	Ru(bpy)32+obtained	by	titration	with	the	1‐X	series.	a	

substituent	in	para	position	on	the	pyridine	ligand,	b	no	Stern‐Volmer	correlation	was	found	for	

1‐Br	data	emission	in	phosphate	buffer	
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We	also	 tried	 to	 correlate	binding	 constants	 values	 for	 the	 series	1‐X	with	 the	

Hammett	parameter	.	From	Fig.	2.15,	it	is	possible	to	see	that	1)	the	substituent	

effect	 is	very	slight	and	2)	 less	electronic	density	on	 the	pyridines	seems	 favor	

interactions	in	both	conditions.	The	Hammett	plots	show	positive	slopes	of	0.20	

and	0.67,	found	in	acetonitrile	and	in	phosphate	buffer,	respectively.		

a)	 b)	

Fig.	2.15:	Hammett	correlation	for	KSV	between	(1‐X)	and	Ru(bpy)32+	in	a)	ACN	e	b)	phosphate	

buffer,	pH	=	8	

	

Concerning	 the	 nature	 of	 the	 interaction	 between	 Ru(bpy)32+,	 and	 1‐X,	 these	

latters	are	neutral	compounds,	thus	electrostatic	interactions	with	the	sensitizer	

can	 be	 excluded;	 similarly,	 hydrogen	 bonds	 are	 unlikely	 to	 occur,	 since	 no	

hydrogen	 bond	 donors	 are	 present	 in	 the	 two	 molecules.	 A	 reasonable	

hypothesis	was	the		stacking,	involving	the	aromatic	systems	of	the	pyridines	

in	 1‐X	 and	 the	 bipyridines	 in	 Ru(bpy)32+.	 However,	 since	 we	 found	 low	

performance	and	weak	effects	we	move	to	more	incisive	covalent	modifications	

in	 order	 to	 increase	 specific	 	 interactions	 to	 boost	 supramolecular	

association.	

	

2.5.2	Photosensitizer	–	Catalyst	Dyads:	the	synthetic	approach	

	

A	 covalent	 approach	 ensures	 the	 possibility	 to	 introduce	 a	 target	 structural	

property	into	molecules.	For	this	reason	we	explored	synthetic	routes	to	amplify	

the	aromatic	surface	of	our	system	in	order	to	maximize	productive	associations	

between	catalyst	1	and	the	sensitizer.	

In	particular,	we	aimed	at	extending	the	aromatic	character	of	 the	 ligands	in	1,	

by	 introducing	a	pyrene	moiety	 in	 the	pyridine	or	 carboxylate	 functions	of	 the	
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cubane.	

Therefore,	we	planned	 to	 synthesize	 the	 ligands	2p	 and	2m	 in	 Fig.	 2.16,	 to	 use	

them	in	the	synthesis	of	modified	cubanes.	

(3p)	
X	=	

	

R	=	 ‐CH3	

(3m)
X	=	

	

R	=	 ‐CH3	

(4)	

X	=	

	

R	=	

				 	
	

Fig.	2.16:	Structures	of	the	three	obtained	novel	compounds	
	

The	novel	pyridinic	 ligands	 (2p,	2m)	 for	 the	synthesis	of	 compounds	3p	 and	3m	

were	synthesized	 from	the	acyl	 chloride	of	4‐pyren‐buthirric	acid	and	4‐amino	

pyridine	 or	 3‐aminopyridine	 in	 anhydrous	 THF;	 while	 the	 derivative	 of	 4‐

pyrene‐butirric	acid	for	the	synthesis	of	4	is	commercially	available.		

The	 ligands	 2p	 and	 2m	 have	 been	 characterized	 with	 1H‐NMR	 and	 ESI‐MS,	

confirming	 their	 identity.	 Then	 catalysts	 3p	 and	 3m	 have	 been	 obtained	 in	

methanol	under	reflux,	 in	presence	of	Co(NO3)2·6H2O,	CH3COONa·3H2O,	 ligands	

2p	 or	 2m	 and	 adding	 H2O2	 after	 half	 an	 hour	 from	 the	 beginning	 of	 heating.	

Stirring	and	reflux	are	maintained	for	4	hours,	the	mixture	is	then	cooled	at	room	

N

O N

H

N

O

N

H

N

R

R

R R

	

X X 

	
	

X 

X 

2p

2p	



	 73

temperature.	 The	 aqueous	 phase	 is	 removed	 adding	 CH2Cl2	 and	 after	

evaporation	 of	 the	 solvent	 the	 compound	 is	 washed	 with	 diethyl	 ether	 and	

water.	The	synthetic	procedure	 is	similar	to	the	one	of	the	cubane	1	except	 for	

the	 several	 final	 washings.	 3p	 and	 3m	 were	 characterized	 by	 1H‐NMR:	 the	

spectrum	of	3p	is	reported	in	Fig.	2.17	as	a	representative	case.	ESI‐MS	analysis	

for	both	the	species	show	the	molecular	ion	peak	at	1994	m/z.	

	

	

	
Fig.	2.17:	1H‐NMR	spectrum	of	(3p),	300	MHz,	DMSO‐d6	

	

Concerning	synthesis	of	product	4:	to	the	salt	of	the	pyren‐butirric	acid	formed	

in	 situ	 Co(NO3)2·6H2O	 and	 N‐pyridine	 in	 methanol	 are	 added.	 After	 4	 hours	

under	 stirring	 and	 reflux,	 CH2Cl2	 is	 added,	 the	 separated	 organic	 phase	 is	

anhydrifyied	and	filtrated.	Adding	n‐hexane	a	dark	precipitate	appears,	purified	

after	 several	 washing	with	 diethyl	 ether	 and	methanol.	 The	 product	 has	 been	

characterized	with	1H‐NMR,	Fig.	2.18,	and	ESI‐MS,	which	shows	a	peak	at	1765	

m/z,	the	identity	is	confirmed	also	with	other	technique	such	as	FT‐IR	showing	

peculiar	stretching	due	to	the	cubane‐like	core	structure	between	770	and	580	

cm‐1	in	the	spectrum.	(2)	

N

O N

H
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Fig.	2.18:	1H‐NMR	spectrum	of	(4),	500	MHz,	CD2Cl2	

	
In	conclusion,	we	obtained	 three	novel	 species	with	a	more	extended	aromatic	

area	interesting	for	higher	interactions	with	the	photosensitizer.		

Two	 limits	 of	 these	products	 are	 the	 low	 synthetic	 yield	 (about	13%)	and	 low	

solubility,	in	particular	in	aqueous	solutions	where	the	catalytic	activity	is	more	

appealing.	 Some	 studies	 are	 on	 going	 in	 collaboration	 with	 Universities	 of	

Ferrara	 and	 Messina	 in	 order	 to	 evaluate	 1)	 ET	 constants	 rate	 with	 the	

photosensitizer	and	2)	the	behavior	in	the	light‐driven	catalytic	system.		

	

2.6	A	brief	conclusion	

	

A	preliminary	conclusion	can	be	reported	on	the	basis	of	studies	performed	and	

described	so	far	in	sections	2.2	and	2.3:		

1)	 cubane	 species	1	has	 been	 evaluated	 as	 a	 possible	molecular	WOC	 both	 in	

electrochemical	and	light‐driven	systems;	

2)	 correlations	 structure‐activity	 have	 been	 noticed	 for	 different	 substituted	

pyridines	in	the	1‐X	series	with	effect	on	thermodynamics	and	kinetics	features;	

3)	interactions	between	the	photosensitizer	and	species	1	in	solution	have	been	

analysed	 in	 order	 to	 understand	 their	 mutual	 relationship	 in	 the	 light‐driven	

system,	

4)	 from	 the	 previous	 studies,	 a	 covalent	 approach	 was	 adopted	 in	 order	 to	

introduce	a	more	extended	aromatic	area	on	the	catalyst	structure	and	maximize	

O

O

N
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interactions,	with	the	consequent	synthesis	of	three	novel	compounds.	

The	 further	progress	will	be	 focused	on	1)	deeper	 investigations	of	 the	system	

considering	the	results	of	the	group	of	Nocera,	2)	understanding	the	mechanism	

and	3)	the	actual	role	played	by	1.		
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3. CHAPTER  

Cobalt Polyoxometalates as molecular WOC 

 

3.1 The first example of a Cobalt-based POM as molecular WOC 

 

Polyoxometallates have been previously introduced (see section 1.6.2) as a 

versatile family of ligands with good stability, in particular through oxidative 

stress due to their pure inorganic nature. (1) In the Introduction, it was also 

discussed how these polyanionic ligands can stabilize multimetallic cores, that 

can be reminiscent of a fragment of a metal oxide phase. Therefore, Cobalt-based 

POMs (Co-POMs) have been considered among the most promising candidates as 

molecular WOCs, since their structural features can be compared with fragments 

of Cobalt oxide, that are among the most active WOCs to date. (2, 3, 4) Ideally, the 

POM framework should stabilize these Cobalt-oxo clusters avoiding their 

coalescence, prolonging the stability and activity of the catalyst. The forefather of 

Cobalt base POMs as molecular WOC is the [Co4(H2O)2(PW9O34)2]10- species 

reported by Hill et al. (5) that was claimed to be active in oxygen evolution in 

neutral pH, in the presence of Ru(bpy)33+ as chemical or photogenerated oxidant. 

Despite several experiments seemed to support stability of this Cobalt based 

POM under operating conditions, a following study evidenced a significant 

transformation of the catalyst, as shown by a drastic change in the rate of 

reaction of the Cobalt based POM with the oxidant Ru(bpy)33+, upon aging (Fig. 

3.1). (6) This result was therefore speaking in favour of a partial transformation 

of the catalyst into a more active species. 

 

 

 
a) 
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b) c) 

Fig. 3.1: a) Structure of [Co4(H2O)2(PW9O34)2]10-; b) ET kinetics measured using 5.0×10-5 M 

solution of [Co4(H2O)2(PW9O34)2]10- at various aging times. 1 min: solid catalyst dissolved in 80 

mM phosphate buffer, pH = 8 and measured immediately. 8-90 min: prepared from a 10-3 M stock 

solution of [Co4(H2O)2(PW9O34)2]10- in 80 mM phosphate buffer, pH = 8, at various time 

intervals; c) amount of Ru(bpy)33+ being reduced by 5.0×10-5 M [Co4(H2O)2(PW9O34)2]10- in 

laser flash photolysis (450 ms time window), as a function of the aging time of the solution 

used (6) 

 

Despite the nature of the active species has not been clarified, the report by Hill 

et al. stimulated great efforts in developing Cobalt based POMs as WOC. In 

literature several examples have been reported and recently reviewed (1) such 

as: [CoMo6O24H6]3– and [Co2Mo10O38H4]6–, (7) [Co9(H2O)6(OH)3(PW9O34)3]16– (8) 

and [Co4(H2O)2(VW9O34)2]10-. (9) In particular, Cobalt based POMs with high 

nuclearity seem quite promising candidates, due to their improved stability at 

neutral pH, even supported onto different solid phases. (10) 

Therefore, we focused our studies on some high nuclearity POMs and on their 

behaviour in the Ru(bpy)32+/ S2O82- photoactivated cycle.  

 

3.2 High nuclearity Cobalt based polyoxometalates 

 

The high nuclearity Cobalt based polyoxometalates considered in this study are 

represented in Fig. 3.2 and consist of three types: 

[Co9(H2O)6(OH)3(PW9O34)3]16- (hereafter Co9), 

[Co6(H2O)30{Co9Cl2(OH)3(H2O)9(SiW8O31)3}]5- (hereafter Co15) and 

[{Co4(OH)3PO4}4(PW9O34)4]16- (hereafter Co16). Co9 was provided by the group 
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of Prof. J. R. Galán Mascarós (ICIQ Tarragona, Spain), while Co16  was provided by 

the group of Prof. U. Kortz (Jacobs University Bremen, Germany).  

 
a) b) c) 

Fig. 3.2: Representation of: a) [Co9(H2O)6(OH)3(PW9O34)3]16- (Co9), b) 

[Co6(H2O)30{Co9Cl2(OH)3(H2O)9(SiW8O31)3}]5- (Co15), c) [{Co4(OH)3PO4}4(PW9O34)4]16- (Co16) 

 

At first, the study of these species was focused on laser flash photolysis 

experiments, in collaboration with Prof. Scandola at the University of Ferrara, to 

reveal the possibility for these Co-POMs to promote electron transfer to 

photogenerated Ru(bpy)33+. The investigation of the POMs was performed in 

aqueous phosphate buffer at pH 8, containing Ru(bpy)32+ and Na2S2O8, and the 

results are summarized in Tab. 3.1. 

 

Co-POM Stability k (M-1s-1) number of ET 

Co9 Yes 2.1×109 7.5 

Co15 Yes 5.0×109 32 

Co16 Yes 4.5×109 20 

Tab. 3.1: Kinetic parameters of reactions of Co-POMs with Ru(bpy)33+ photogenerated , obtained 

by laser flash photolysis 

 

The key observations of the data in Tab. 3.1 are reported as follows: 

1) All the high nuclearity Cobalt based POMs investigated show a behavior in 

flash photolysis independent of solution aging, differently from the 

[Co4(H2O)2(PW9O34)2]10- described above. Considering also that CoII 

aquoions, a well-recognized WOC precursor, do not give any appreciable 

hole-scavenging activity in this timeframe, this behaviour rules out any 

major decomposition phenomena of the Co-POMs under examination. 
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2) The bimolecular rate constants, dealing with the first electron transfer 

from Co-POMs to Ru(bpy)33+, are high and close to a diffusion control. 

This is likely due to ionic interactions between the polyanionic WOCs and 

the cationic sensitizer. (6, 11) 

3) All the Co-POMs can undergo multiple electron transfer event to 

Ru(bpy)33+ within a short time scale of 100 ms: in such timescale 7.5, 32 

and 20 electron transfers are observed for Co9, Co15 and Co16, 

respectively. Considering the Cobalt nuclearity of the three WOCs, these 

values correspond to an average oxidation equivalents of 0.8, 2.1 and 1.2 

average per Cobalt center, resulting respectively for Co9, Co15 and Co16 

species. In particular, the highest value of 2.1, observed for Co15, indicates 

an overall change of the oxidation state of each Cobalt center from CoII to 

CoIV. This unique behavior in the high nuclearity Co-POM series may be 

related to the large number of water molecules coordinated to the Cobalt 

center in this polyanion; these may favor sequential oxidations to the 

metal center by contemporary releasing one proton to the solvent 

through a series of proton-coupled electron transfer (PCET). PCET are 

indeed recognized as a prominent feature for an ideal WOC operating at 

low overpotentials. In a Cobalt oxide based WOC, two sequential PCET on 

a CoII-aquo moiety lead to the formation of CoIV-oxo groups, that are 

recognized as the active forms leading to oxygen evolution. Since 

polyoxometalates are often described as molecular analogs of extended 

phases, this mechanism could likely apply also for the Co based POMs 

discussed here. 

 

Further investigations were run with conductometric titrations of the Co-POMs 

with increasing aliquots of Ru(bpy)32+. As shown in Fig. 3.3, we verify a change of 

the slope in the plot of the conductivity versus the ratio between the titrant and 

Co-POMs concentrations, confirming an association phenomena in aqueous 

solution. The ratio at the equivalent point reflects the charge balance between 

the two species as underlined by the red dashed line in the plots below. 
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a) 

 

b) 

 

c) 

 
Fig. 3.3: Conductometric titrations of Co9, Co15 and Co16 with Ru(bpy)32+(in water) 

 

From the promising results of high ET constant rate, we moved to verify their 

ability to evolve oxygen in the light-driven Ru(bpy)32+/ Na2S2O8 system. We 

screened different conditions changing the concentration of the catalyst (19-147 

µM in total Co amount) and the buffer media (phosphate buffer, pH = 7 or 8). The 

results are reported in Tab. 3.2, where they are compared with values obtained 

with the Co2+ aquoion, known to undergo Cobalt oxide CoOx formation with high 

performance as WOC. 
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WOC Buffer 
[WOC], μM 
([Co], μM)a 

μmol O2 
(TON)b 

max rate×103, μmol·s-1 
(TOF×103, s–1)c 

Co9 P7 6.60 (58) 1.16 (12) 0.32 (3.33) 
P8 6.60 (58) 1.02 (10.5) 0.51 (5.35) 

Co15 

P7 3.86 (58) 2.34 (40.5) 1.50 (25.8) 
P7 9.80 (147) 5.73 (39) 4.17 (28.3) 
P8 1.27 (19) 1.97 (101) 0.80 (41.9) 
P8 3.86 (58) 3.06 (52) 1.22 (21.0) 
P8 9.80 (147) 4.11 (27) 2.85 (19.4) 

Co16 
P7 3.62 (58) 7.06 (125) 2.09 (36.0) 
P7 9.19 (147) 7.53 (54) 2.33 (15.9) 
P8 3.62 (58) 2.01 (37) 1.28 (23.5) 
P8 9.19 (147) 3.86 (28) 2.96 (21.5) 

Co2+ d 

P7 58 9.05 (10.4) 6.06 (6.97) 
P7 147 7.72 (3.5) 6.55 (2.97) 
P8 19 3.73 (13.1) 2.33 (8.19) 
P8 58 9.92 (11.4) 6.32 (7.27) 
P8 147 8.60 (3.9) 5.38 (2.44) 

 

Tab. 3.2: Catalytic oxygen production by irradiation of 15 ml of a 20 mM phosphate buffered 

solution (P7 = pH 7, P8 = pH 8), containing Ru(bpy)32+ (1 mM), S2O82– (5 mM) and Co-POMs or 

CoII ions as WOC. Irradiation with a tungsten lamp with a cut-off filter a 375 nm (power density 

150 W·cm-2). a total cobalt concentration. b TON defined as µmol O2/µmol WOC. c TOF defined as 

the maximum rate of O2 production over the µmol WOC. d introduced as nitrate salt  
 

In Fig. 3.4, TON and TOF for the catalysts under selected conditions are 

represented in histograms. 

 
Fig. 3.4: Total O2 production (blue bars) and maximum rate of O2 production (green bars) in 

light driven water oxidation experiments. Irradiation of 15 ml of a 20 mM phosphate buffered 

solution (pH = 8) containing Ru(bpy)32+ (1 mM), S2O82– (5 mM) and Co2+, Co9, Co15 and Co16 as 

the catalyst (58 µM total Co concentration). Irradiation with a tungsten lamp with a cut-off filter 

a 375 nm (power density 150 W·cm-2, spot size 1 cm2). In square brackets above the istograms of 

the three Co-POMs TON and TOF×1000 (s-1) are also reported. 
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As a first evidence, all the three Co-POMs show immediate oxygen evolving 

activity upon illumination of the solution, leading to a total O2 production that is 

however markedly inferior with respect to CoII ions (Fig. 3.4), as it was reported 

also for [Co4(H2O)2(PW9O34)2]10-. (12, 13) In the high nuclearity Co-based POM 

series, the best performance is still provided by Co15. In optimized conditions 

(total Cobalt concentration 19 µM in 20 mM phosphate buffer pH = 8, see Tab. 

3.2) the turnover number reaches up to 101 with a turnover frequency of 

41.9×10-3 s-1, in line with other Cobalt based POMs reported in the literature 

operating in such photo-activated cycle. (7, 14) By running the oxygen evolving 

reaction with monochromatic emitting LEDs as a light source (λ = 450 nm, 

photon flux = 2.63×10-8 einstein/s), a quantum yield of 0.08 was measured (total 

Co concentration 147 µM, 20 mM phosphate buffer, pH = 7). (15) 

However, the evidences above do not guarantee the actual role of Co9, Co15 and 

Co16 as water oxidation catalysts, since other Cobalt-based species, derived from 

the pristine structures, could be the competent oxygen evolving catalysts. 

In this sense, the dependence of water oxidation activity on pH of the three 

WOCs is markedly different with respect to that of free CoII ions, introduced as 

Co(NO3)2·6H2O; indeed, while the reactivity of CoII ions slightly increases from 

pH = 7 to pH = 8, the activity of Co9, Co15 and Co16 follows an opposite trend. 

These observations suggest the involvement of different catalytic species rather 

than Cobalt oxide particles derived from free CoII ions. Indeed, infrared spectra 

of the recovered catalyst after the catalytic cycle seem to confirm the residual 

presence of polyoxometalate based species, even if small wavenumber shifts, 

with respect to the pristine catalyst, could not exclude a partial rearrangement of 

the original structures (Fig. 3.5). Preliminary studies have been conducted in 

collaboration with Prof. Holger Dau (Berlin) employing XAS spectroscopy, 

recognized as one of the state-of-the-art techniques to characterize WOCs. 

Analysis of the spent reaction mixture reveal an edge shift of the XANES, 

consistent with an average increase of oxidation state of Cobalt to +2.5. 

Importantly, this spectra are markedly different with respect to CoIII-oxide 

species acting as WOC. (16) Therefore, the most likely scenario is the residual 

presence of Cobalt based polyoxometalate molecular species in solution, where 

the Cobalt centres have been partially oxidized during the photocatalytic cycle. 
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Moreover, the average change in oxidation state could be an indication of the 

number of Cobalt centres involved in the catalytic cycle. Registration of the 

EXAFS part of the spectra for the three Co-POMs under photocatalytic conditions, 

to probe the structural changes responsible for oxygenic activity, is planned. 

a) 

 

b) 

 

c) 

 
Fig. 3.5: a) FT-IR spectra of pristine Co9(A; blue), adduct of Co9·Ru(bpy)32+ after conductimetric 

titration (B; green) and precipitate retrieved after water-oxidation reaction(C; red). b) FT-IR 

spectra of pristine Co15(A; blue), adduct of Co15·Ru(bpy)32+ after conductimetric titration(B; 

green), and precipitate retrieved after water-oxidation reaction(C; red). c) FT-IR spectra of 

pristine Co16 (A; blue), adduct of Co16·Ru(bpy)32+ after conductimetric titration(B; green) and 

precipitate retrieved after water-oxidation reaction(C; red). 
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3.3 Conclusions and Perspectives 

 

In conclusion, we have investigated three high nuclearity Co-POMs as WOC. 

Some interesting information are:  

1) the very promising activity of such species in the kinetics of electron 

transfer to a photogenerated Ru(bpy)33+, since all the Co-POMs examined 

give a stable behaviour over time, high second order kinetic constants, 

multiple ET in a very short timescale of 100 ms. 

2) All the Co-POMs display oxygenic activity in the photoactivated cycle. The 

most promising species, Co15, reaches up to 100 TON and a quantum 

yield of 0.08. 

3) The integrity and the nature of the actual catalyst have been investigated, 

speaking in favour of a Cobalt based POM as the actual WOC, although 

some structural rearrangements can not be excluded. 

 

These results speak in favour of Co-POMs as very promising candidates for the 

development of photoactivated devices for artificial photosynthesis, since they 

can combine the high activity of Cobalt as a WOC with the peculiar properties of 

POMs, in particular their very high kinetic constants with Ru(bpy)33+, while their 

polyanionic charge can be exploited to design electrostatic interactions in order 

to assemble them onto materials. 
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Bacsa, G. Zhu, C. L. Hill J Am Chem Soc, 2014, 136, 9268 
10 a) J. Soriano-López, S. Goberna-Ferron, L. Vigara, J. J. Carbó, J. M. Poblet, J. R. Galán-Mascarós 

Inorg Chem, 2013, 52, 4753–4755; b) X.-B. Han, Z.-M. Zhang, T. Zhang, Y.-G. Li, W. Lin, W. 

You, Z.-M. Su, E.-B. Wang J Am Chem Soc, 2014, 136 (14), 5359 
11 M. Ibrahim, Y. Lan, B. S. Bassil, Y. Xiang, A. Suchopar, A. K. Powell, U. Kortz Angew Chem Int Ed, 

2011, 50, 4708 
12 J. W. Vickers, H. Lv, J. M. Sumliner, G. Zhu, Z. Luo, D. G. Musaev, Y. V. Geletii, C. L. Hill J Am Chem 

Soc, 2013, 135, 14110 
13 It is worth to mention that in such light activated cycle, oxygen production is inhibited by 

degradation of the photosensitizer, as confirmed by UV-Vis of the spent reaction mixture. 

This is a well-recognized limit of this system (see reference 15 details), mainly due to the 

type of sacrificial acceptor employed. 
14 P.-E. Car, M. Guttentag, K. K. Baldridge, R. Alberto, G. R. Patzke Green Chem, 2012, 14, 1680 
15 A. Sartorel, M. Bonchio, S. Campagna, F. Scandola Chem Soc Rev, 2013, 42, 2262 
16 R. Schiwon, K. Klingan, H. Dau, C. Limberg Chem Commun, 2014, 50, 100 

 86 

                                                                                                                                                               



4. CHAPTER 

A novel Copper catalyst for Water Oxidation 

 

4.1 Introduction 

In recent years, as already discuss above (section 1.6), research in water 

oxidation catalysis has been focused on the development of first row transition 

metals catalysts, due to their Earth-abundance and limited cost. In particular, 

Copper-based catalysts such as a Cu-bpy (bpy=2,2’-bipyridine), (1a, b) a Cu-

carbonate system (2) and a Cu-peptide (3) have attracted great interest due to the 

simplicity of their systems. Such catalysts have been tested in electrochemical 

water oxidation in alkaline conditions (pH = 8-13) achieving good results in 

terms of overpotentials and in TON and TOF values. 

Up to the present, the combination of these Copper catalysts with light activated 

systems, aimed at the development of a sunlight activated device for water 

splitting, has not been explored. 

 

4.2 Results and discussion 

 

4.2.1 Synthesis and characterization 

We decided to focus our attention on a particular compound: a Copper(II) 

complex of 1,4,8,11-Tetraazacyclotetradecane, (hereafter Cu-Cyclam, Fig. 4.1). 

The choice of this macrocyclic ligand was based on its several interesting 

features: 1) the cyclam ligand is commercial and cheap, 2) it complexes 

transition metal via tetradentate mode, with high complexation constant; (2, 4) 3) 

the cyclam ligand lends to structure modifications and possibly to different 

system skills, 4) it is known to stabilize high valent states of Copper, (5) 5) this 

ligand was recently exploited to design an efficient NiII based WOC. (6) 

 
Fig. 4.1: Representation of Cu-Cyclam 
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(Cu-Cyclam)·(ClO4)2 was easily synthesized and isolated in 70% yield after 

crystallization, by stoichiometric reaction of 1,4,8,11-tetraazacyclotetradecane 

and Cu(ClO4)2 in tetrahydrofuran. (7) In the solid state, the Copper atom displays 

a distorted octahedral geometry, where the tetradentate Cyclam ligand is 

coordinating the four equatorial positions, while the two perchlorate ions occupy 

the apical sites of the metal. (8) Thanks to this particular arrangement the apical 

positions are expected to be labile and susceptible to exchange in solution, in the 

presence of coordinating species.  

The identity and stability of the Cu-Cyclam complex was verified also in aqueous 

solution, by means of Electrospray Ionization Mass Spectrometry (ESI-MS) 

registered under positive ion mode, that shows a base peak at m/z = 362, and a 

second peak at m/z = 364 with 80% relative intensity. These are ascribable to 

the [Cu-Cyclam·ClO4]+ ion (see Fig. 4.2), with a contribution to the M+2 peak of 

the 37Cl and 65Cu isotopes. 

 

 
Fig. 4.2: ESI-MS spectra of a 10-5

 
M solution in CH3CN + 0.1% HCOOH of Cu-Cyclam. 

 

UV-Vis analysis was performed to characterize and verify the stability of Cu-

Cyclam in the experimental conditions screened in our studies (vide infra). In 

particular, UV-Vis spectroscopy in alkaline aqueous solution (pH = 12, NaOH / 

sodium acetate) shows a broad absorption at 506 nm, ascribable to CuII d-d 

transitions. The unchanged spectra over fifteen hours (Fig. 4.3) is indicative of 

 88 



stability of Cu-Cyclam under this alkaline environment, where the catalytic 

activity was investigated. 

 

 
 

Fig. 4.3: UV-Vis kinetic spectra of 5 mM solution of Cu-Cyclam in NaOH with NaOAc 0.1 M, pH = 

12, among 15 hours. 

 

4.2.2 Cyclic Voltammetry 

 

At first, the study was focused on the electrochemical characterization of the 

compound by cyclic voltammetry; a screening analysis in different solvents, 

buffer, pH and concentration were performed in order to find the optimal 

conditions for electrocatalysis. 

  
a) b) 

Fig. 4.4: Cyclic voltammetry of a) 0.5 mM Cu-Cyclam in acetonitrile, TBAPF6 0.1 M, WE: glassy 

carbon, CE: Pt wire, RE: SCE (KCl sat), potentials are then referred to (NHE), scan rate: see legend. 

b) 0.5 mM Cu-Cyclam in 0.2 M phosphate buffer, pH = 8, WE: glassy carbon, CE: Pt wire, RE: SCE 

(KCl sat), potentials are then referred to (NHE), scan rate: see legend 
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In Fig. 4.4 two different conditions where Cu-Cyclam species has been 

characterized are reported as example: a) the organic solvent acetonitrile, with 

tetrabutylammonium hexafluorophosphate as support electrolyte and b) 

phosphate buffer 0.2 M at pH = 8.  

Among aqueous solutions, we also investigated some of the most common media 

used to investigate water oxidation catalysis by Copper: phosphate buffer pH = 

10, bicarbonate buffer pH = 10 and sodium hydroxide with sodium acetate 

(NaOAc) as electrolyte (pH range = 8-12). The latter was selected as the optimal 

working conditions, since it gave the best electrocatalytic activity, enabling also a 

direct comparison with state of the art Copper catalysts. (9)  

In NaOH/NaOAc 0.1 M and pH = 12, under anodic scan, an intense wave appears 

at E > 0.80 V vs Normal Hydrogen Electrode (NHE), reaching a peak current at E 

= 1.14 V vs NHE (Fig. 4.5). This wave was attributed to the oxidation of water to 

dioxygen, as confirmed by the presence of a cathodic wave at -0.26 V vs NHE 

observed in the reverse scan, due to reduction of oxygen formed at the glassy 

carbon working electrode. In Fig. 4.5 it is possible to appreciate the difference 

between the CV of the blank conditions (−) and the solution with the catalyst (−). 

 
Fig. 4.5: Cyclic voltammetry of 0.5 mM Cu-Cyclam in NaOH, NaOAc 0.1 M, pH = 12, WE: glassy 

carbon, CE: Pt wire, RE: SCE (KCl sat), potentials are then referred to (NHE), scan rate: 100 mV/s  

 

In order to exclude possible heterogeneous evolution in situ of the system during 

CV experiments the voltammogram of Cu(ClO4)2·6H2O (the copper precursor 

used in the synthesis of Cu-Cyclam) was performed, since CuII aquoions are a 

water 

oxidation  

O2 

reduction  
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well-known precursors of electrodeposited Copper oxides. (2) Anyway, the 

anodic scan in the presence of CuII did not show the presence of a catalytic wave 

(Fig. 4.6), thus suggesting that in these conditions the formation of copper oxides 

is not favoured.  

 
Fig. 4.6: CV comparison of NaOH pH = 12 and NaOAc 0.1 M solutions with (in black) no catalyst 

added, (in blue) 0.5 mM Cu-Cyclam and (in red) 0.5 mM Cu(ClO4)2·6 H2O. Scan rate: 100 mV/s, 

WE: GC (d = 3 mm), CE: Pt wire, RE: Ag/AgCl, potentials are then referred to (NHE) 

 

Another evidence of homogeneity in this system comes from “not polished 

working electrode” test. After the CV scan in the presence of the Cu-Cyclam 

catalyst, showing the behaviour reported above (blue trace in Fig. 4.7), the same 

glassy carbon working electrode was used without polishing in a fresh buffer 

solution, in the absence of the catalyst. In this case, a deep abatement of the 

intensity of the wave was observed  (green trace in Fig. 4.7), ruling out a major 

electrodeposition of active layers on the electrode.  

 
Fig. 4.7: CV comparison of NaOH pH = 12 and NaOAc 0.1 M solutions with (black)no catalyst, 

(blue) 0.5 mM Cu-Cyclam and (green) new fresh buffer with unpolished working electrode. Scan 

rate: 100 mV/s, WE: GC (d = 3 mm), CE: Pt wire, RE: Ag/AgCl, potentials are then referred to 

(NHE) 
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The electrochemical studies were further investigated during a Short Term 

Scientific Mission (STSM) within the European COST CM1205 CARISMA Action, 

in the research group of Profs. M. Robert and J.-M. Savéant at the University Paris 

7 – Diderot. With the outfit available in the hosting Paris laboratories, CV 

analysis was performed with a rotating ring disk electrode (Fig. 4.8 a)). The 

advantage of this kind of equipment is the possibility to match the response of a 

glassy carbon working electrode, with a ring Platinum electrode set on the 

reduction potential of oxygen (-0.51 V vs NHE, with a Pt electrode). In such set-

up, it is possible to measure simultaneously the anodic current at the glassy 

carbon upon application of an increasing bias, and the cathodic current at the 

Platinum ring (diagnostic for the presence of O2); therefore, it is possible to 

determine the minimum potential required at the glassy carbon working 

electrode to evolve O2. 

 

 

 
 

a) b) c) 
Fig. 4.8: a) Image of the rotating Pt disk electrode, b) cyclic voltammetry of Cu-Cyclam in 0.1 M 

NaOAc/NaOH, pH = 12. Internal WE: glassy carbon (d = 5 mm), CE: Platinum wire, RE: SCE (KCl 

sat.), potentials are then referred to NHE; scan rate: 100 mV/s. while the Platinum ring is kept at 

E = -0.51 V vs NHE, c) current registered at the external WE: Pt ring kept constant at E = - 0.51 vs 

NHE 

 

The graph in Fig. 4.8 b) shows the voltammogram recorded at the glassy carbon 

working electrode, while the one in Fig. 4.8 c) represents the current produced at 

the Platinum ring electrode set at the constant potential of reduction of Oxygen 

(-0.51 V vs NHE, with a Platinum electrode). In these conditions, the cathodic 

current at the Platinum ring, diagnostic for the presence of O2, was observed to 

raise upon application of E = 0.94 V vs NHE at the glassy carbon working 

 92 



electrode. Since the thermodynamic potential of water oxidation at pH = 12 is 

0.52 V vs NHE, an overpotential of 0.42 V for water oxidation with Cu-Cyclam 

can be estimated. This value is among the lowest reported in the literature for Cu 

catalysts, reported in the range 0.30 – 0.75 V. (1-5) 

 

Other information about the electrochemical mechanism events can be obtained 

studying the current dependence on catalyst concentration and scan rate in CV 

experiments. As reported in Fig. 4.9 a), an increase of the peak current at 1.14 V 

vs NHE was observed by increasing Cu-Cyclam concentration. Moreover the 

dependence came out to be linear, which can be imputable to a single-site 

Copper catalysis. (3)  

 

 
 

(a) (b) 
Fig. 4.9: CV of solutions in NaOH pH = 12 and NaOAc 0.1 M a) at different concentrations of Cu-

Cyclam and b) dependence of icat (1.14 V vs NHE) on concentration of (Cu-Cyclam). Scan rate: 

100 mV/s, WE: GC (d = 3 mm), CE: Pt wire, RE: Ag/AgCl, potentials are then referred to (NHE). 

 

The current dependence on the square root of scan rate was then examined. The 

value of the catalytic peak current for the wave at 1.14 V vs NHE, normalized by 

the square root of the scan rate, increased with decreasing scan rate (Fig. 4.10), 

consistent with a rate-determining chemical step, likely ascribable to O-O bond 

formation. (3)  
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(a) (b) 
Fig. 4.10: CV of 0.5 mM Cu-Cyclam, solution in NaOH pH = 12 and NaOAc 0.1 M a) at different 

scan rates with normalized current (i/v1/2) and b) dependence of icat (1.14 V vs NHE) on v1/2. WE: 

GC (d = 3 mm), CE: Pt wire, RE: Ag/AgCl, potentials are then referred to (NHE). 

 

4.2.3 Photoelectrochemical experiments 

 

The interesting electrocatalytic activity of Cu-Cyclam in water oxidation, 

prompted us to investigate it in combination with a photoelectrode. Such study is 

particularly attractive since so far there are no examples in literature of systems 

combining Copper catalysts for water oxidation and light activated processes.  

In particular, we focused on hematite semiconductor (α-Fe2O3), for its peculiar 

features: 1) abundance and low cost of Iron; 2) band gap of 2.0-2.2 eV, enabling 

absorption in the visible region of the solar emission; 3) suitable energy level of 

the valence band, with respect to the thermodynamic requirement for water 

oxidation; (10) 4) good stability and photoelectrochemical performance in strong 

alkaline media, (11) thus matching the conditions required by Cu-Cyclam to 

perform water oxidation catalysis.  

The experiments were run with FTO electrodes where a layer of hematite was 

deposited via a hydrothermal route, (12) provided by the group of Prof. Caramori 

from University of Ferrara. These photoanodes were used as working electrode 

in presence and absence of Cu-Cyclam 0.5 mM in NaOH/NaOAc solution at pH = 

12 (Fig. 4.11).  
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Fig. 4.11: Cyclic voltammetry of 0.5 mM Cu-Cyclam in NaOAc/NaOH, pH 12 in the presence 

(blue, solid line) and in the absence (blue, dashed line) of light; blank scans in the absence of 

catalyst are shown in black, solid line (in the presence of light) and in black, dashed line (in the 

absence of light). WE: hematite (1 cm2 geometric surface area); CE: Pt wire; RE: Ag/AgCl, 

potentials are then referred to (NHE); scan rate: 10 mV/s; light source: Mercury-Tungsten lamp, 

150 W, cut-off filter at 375 nm (power density 90 mW·cm-2) 
 

The experiments performed in the absence of illumination (dashed lines in Fig. 

4.11), show the presence of an anodic current, ascribable to water oxidation, (13) 

that occurs at lower potentials when Cu-Cyclam is added in solution (dashed 

blue curve) compared with blank setting (dashed black curve). When the 

hematite based electrode is illuminated with an Hg-W lamp (power density = 90 

mW·cm2, with a cut off filter at 375 nm) a photocurrent is observed to raise at E 

= 0.25 V vs NHE in absence of catalyst (solid, black curve in Fig. 4.11), as 

expected for hematite semiconductors. Interestingly, when Cu-Cyclam was 

added in solution, the potential of the onset of the photocurrent is anticipated at 

E = 0.05 V vs NHE (solid blue curve in Fig 4.11).  

This is consistent with an oxidation process occurring in the presence of the 

Copper species.  

 

At higher bias the photocurrent of hematite alone is higher than the one 

registered in the presence of the catalyst. This can be explained on the basis of 

the good efficiency of hematite in water oxidation catalysis at high applied 

potentials, where charge recombination is less favoured. In the same conditions, 

in the presence of Cu-Cyclam, the performance of α-Fe2O3 is partially inhibited, 
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since the value of the photocurrent is lower than with hematite alone. This effect 

can be due to charge recombination promoted by copper. However, the optimal 

operating conditions for a photoanode should account the lowest possible 

applied potential (ideally zero) and therefore, we investigated the nature of the 

photocurrent in the presence of Cu-Cyclam at low applied bias, to check if this 

can be ascribed to water oxidation. 

In order to verify our hypothesis and quantify the Faradaic yield, we run photo 

chronoamperometry experiments, measuring the amount of Oxygen. Therefore, 

an Oxygen probe was plunged in the solution in the presence of the catalyst and 

the hematite semiconductor at the applied potentials of 0.24 and 0.39 V vs NHE , 

under 1 sun irradiation (100 mWcm-2). In both experiments, in the presence of 

Cu-Cyclam 1mM, no Oxygen was detected, while in the blank solution the gas 

evolution is found, as normally expected in the presence of hematite catalytic 

behaviour, see Fig. 4.12.  

  
a) b) 

Fig. 4.12: Oxygen detection in NaOH/ NaOAc 0.1 M, pH = 12, under 1 sun illumination (100 

mWcm-2), without (black points) and with (red points) Cu-Cyclam, 1mM. Potential applied at 8 

min: a) 0.24, b) 0.39 V vs NHE. WE: hematite (1 cm2 geometric surface area), CE: Pt electrode, RE: 

SCE, potentials are then referred to (NHE) 

 

We can conclude from these results that the Cu-Cyclam is acting as a direct 

sacrificial agent, capturing the hematite semiconductor holes and enhancing the 

photocurrent at low applied bias, but without producing oxygen. The increase of 

photocurrent observed, could likely be associated to Cu-Cyclam degradation.  

Nevertheless, the achieved insight is interesting because it underlines the 

particular care needed when a molecular species is studied in combination with 
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a large band gap semiconductor. The interface between the molecular level and 

the photoelectrode material requires a deep investigation in order to optimize 

experimental conditions. 

 

4.2.4 A limit of this system: stability  

 

The CV analysis results brought us to consider bulk electrolysis experiments in 

order to exploit the whole amount of catalyst present in solution, and obtain 

information on the current and charge produced. The instrumental outfit, Fig. 

4.13 a), permitted to use a 10 mL solution in a carbon beaker used as the 

working electrode, with Platinum wire and Ag/AgCl as counter electrode and 

reference electrode, respectively. 

 

 
a) b) 

Fig. 4.13: a) Schematic representation of the outfit for electrolysis experiment, b) Examples of 

electrolysis results for Cu-Cyclam [0.5 mM in NaOH and NaOAc 0.1 M, pH 12, potential applied (-

) 0.7 V vs NHE, (-) 0.94 V vs NHE and (-) 1.14 V vs NHE, WE: solid carbon, CE: Pt wire, RE: 

Ag/AgCl, potentials are then referred to (NHE), sacrificial reagent at CE: Na2S2O8 3M 

 

In Fig. 4.13 b), the current produced during electrolysis at different applied 

potentials is reported. Different electrolysis experiments were performed, 

changing the potential applied at the working electrode, set at 0.70 V vs NHE 

(foot-of-the-wave of water oxidation), 0.94 V vs NHE (potential at which the 

minimum overpotential is calculated) and 1.14 V vs NHE (peak of the wave). In 

all cases, it is possible to observe that the electrolysis currents decrease over 

 
CE  RE 

WE 
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time, and become negligible after about 50 minutes of electrolysis. This speaks in 

favour of a major abatement of the catalytic activity, likely ascribable to a 

transformation of the catalyst into an inactive species, upon application of the 

anodic bias. Indeed, CV and UV-Vis characterization run on the solutions after 

electrolysis confirm such hypothesis: the CV after electrolysis show an 

abatement of the intensity of the catalytic wave of water oxidation (Fig. 4.14 a)), 

while in the UV-Vis spectra the typical absorption at 506 nm of Cu-Cyclam is not 

anymore present, and a new band at 490 nm is observed (Fig. 4.14 b)). The 

identity of this species is still under investigation, but partial degradation of the 

organic ligand and/or a dimerization of the copper species through μ-oxo bridge 

could be envisaged. (4) 

  
a) b) 

Fig. 4.14: a) CV voltammograms for Cu-Cyclam in NaOH/0.1 M NaOAc, pH12 (-) before and after 

(-) 0.7 V, (-) 0.94 V and (-) 1.14 V vs NHE electrolysis, WE: GC (d = 3 mm), CE: Pt wire, RE: 

Ag/AgCl, potentials are then referred to (NHE); b) UV-Vis spectra for Cu-Cyclam in NaOH/0.1 M 

NaOAc, pH12 (-) before and after (-) 0.7 V, (-) 0.94 V and (-) 1.14 V vs NHE electrolysis 

 

4.3 Conclusions and Perspectives 

 

A Copper(II) complex with a nitrogen based macrocyclic ligand was proposed as 

a novel water oxidation catalyst, working in electrochemical and 

photoelectrochemical systems.  

Electrochemical studies allowed to evidence: 1) the activity of the compound in 

water oxidation catalysis, 2) a low operating overpotential of 0.42 V, significantly 

lower than literature benchmarks and 3) some aspects of the mechanistic 

pathway of catalysis. Moreover, 4) interesting information can be obtained 

interfacing the Cu species with hematite semiconductors and light: the presence 
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of the catalyst enhances the current intensity at low potentials. However, this 

current is not due to Oxygen evolution but to the degradation of Cu-Cyclam, 

acting as a holes-capture for hematite photoanode. 5) From our results, we could 

also underline the importance of the care we have to take studying systems 

where molecular species and semiconductor materials are interfaced.  

The limit of this system consists in the evolution of the species into inactive 

products, which was observed with electrolysis experiments where the catalyst 

was consumed after about 1 hour of applied anodic bias. In order to overcome 

this issue, some experiments can be design in order to avoid or limit the catalyst 

consumption. For example a target tuning of the organic ligand can drive the 

stability of the species improving its activity. Future perspectives will focus on 1) 

a deeper investigation of the evolution of the system and 2) the study of the 

catalyst performance and stability, through functionalization of the cyclam 

ligand.  
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5. CHAPTER  

Polyoxometalates in CO2 reduction catalysis 

 

5.1 Introduction 

 

During the Ph.D., we were interested in investigating the redox catalysis 

processes involved in artificial photosynthesis, also in the field of CO2 reduction. 

As already introduced in Chapter 1, artificial photosynthesis presents an 

architecture of processes turning molecules as water and CO2 into higher energy 

products, exploitable as fuels. The oxidative process previously illustrated 

(water oxidation) is coupled with a reductive one, which could involve carbon 

anhydride. Reduction reactions of CO2 are multi electronic, and generally the 

more common resulting species are formic acid and carbon monoxide. (Eq. 1.10-

11) 

These processes are characterized by high kinetic and thermodynamic barriers, 

and the competitive proton reduction into molecular hydrogen needs also to be 

considered. (1) The presence of a catalyst helps to handle these requisites of the 

system in order to assist necessary electron transfers and bond rearrangements. 

 

5.2 Results and Discussion 

 

In this thesis, we have explored the potential of polyoxometalate ligands in CO2 

reduction. This choice was based on the high reactivity of such type of species in 

redox reactions, including water oxidation. In these studies, one of the main 

information that can be extracted is that transition metal substituted 

polyoxometalates can be considered as molecular fragments of metal 

oxides, (2, 3) with similar behaviour also in the reactivity. Therefore, for the design 

of transition metal substituted polyoxometalates aimed at catalytically reducing 

CO2, we were inspired by the recent work by M. Kanan et al. (4) on the catalytic 

reduction of CO2 by a Copper(I) oxide. This system is particularly promising 

since it works at low overpotential, in aqueous bicarbonate buffer at neutral pH.  

We explored then the reactivity of Copper based polyoxometalates, focusing in 

particular on the three families represented in species in Fig. 5.1. 
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a) b) c) 
Fig. 5.1: Combined polyhedral/ball-and-stick representations of: a) [Cu3(PW9O34)2]12-, blue: 

Copper, yellow: Phosphorus; b) [Cu4(H2O)10(XW9O33)2]n-, X = As, Sb, Se, Te, blue: Copper, green: 

X; c) [Cu(SiW11O39)]6-, light blue: Copper, green: Silicon 

 

These compounds were synthesized according to literature procedures, (5) while 

their preliminary behaviour in electrochemical reduction was investigated in our 

laboratory in a Master Thesis work. This study highlighted the third complex 

shown in Fig. 5.1 c), [CuSiW11O39]6- (hereafter CuPOM)  as the most promising 

candidate for reduction of CO2, since it showed a huge cathodic current in 

bicarbonate buffer (vide infra). Therefore, in this work, the nature of this wave 

was investigated in more details, in collaboration with the group of Prof. Marc 

Robert (Université Paris 7 - Denis Diderot) exploiting a Short Term Scientific 

Mission within the European COST Action CM1205, Catalytic Routines for Small 

Molecule Activation (CARISMA). 

 

The starting approach consisted in a general electrochemical characterization of 

the selected complex CuPOM, exploiting cyclic voltammetry (CV) technique in 

order to define the optimal conditions: solvent, buffer and any needed additives. 

After this screening, we planned to move to the catalytic system, studying the 

activity of this compound in presence of CO2. 

Among electrochemical characterization, CV experiments of CuPOM (isolated as 

the tetrabutylammonium salt) were initially run in dimethylformamide (DMF), 

with ammonium hexafluorophosphate as electrolyte. In Fig. 5.2 the CVs of 

CuPOM at different scan rates are reported, and show three characteristic 

reversible peaks. The first monoelectronic wave is due to reduction of CuII to CuI 

but it is appreciable only at high scan rates because it is partially superimposed 
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with the second one. The second and the third wave, showing E1/2 of -0.87 and -

0.63, respectively, are indicative of multi electron reductions connected with the 

POM structure, concerning reduction of WVI to WV, as described in literature. (6) 

 
Fig. 5.2: Cyclic voltammetry of 0.5 mM CuPOM in DMF, NH4PF6 0.1 M, WE: glassy carbon, CE: Pt 

wire, RE: SCE (KCl sat), potentials are then referred to (NHE), scan rate: see legend 

 

We completed the characterization of the species moving to aqueous buffers: the 

water soluble potassium salt of CuPOM was characterized in 0.2 M phosphate 

buffer pH = 7 and 0.5 M bicarbonate buffer pH = 7. 

In bicarbonate buffer CV experiments were performed at different scan rates in 

order to observe the current intensity normalized with respect to the square 

root of the scan rate, Fig. 5.3 a). Moreover, in Fig. 5.3 b), we plotted the peak 

current normalized against the square root of the scan rate to study the 

reversibility of the process or to verify a potential evolution of the compound.  

 

 

a) b) 
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Fig. 5.3: CV of 0.5 mM CuPOM, solution in buffer KHCO3 0.5 M, pH = 7 a) at different scan rates 

with normalized current (i/v^(1/2)) and b) dependence of i on v^(1/2). WE : GC 

(d = 3 mm), CE : Pt wire, RE: Ag/AgCl, potentials are then referred to (NHE). 

 

The value of the cathodic peak current for the wave at -1.3 V vs NHE, normalized 

by the square root of the scan rate, increased with decreasing scan rate, and a 

shift of the potential of the peak current was also observed. This behavior and 

the narrow shape of the waves reaching high current intensity were indicative of 

some irreversible evolution and consumption of the species CuPOM. 

The characterization in 0.2 M phosphate buffer, pH = 7, confirmed the previous 

results: voltammograms (Fig. 5.4) showed some current intensities and shapes 

indicative of some particular evolution of the catalyst on the surface of the 

working electrode. In fact, the narrow wave at E = 0.12 V vs NHE visible in Fig. 

5.4 a) under the anodic back scan, is attributed to oxidation of metallic copper 

deposited at the glassy carbon working electrode from mono substituted Cu 

POM, under cathodic scan. (7) Moreover, as in the case of the previous buffer, a 

high cathodic current was observed at more negative potentials, upto -1.3 V vs 

NHE (Fig. 5.4 b)) with narrow shapely irreversible wave, hence we conclude that 

the catalyst was decomposing.  

 

  
a) b) 

Fig. 5.4: CV of CuPOM 0.5 mM in phosphate buffer 0.1 M, pH = 7, WE: glassy carbon (d = 3 mm), 

CE: Pt wire, RE: SCE (KCl sat.), potentials are then referred to NHE, scan rate = 100 mV/s 

 

Despite this result, we tried to perform the CV studies in the presence of CO2, in 

order to investigate the eventual presence of a catalytic process, by the variation 

of the reduction wave shape and intensity. We tested the behavior of the species 
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in presence of CO2 but data processing showed slight changes on the shape of the 

cathodic waves, Fig. 5.5. 

 
Fig. 5.5: CV of 0.5 mM CuPOM, solution in buffer KHCO3 0.5 M, pH = 7 at different scan rates with 

normalized current (i/v^(1/2)) and in presence of CO2 
 

However, this change can not be attributed to a catalytic process; on the contrary 

it confirmed that the catalyst was not stable in highly reducing electrochemical 

conditions. Changing some experimental conditions such as solvent and 

concentration of catalyst did not change the performance of the catalyst and for 

that reason we concluded it was not suitable for investigate in CO2 reduction. 

 

5.3 Conclusions and Perspectives 

 

In this part of the Thesis, a polyoxometalate based Copper species has been 

investigated in the catalysis of CO2 reduction through electrochemical system. 

However, the CV experiments were indicative of decomposition of the compound 

under cathodic scan, by releasing the Copper ion, which was deposited at the 

working electrode as metallic Copper. This probably defines a limit for the redox 

chemistry of transition metal substituted polyoxometalates, since this family of 

ligands is not able to stabilize enough transition metals with low oxidation state. 

This is probably related to the ‘hard’ nature of the nucleophilic oxygens, in the 

coordination sphere of the POM ligand. Studies need then to be focused on the 

design of an appropriate coordination sphere able to stabilize the Copper metal 

in its low oxidation states, to be stable in the highly reductive conditions needed 

to activate CO2 reduction. 
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However, the preliminary results presented in this Chapter were useful to 

achieve ability and competence in the electrochemical field. 
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6. CHAPTER 

Experimental section 

 

6.1 Synthesis 

6.1.1 Synthesis of Co4(µ3-O)4(µ-O2CMe)4(py)4 , (1) 

 
Synthesis of this species was performed following literature procedures (R. 

Chakrabarty, S. J. Bora, B. K. Das Inorg Chem, 2007, 46, 9450). 

 
2.90 g (10 mmols) of Co(NO3)2·6H2O and 2.70 g (20 mmols) of CH3CO2Na·3H2O 

are dissolved in 30 mL of CH3OH. To the stirred solution under reflux (about 65° 

C), 80 µL (10 mmols) of pyridine are added, and after 10-15 minutes 5 mL of 

30% H2O2 (50 mmols) are inserted slowly into the reaction solution. 

Reflux conditions under stirring are maintained for 4 hours and then the mixture 

is cooled to room temperature. Then, the solution is concentrated removing part 

of the solvent, observing the separation of a pink aqueous phase after addition of 

CH2Cl2. The organic phase is dried over dry Na2SO4. After filtration n-hexan is 

added to the solution obtaining an olive-green precipitate, which is separated 

and dried. A yield of about 90% is obtained. 
 

1H-NMR (CD3CN; 300 MHz; δ, ppm): 8.38 (dd, 8H, 2Ja-b = 6.6 Hz, 3Ja-c = 1.5 Hz, Ha), 

7.58 (tt, 4H, 2Jc-b = 7.5 Hz, 3Jc-a = 1.5 Hz, Hc), 7.09 (dd, 8H, 2Jb-a = 6.6 Hz, 2Jb-c = 7.5 

Hz, Hb), 1.99 (s, 12H, µ-O2CCH3). 

ESI-MS (FIA, flow: H2O:CH3CN =1:1 + HCOOH 0.1%, m/z): 852.95 [1-H]+H+; 

calculated for [C28H32Co4N4O12]·H+ = 852.94. 
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FT-IR (KBr, cm-1): 3114 (w), 3079 (w), 2927 (w), 1606 (w), 1534 (s), 1486 (m), 

1450 (m), 1411 (s), 1341 (w), 1213 (w), 1071 (w), 1047 (w), 761* (w), 694* (m), 

634* (w). (* = diagnostic of cubane structure). (w = weak, m = medium, s = 

strong). 

 

6.1.2 Synthesis of Co4(µ3-O)4(µ-O2CMe)4(p-NC5H4X 4) , (1-X) (X = Me, t-Bu, 

OMe, Br, COOMe, CN) 

 

The synthetic procedure is the same used for the previous 1 species, the 

difference consists in using different 4-substituted pyridines as reagent.  

 

1-Me 

 
Yield: 2.01 g (88% based on cobalt). 

 
1H-NMR (CD3CN; 300 MHz; δ, ppm): 8.09 (d, 8H, J = 6.0 Hz, Ha), 7.18 (d, 8H, J = 

6.0 Hz, Hb), 2.33 (s, 12H, CH3), 1.96 (s, 12H, μ-O2CCH3). 

ESI-MS (FIA, flow: H2O:CH3CN =1:1 + 0.1% HCOOH; m/z): 908.9563 [1-Me]·H+; 

calculated for [C32H40Co4N4O12]·H+ = 909.00481.   

FT-IR (KBr, cm-1): 3080 (w), 2958 (w), 2923 (w), 1717 (w), 1622 (m), 1536 (s, 

br), 1501 (s), 1411 (s, br), 1384 (s), 1337 (m), 1246 (w), 1226 (w), 1207 (m), 

1068 (w), 1037 (w), 811 (m), 721* (w), 698* (m), 634* (m). (* = diagnostic of 

cubane structure). (w = weak, m = medium, s = strong, br = broad). 
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1-tBu 

 
Yield: 58% based on cobalt. 

 
1H-NMR (CD3CN; 300 MHz; δ, ppm): 8.34 (d, 8H, J = 6.2 Hz, Ha), 7.16 (d, 8H, J = 

6.2 Hz, Hb), 1.96 (s, 12H, μ-O2CCH3) 1.25 (s, 36H, C(CH3)3). 

ESI-MS (FIA, flow: H2O:CH3CN =1:1 + 0.1% HCOOH; m/z): 1077.1490 [1-t-

Bu]·H+; calculated for [C44H64Co4N4O12]·H+ = 1077.19262. 

FT-IR (KBr, cm-1): 3087 (w), 2966 (m), 2907 (w), 2872 (w), 2966 (m), 2872 (w), 

1717 (w), 1617 (m), 1539 (m, br), 1500 (m), 1419 (s, br), 1384 (s), 1343 (w), 

1274 (w), 1225 (w), 1072 (w), 1035 (w, br), 845 (w), 832 (w), 731* (w), 701* 

(w), 635* (m). (* = diagnostic of cubane structure). (w = weak, m = medium, s = 

strong, br = broad). 

 

1-OMe 

 
Yield: 82% based on cobalt. 
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1H-NMR (CD3CN; 300 MHz; δ, ppm): 8.12 (d, 8H, J = 6.9 Hz, Ha), 6.68 (d, 8H, J = 

6.9 Hz, Hb), 3.84 (s, 12H, OCH3), 1.97 (s, 12H, μ-O2CCH3). 

ESI-MS (FIA, flow: H2O:CH3CN =1:1 + 0.1% HCOOH; m/z): 972.9484 [1-OMe]·H+; 

calculated for [C32H40Co4N4O16]·H+ = 972.98446. 

FT-IR (KBr, cm-1): 3017 (w), 2846 (w), 1618 (s), 1568 (m), 1541 (m, br), 1505 

(s), 1414 (s, br), 1384 (s), 1346 (m), 1297 (s), 1207 (s), 1060 (m), 1037 (s), 1013 

(m), 823 (m), 700* (m), 668* (m), 635* (m). (* = diagnostic of cubane structure). 

(w = weak, m = medium, s = strong, br = broad). 

 

1-Br 

 
Complex 1-Br was synthesized adapting the literature procedure. 

Co(NO3)2·6H2O (0.48 g, 1.7 mmol) and CH3CO2Na·3H2O (0.68 g, 5 mmol) are 

stirred in methanol (5 mL) and heated to refluxing temperature. 4-

bromopyridine hydrochloride (0.32 g, 1.7 mmol) is then added to the stirred 

reaction mixture, followed by a portion of 11.6 M hydrogen peroxide (720 μL, 8.3 

mmol), added dropwise. The reaction mixture was treated as described above 

for the analogous compounds. 0.42 g of a dark green solid were obtained (Yield: 

85% based on cobalt). 

 
1H-NMR (CD3CN; 300 MHz; δ, ppm): 8.20 (d, 8H, J = 6.6 Hz, Ha), 7.39 (d, 8H, J = 

6.6 Hz, Hb), 1.99 (s, 12H, μ-O2CCH3). 

ESI-MS (FIA, flow: H2O:CH3CN =1:1 + 0.1% HCOOH; m/z): 1168.5 [1-Br]·H+; 

calculated for [C28H28Br4Co4N4O12]·H+ = 1164.58 (17%), 1166.58 (68%), 

1168.58 (100%), 1169.58 (32%), 1170.58 (67%), 1172.58 (20%).  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FT-IR (KBr, cm-1): 3098 (w), 3030 (w), 2926 (w), 1717 (w), 1635 (m), 1590 (s), 

1534 (s, br), 1479 (s), 1356 (s, br), 1342 (m), 1206 (m), 1098 (w), 1059 (w), 817 

(m), 702* (m), 634* (m). (* = diagnostic of cubane structure). (w = weak, m = 

medium, s = strong, br = broad). 

 

1-COOMe 

 
Methyl 4-pyridinecarboxylate was synthesized reacting 4-pyridinecarboxylic 

acid (1.7 g, 13.8 mmol) and concentrated H2SO4 (750 μL) in methanol (50 mL) 

under microwave irradiation using a MW Ethos-1600 labstation (Milestone) 

with the following parameters: Power = 300 W until Tbulk = 130°C is reached, 

then Power = 240 W to maintain Tbulk = 130°C for 20 min. 1.56 g of the desired 

product were obtained after extraction in dichloromethane (Yield: 83%). 

1-COOMe was synthesized adapting the general procedure described above, 

starting from methyl 4-pyridinecarboxylate (1.37 g, 10 mmol). 1.07 g of a dark 

green solid were obtained (Yield: 39% based on cobalt). 

 
1H-NMR (CD3CN; 300 MHz; δ, ppm): 8.54 (d, 8H, J = 6.5 Hz, Ha), 7.53 (d, 8H, J = 

6.5 Hz, Hb), 3.94 (s, 12H, COOCH3), 2.01 (s, 12H, μ-O2CCH3). 

ESI-MS (FIA, flow: H2O:CH3CN =1:1 + 0.1% HCOOH; m/z): 1084.9486 [1-

COOMe]·H+; calculated for [C36H40Co4N4O20]·H+ = 1084.96409. 

FT-IR (KBr, cm-1): 3128 (w), 3064 (w), 3014 (w), 2956 (w), 1734 (s), 1617 (w, 

br), 1539 (m, br), 1418 (s), 1345 (w), 1323 (w), 1292 (s), 1236 (w), 1195 (w), 

1126 (m), 1062 (m), 960 (w), 868 (w), 835 (w), 768 (m), 701* (m), 634* (m), 

589* (m), 575 (m). (* = diagnostic of cubane structure). (w = weak, m = medium, 

s = strong, br = broad). 
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1-CN 

 
4-cyanopyridine (1.04 mL, 10 mmol) is used, and 2.16 g of a dark brown solid 

were obtained (Yield: 91% based on cobalt). 

 
1H-NMR (CD3CN; 300 MHz; δ, ppm): 8.60 (d, 8H, J = 5.4 Hz, Ha), 7.50 (d, 8H, J = 

5.4 Hz, Hb), 2.01 (s, 12H, μ-O2CCH3). 

ESI-MS (FIA, flow: H2O:CH3CN =1:1 + 0.1% HCOOH; m/z): 952.9053 [1-CN]·H+; 

calculated for [C32H28Co4N8O12]·H+ = 952.92319. 

FT-IR (KBr, cm-1): 3113 (w), 3055 (w), 2927 (w), 2237(w), 1610 (w), 1534 (s), 

1490 (m), 1413 (s), 1385 (s), 1343 (w), 1214 (w), 1065 (w), 1031 (w), 833 (m), 

791 (w), 699* (m), 634* (m), 589* (m), 575 (m), 563 (m). (* = diagnostic of 

cubane structure). (w = weak, m = medium, s = strong). 

 

6.1.3 Synthesis of 4-(pyren-1-yl)-N-(pyridin-4-yl)butanamide and 4-(pyren-

1-il)-N-(pyridin-3-yl)butanamide compounds (2m and 2p) 

 

 
Synthetic procedure for the two ligands is the same, only one of the reagents 

change: on one hand (2m) is used 3-amino pyridine, on the other (2p) the 4-

amino pyridine.  

In a 50 mL balloon 213 mg (2.27 mmoles) of amino pyridine are dissolved in 20 

mL of tetrahydrofuran (THF) anhydrous and 2 mL of triethylamine. To the 
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solution 700 mg (2.27 mmoles) of 4-pyren-1-yl-butanoyl chloride are added. The 

mixture is stirred at room temperature overnight. THF is removed and the 

product is dissolved again in CH2Cl2 and H2O, the organic phase is separated and 

removed with rotavapor. The obtained white solid is dissolved in THF and then 

adding n-hexan the final reaction product precipitates. The yield achieves about 

28 %. 

 

6.1.4 Synthesis of Co4(µ3-O)4(µ-O2CCH3)4(4-(pyren-1-yl)-N-(pyridin-4-

yl)butanamide)4 and Co4(µ3-O)4(µ-O2CCH3)4(4-(pyren-1-yl)-N-(pyridin-3-

yl)butanamide)4 compounds (3p and 3m) 

 
Synthetic procedure of these two compounds is the same, the only variation is 

due to the use of the different reagent 2m or 2p to obtain the desired product. 

In a 50 mL balloon 108.85 mg (0.374 mmoles) of Co(NO3)2·6H2O and 101.79 mg 

(0.748 mmoles) of CH3COONa·3H2O are dissolved in 12 mL of CH3OH. To the 

mixture under reflux (about 65° C), 136.43 mg (0.374 mmoles) of ligand (2m o 

2p) are added, after about 30 minutes, 191 µL (1.87 mmoles) of 30% H2O2 are 

slowly introduced in the balloon. The mixture is left for 4 hours under reflux and 

stirring. After cooling to room temperature, the organic solvent is evaporated 

after removing the aqueous phase even if it is difficult distinguishing clearly. The 

obtained compound is washed with three aliquots of, one of H2O and the last one 

of Et2O again. The product is dried and weight. The yield is about 13 % for both 

3p and 3m. 

 

3p) 
1H-NMR (DMSO-d6; 300 MHz; δ, ppm): second order spectra, 2.1 (m, 2H), 2.3 (m, 

2H), 3.2 (m, 2H), 8 (m, 13H), 10.3 (s, 1H). 

ESI (FIA, flow: CH3CN + HCOOH 0.1%, m/z): 1993,6; calculated: 1994. 
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FT-IR (KBr, cm-1): 584, 633, 700, 762 (diagnostic of cubane structure), 841 (s), 

1418 (s), 1509 (s), 1700, 3000. (s = strong). 

CV (THF, 0,1 M TBAClO4, 0,5 mM in 3p); (THF : B8 10 mM = 1 : 1, 0,5 mM in 3p) 

UV-Vis (THF, nm): 340 nm c.a. (10-6 M), 640 nm c.a. (10-3 M) 

Fluorescence (10-6 M, THF, nm): 370, 396, 410, 750, 790. 

 

3m) 
1H-NMR (DMSO-d6; 200 MHz; δ, ppm): second order spectra, 2.2 (m, 4H), 3.2 (d, 

2H), 8.2 (m, 13H), 10.1 (s, 1H). 

ESI-MS (FIA, flow: CH3CN + HCOOH 0.1%, m/z): 1993.30; calculated: 1994.00 

FT-IR (KBr, cm-1): 584, 633, 700, 762 (diagnostic of cuban structure), 841 (s), 

1418 (s), 1509 (s), 1700, 3000. (s = strong) 

CV (THF, 0,1 M TBAClO4, 0,5 mM in 3m); (THF: B8 10 mM = 1 : 1, 0,5 mM in 3m) 

UV-Vis (THF, nm): 340 nm c.a. (10-6 M), 640 nm c.a. (10-3 M) 

Fluorescence (10-6 M, THF, nm): 370, 396, 410, 750, 790. 

 

6.1.5 Synthesis of Co4(µ3-O)4(4-(pyren-1-yl)butanoate)4(py)4 (4) 

 

 
In 4 mL of NaOH 1 M, 1.44 g (5 mmoles) of pyrenbutirryc acid are dissolved to 

obtain the salt. Then, 727.57 mg (2.5 mmoles) of Co(NO3)2·6H2O and CH3OH 

(c.a. 25 mL) are added to the mixture with vigorous stirring because a foamy 

solution is obtained. After some stirring, 202.20 µL (2.5 mmoles) of pyridine and 

slowly 1.28 mL (12.5 mmoles) of 30% H2O2 are introduced. Same temperature 

condition and stirring are maintained for 4 hours and then the mixture is 

brought to room temperature. CH2Cl2 is added to the solution in order to 

separate the organic phase, which is anhydrificated with Na2SO4 anhydrous and 

filtrated. When n-hexan is added, a suspension and a dark precipitate are 

obtained: the suspension is removed with centrifugation and from analysis 
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techiques turns out to be the desired product. The dark precipitate is the dirty 

product, which is washed with three aliquots of Et2O, then with three of  CH3OH, 

checking the purity through TLC and UV lamp. The compound is washed a last 

time with H2O obtaining the clear product. The yield is about 5 %. 

 
1H-NMR (CH2Cl2-d2; 500 MHz; δ, ppm): second order spectra, 2.2(m, 2H), 2.5 (t, 

2H), 3.4 (m, 2H), 7.9 (d, 2H, J = 10 Hz), c.a. 8.2 (m, 10H), 8.3 (d, 2H, J = 10 Hz) . 

ESI-MS (FIA, flow: CH3CN + HCOOH 0.1%, m/z): 1765; attended: 1765. 

FT-IR (KBr, cm-1): 588, 633, 691, 757 (diagnostic of cuban structure), 842 (s), 

1182, 1213, 1311, 1399 (s), 1449, 1587, 1602, 2928, 3037, 3439. (s = strong). 

CV (THF, 0,1 M TBAClO4, 0,5mM in 4); (THF : B8 10 mM = 1 : 1, 0,5 mM in 4) 

UV-Vis (CH2Cl2, nm): 345, 330, 277, 274, 244. 

Fluorescence (10-5 M, CH2Cl2, nm): 703, 754, 793. 

 

6.1.6 Synthesis of [Co6(H2O)30{Co9Cl2(OH)3(H2O)9(SiW8O31)3}]5– (Co15) 

 

Synthesis and characterization according to published procedures (a) Bassil et al. 

Inorg Chem, 2005, 44, 2659 and b) Keita et al. Langmuir, 2007, 23, 9531). 

 

In a balloon, 1.00 g (0.36 mmoli) of K8[γ-SiW10O36]8- are added to a solution 

previously obtained dissolving 1.14 g (4.75 mmoli) of CoCl2·6H2O in 20 mL of 

NaCl 1 M. After completely reagents dissolution the mixture pH is adjusted to the 

value of 5 with NaOH 0.2 M and checked. The obtained solution is heated to 50°C 

for 30 minutes and after cooling to room temperature is filtrated with paper. By 

slowly evaporation of the clear red solution, the crystals of the product are 

obtained, then filtrated on gooch and washed with cool H2O. About 350 mg of the 

product are obtained, with a total yield of about 10 %. 

 

FT-IR (KBr, cm-1): 1635, 991 (m), 938 (s), 891 (s), 853 (s), 804(m), 756 (s), 696 

(s), 557 (w), 536 (w), 496 (w). (w = weak, m = medium, s = strong). 
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6.1.7 Synthesis of [Cu(1,4,8,11-Tetraazacyclotetradecane)](ClO4)2 (Cu-

Cyclam) 

 
Synthesis of Cucyclam was performed by a slight modification of literature 

procedure (Bosnich et al. Inorg Chem, 1965, 4(8), 1102). 

 

In a 100 mL becker, 200 mg (0.539 mmols) of Cu(ClO4)2·6 H2O were dissolved in 

30 mL of THF. Adding 108.12 mg (0.539 mmols) of 1,4,8,11-

tetraazacyclotetradecane (Cyclam) the blue solution turns to pink. After two 

hours of stirring, the mixture is filtered and the solvent is evaporated. The pink 

compound is weighed and characterized (70 % yield). 

ESI-MS (FIA, flow: CH3CN + HCOOH 0.1%, m/z): 362 [{Cu(C10H24N4)}ClO4]+.    

FT-IR (KBr, cm-1): 3240 (s), 3170 (m), 2930 (w), 2880 (w), 1430 (w), 1090 (vs), 

998 (m), 883 (w), 625 (m). (vs =very strong, s = strong, m = medium, w = weak). 

UV-Vis (NaOH at pH 12): λmax = 506 nm (εmax = 116.53 L mol-1cm-1). 

 

6.2 Instrumentation 

 

Electrochemistry: 

In Chapter 2 the cyclic voltammetries were represented with the old convention 

(negative values for anodic currents and increasing potential towards left) in 

order to compare easily our data with results from literature. While in Chapter 4 

and 5 the new convention was applied (positive values for anodic currents and 

increasing potential towards right). 

 

Padova: Cyclic voltammetry experiments were performed using a Cyclic 

voltammetry experiments were performed using a BAS EC-epsilon potentiostat 
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and an AMEL Potentiostat-Galvanostat, model 7050. A standard three-electrode 

electrochemical cell was used. Glassy carbon electrode (3 mm diameter, 

geometric surface area = 7 mm2) from BAS and a Pt wire were used respectively 

as working and auxiliary electrode. Potentials were referred to an Ag/AgCl/3 M 

NaCl reference electrode. 

Electrolysis experiments were performed using an AMEL Potentiostat-

Galvanostat, model 7050. A carbon crucible and a Pt wire were used respectively 

as working and auxiliary electrode. The auxiliary was separated from the 

solution with a frit. Potentials were measured to a Ag/AgCl/3 M NaCl reference 

electrode and then converted to the NHE scale values (ENHE = EAg/AgCl + 0.197 V).  

Paris: Cyclic voltammetry experiments were performed using a Metrohm 

AUTOLAB instrument. A standard three-electrode electrochemical cell was used. 

Glassy carbon electrodes (3 mm diameter, geometric surface area = 7 mm2) from 

Tokai and a Pt wire were used respectively as working and auxiliary electrodes. 

Potentials were measured to an Ag/AgCl/3 M NaCl or a SCE KCl satured 

reference electrode and then converted to the NHE scale values (ENHE = EAg/AgCl + 

0.197 V; ENHE = ESCE + 0.242 V). 

Electrolysis experiments were performed using a Parstat 2273 

potentiostat/galvanostat/FRA. A carbon crucible and a Pt grill were used 

respectively as working and auxiliary electrode. The auxiliary was separated 

from the solution with a frit. Potentials were measured to a SCE KCl satured 

reference electrode and then converted to the NHE scale values (ENHE = ESCE + 

0.242 V).  

Ring disk cyclic voltammetry experiments were performed with Pine Research 

Instrumentation model AFMSRCE: a MSR rotator used with a Glassy Carbon-

Platinum rotated ring-disk (RRDE), a separate arbor and a rotating electrode 

speed controller. Pt wire was used as auxiliary electrode and a SCE KCl satured 

as reference electrode. 

 

UV-Vis: UV-Vis kinetic experiments were collected using a Varian Cary-100 Scan 

spectrophotometer. 
1H-NMR: 1H-NMR spectra and kinetic experiments were recorded using Bruker 

AV300 instruments operating at 300 and 500 MHz. 
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FT-IR: FT-IR spectra were recorded on a Nicolet 5700 FT-IR instrument. 

 

ESI-MS: Mass spectra were performed with an Agilent Technologies MSD SL 

Trap mass spectrometer with ESI source coupled with a 1100 Series HPLC 

system. 

 

Light-driven water oxidation: In a typical experiment, about 15 mL of a 

buffered solution containing [Ru(bpy)3]Cl2·6H2O (1 mM), Na2S2O8 (5 mM) and 

the catalyst in several concentrations were introduced in a glass reactor 

(internal diameter 18 mm, total internal volume of 24 mL), deoxygenated with 

nitrogen and allowed to equilibrate at 25 °C under exclusion of light. Irradiation 

of the solution was then conducted in some cases with… and in other cases with 

one monochromatic LED emitting at 450 nm (LED450-06 from Roithner 

Lasertechnik GmbH); oxygen evolution was monitored with a FOXY-R-AF probe, 

inserted in the reaction headspace and interfaced with a Neofox Real-Time 

software for data collection; dissolved oxygen was assumed to be negligible. 

Quantum Yield for oxygen production (ΦO2) was determined by the following 

equation: 

 
The rate of oxygen production was taken from the maximum slope of the kinetic 

O2 evolution curves, between 10 and 20 minutes of irradiation. The number of 

absorbed photons was assumed to be equivalent to the number of incident 

photons, given the high Optical Density of the solution and the negligible loss of 

photons by reflection events.  
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7. CHAPTER 

Conclusions and Perspectives: an overview 

 

This thesis was focused on the development of new catalytic, molecular 

systems for the redox reactions in artificial photosynthesis, aimed at the 

production of renewable fuels with sunlight, by the water splitting into hydrogen 

and oxygen, or CO2 reduction. 

 

This work has mainly focused on the water oxidation reaction, since it was 

recognized as the major problem, or the bottleneck, in the development of a 

device for efficient water splitting. Actually, the literature scenario has changed a 

lot in the last few years. In 2008, T.J. Meyer was reporting that “catalysts for 

water oxidation are so rare that the discovery of a new family is cause for 

celebration”. (1) Since then, a lot of reports have been published, dealing with new 

molecular WOCs: X. Sala, A. Llobet et al. have recently reported that “dWord did 

not find any entries for your table of contents.uring the last 5 years, there has 

been an explosion of reports in the field of water oxidation catalyzed by transition 

metals”. (2) Considerable results have been achieved, concerning stability and 

efficiency of WOCs. Unfortunately, this advancement is still not solving the 

problem: we believe that two fields in particular need a major in-depth analysis: 

 

1) The understanding of the active species carrying on the catalysis, and 

their operating mechanism. Quoting X. Sala and A. Llobet: “Despite its 

importance for biology and renewable energy, the mechanism of this 

reaction is not fully understood”. (2)  

 

2) The interface of WOCs with light systems, which is one of the target 

in a water splitting artificial device. Little is known about the light 

driven events that activate a WOC in the so called sacrificial systems. 

Moreover, despite their high activity, still few reports deal with the 

interface of molecular WOCs within a photoelectrode, with one key 

example reported by Sun et al. (3)   
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In this work, we have tried to consider also these open issues.  

 

In Chapter 2, a tetracobalt cubane has been considered as a molecular WOC, 

mimicking the natural OEC structure and operating in a light activated system 

with Ru(bpy)32+/ S2O82-. After characterization of the species through different 

techniques, tuning electronic substituents properties, we have investigated 

structure-activity correlations by means cyclic voltammetry and laser flash 

photolysis. The interesting results brought us to consider a synthetic approach in 

order to modify the catalyst structure and maximizing interactions in solution. 

The design of a no covalent dyad among moieties could be exploit to project 

devices for artificial photosynthesis. The real nature of the acting species in the 

catalytic process was recently discussed in the literature, and is still under 

investigation. Further insights in the role played by the tetracobalt cubane will 

likely contribute to better clarify the catalytic mechanism of water oxidation. 

 

In Chapter 3, the potential of high nuclearity, Cobalt based polyoxometalates 

in water oxidation has been explored. In particular, one species has showed 

really interesting results in photoactivated system with high kinetic constant and 

multiple electron transfer to a photogenerated oxidant. From our studies, the 

multi-nuclearity, the polyanionic charge and the presence of water ligand on the 

Cobalt centres have appeared to be key features for the catalytic activity of these 

compounds.  

 

In Chapter 4, a single site Copper species, with a tetraazamacrocyclic ligand is 

reported as a water oxidation catalyst. Single site catalysts often bare 

performances overcoming the multinuclear correspondings. They are appealing 

since structurally simpler, tuning their properties let to easier screening of 

activity, moreover they show possible linkage to several devices. The importance 

of single site catalysts has been recently recognized also by Hetterscheid et al. 

“Mononuclear species may be the way to go in direct solar energy to fuel 

conversion applications”. (4)  
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Indeed, we have studied a Copper based macrocyclic ligand as molecular WOC 

through electrochemical and photoelectrochemical systems. In particular we 

have found a low operating overpotential and interesting results interfacing for 

the first time a Cu-species with light. The catalyst activity has been explored in 

presence of hematite semiconductor as photoanode: in presence of light the 

Copper compound enhances the hematite at low potentials acting as a holes-

capture for the semiconductor. The limit of this system consists in the evolution 

of the species into inactive products. Future perspectives will be focused on a 

deeper investigation of the system degradation and on the effect of the cyclam 

ligand functionalization among performance and stability. 

 

Dealing with CO2 reduction, the present scenario in literature includes few 

families of efficient catalysts, and the results are often complicated by issues of 

selectivity in the reduction products and by competitive proton reduction to 

hydrogen. 

 

In Chapter 5, we have investigated the potential of polyoxometalates, the 

“molecular metal oxides”, in catalysing this reaction. In particular, we focused on 

Copper based polyoxometalates, being inspired by a recent work in the 

literature on a Copper(I) oxide as an efficient catalyst for CO2 reduction. After a 

preliminary screening one compound has been selected and investigate through 

CO2 reduction catalysis by means electrochemical techniques. However, a deeper 

electrochemical characterization revealed consumption of the species and 

metallic copper deposition onto the working electrode surface.  

 

 

 

 

Finally, as already anticipate in the Introduction, our purpose is not to give a 

unique solution to the energy issue: we would like to suggest a method to 

achieve a better understanding through mechanistic insights and optimized 

experimental conditions. Indeed, with the right instruments we can think how to 

face the scientific fascinating challenge concerning energy issue. 
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