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Review

How to Characterize the Function of a Brain
Region

Sarah Genon,1,2,*,@ Andrew Reid,3 Robert Langner,1,2 Katrin Amunts,1,4 and Simon B. Eickhoff1,2

Manybrain regionshavebeendefined, buta comprehensive formalization ofeach
region’s function in relation to human behavior is still lacking. Current knowledge
comes from various fields, which have diverse conceptions of ‘functions’. We
briefly review thesefields and outline how the heterogeneity of associations could
be harnessed to disclose the computational function of any region. Aggregating
activation data from neuroimaging studies allows us to characterize the func-
tional engagement of a region across a range of experimental conditions. Fur-
thermore, large-sample data can disclose covariation between brain region
features and ecological behavioral phenotyping. Combining these two
approaches opens a new perspective to determine the behavioral associations
of a brain region, and hence its function and broader role within large-scale
functional networks.

What Does Any Part of the Brain Do?
Ever since humans have scientifically investigated the mind, understanding how it is orga-
nized at the level of its biological substrate (i.e., the brain) has remained challenging. For over a
century, great progress has been made in mapping the human brain (based on various
characteristics), leading to a rapidly expanding number of parcellation schemes and atlases
detailing the organization of cortical areas and modules [1]. Several studies have demon-
strated that the structural segregation of the cerebral cortex into different areas (distinguish-
able based on their biological properties, such as molecular, cellular, or fiber architecture
[2,3]) is closely related to its functional segregation [4] and, in turn, its organization into
functional networks [5].

Current conceptualizations of brain function as a Bayesian machine, in which brain areas are
seen as connected and relatively specialized computational units, are in contrast with the
actual available knowledge about functional specialization. Studies over the past century
show that the understanding of brain–behavior relationships has been an interdisciplinary
endeavor, resulting in rich and heterogeneous patterns of behavioral functions for many brain
regions. After reviewing the most common approaches that have contributed to this
endeavor, we propose that assessing the relative functional specialization of brain regions
requires a critical change in viewpoint, wherein the a priori defined construct is the brain
region and the unknowns are the behavioral functions associated with it. In that perspective,
recent advances in data aggregation offer novel opportunities for a systematic characteriza-
tion of brain regions across a range of behavioral conditions and phenotypical features. Such
an integrative approach could bring us to a pivotal stage in the history of brain mapping and
cognitive neuroscience, in which we lift the conceptual fog that has clouded structure–
function relationships in the brain, and focus on future formal conceptualizations of functional
segregation and integration.

Highlights
While it is largely accepted that the
brain is topographically organized into
distinct areas that are integrated into
networks, the unique contribution of
each area to behavior is yet to be
elucidated.

Diverse lines of research using different
approaches have contributed to
numerous behavioral associations for
any brain area.

Emerging databases of task-based
activation data offer the possibility of
characterizing the engagement of
brain regions across a broad range
of experimental behavioral conditions.

New large samples of both imaging
and phenotypical data provide an
opportunity to complement the activa-
tion pattern by examining cross-sub-
ject associations between imaging-
derived neurobiological markers and
ecological behavioral characteristics.
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Glossary
Ecological validity: an
epistemological concept referring to
the quality of the methods, materials,
and settings of a study used to
reproduce the examined real-life
phenomena.
Epistemological: referring to the
study of the nature and grounds of
knowledge, especially regarding
limits and validity.
Internal validity: a quality criterion
for study designs that indicates the
degree to which observed effects in
some dependent variable can be
assumed to be caused by the
experimental manipulation; typically
highest in randomized experiments
and lowest, or absent, in correlative
designs.
fMRI: can be used to measure
hemodynamic changes related to
neural activity during a particular
mental task. Oxyhemoglobin and
deoxyhemoglobin have different
magnetic properties, which can be
captured with an fMRI scanner.
During mental activity, the ratio
between oxyhemoglobin and
deoxyhemoglobin is modified,
allowing inference about the region
of the brain in which neural activity
changes during a particular mental
task.
MRI: a technique of imaging body
tissues (such as brain tissues) and
physiological processes. It uses
magnetic fields, radio waves, and
field gradients. As different tissues
have different magnetic properties,
structural MRI can be used to
generate an anatomical image of the
brain that differentiates gray matter,
white matter, and cerebro-spinal
fluid.
Ontology: an explicit specification of
the conceptual entities that are
postulated by a theory. A formal
ontology specifies the structure of
the theory in terms of the elementary
entities and their conceptual
relationships.
Positron emission tomography
(PET): a technique that measures
physiological function by detecting
blood flow and metabolism. It is
based on the detection of
radioactivity emitted after a
radioactive tracer has been injected
into the body. It can therefore be
used to examine blood flow and
oxygen consumption in different

Brain Areas as Connected Computational Units
The first theories regarding functional specialization of brain areas (which later led to the
concept of functional segregation) had already been proposed in the early 19th century by
Gall (whose view was later referred to as ‘phrenology’) [6]. However, many ‘functions’ that were
associated with certain parts of the outer skull would not be considered as functions from a
modern point of view (with the exception of language). The following decades were enlivened by
debates on localizationism versus connectionism (for a detailed review, see [7]). The pioneering
work performed by Paul Broca and Carl Wernicke in the 19th century evidenced specific
behavioral impairment following focal brain lesions, but, at the same time, it was also realized
that the attribution of a specific function to a cortical area is related to its anatomical connectivity
with distant brain regions. This was illustrated by Wernicke, who introduced the first network
view for language comprehension and production [8].

Following this view, the concept of disconnection syndromes refuted strict localizationism as a
complete or sufficient account of cortical organization [7]. Accordingly, the human brain
mapping field currently relies on the assumption that the brain is governed by two fundamental
principles of functional organization: segregation and integration [7,9,10]. The former refers to
the fact that the cerebral cortex is not a homogeneous entity but can be subdivided into
regionally distinct modules (cortical areas or subcortical nuclei), based on functional and
structural properties [11,12]. The latter emphasizes that no brain region is by itself sufficient
to perform a particular cognitive, sensory, or motor function. Rather, all mental capacities rely
on a dynamic interplay and exchange of information between different regions [13,14].

Importantly, these principles (functional segregation and integration) do not contradict each
other, since integration can be conceptualized as interaction between relatively specialized
regions, each subserving a distinct process [9,15]. Accordingly, each area can perform a limited
range of functions, but the concrete behavioral output depends on which inputs have been
processed (from afferent connectivity) and which signal is sent to which other areas (based on
efferent connectivity). In this ‘intrinsic’ and ‘connectivity’-based functional specialization of brain
areas (developed in [16]), these latter can be conceptualized as relatively specialized compu-
tational units, the observed behavioral effects of which depend on the coactivity (and thus
information sent and received) of other areas.

Considering brain areas as computational units raises the question of the mechanism of the
computation, or basically the question of ‘what does the brain do and how?’ A relatively well-
acknowledged view addressing this question is that the brain works as a Bayesian machine
[17], computing probabilities that minimize uncertainty [18] and support decision making [19].
This view has been successful, for instance, in explaining perceptual processes as integrative
processing of probabilistic distributions [20]. It has also been adapted to explain higher aspects
of cognition, such as human optimistic bias [21] and, relatedly, the role of the lateral prefrontal
cortex in updating beliefs [22].

Importantly, this ‘Bayesian brain’ view entails an important shift in the conceptualization of
‘functions’. Traditionally, assigning functions to brain regions has mainly been based on
conceptualizations of functions from many different disciplines that are interested in the study
of the mind and behavior. Here we use the term ‘behavioral function’ to refer to these primarily
psychology-related constructs. ‘Episodic memory’, ‘working memory’, ‘motor preparation’,
‘visual attention’, ‘memory consolidation’, ‘speech production’, ‘perspective taking’, and
‘emotional regulation’ are a few examples of these behavioral functions. However, the Bayesian
brain hypothesis entails a different conceptualization of the functional specialization of brain
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regions. Specifically, ‘function’ refers to a computational operation performed by a given region,
which contributes to the observed behavioral output. To incorporate this viewpoint, we use the
term ‘operation-function’.

In the following sections, we first illustrate the heterogeneity of behavioral functions that have
been assigned to brain regions, according to previous approaches; these approaches are then
reviewed. We then consider how functional specialization from such conceptualizations might
be used in conjunction with recent advances in data aggregation methods to search for the
core operation-function of brain regions.

Functional Specializations as Polyhedra
For any brain region, we can think of many different behavioral functions, based on the
perspective from which we consider this brain region. In practice, most of these behavioral
functions can somehow be related to one another and seem to comprise a core computational
function (i.e., an operation-function) that grounds all behavioral associations but remains latent
and is not directly observed. In other words, our current knowledge of the functional speciali-
zation of a given brain region can be conceptualized as a polyhedron with its many sides (i.e.,
many behavioral functions), the sum of which can only be appreciated by investigation from
many different perspectives, but whose core center remains intangible.

This conceptual polyhedron can be illustrated by one of the most studied parts of the brain, the
hippocampus. It has been associated with different memory functions, such as episodic [23],
autobiographical [24], explicit [25], contextual [26], or associative [27] memory, and also with
several ‘processes’, including declarative [28] or incremental learning [29], recollection [30],
encoding [31], retention [32], consolidation [33], novelty detection [34], binding [35], compar-
ator [36], mismatch detection [37], pattern separation [38], and inferential processes [39].
Furthermore, the hippocampus has been associated with particular ‘behavioral domains’ and
‘tasks’ such as spatial navigation [40], spatial discrimination [41], scene imagination [42],
prospection [43], and allocentric representation [44]. Finally, it has been assumed that the
hippocampus supports more complex behavioral constructs, such as creative thinking or
flexible cognition [45].

Howhas such a ‘functional polyhedron’ been created?Actually, thehippocampus, like many brain
regions, is a complex structure that can be engaged in many different behavioral functions,
according to the context and to its interaction with other brain regions. Accordingly, different fields
have used different approaches and conceptual frameworks to infer brain–behavior relationships,
capturing one of its many behavioral associations. That is, ascribing behavioral functions to a brain
region has been a multidisciplinary endeavor, resulting in multiple ontologies (Box 1) and different
levels of description of mental functions, ranging from high-level behavioral descriptions to
individual tasks and isolated processes hypothesized by cognitive models [46]. Generally, when
these constructs have been related to the brain, the discipline has shaped the ontologies, and the
inferential approach has driven the level of description, producing heterogeneous conceptual
associations for any brain region. In the following sections, we review the inferential approaches
used in those different disciplines, and their concepts, advantages, and drawbacks.

How Have Functions of Brain Regions Been Inferred?
The Lesion-Deficit Approach
One of the first approaches linking brain and behavior was the lesion-deficit approach.
Following the pioneering work of Broca and Wernicke in the 19th century, one of the most

parts of the brain during a mental
task.
Transcranial direct current
stimulation: a technique of
neurostimulation in which electrodes
are placed on the head of a
participant to induce currents. It
changes neuron excitability by
modifying the membrane polarization
potential.
Transcranial magnetic stimulation
(TMS): a technique used to stimulate
the brain locally. A magnetic coil is
placed close to the scalp (without
physical contact with the head) to
induce currents, which change the
polarization of the neurons in the
area under the coil. The neural effect
of TMS depends on the frequency of
the stimulation. It can be excitatory
or inhibitory.
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famous examples in the 20th century was the study of patient H.M. by Brenda Milner and
colleagues. This patient had medial temporal lobe resection (mainly the hippocampus), which
resulted in severe anterograde memory deficits [47]. This led to the inference that the hippo-
campus plays a crucial role in the acquisition of new memories. As exemplified in this famous
study, a ‘behavioral function’ is thus inferred from an observed ‘dysfunction’ (here anterograde
amnesia) following restricted brain damage or loss. The main strength of this approach is the
causal nature of the relationship between the two studied variables (brain and behavior). That is,
observing a dysfunction following damage to a specific brain region allows one to infer a crucial
role of this region in the respective behavioral function within the intact brain. This strength goes
with the epistemological (see Glossary) limitation of being only quasi-experimental, as an
experimental approach supporting causality implies the ability to demonstrate that alternative
explanations have been eliminated. Specifically, in the lesion-dysfunction approach, the effect
of prelesion factors (e.g., subclinical strokes and/or cognitive impairment) cannot be ruled out.
In other words, the behavioral deficit (i.e., the effect on the dependent variable) could (partly) be
driven by factors other than the lesion per se, thereby threatening internal validity [48].
Furthermore, at the brain level, several issues arising from the spatially structured distribution of
lesions [49] and the influence of neuroplasticity (functional and structural adaptation to damage)
can limit the inferential power of lesion-deficit mapping (Box 2). Despite these limitations, this
approach has shaped many of the most pre-eminent assumptions about functional speciali-
zation, and is still considered a benchmark (due to its causal mechanism) against which findings
obtained from other approaches are discussed [49].

The Stimulation Approach
A more recent, experimental approach, mirroring the lesion-deficit approach but applied to
healthy participants, is the study of behavioral consequences of virtual lesions created with
brain stimulation techniques. In particular, brain activity can be locally impaired with

Box 1. Matching Brain Organization and Cognitive Ontologies

One important issue in the study of brain–behavior relationships is whether currently available ontologies and
taxonomies can be mapped onto the brain. That is, if we could capture the exact topographical organization of
the brain, it seems unlikely that we would find concepts at the current level of description of behavior that could be
mapped to the identified biological units. It seems likely that the behavioral structure as it is implemented (i.e., ‘coded’) in
the brain does not fit with past and contemporary cognitive theories of behavioral processes.

As reviewed in [16], cognitive scientists have traditionally formalized the components of behavioral function using
behavioral studies of normal and neurologically impaired individuals. As further reviewed in [77,93], the results of
activation studies have challenged the classic models, as they have evidenced overlap between neural systems
activated by tasks that share no known cognitive components. In agreement with a previous suggestion of system-
atically assigning labels that encompass the operations that each area performs [8], we propose to build a systematic
ontology with a bottom-up perspective (starting from the biological substrate: the brain).

One challenge in the future will indeed be to integrate concepts and data from disparate brain science disciplines within
a unified framework of brain biology [94]. Following up that perspective, building neurocognitive models (i.e., models
combining cognitive and anatomical models) of normal functioning and pathology relies on the organization of the
cognitive components into a single framework [16]. Such a theoretical position clearly implies that biological evidence
should drive the revision of cognitive theories, provided that the new conceptualization derived from brain–behavior data
has been robustly tested.

In addition to these theoretical considerations, one should also consider the clinical utility as a ‘quality marker’ for
psychological ontologies. That is, a behavioral/cognitive taxonomy that is in agreement with brain organization should, in
principle, also help researchers to understand, diagnose, or classify neurocognitive pathologies. Thus, in the future,
assigning operation-function to brain regions should go hand in hand with the evolution of formal cognitive taxonomies,
which in turn should benefit the understanding of neurocognitive pathology.
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transcranial magnetic stimulation (TMS), transcranial direct current stimulation, or
transcranial alternating current stimulation. Likewise, the opposite effect (i.e., facilitation by
increasing cortical excitability to enhance behavioral performance) is also possible, depending
on the protocol [50,51]. These approaches test cause–effect relationships by experimentally
manipulating local brain activity and examining its effects on behavior [52]. While representing a
powerful experimental approach, internal validity can also be limited by the influence of
individual cortical geometry and the relative lack of focality, as well as by the limited range
of regions that can be targeted (Box 2). At the behavioral level, in contrast to the lesion-deficit
approach, stimulation approaches do not tap into everyday behavior in natural settings. For the
sake of experimental control and constraints of the laboratory setting needed for stimulus
delivery, behavioral functions are usually operationalized from cognitive models (e.g., ‘memory
recall’ [53]), and inference is made on isolated behavioral parameters such as reaction time.
Thus, compared with the lesion-deficit approach, experimental brain stimulation can offer
higher internal validity, but has limited ecological validity.

The Activation Approach
In recent decades, neuroimaging techniques such as positron emission tomography (PET)
and fMRI have produced a rapid growth in the study of brain–behavior relationships [54], by
revealing localizations of brain activity changes induced by mental operations. fMRI quickly
became preferred over PET for mapping task-evoked activity because it has a better spatial and
temporal resolution [55]; and can hence localize activity changes during specific mental events,
such as successful memory encoding [56]. With this technological progress, cognitive psy-
chologists gained a new tool to test and refine cognitive models and theories [57]. In this
particular framework, the activation approach can be considered as experimental because it
allows the researcher to freely manipulate an independent variable (behavioral condition) and
observe its effect on the dependent variable (brain activation). For example, fMRI can provide
support for dual-process cognitive models (such as recollection versus familiarity) by demon-
strating that the two processes evoke distinct patterns of activity. However, addressing such
questions with fMRI requires well-controlled designs, using two conditions which differ only in

Box 2. Real and Virtual Lesions: Strong but Complicated Evidence

Localized brain lesions and stimulation approaches producing ‘virtual’ lesions may be considered as providing the
strongest evidence that the function of a brain region is causally related to a particular behavioral function, if damage to
the region indeed disrupts the performance of the respective behavior. This level of interpretation is inaccessible for
either activation studies or brain–behavior correlations, which are observational in nature and may not differentiate
epiphenomena or spurious effects.

In turn, lesion–symptom associations are complicated by the high plasticity of the human brain (e.g., [95,96]), which
results in substantial remodeling of circuitry as early as days after the insult. In addition, lesion locations are neither
uniform nor random, but either follow a spatial structure determined by the vascular tree, in case of ischemic lesion, or
mainly occur in surface structures, in the case of traumatic brain injury [49,97]. Furthermore, other factors may
contribute to the observed pattern: for example, regions that appear to be structurally intact might have their function
impaired by disconnection from, or damage to, an important ‘coworker’. As these regions are also unable to function
despite being structurally intact, the perturbations ascribed to the damaged regions may be overestimated [97,98].

Noninvasive stimulation techniques offer an experimental approach to perturbation and avoid the limitations of
neuropsychological lesion mapping such as plasticity (though there is evidence for short-term homeostatic effects),
but their application is largely limited to surface structures [99,100]. Furthermore, the questionable focality of transcranial
magnetic stimulation-induced currents [10] and influences of cortical geometry substantially impede the spatial
specificity of brain stimulation. Finally, stimulation of densely connected regions will result in uncontrolled propagation
of the pulse into spatially distant regions [5,6], inducing (uncontrolled) network effects. Thus, a well-controlled
experiment based on a stimulation approach should include an examination of the propagation of the pulse, such
as a compatible electroencephalographic recording, making this a technically challenging approach.
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respect to the target processes (i.e., a ‘pure insertion’; cf. [58]). For example, isolating
‘recollection’ in an fMRI scanner could be operationalized by contrasting recognition of intact
word pairs (which engage both recollection and familiarity) with recognition of recombined word
pairs (driven only by familiarity) [59,60]. Hence, mental functions are studied using very precise
and therefore restricted experimental implementations inferred from cognitive theories. Con-
sequently, as in stimulation studies, the mental operations a participant engages in are
conceptually distant from everyday functions (such as the vivid recollection of a recent meeting),
therefore limiting ecological validity. With regard to internal validity, the assumption of pure
insertion (the assumption that extra processes can be inserted purely, without changing
existing processes or eliciting new processes), upon which the interpretation of activation
relies, has been questioned (cf. [58]). For example, the internal validity of an fMRI study can be
questioned by the fact that epiphenomena of the experimental setting (such as higher atten-
tional demands in a task than in a control condition) cannot easily be dissociated from task-
specific effects.

The Degeneracy Principle
Historically, lesion-deficit approaches (be they neuropsychological or stimulation based) were
generally considered to be important with respect to the study of functional specialization of
brain regions, because observing a relationship between a focal lesion and a behavioral deficit
suggests that this region is necessary for performance. Hence, the lesion approach was long
considered the gold standard for identifying the necessity of a brain region for a given function.
By contrast, the activation approach was considered the optimal approach for identifying which
brain areas were sufficient for a given behavioral function. Accordingly, it was initially hoped that
a combination of lesion-deficit mapping and activation approaches would identify the neces-
sary and sufficient brain regions for a given behavioral task [58]. However, this view had to be
revised subject to the degeneracy principle (i.e., the fact that one unique behavioral output or
outcome can be achieved by different neurocognitive systems [61]). This degeneracy theory
resulted in a conceptual mourning in the human brain mapping field, as it was now considered
that ‘there may be no necessary and sufficient brain area’ for any behavioral function [58].

The Structure-Behavior Correlation Approach
In behavioral science, an alternative to the experimental approach for probing associations
between variables in natural conditions is to examine the relationships among naturally
occurring variations in different variables in a correlative manner [52]. In the study of brain–
behavior relationships, the correlational approach can be used to relate neurobiological and
behavioral characteristics through their covariation across individuals [62]. Using MRI, this is
most commonly performed by testing the correlation between brain morphology (such as local
gray-matter volume or cortical thickness [62]) and behavioral measures across a group of
individuals [63]. Structural brain–behavior correlations include studies on age, gender, and
genetic differences (e.g. [64]), studies on cognitive abilities and other psychological features
derived from tests or questionnaires (e.g., personality traits [65]), as well as studies aiming to
identify morphological correlates of specific clinical symptoms measured with clinical ratings
scales. This approach thus allows a conception of ‘behavioral function’, comprising complex
phenotypes such as skills or clinical symptoms that are evident in everyday life. For example,
episodic memory is frequently probed with the California Verbal Learning Test [66], which has
been inspired by the real-life situation of learning a grocery list, hence probing progressive
acquisition and consolidation of information in memory (e.g., [67]). Contrasting stimulation and
activation studies, but mirroring the lesion-deficit approach, ‘behavioral function’ is thus not an
abstract, experimentally controlled process, but a more ecological quantification of everyday
cognition. Nevertheless, the inferential power (i.e., internal validity) of the correlation approach is
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undermined by a lack of experimental control, which implies that possible alternative processes
and strategies may yield the same or similar behavioral outcomes [61]. The internal validity is
further reduced by the consideration that behavioral measurements could be relatively noisy
proxies of the latent construct(s) they aim to target [68]. This concern is especially noteworthy
for scores based on subjective reports, the reliability of which is frequently questioned [68].
Moreover, neurobiological features like local volume or cortical thickness estimates are influ-
enced by numerous possible factors, which may show complex relationships with the covariate
of interest. This, in turn, may lead to spurious brain–behavior associations (cf. discussion [69]).

Summary and Conclusions
In summary, associations between behavioral functions and brain regions have been studied by
different research fields, which have different concepts of behavioral functions and use different
inference approaches. Beyond technical strengths and weaknesses, the potential of these
different approaches to associate particular behavioral functions with particular brain regions
has been discussed with respect to ecological validity and internal validity (two epistemological
qualities considered in behavioral sciences). With all their different strengths, these approaches
have together contributed to assign multiple behavioral functions, corresponding to different
levels of description, to brain regions.

Although the complementarity of the different approaches can be seen as offering richness in
behavioral associations for brain regions, the original goal of individual studies was typically to
focus on a behavioral function and map it to a brain region, rather than elucidating the exact
function of a given region. That is, the a priori defined construct was a mental operation, and the
object of inference was the brain region that was related to it. We would contend that this
modus operandi has only a very limited capacity to answer the initial question: ‘What does any
part of the brain do?’ In particular, any inference about the role of any brain region that is derived
using this modus operandi is complicated by the principle of degeneracy [61].

For example, investigation into the association between the hippocampus and associative
memory retrieval can be obscured by the fact that recalling an association of two items can be
performed either by retrieving a unitized item integrating both components, or by retrieving the
two associated items; with the second cognitive strategy being more likely to recruit the
hippocampus [70,71]. Accordingly, regardless of the approach used, finding a role for the
hippocampus in the behavioral outcome depends on the neurocognitive aspects that the
behavioral paradigm or measure mostly captures, and the neurocognitive system that the
individual(s) recruit (different participants can recruit different neurocognitive systems). Conse-
quently, identifying a role of the hippocampus in associative retrieval could require several
studies, covering a very heterogeneous range of behavioral paradigms or measures and
performed across different population samples.

In conclusion, assessing the relative functional specialization of brain regions critically requires a
change in viewpoint, where the a priori defined construct is the brain region and the unknowns
are the behavioral functions associated with it [72]. This implies screening a vast range of
potential behavioral associations for a given brain region, and examining which of these are
associated with the region of interest in an unbiased, statistically testable manner that accom-
modates the aforementioned complementarity of different approaches with respect to behav-
ioral aspects. Recent advances in both data availability and statistical methods have provided
very promising avenues for such region-of-interest-based approach.
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Recent Tools Aiding Progress
Activation Data Aggregation
An overview of the behavioral functions engaging a given brain region could be achieved by
scanning a group of individuals for a large range of behavioral conditions that target different
mental functions. This approach has recently been undertaken with 12 participants as part of
the Individual Brain Charting project.i With its ongoing development of specific decoding tools,
this and related projects could significantly contribute to our understanding of the behavioral
engagement of brain regions, providing rich and heterogeneous patterns of region–behavior
associations at the individual level. Nevertheless, ensuring that patterns of association go
beyond the idiosyncrasies of the specific experimental designs and participants will require data
integration across many independent studies [73]. Thus, a ‘subject level’ functional polyhedron
that capitalizes on aggregation of experiments within-subject could complement findings from
across-studies data aggregation.

Integration across studies has now become possible due to two initiatives compiling the results
of published activation studies: BrainMap [74,75] and Neurosynth [76]. Although differing in
their approach to data extraction and labeling (Box 2), both contain the coordinates of local
activation maxima as reported by many thousands of neuroimaging papers, along with
descriptions of the behavioral conditions that yielded the respective activity patterns (e.g.,
‘saccades’). By applying statistical tests accounting for the base rate of activation for a given
region and the base rate of each behavioral condition in the database, the consistency of
particular behavioral associations across thousands of studies can be analyzed for any region
of interest. Such approaches could be seen as ‘functional behavioral profiling’ (‘functional’
referring to the use of activation data).

Using such an approach, it has recently been demonstrated that the anterior insula is engaged
in a very wide range of fMRI tasks [77], suggesting a generic functional role, such as task
engagement maintenance; that could account for all the more specific mental processes that
have previously been discussed for this region. As illustrated in this example, the patterns of
associations across a wide range of tasks can foster new hypotheses, approximating as much
as possible the core role of the region (and thus its operation-function), beyond the behavioral
ontology of the original studies or the database. In a recent study, screening the range of
studies activating the left rostral dorsal premotor cortex (PMd) revealed that this subregion was
activated whenever the task required abstraction from the actual spatial (e.g., scene imagina-
tion), temporal (e.g., explicit memory), or mental frame (e.g., deception) ([78], Figure 1). This
observation was only possible after integrating activations across different tasks and behavioral
domains, and we can speculate that this ‘abstraction’ property actually reflects the use of
sequential processing (spatial or temporal) in the PMd for various types of predictions beyond
the current framework, in line with the Bayesian brain hypothesis.

Although databases of activation data have existed for many years, systematic ‘functional
behavioral profiling’ using these databases is still in its infancy. While this approach shows great
potential for disclosing wide patterns of associations, many statistical considerations have to be
taken into account. This difficulty has been illustrated recently by a vigorous debate over the
functional specialization of the anterior cingulate cortex (ACC), based on conflicting conclusions
derived by two groups of authors [79–81]. Such discussions highlight the need to critically
investigate the inferential approaches that rely on different statistical considerations, when
aiming to comprehensively characterize the pattern of associations for a given brain region.
Somewhat relatedly, the use of activation databases for behavioral profiling of brain regions
has, to date, focused on single databases while, as discussed in Box 3, BrainMap and
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Neurosynth show complementary limitations and advantages, suggesting that their combina-
tion could provide a more comprehensive profiling and better overview than the previous focus
on either of them in isolation. Finally, while a quantitative summary of activation data may thus
disclose patterns across tasks from different research fields, it does not allow for disentangling
whether the engagement of the brain region plays a crucial role in task performance or whether
it is just an epiphenomenon related to experimental implementation (such as more intense
visual fixation or cognitive engagement). This highlights the potential benefit of a correlational
approach using more naturalistic tasks to complement our view on behavioral associations for a
given brain region. The potential outcomes and limitations of such an approach are discussed
in the next section.
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Figure 1. Illustration of Behavioral Functional Profiling for the Left Rostral Dorsal Premotor Cortex (PMd). Activation databases (such as BrainMap and
Neurosynth) contain a collection of activation peaks that have been reported in stereotactic space in scientific papers, as well as information on behavioral conditions
associated with these peaks (based on the behavioral task that the participants had to perform in the MRI scanner). For a given brain region-of-interest (here the rostral
left PMd), we searched among all the peaks of activation reported in the BrainMap database for those that were located in this region. In this database, the behavioral
condition related to each peak is specified in terms of behavioral paradigms and behavior domains. Examining the behavioral paradigms and behavioral domains in
which the peaks of activation were consistently reported in the region-of-interest allowed us to establish a behavioral profile of this region. As illustrated in the left inferior
panel, the left rostral PMd was found to be activated in experimental tasks probing explicit memory, object or scene imagination, and deception [78]. The face used to
illustrate a recognition paradigm comes from the Glasgow Unfamiliar Face Database (GUFD) [104].
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Correlation in Large-Scale Population Samples
An emerging ethos of data sharing has promoted open access to a growing number of large
datasets of neuroimaging and phenotypical data [82,83]. The Human Connectome Project
(HCP, [84]), the 1000Brains study [85], and the UK Biobank [86] are instances of such initiatives.
They provide multimodal brain imaging, information on history and current life-style, question-
naire scores, and a substantial range of standard neuropsychological measures that address
several cognitive dimensions, such as working memory, executive functions, and verbal
learning. Brain characteristics measured with MRI in large-scale population data show a natural
covariance with cognitive phenotypes (Figure 2A, [86]), which allows a standard correlation
approach for identification of specific brain regions that are related to behavioral dimensions of
a priori interest (such as conscientiousness [65], Figure 2B). It would also allow evaluation of a
specific association between a region of interest and a priori selected behavioral variables (such
as hippocampus volume and memory performance [87], Figure 2C) within a hypothesis-driven
framework.

Supporting the validity of such an approach to capture brain–behavior relationships, measures
tapping into similar aspects of behavior tend to show correlation in the same brain region (such
as immediate recall and delayed recall in a list-learning task [87], or extraversion and consci-
entiousness in the assessment of personality [65]). Such relationships open the perspective of
an exploratory approach searching for significant associations between brain measurements in
an a priori selected region of interest and a wide range of psychometric variables. That is,
capitalizing on the hypothesis that neurobiological features such as gray-matter volume and
cortical thickness covary locally with behavioral characteristics [62,88], the behavioral functions
in which a given brain region potentially play a relative role could be inferred from its structural
brain–behavior correlation across the range of phenotypical variables. As this approach is built
on a very distinct conceptualization of mental functions through the assessment of complex,

Box 3. BrainMap and Neurosynth

BrainMap and Neurosynth are both collections of results of activation studies, consisting of reported coordinates and
information about the experimental context. BrainMap [75,101] is based on manual encoding of spatial coordinates and
behavioral conditions, according to an expert-defined ontology. That is, each reported set of coordinates is encoded
with respect to the employed paradigm, the assessed contrast, and other aspects such as stimuli or required
responses. This labeling is cross-validated by a second investigator, yielding a rigorous standard of labeling, resulting
in rather slow growth and confinement to an a priori taxonomy.

Neurosynth [76], by contrast, is based on automated text-mining. First, coordinates are extracted from published
neuroimaging articles using an automated parser, without distinction between different contrasts or experiments. Thus,
one major difference between both databases is that BrainMap works on the experiment level (single contrast) and
Neurosynth on the study level (complete paper). In the latter database, each article is then ‘tagged' with those terms that
occur with high frequency in the abstract of the paper. This automated parsing has the advantage of not being limited by
a predefined set of labels. By contrast, it comes with the drawback that the descriptions are solely based on the words
used to describe the study by the authors. Consequently, the labels will summarize the conceptual terms that the
researchers (or the reviewers) wanted to see addressed, not necessarily the behavioral function or process that was truly
isolated.

Thus, both databases are based on current psychological ontologies and terminology but may provide slightly different
behavioral information for a given brain region. For example, memory-related terms associated with the hippocampus in
BrainMap would be ‘explicit memory’, while Neurosynth would provide terms such as ‘remember’, and ‘remembering’.
While the former lacks semantic precision, the latter could be (spuriously) driven by the fact that many studies
addressing ‘remember’ have focused on the medial temporal lobe. As region-of-interest studies are not excluded
in Neurosynth, there is a potential for self-fulfilling prophecies. Hence, each approach has its own strengths and
drawbacks, and deeper insights would likely result from their combination.

Trends in Cognitive Sciences, April 2018, Vol. 22, No. 4 359



3 4 5 6 7 8 9

13.5

11.5

9.5

7.5

5.5

3.5

1.5

-0.5

-2.5

40

30

20

10

0

-lo
g 1

0(
P)

1400

1200

1000

800

600

400

10 20 30 40 50

Hippocampal/intracranial volume ra o

Female
Male

GM
V 

in
 c

un
eu

s

Conscien ousness

UK biobank sample (n = 5285)

HCP sample (n = 364) ADNI MCI sample (n = 694)

(A)

(B) (C)

De
la

ye
d 

re
ca

ll

Female
Male 

Ph
ys

ic
al

bo
ne

 d
en

si
ty

 a
nd

 si
ze

Li
fe

st
yl

e 
ge

ne
ra

l
Ea

rly
 li

fe
 fa

ct
or

s

Li
fe

st
yl

e
ex

er
ci

se
 a

nd
 w

or
k

Li
fe

st
yl

e
fo

od
 a

nd
 d

rin
k

Li
fe

st
yl

e 
al

co
ho

l
Li

fe
st

yl
e 

to
ba

cc
o

Ph
ys

ic
al

ge
ne

ra
l

Ph
ys

ic
al

 ca
rd

ia
c

Bl
oo

d 
as

sa
ys

Co
gn

i
ve

ph
en

ot
yp

es

Bonf
FDR

Figure 2. Structural Brain–Behavior Correlation Approach. (A) Manhattan plot relating a set of cerebral measures derived from anatomical images to non-brain
phenotypical variables (1100 variables clustered into major groups along the x-axis) in the UK BioBank cohort. For each variable, the significance of the cross-subject
correlation with each brain measure set is plotted vertically in units of �log10 [86]. (B) Positive correlation between conscientiousness scores and gray-matter volume
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Alzheimer’s Disease Neuroimaging Initiative (ADNI) [87]. Abbreviations: Bonf, Bonferroni correction; FDR, false discovery rate; n, number of participants.
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ecologically more valid tasks than the specific contrasts offered by the activation approach, it
should reveal complementary patterns of behavioral association for any given region. Thus,
ultimately, for a given brain region, the pattern of behavioral associations revealed by this
structural correlation approach should be integrated with the pattern of behavioral associations
derived from activation data, to offer a multiconceptual and multimodal pattern of behavioral
associations for any brain region. This hybrid approach would, in turn, help to develop new
hypotheses on the operation-function of any region.

Toward Testing of Interaction Models and Finer Scales
The correlation approach and, more generally, any data-driven approach using big datasets in
which researchers just ‘let the data speak’ have their own limitations, as the neuroimaging and
psychometric data may contain substantial noise [89], with confounding factors partly driving
the observed effect [68]. Ultimately, the function of any brain region should be considered within
an integrative approach, including not only patterns revealed by local properties, but also
interactions with other brain regions. In other words, data-driven approaches that adopt a
functional segregation view and are applied to aggregated observations, offer a great oppor-
tunity for exploratory work and discovery science, but any resulting ‘operation-function’
hypothesis should be integrated into a functional model, tested with a hypothesis-based
approach. As discussed previously, each approach has its own technical and scientific
strengths and limitations, suggesting that a comprehensive evaluation of a given hypothesis
should capitalize on a combination of different approaches, rather than focus exclusively on any
one of them (see Outstanding Questions). Technical advances can now offer better experi-
mental control, such as by combining electroencephalography (EEG) with focal brain stimula-
tion [90]. Furthermore, Bayesian-based methodological frameworks, such as dynamic causal
modeling, have been successful in recent years in the statistical testing of neurocognitive
models, and can now even be extended to combined EEG–fMRI paradigms [91]. Altogether,
these technical and methodological developments hold great promise for testing models of
operation-functions computed by different brain areas in interaction.

As previously discussed [16], in humans, assigning behavioral functions to neuronal popula-
tions using a noninvasive neuroimaging approach is restricted by the spatial resolution and
precision of these techniques. In particular, individual differences in neuroanatomy can result in
mixed functional activation patterns when data from several participants are aggregated in fMRI
studies. Several improved approaches for areal alignment across participants in MRI data have
been proposed, allowing further examination at the individual level of the structure–function
relationships that are suggested by large-scale activation data aggregation (Box 4). Neverthe-
less, the spatial scale of local functional specialization remains limited by the intrinsic spatial
resolution of MRI. That is, activation/structure–behavior covariance within a predefined area
could represent a mixture of spatially proximate but functionally independent units, whose
separation cannot be resolved by MRI. One consequence of this intrinsic spatial resolution is
that inference approaches can only assign a ‘supraordinal’ function to a given brain area,
summarizing the different functions performed by different neuronal subpopulations contained
within a voxel. Invasive human studies and animal models could further test this hypothesis and
help to refine our knowledge of the functional specialization of particular cell populations, such
as place cells in the hippocampus (see e.g., Stachenfeld et al. [92]), and thus complement
functional specialization patterns derived from other approaches.
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Concluding Remarks
Despite centuries of study of brain–behavior relationships, a clear formalization of the function
of many brain regions, accounting for the engagement of the region in different behavioral
functions, is lacking. Recent progress in data aggregation methods has opened a wide avenue
for a systematic, multiconceptual characterization of behavioral associations for any brain
region. On the one hand, previous decades of fMRI and PET activation experiments have
provided a wealth of results that can be used to shift the perspective toward searching for the
range of behavioral associations of brain regions using a quantitative approach. On the other
hand, large-scale population datasets open new possibilities for a complementary approach
based on covariance between neurobiological and behavioral features. This hybrid behavioral
profiling could leverage the myriad of behavioral aspects of any brain region, hence progres-
sively unveiling the nature of the function of brain regions and networks.
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