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Abstract—The direct matrix converter has twenty-seven avail-
able switching states which implies that the implementation of
predictive control techniques in this converter requires high com-
putational cost while an adequate selection of weighting factors
in order to control both input and output sides of the converter.
In this paper, two indirect model predictive current contro l
strategies are proposed in order to simplify the computational
cost while avoiding the use of weighting factors. Both methods
are based on the fictitiousdc-link concept, which has been used
in the past for the classical modulation and control techniques
of the direct matrix converter. Simulated results confirm the
feasibility of the proposed techniques demonstrating thatthey
are an alternative to classical predictive control strategies for the
direct matrix converter.

Index Terms—current control, matrix converters, predictive
control, finite control set model predictive control, fictitious dc-
link.

NOMENCLATURE

is Source current [isA isB isC ]
T

vs Source voltage [vsA vsB vsC ]
T

ii Input current [iA iB iC ]
T

vi Input voltage [vA vB vC ]
T

idc Fictitious dc-link current
vdc Fictitious dc-link voltage
i Load current [ia ib ic]

T

v Load voltage [va vb vc]
T

i
∗ Load current reference [i∗a i∗b i∗c ]

T

Cf Input filter capacitor
Lf Input filter inductor
Rf Input filter resistor
R Load resistance
L Load inductance

I. I NTRODUCTION

In comparison to traditional back-back converter, the direct
matrix converter (DMC) provides a compact, high power
density and reliableac/ac solution [1]. Due to the stated
benefits, the DMC has been employed in various aerospace and
military applications [1]. Some of the renowned modulation
and control techniques, that have been applied to the DMC, are
Venturini Modulation, Pulse Width Modulation (PWM), Space
Vector Modulation (SVM), Direct Torque Control (DTC) and
Model Predictive Control (MPC) [2]. MPC has emerged as
a real alternative for the control of power converters [3].
MPC utilizes mathematical model of the system to predict
the optimal switching state to be applied in the next sampling

period. The optimal switching state is the one which minimizes
cost function in order to achieve certain control objectives by
calculating the cost function against all of the valid switching
states of the converter. This implies that a converter with
higher number of switching states, such as in DMC with a
total of 27 switching states, will possibly require exceptional
computational power. In this paper an indirect model pre-
dictive current control strategy is proposed which avoids the
weighting factors by defining separate cost functions for each
of the control objectives. The idea is to consider DMC as a
two stage converter linked by a fictitiousdc-link allowing a
parallel and independent control of input and output stages,
therefore avoiding the use of weighting factors. Two methods
are proposed in this paper. Both methods have a load current
control but the first method considers the minimization of the
instantaneous reactive input power and the second, imposesa
sinusoidal source current on the input side.

II. M ATHEMATICAL MODEL OF THEDMC

The DMC, shown in FIg. 1, is a directac/ac converter
composed of bidirectional switches. Between theac source
and bidirectional switches, an input filter is connected fortwo
purposes: to prevent over-voltage due to fast commutation
of currents ii, which produces short-circuiting the power
supply and to eliminate high-frequency harmonics in the input
currentsis. Due to the voltage source at the input and the
current source at the output, constraints of the converter ca be
expressed by:

SAy + SBy + SCy = 1, ∀ y = a, b, c (1)

The relations between the input and output variables of the
DMC are defined by:

vo = T vi (2)

ii = T
T
io (3)

whereT is the instantaneous transfer matrix defined as:

T =





SAa SBa SCa

SAb SBb SCb

SAc SBc SCc



 (4)

There are some techniques that uses the concept of fictitious
dc-link in order to simplify the modulation and control of the
DMC [4], [5].
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Fig. 1. Power circuit of the direct matrix converter.
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Fig. 2. Representation of the fictitiousdc-link concept for the DMC.
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Fig. 3. Current and voltage space vectors of the fictitious converter. Left:
current space vectors for the fictitious rectifier, right: voltage space vectors
for the fictitious inverter.

The method consist in dividing the converter in a current
source rectifier and a voltage source inverter linked by a
fictitious dc-link such as represented in Fig. 2. The rectifier
have associated six active current space vectors which are
represented in Fig. 3 (left). The inverter has associated eight
voltage space vectors which are represented in Fig. 3 (right).
The technique modulates both converters separately, but con-
sidering the relationship between both stages. This allowsthat
one stage of the converter can be controlled by one modulation
or control technique and the other stage by another.

III. PROPOSEDINDIRECT MODEL PREDICTIVE CONTROL

METHOD FOR THEDMC

The control diagram of the proposed technique are repre-
sented in Fig. 4 and Fig. 5, respectively. The mathematical
model of the rectifier stage has the input phase voltagesvi

and fictitiousdc-link current idc as inputs and the fictitious

dc-link voltage vdc and input currentsii as outputs. This is
shown in equations (5) and (6), respectively:

vdc =
[

Sr1 − Sr4 Sr3 − Sr6 Sr5 − Sr2

]

vi (5)

ii =





Sr1 − Sr4

Sr3 − Sr6

Sr5 − Sr2



 idc (6)

As indicated in Fig. 3 (left), there are six active current
space vectors which correspond to the suitable switching states
of the rectifier. The proposed technique detailed in Fig. 4,
consists in controlling the input side of the converter by con-
sidering these available switching states and consideringthe
mathematical relationship between input and output voltages
and currents.

Similar to the classical predictive strategy in the DMC,
for the control of the input side it is necessary to have the
prediction model of the source current given by:

dis
dt

=
1

Lf

(vs − vi)−
Rf

Lf

is (7)

dvi

dt
=

1

Cf

(is − ii) (8)

Since the predictive controller is formulated in discrete time,
it is necessary to derive a discrete time model for the load-
converter system. From [6], the cost function for the input
reactive power minimization method i.e.gr is defined as;

gr = [vsα(k + 1)isβ(k + 1)− vsβ(k + 1)isα(k + 1)]2

(9)
For the imposed sinusoidal source current method, the cost

function gr is defined as:

gr = [i∗sα − isα(k + 1)]2 + [i∗sβ − isβ(k + 1)]2 (10)

In the first method, the reference of the instantaneous
reactive power minimization is defined asQ∗(k) = 0 and for
the second method i.e. imposing the sinusoidal source current,
it is recommend to review [7] in order to define the source
current referencesi∗s(k).

The control diagram of the inverter stage is represented
in Fig. 5. For the mathematical model of the inverter it is
considered the output currentsi and fictitiousdc-link voltage
vdc as inputs, and the fictitiousdc-link current idc and the
output voltagev as outputs. This can be seen in equations
(11) and (12), respectively:

idc =
[

Si1 Si3 Si5

]

i (11)

v =





Si1 − Si4

Si3 − Si6

Si5 − Si2



 vdc (12)

The mathematical model of the load, assuming a passive
RL load, is defined as:

v = L
di

dt
+Ri (13)
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Fig. 4. Indirect predictive control strategy for the fictitious rectifier.
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Fig. 5. Indirect predictive control strategy for the fictitious inverter.

With these definitions, it is possible to define the prediction
model of the output side using a forward Euler approximation
in eq. (13), such as:

i(k + 1) = c1v(k) + c2i(k) (14)

where, c1 = Ts/L and c2 = 1 − RTs/L, are constants
dependent on load parameters and the sampling timeTs.

Finally, the associated cost functiongi for the output stage
in α-β plane is defined as:

gi = (i∗α − iα(k + 1))2 + (i∗β − iβ(k + 1))2 (15)

As it is necessary to apply the switching signals to the
switches of the DMC, it is required to adapt the switching
states of both input and output fictitious stages to the real
one. This is given by the relationship between input and output
stages and described as follows. As indicated in eq. (2), the
relationship between the input voltagevi and load voltage
v depend on the state of the switching given by matrixT.
Based on the fictitious definition, the load voltagev is given

as indicated in eq. (12). At the same time, the fictitiousdc-link
voltagevdc is given by eq. (5). In summary,

v =





Si1 − Si4

Si3 − Si6

Si5 − Si2





[

Sr1 − Sr4 Sr3 − Sr6 Sr5 − Sr2

]

vi

(16)
and thus the relationship between the switches of the DMC
and fictitious converter is given as:





























SAa

SBa

SCa

SAb

SBb

SCb

SAc

SBc

SCc





























=





























(Si1 − Si4)(Sr1 − Sr4)
(Si1 − Si4)(Sr3 − Sr6)
(Si1 − Si4)(Sr5 − Sr2)
(Si3 − Si6)(Sr1 − Sr4)
(Si3 − Si6)(Sr3 − Sr6)
(Si3 − Si6)(Sr5 − Sr2)
(Si5 − Si2)(Sr1 − Sr4)
(Si5 − Si2)(Sr3 − Sr6)
(Si5 − Si2)(Sr5 − Sr2)





























(17)

IV. RESULTS

To validate the effectiveness of the proposed method,
simulation results in Matlab-Simulink were carried out. The
simulation parameters areCf=21 [µF], Lf=400 [µH], Rf=0.5
[Ω], R=10 [Ω], L=10 [mH],Ts=10 [µs] and a simulation step
of 1 [µs]. A step change in the load current is applied to the
converter in order to evaluate the performance of the proposed
strategy in terms of dynamic response. This analysis is done
as depicted from Fig. 6 to Fig. 9. In Fig. 6 are shown the
input variables where is observed a resonance of the input
filter due to the current step variation, Fig. 6(a). This effect
is not evidenced when an imposed waveform is established
in the controller (Method II) such as shown in Fig. 8(a).
In both cases and despite of the resonance for the first case
(Method I), it is also evident the good performance of the input
filter which mitigates almost all the high harmonic frequencies
observed in Fig. 6(b) and Fig. 8(b) which are produced by the
commutation of the switches. In Fig. 7(a) and Fig. 9(a) is
observed a good dynamic response of the load currentio to
its respective referencei∗o with a very fast dynamic response
and a very good tracking of the load current. The step change
is from I∗o=10[A]@150Hz toI∗o=12.5[A]@50Hz.

V. CONCLUSION

In this paper, indirect model predictive current control
strategies for a direct matrix converter has been presented.

Both methods use the idea of fictitiousdc-link to separate
the control of both input and output stages of the converter,
reducing the control complexity and excessive computations
required in determining the correct weighting factors for input
and output currents. The method with an imposed sinusoidal
source current at the input side not only eliminates the effect of
input filter resonances but also presents better dynamic results
in transient state.
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Fig. 6. Simulation results of the proposed method in transient state (Method
I): (a) source voltagevsA [V/25] and source currentisA [A]; (b) capacitor
voltagevA [V/10] and input currentiA [A].
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Fig. 7. Simulation results of the proposed method in transient state (Method
I): a) load currentsio [A]; b) load voltageva [V].

By considering the proposed strategy, it is possible to tune
the weighting factors in a multiple objective cost function
without requiring excessive computational power.
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