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ABSTRACT: It is estimated that to overcome rolling resistance (RR) a typical vehicle on average 

consumes 4152 MJ/119 litres of fuel annually depending not only on vehicle-related factors but also 

pavement-related ones. A slight improvement in surface properties may thus decrease fuel 

consumption bringing substantial long-term socio-economic benefits per capita/country. This aligns 

with ever-tighter limits on CO2 in the EU (95 g/km until 2021) fostering sustainable 

construction/exploitation of tyres and pavements. This paper outlines a newly developed multi-scale 

3-D numerical methodology to quantify texture-dependent RR due to indentation of aggregates into 

visco-elastic tread compound. It consists of a micro-scale tread block - single aggregate model and a 

macro-scale car tyre finite element model, rolling in a steady state mode over a rigid smooth surface. 

Micro-scale interaction rates are deduced from the macro-scale model. Tread compound is simulated 

by application of a time-dependent linear visco-elastic model. The micro-scale simulations enabled 

quantification of RR induced by an arrangement of surface aggregates. The outlined texture-

dependent RR estimates are based on contact force moment around the contact patch centre. The 

computed contact force results show a significant peak of normal force due to visco-elastic and inertia 

effects at the onset of the tyre-surface contact phase, followed by a gradually decreasing/relaxing 

stress region with a sudden release at the end of the interaction. The contact forces appear to be of a 

reasonable distribution and magnitude. The proposed approach allows prediction of RR losses due to 

compressive forces at the micro-scale. Macro-distortional RR (which is not the subject of this paper) 

would then have to be added to find the total tyre-related RR.  

KEY WORDS:  rolling resistance, tread block, hemispherical aggregate, multi-scale model, 

vertical velocity, contact mechanics, fuel consumption 
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Introduction 

In view of an escalating transportation demand, particularly in the USA and Europe, ever-

stricter regulatory emission limits (95 g/km by 2021 in the EU) are being enforced by 

governments all over the world to minimize detrimental impact on the quality of life. Both 

vehicle/tyre and pavement research centers are therefore in constant search of ways to enable 

operation of tyres and roadways at an increased sustainability level. While vehicle and tyre 

makers, and now also highway institutes, have made considerable progress in enhancing fuel 

economy in terms of aerodynamic drag, drive-train and tyre/roadway rolling resistance (RR) 

[1, 2], pavements represent a potential key to further reducing energy loss. It is estimated that 

to overcome RR a typical vehicle on average consumes 4152 MJ/119 litres of fuel yearly 

depending not only on tyre-related characteristics such as structural composition or material 

compound properties, but also on pavement-related factors, of which weak pavement 

structure and rough texture have been found to cause extra fuel consumption [3, 4].  

RR is a cumulative term that comprises a suite of energy loss mechanisms, whose total value 

typically ranges from 25 to 80 N per car tyre [19]. These energy losses vary in magnitude and 

simultaneously occur because of the following causes:  

 tyre macro-distortional, mainly visco-elastic dissipation (texture-independent)  

 micro-distortional visco-elastic and inertial dissipation (texture-dependent)  

 pavement macro-distortional dissipation (texture-independent) 

Texture-independent energy dissipation in the tyre is generally attributed to macro-

distortional hysteresis that appears as a result of compressive, tangential (shearing/micro-

slippage and shear-related inertia) and wave-induced inertial deformations. The deformation 

is caused by flattening of the contacting tread part leading to compression, shearing and 

bending of the tread part and bending of the crown, sidewall and bead elements. Shear-

induced inertial forces are activated when the tread is in a slippage phase and are usually 
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incorporated into a resultant tangential force. According to Michelin [5], tread compression 

and longitudinal shearing share the greatest portion of the energy consumption. Additionally, 

the losses could be amplified by standing waves, centrifugal and to lesser extent Corriolis 

forces.   

Micro-distortional losses are triggered by aggregate indentations into elastomeric tread 

compound. These indentations generate local compression which includes a visco – elastic 

and an inertial component that affect the moment balance in the contact region. Figure 1 

illustrates that this part of RR is dependent on penetration of individual stones and the 

distance between adjacent asperities. 

Figure 1 Close-up view of multi-indentation effects as a result of array of stones (not to scale) 

The presence of road protrusions could slightly modify tread-related tangential 

stresses/excitations, which were included in the macro-distortional term, permitting the tread 

block to rise and descend throughout the stick-slip phase. Aggregate texture, tread block 

shape and in general tyre profile all influence the forces contributing to RR. 

Unlike the two previous terms, irrecoverable pavement energy dissipation is formed as a 

consequence of wave propagation along, across and inside the road structure that leads to an 

asymmetrical deflection bowl under the tyre. According to recent numerical predictions [4], 

stiffness of the uppermost pavement layer is much more influential than that of lower layers; 

thus, a stiffer upper pavement saves energy. In the scenario examined in [4], changing from a 
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flexible to a rigid pavement may reduce pavement RR by approximately 3 N per HGV tyre at 

40 kN. Other models (e.g. Akbarian [6]) have been developed, confirming the main findings.        

Knowledge gaps and objectives      

Most of the studies on aggregate indentation effects have emphasised structural vibration, 

noise radiation, wear resistance and friction [7, 8]. Meanwhile the majority of semi-empirical, 

analytical and numerical models have focused on macro-distortional RR, ignoring road 

irregularities and associated small interfacial deformations [9, 10, 11]. Some have developed 

tread-asperity indentation models studying contact stress distribution, but have omitted 

energy loss calculations [12, 13]. Only a few have produced estimates of energy losses due to 

stone indentation [14, 15, 16, 17, 18], and not all of these have clearly distinguished micro-

distortional loss from tyre macro-distortional loss. 

Due to the lack of detailed numerical RR predictions, pavement-tyre interaction, which is 

believed to account for 7% - 18% of total vehicle energy consumption in Europe [8, 19], is 

still very much of interest. Specifically, the key factor that has been ignored is the individual 

stone effect (micro-distortion) with both tread inertia and visco-elastic components. None of 

the existing models has attempted to examine these individual components, often 

representing protrusions as a series of 2-D/3-D linear or non-linear spring-dampers or through 

spectral representation derived from scanned real-life surfaces. There is a need to fill this 

knowledge gap and propose an approach that would, in the long-term, assist in optimising 

tyre treads and road surface topography for minimal RR without compromising skid 

resistance and drainage function. 

The objective here is to present a computationally efficient numerical multi-scale 

methodology in order to compute the micro-distortional RR induced by single particles of 

macro-texture (0.5mm – 50 mm bandwidth). The model involves macro-scale (whole tyre) 
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and micro-scale (tread-asperity interaction) analyses as explained below and has been 

developed using Abaqus commercial software. 

Macro-Scale Model 

The macro-scale model is of a 175 SR14 3-D slick radial Yokohama tyre adapted from 

Abaqus open source [25]. In accordance with the ABAQUS documentation, the first step is to 

generate a half axi-symmetric model for 2-D inflation analysis. The adapted tyre cross-

section consists of rubber-based components such as the tread and sidewalls, and two belts 

and the carcass, which are made up of fiber-reinforced composites. The tread and sidewalls 

have been discretised with CGAX4H and CGAX3H hybrid elements with twist and modelled 

as a viscoelastic material, the properties of which have been supplied from the tyre 

manufacture. The application of this material model to a tyre construction, in which it is not 

actually used, is considered to be justifiable since the micro-distortional RR methodology is 

being proposed in generic.  

In turn, the belt and carcass fiber parts have been represented as a linear elastic material with 

elastic modulus, Poisson’s ratio and density, respectively, being equal to 172.2 GPa, 0.3, 

5900 kg/m
3
 and 9.87 GPa, 0.3, 1500 kg/m

3
 [25]. The reinforcement belts and carcass have 

been meshed with a rebar layer in SFMGAX1 surface elements being embedded in host 

continuum elements CGAX4H. In order to prevent an offset of the embedded element nodes 

from the host element edges resulting from numerical roundoff, a roundoff tolerance is 

specified. The introduction of a roundoff technique enhances the performance by adjusting 

the positions of embedded elements to lie precisely on the host elements and thus minimizes 

the number of constraint equations used to embed surface elements.   

A half 3-D tyre is produced by revolving the half cross section model about the rotation axis 

and then reflecting it to generate a full 3-D tyre. The analysis comprises three stages: static, 

braking/traction and steady-state rolling are conducted sequentially. The results from each 
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analysis are transferred to the subsequent models using a transfer capability. The static tyre 

analysis provides the boundary conditions for the braking/traction analysis, and the 

braking/traction model is the basis of the steady-state tyre rolling simulation. The main 

purpose of the macro-scale tyre model for this research is to provide loading, stationary and 

unloading rates for input into the micro-scale simulation.  

Evaluation of tyre distortion has been carried out applying Abaqus/Standard Steady-State 

Transport Analysis in a mixed Arbitrary Lagrangian Eulerian (ALE) formulation travelling 

against a smooth rigid road. In this framework, the deformation is described by a Lagrangian 

method whilst the rigid body rotation is characterised by an Eulerian framework. To 

overcome local material instability, the STABILIZATION option was used to introduce 

artificial viscous forces. To account for nonlinearity effects that arise due to large 

deformations, the NLGEOM function was activated. Inclusion of centrifugal forces into the 

analysis has been done using the INERTIA command. Slip tolerance value    has been set to 

0.02 as more relaxed (larger) values generally prevent convergence. Efficient computational 

speed has been achieved by incorporating a finer mesh in the footprint region covering 40°of 

arc and a coarser mesh covering the remaining 320°, both being discretised with general 

linear hybrid elements (C3D8H and C3D6H) suitable for incompressible material (Figure 2). 

The total numbers of nodes and elements in the model were 13548 and 7255, respectively, as 

illustrated in Figure 2. Steady-state tyre analysis was conducted under 3300 N (
1P ) loading 

condition at an inflation pressure of 200 kPa.  

Application of free rolling conditions 

As a first step, free rolling conditions have to be reached, and for this it is necessary to 

separately (and correctly) specify the wheel velocity ( xV ) and its angular velocity ( 2 ). One 

of the possible techniques is to determine the effective rolling radius effR  of a tyre, spinning 
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on a frictionless surface, based on the average tread surface horizontal velocity and then to 

calculate the required angular velocity for steady-state rolling: 

   effxfreeroll RV /                                                                                                                                        (2) 

Figure 2 An example output of RF1 and RM2 balance pair for derivation of the RR and 

contact force distribution at the end of time step at 3300 N, 200 kPa, 0.7 coefficient of 

friction, 100 kph rolling speed (left) and FE-discretised  tyre structure (right) 

Alternatively, the free rolling angular velocity can also be found through trial and error [20] 

such that the moment balance about the rim centre becomes virtually zero ( Nm05.0 , where 

achievable). This second approach has been applied for approximate determination of free 

rolling conditions. After experimentation the time step used in computation was 1.0 sec; the 

initial and analysis time increments were taken as 0.001 and 0.01 secs respectively. These 

were found to give good convergence. 

The adopted procedure was as follows: 

 estimate the angular velocity value for the first run 

 increase/decrease the angular velocity ( 2 ) depending on RR moment about the hub  



 

 9 

 select 2  such that the RR moment (RM2 in Figure 2) ~ 0, output the reaction force 

in the longitudinal direction (RF1), which quantitatively equates to contact force, i.e. 

the micro-distortional RR     

Despite slight numerical instability and imperfect convergence of the RR moment around the 

hub point, the average RR magnitudes for the Abaqus tyre matched the outcomes reported in 

the literature for this tyre [21].  

Rubber Properties  

It is well established that rubber behaviour is strongly contingent on temperature (an increase 

softens the compound), frequency of cyclic loading (an increase stiffens the compound) as 

well as strain level (an increase softens the compound) [5]. To properly apply viscoelasticity 

of tread compound, rheological Maxwell elements, springs and dashpots, were implemented 

in ABAQUS. Elastic behaviour was characterized by a reduced polynomial (Neo-Hookean) 

hyperelastic model applying the HYPERELASTIC command, where just one parameter was 

needed being expressed as a half of the shear modulus. Inclusion of the VISCOELASTIC 

command allowed account to be taken of the viscous contribution and this was represented by 

an N-term Prony series expansion of the dimensionless relaxation modulus in the time 

domain as:  

,.......2,1,)(
1

)/(  




 Neggtg
N

i

t

i

                                                                                    (3) 

where g is the long-term dimensionless modulus for the rubbery region and ig and i  are 

material constants. Stiff and soft (higher and lower long-term modulus as compared with soft 

rubber) rubber compound properties were used, with 12 and 14 Prony terms respectively, 

corresponding to 55°C operating temperature. The modular ratio of soft to stiff rubber 
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amounted to 0.92. To simplify the modelling problem, strain-dependent nonlinearity (Payne 

and Mullins effects) was excluded from the analysis.  

All tyre rubber-like parts have been assumed to have the same properties. As can be seen in 

Figure 3, the tyre with soft compound dissipates less energy than the stiff compound tyre.  

Friction Effect 

The surface friction coefficient is known to be dependent on slip velocity, pavement surface, 

rubber properties, temperature and contact pressure. Taking account of this, three friction 

models have been studied and compared, namely a simple Coulomb coefficient (equation 4), 

the slip-velocity-dependent coefficient (equation 5) and direct usage of test data that included 

contact pressure.  

The parameters for the Eqn. 5 model have been extrapolated based on measurement data in 

Guo et al (2004) to match measured pressures inside the contact patch, which is a function of 

the inflation pressure and bulging of the tyre belt [12, 22]. 

 

Figure 3 RR vs Velocity for Coulomb friction model for soft and stiff compound at 3300 N 

verfric FF /                                                                                                                       (4)  

 d

ksk e )(                                                                                                          (5)     
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where k is the kinetic friction coefficient, s is the static friction coefficient, d  is the decay 

coefficient and   is the slip velocity.  

It has been determined that tyre deformation (and RR) changes only marginally when 

switching from a Coulomb friction model to a more complex model under free rolling 

conditions. For subsequent simulations, it was therefore considered reasonable to apply a 

constant friction coefficient. Similar results have been reported by Wang et al (2010).  

Micro-Scale Model 

A 3-D FE model utlizing the Abaqus/Explicit solver has been used to investigate contact 

forces between a tread block and a stone in order to deduce micro-distortional RR. In the first 

instance, Abaqus/Implicit was applied to study contact forces. However, it was abandoned 

due to inability to achieve a converged solution after trying various time increments, an 

adaptive meshing function, using a finer mesh discretisation and adaptation of contact 

softening/damping controls. It was therefore concluded that its applicability for this specific 

analysis would be difficult and computationally expensive compared to Abaqus/Explicit. The 

model mimics three essential tyre-pavement interaction phases: indentation of the stone into a 

tread compound, holding and release/snap-out. To build a simplified and efficient tread-stone 

interaction model, a few basic assumptions have been made:  

 the tread block is a homogeneous visco-elastic rubber with no interlayer 

reinforcement  

 surface asperities have been assumed as having an idealized hemispherical form and 

rigid properties (210 GPa modulus; 3.0 ) with no micro-texture  

 asperity penetration takes place in the vertical direction; no tangential movement is 

applied 
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 pre-stress from macro-distortion (lateral stretching and twisting) of a tread block prior 

to stone-induced micro-distortion is neglected  

 no adhesion forces are present 

 temperature is constant 

Pavement Surface Properties and Tread Pattern Assumptions 

There are a wide range of asphalt mixtures all having their own surface macro-texture layout 

(positive/negative) and amplitude (texture depth). Aggregate gradation is a primary factor 

influencing road surface properties in addition to shape (angular, cubic etc) and maximum 

aggregate size. Overall, based on their topography, pavements could be categorised into 

smooth (e.g. 0/8mm Stone Mastic Asphalt) and rough (e.g. surface dressing/chip seal) types. 

The advantage of the model is that it allows both surface classes to be covered by considering 

a range of hemispherical diameters. To examine different road textures, spacing between 

stones can be varied along and across the contact. To simplify the problem, a hypothetical 

mixture is considered of a single-sized gradation making all surface stones identical. Even 

though the assumption of hemispherical asperities is unrealistic, it is still, as indicated by 

Greenwood and others [12, 24], a justifiable approximation of road chippings. In the context 

of RR, tyre tread designs are also important. These involve the arrangement of continuous 

ribs, uncoupled tread blocks, circumferential and lateral grooves as well as moulded sipes, 

which in part share the functions of road texture. Treads are generally classified into four 

groups: symmetric, asymmetric, directional and those that feature both asymmetric and 

directional tread patterns. It is believed that the tread pattern impacts are particularly 

influential for local interaction mechanics as well as tyre dynamics. Since at the micro-scale 

level the interaction is established between a single block and a single stone and ALE 

formulation does not take account of it at the macro-scale level, the tread patterns could be 
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implicitly incorporated via void area ratio which is the fraction of the tyre outer plane that is 

actually rubber ( rubberA ) and not the profile void ( voidA ) in the contact zone.   

rubbervoid

rubber

AA

A
VR


                                                                                                                                      (6)     

Boundary Conditions, Meshing, Contact Stiffness, Friction and Analysis Steps 

Encastre type boundary condition (BC) has been adopted on the base of the tread block, while 

the surface and sides have been left free to move. The indenter (i.e. the stone) is then moved 

into the surface of the block. Such BCs enable consistent normal stress distribution to be 

obtained in comparison with a fixed stone – movable block combination, where normal 

stresses have been found to be inconsistent (too sensitive to contact definition). 

As stated, to replicate real-life interaction, three major analysis steps have been considered, 

namely indentation/loading, hold/full indentation and release/unloading. In our configuration, 

BCs of the stone have therefore been described in terms of velocity to enable loading, holding 

( 0holdV mm/sec) and unloading states, which are, as summarized below, output from the 

macro-scale model.  

 

Figure 4 Illustration of a micro-scale model and mesh configuration 
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The block is divided into three layers: top (in contact with the stone), middle and bottom 

(Figure 4), with a finer mesh in the top layer surface applying 20000 8-node linear brick 

C3D8R elements with reduced integration and hourglass control. Due to the high rate of 

stone impact, distortion control is turned on, facilitating a more accurate computation. By 

varying mesh configurations, it was seen that the reducing number of elements generates a 

contact force distortion in the loading stage and as a result change texture-dependent RR. By 

optimizing the mesh, a good compromise between accuracy and computational speed was 

found for the selected configuration.   

To reduce the number of time increments required, mass scaling is introduced. Excessive 

mass scaling was observed to cause substantial oscillations compared to zero mass scaling 

case. After checking various levels of mass scaling, an optimum factor was adopted to enable 

increased computational speed without generating unwanted noise.  

To effectively transmit deformations of nodes through the tread-sphere interface, a contact 

stiffness between them needed to be established, preventing numerical overlap between 

contacting bodies. Having experimented with a wide range of contact stiffnesses, an 

optimised high, but computationally stable, level was selected for all analysis steps. Friction 

was assumed to be constant, but was not found to significantly affect computed forces.  

Derivation of Loading and Unloading Rates for Micro-Scale Model  

The indentation and release rates (Figure 5) have been extracted from the macro-scale model 

surface nodes as they make contact with the surface at the leading edge and leave at the 

trailing edge.  

Figure 5 shows a vertical velocity distribution for a series of nodes before and after the 

velocity becomes zero in the contact area. Linear integration of vertical velocity between 

nodes with respect to time allowed the indentation/release velocities to be determined for 

specific distances from the smooth surface.  
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Assuming these distances correspond to indentations experienced by protruding surface 

texture, loading/unloading rate boundary conditions have been formulated. 

It was found that similar rates applied regardless of rubber compound rigidity. The duration 

of the contact phase was also derived from the macro-scale data. More specifically, 

indentation/release durations were determined based on the length between nodes, which was 

constant.  

 

Figure 5 Vertical velocity throughout contact phases adopted from the macro-scale model 

Subsequently, dividing the internode distance by a translational velocity provided time 

estimates. Finally, summing up all time estimates in each interval, the duration for both 

loading and unloading at a given indentation level was calculated. As shown in Figure 5, the 

indentation rates were always predicted to be higher than the release rates. This can be 

ascribed to rubber viscosity effects and inertia.     

Micro-Distortional RR Force Estimation  

The micro-distortional RR was derived from the moment (RRM) given by contact force 

distribution, as shown in Figure 6, and the number of stones in the contact at a given time. 

The RRM about the point on the contact patch directly below the centre of the wheel is 

quantified. It is then divided by the loaded tyre radius (measured in the macro-scale model) to 
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determine the texture-dependent RR for the whole tyre. An advantage of this numerical 

technique is that by altering stone size/shape/spacing, the influence of different texture 

patterns could be explored.  

Results and Discussion 

The computational technique described above has been applied to evaluate the compressive 

contact forces between a tread compound block and a hemispherical stone of 5mm radius 

indenting into a rubber by 0.761 mm, 0.672 mm, 0.642 mm, 0.650 mm, 0.645 mm, 

respectively at 20 kph, 40 kph, 60 kph, 80 kph and 100 kph. These indentation magnitudes all 

relate to a tyre load of 2 kN and have been found experimentally by the authors to be realistic 

for typical asphalt surfaces; they also agree with the order of magnitude of estimates reported 

in the literature [26].  

 

Figure 6 Typical compressive contact force distribution for a hemisphere of 5mm indenting 

into a tread compound by 0.5mm 

As an example, the results for 0.5 mm indentation (Figure 6) clearly demonstrate that the 

tread-stone model captures the expected visco-elastic behavior caused by a single indenter. In 

particular, Figure 6 shows an asymmetrical contact force distribution: peak normal force at 
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the beginning of the contact region, followed by a gradual decrease of the force until the 

beginning of unloading phase where the indenter snaps out from the rubber surface. It can be 

seen that due to stiffening of the compound at higher loading rates (40, 60, 80, 100 kph), the 

average contact forces at these velocities are greater in magnitude by around 27% compared 

with 20 kph, at which speed the rubber has a longer time to relax.  

 

Figure 7 Micro-distortional RR for a slick and treaded tyres when, respectively, rolling over 

103 and 82 hemispheres (tight packing) with 5mm radius  

Examining the contact force plot, it may be noticed that the shape of the normal forces at the 

end of the indentation phase is distinctly different for the 20 kph case, in that no ripples are 

present. The ripples at higher velocities might be explained by either the stiffer tread 

compound at higher penetration velocities or rigid fixing of the base of the block confining 

the block movement and generating reflected waves. Contrary to expectations, inertia was 

found to impact insignificantly on compressive contact force prediction at all the loading 

rates used.  

The example in Figure 7 illustrates the computed micro-distortional RR for a slick tyre, 

which rises linearly as velocity increases, ranging from 28 N at 20 kph to 32 N at 100 kph for 



 

 18 

a hypothetical road surface with 103 hemispherical stones in contact with the tyre, at an 

average contact force of about 19.5 N/ind, represents a tyre load of about 2 kN. As can be 

seen the computed RR is at a similar level to the macro-distortional RR depicted in Figure 3, 

although this maybe rather higher than that for a real surface, due to the idealised 

hemispherical pavement topography (perhaps comparable to a surface dressing [15]) and the 

assumption that each stone indents at the centre of a tread block ignoring edge effects. The 

vertical projection of the wheel centre on the contact patch also carries a degree of 

uncertainty. The relatively small effect of velocity, this is reasonable since at a lower loading 

rate a slightly larger indentation would be expected due to visco-elastic effect. Taking 

account of tread pattern with 0.8 void ratio, typical for car tyres [27], micro-distortional RR 

was found to increase quite considerably. Figure 7 shows that the RR of a treaded tyre is, on 

average, 20 % higher than that of a slick tyre. It is expected to grow since number of contact 

indenters reduces to 82 (1030.8) indenters resulting in a higher loading per stone and 

indentation.    

A range of hemispherical radii has been examined, all with closely packed stones. At 

identical speeds, contact forces per indenter increase as the radius (and therefore centre-

centre spacing) grows, and consequently, each indenter in the contact patch will take more 

force and indent deeper into the tread compound. The increase of force together with higher 

indentation will evidently dissipate a higher amount of energy per stone. However, when the 

effects are summed, a dense packing with a finer indenter will tend to induce an 

approximately equivalent texture-dependent RR compared to a densely packed coarser 

indenter.  

Conclusion 

A novel multi-scale approach for micro-distortional RR computation has been presented. It is 

capable of quantifying the visco-elastic response of a tread compound block indented by a 
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single stone. The forces, computed in the contact patch, appear to be of a reasonable 

distribution and magnitude, although the predicted RR is probably greater than for most real 

road textures. The model, though it allows useful comparison of different vehicle speeds, 

loads, rubber properties and texture patterns, still has to be calibrated, for real pavement 

surfaces by means of empirical techniques due to the hemispherical assumption.  
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FIG. 1 — Close-up view of multi-indentation effects as a result of array of stones  

                (not to scale) 
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FIG. 2 — An example output of RF1 and RM2 balance pair for derivation of the RR and  

                contact force distribution at the end of time step at 3300 N, 200 kPa, 0.7 coefficient 

                of friction, 100 kph rolling speed (left) and FE-discretised  tyre structure (right)      

FIG. 3 — RRF vs Velocity for Coulomb friction model for soft and stiff compound at 3300 N 

FIG. 4 — Illustration of a micro-scale model and mesh configuration 

FIG. 5 — Vertical velocity throughout contact phases adopted from a macro-scale model 

FIG. 6 — Typical compressive contact force distribution for a hemisphere of 5mm indenting  

                into a tread compound by 0.5mm 

FIG. 7 — Micro-distortional RR when rolling over 140 hemispheres (tight packing) with  

                5mm radius                  


