
Silva, Hector O. and Sakstein, Jeremy and Gualtieri, 
Leonardo and Sotiriou, Thomas P. and Berti, Emanuele 
(2018) Spontaneous scalarization of black holes and 
compact stars from a Gauss-Bonnet coupling. Physical 
Review Letters, 120 (13). p. 131104. ISSN 0031-9007 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/51109/1/Spontaneous%20scalarization%20of%20black
%20holes%20and%20compact.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may 
be reused according to the conditions of the licence.  For more details see: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham ePrints

https://core.ac.uk/display/156744212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk


ar
X

iv
:1

71
1.

02
08

0v
3 

 [
gr

-q
c]

  3
0 

M
ar

 2
01

8

Spontaneous scalarization of black holes and compact stars

from a Gauss–Bonnet coupling

Hector O. Silva,1, 2, ∗ Jeremy Sakstein,3, † Leonardo Gualtieri,4, ‡ Thomas P. Sotiriou,5, 6, § and Emanuele Berti1, ¶

1Department of Physics and Astronomy, The University of Mississippi, University, MS 38677, USA
2eXtreme Gravity Institute, Department of Physics, Montana State University, Bozeman, MT 59717 USA

3Center for Particle Cosmology, Department of Physics and Astronomy,

University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104, USA
4Dipartimento di Fisica “Sapienza” Università di Roma & Sezione INFN Roma1, Piazzale Aldo Moro 5, 00185, Roma, Italy

5School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
6School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

(Dated: April 3, 2018)

We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss–Bonnet invariant

that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories

formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if

certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of

many narrow bands. We find evidence that scalarization can occur in neutron stars as well.

Introduction. Gravitational wave observations [1–7] allow

us to probe the structure of black holes (BHs) with unprece-

dented accuracy. Hence, they can reveal the existence of new

fundamental scalar fields [8, 9], provided that they leave an

imprint on BHs. However, no-hair theorems (see [10, 11] for

reviews) dictate that conventional scalar-tensor theories will

have the same stationary, asymptotically flat BH solutions as

general relativity (GR) [12–14]. In spherical symmetry [15]

and slow rotation [16, 17], this result extends to generalized

scalar-tensor theories, i.e. theories that exhibit derivative self-

interactions and derivative couplings between the scalar and

curvature invariants, provided that the scalar respects shift

symmetry.

One could still detect scalars in these theories through the

imprint they leave when they are excited [18, 19]. One can

also circumvent no-hair theorems by violating some of their

assumptions [20–23]. No-hair theorems also help single out

particularly interesting theories that have hairy BHs. A well-

studied example is the action

S =
1

2

∫

d4x
√
−g

[

R − 1

2
∇αϕ∇αϕ + f (ϕ)G

]

+ S m[gµν, ψ] ,

(1)

where G ≡ RµνρσRµνρσ − 4RµνR
µν + R2 is the Gauss-Bonnet

invariant. We use geometrical units with c = 8πG = 1 and the

mostly plus metric signature. The scalar field ϕ is coupled to

G , which has dimensions of length−4 (≡ L−4), through a func-

tion f (ϕ), with dimensions L2. The matter fields ψ are mini-

mally coupled to the metric gµν through the action S m. We will

refer to this class of theories as scalar-Gauss-Bonnet (sGB)

gravity. When f is exponential the theory is well-known to

admit hairy BHs [24], whereas a linear f yields the only shift-

symmetric theory with second-order field equations that ex-

hibits BH hair [16, 17] (despite the no-hair theorem of [15]).

The main purpose of this Letter is to demonstrate that a

new subclass of theories, contained in (1), exhibits a particu-

larly interesting phenomenon: BH spontaneous scalarization.

As we demonstrate below, this subclass of theories generi-

cally admits solutions where the scalar field is constant and the

metric satisfies Einstein’s equations. However, under certain

conditions, these solutions are unstable, and solutions where

the scalar field is nontrivial are dynamically preferred. This

leads to hairy BHs only when the BH mass lies within certain

ranges. Compact stars in these theories also exhibit sponta-

neous scalarization. The mechanism resembles that proposed

by Damour and Esposito-Farèse [25], where there is a cou-

pling between ϕ and the trace of the stress-energy tensor, T .

However, there are important differences – most notably the

fact that the effect is present for BHs as well.

A no-hair theorem in sGB and how to evade it. We start by

identifying the class of theories in question. Varying (1) with

respect to ϕ and gµν yields

�ϕ = − f,ϕG , (2a)

Rµν −
1

2
gµνR = Tµν . (2b)

Here Tµν is the sum of the matter stress-energy tensor T m
µν ≡

−(2/
√−g)(δS m/δgµν), plus a contribution coming from the

variation of the ϕ-dependent part of the action with respect to

the metric (see e.g. [24]).

Eq. (2a) does not admit ϕ = constant solutions, unless

f,ϕ(ϕ0) = 0 , (3)

for some constant ϕ0. We consider Eq. (3) as an existence

condition for GR solutions and focus on theories that satisfy

it. This excludes the widely studied class of dilatonic theo-

ries where f ∼ exp(ϕ) and the shift-symmetric f ∼ ϕ theory

discussed above [16, 17, 24].

Focus now on BH solutions that are asymptotically flat and

stationary. These admit a Killing vector ξµ that is timelike at

infinity and acts as a generator of the event horizon. Assuming

that ϕ respects stationarity, ξµ∇µϕ = 0. Multiplying Eq. (2a)

by f,ϕ and integrating over a volume V yields
∫

V

d4x
√
−g
[

f,ϕ�ϕ + f 2
,ϕ(ϕ)G

]

= 0 . (4)

http://arxiv.org/abs/1711.02080v3
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Integrating by parts and using the divergence theorem, we ob-

tain
∫

V

d4x
√
−g
[

f,ϕϕ∇µϕ∇µϕ − f 2
,ϕ(ϕ)G

]

=

∫

∂V

d3x
√

|h| f,ϕnµ∇µϕ , (5)

where ∂V is the boundary of V and nµ is the normal to the

boundary. We choose V such that it is bounded by the BH

horizon, two partial Cauchy surfaces, and spatial infinity. The

contribution of the boundary term on the right-hand side van-

ishes. The horizon contribution vanishes by symmetry, as

the normal to the horizon is ξµ and the stationarity condition

holds; the contribution of the boundary at infinity vanishes be-

cause of asymptotic flatness. The contributions of the Cauchy

surfaces exactly cancel each other, as they can be generated

by an isometry. Hence the integral in the first line of Eq. (5)

must vanish as well. With our signature, ∇µϕ∇µϕ is positive

in the BH exterior. Indeed, whenever

f,ϕϕ G < 0 (6)

the whole integrand is sign definite and must vanish at every

point in V . The same conditions imply that the two terms

of the integrand have the same sign and hence must vanish

separately. This can only be achieved if ϕ = ϕ0.

The above can be considered as a no-hair theorem for sta-

tionary, asymptotically flat BHs in theories that satisfy the

conditions of Eqs. (3) and (6). The former is clearly an ex-

istence condition for GR solutions. To understand the latter, it

is helpful to linearize Eq. (2a) around ϕ = ϕ0,

[

� + f,ϕϕ(ϕ0) G

]

δϕ = 0 . (7)

The term − f,ϕϕ G acts as an effective mass m2
eff

for the pertur-

bations δϕ. Theories for which this effective mass is negative

can evade the theorem above. There is a direct analogy be-

tween the proof presented here and the no-hair theorem proof

of [14] for scalar-tensor theories with self-interactions.

This no-hair theorem identifies theories that can lead to

interesting phenomenology in the strong-field regime: they

must satisfy condition (3) but violate condition (6). A nega-

tive effective mass is expected to trigger a tachyonic instabil-

ity, which can lead to the development of scalar hair. This is

analogous to spontaneous scalarization for neutron stars (NSs)

in standard scalar-tensor theories [25]. Scalarization was also

shown to be possible for BHs if they are surrounded by mat-

ter [20, 21].

Quadratic scalar-Gauss-Bonnet gravity. The simplest cou-

pling function which satisfies Eq. (3) and can violate Eq. (6)

is

f = ηϕ2/8 , (8)

where η is a parameter with dimensions L2. Hereafter, we

will focus on this theory, and we will call it quadratic sGB

(qsGB) gravity. If f satisfies the condition (3) and is well

behaved around ϕ0, then it admits the expansion f (ϕ) =

f (ϕ0) + f,ϕϕ(ϕ0)(ϕ − ϕ0)2/2 + . . . The first term in this ex-

pansion does not contribute to the field equations because G

is a total divergence. Moreover, the kinetic term of the action

is shift-symmetric. So, the field redefinition ϕ → ϕ − ϕ0 can

reduce the quadratic expansion of any theory to qsGB.

qsGB gravity has several other interesting features. It leads

to a field equation for ϕ that is linear in ϕ. This will be partic-

ularly convenient when studying the zero-backreaction limit

below. Additionally, the theory exhibits ϕ → −ϕ symmetry.

This is important in a field theory context. It prevents the

term ϕG , which inevitably leads to BH hair [16, 17], from ap-

pearing in the action. Note also that ϕ does not need to play

any role in late-time cosmology, hence current weak-field and

gravitational wave constraints are very weak [26–29].

We focus on spherically symmetric solutions that describe

either BHs or compact stars and demonstrate that spontaneous

scalarization can take place. We first consider the scalar on a

GR background and show that there is an instability associated

with spontaneous scalarization. We then verify our results by

looking at non-perturbative solutions. We call the solution

with a non-trivial scalar configuration the scalarized solution.

We focus on solutions that share the same asymptotics with

the GR solution, including the asymptotic value of ϕ, ϕ∞. For

simplicity, we impose ϕ∞ = 0, but this choice does not cru-

cially affect our results.

Tachyonic instability: a zero-backreaction analysis. We

first consider the limit where backreaction from the metric

can be neglected; i.e., we focus on the scalar field equa-

tion, Eq. (7), on a fixed background. The effective mass

of the perturbation δϕ is m2
eff
= − fϕϕG = −ηG /4, there-

fore tachyonic instability should be possible for η > 0. On

a static, spherically symmetric background spacetime ds2 =

−a(r)dt2 + b(r)dr2 + r2dΩ, Eq. (7) can be written as

− ∂
2σ

∂t2
+
∂2σ

∂r2
∗
= Veff σ , (9)

where δϕ = σ(t, r)Yℓm(θ, φ)/r, Yℓm are standard spherical har-

monics, dr/dr∗ ≡
√

a/b and the effective potential Veff is:

Veff ≡ a

[

ℓ(ℓ + 1)

r2
+

1

2ra

d(ab−1)

dr
− ηG

4

]

. (10)

In order to find whether scalarized solutions of the decou-

pled field equation (9) exist, we have performed a numer-

ical integration, assuming a Schwarzschild background and

monopolar perturbations. We have found that the equation ad-

mits a non-trivial solution with ϕ∞ = 0 for a discrete spectrum

of values of the coupling parameter (η/M2 = 2.902, 19.50,

50.93, . . . ). These results are summarized in Fig. 1, where we

show the quantity dσ/dr computed at some extraction radius

rmax ≫ M (namely rmax = 200 M), as a function of η/M2. For

r ≫ M, δϕ ∼ δϕ∞ + O(r−1), thus δϕ∞ ∼ dσ/dr(r → ∞). The

scalarized solutions correspond to the cusps in the top panel

of Fig. 1. These solutions can be characterized by an order

number n = 0, 1, . . . , which is also the number of nodes of the

radial profile of δϕ(r) (bottom-right panel of Fig. 1).
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FIG. 1. Scalar field in the decoupling limit. Results of the numerical

integration of the decoupled scalar field equation (9), assuming ℓ = 0

and a Schwarzschild background. Top panel: asymptotic value of the

scalar field as a function of η/M2. Cusps correspond to scalarized

solutions. Bottom-left panel: effective potential Veff for η/M2 = 0

and 5. In the latter case Veff develops a negative region and it can

support bound states. Bottom-right panel: radial profiles of δϕ for

the first three scalarized solutions, corresponding to η/M2 = 2.902,

19.50 and 50.93. These profiles have 0, 1 and 2 nodes, respectively.

Scalarized black holes in qsGB gravity. We now consider

BH solutions obtained by integrating the full set of equa-

tions (2a) and (2b). We search for static, spherically sym-

metric solutions, i.e. a = a(r), b = b(r), ϕ = ϕ(r). We define

Γ = log a, Λ = log b, as in [24]. The field equations can be

cast as three coupled ordinary differential equations for Γ, Λ

and ϕ. Since these equations are not particularly illuminating,

we do not present them here.

The equation for Λ can be integrated algebraically [16, 17,

24]:

eΛ =
−A + δ

√
A2 − 4B

2
, δ = ±1 , (11)

where A = (1/4)r2ϕ′2−(r+ηϕϕ′/2)Γ′−1 and B = (3/2)Γ′ϕ′ϕ.

In BH solutions exp(−Λ), exp(Γ)→ ∞ at the event horizon rh,

and this implies δ = 1 [24]. Replacing Eq. (11) in the remain-

ing equations, we are left with two differential equations for Γ

and ϕ. A near-horizon expansion of the field equations shows

that ϕ′′
h
= ϕ′′(r = rh) is finite if

ϕ′h =
rh

ηϕh

(

−1 + ξ

√

1 − 6η2ϕ2
h
/r4

h

)

, (12)

where ξ = ±1. The ξ = −1 branch does not result in a BH

solution, as discussed in [24] for the exponential coupling.

Therefore, regularity on the horizon requires

r4
h − 6η2ϕ2

h ≥ 0 . (13)

Eq. (13) defines a region in the (rh, ϕh) plane within which BH

solutions with a regular (real) scalar field configuration exist.

The value of the scalar field at the horizon is bound in the

range 0 ≤ ϕh ≤ ϕmax
h
= r2

h
/(
√

6η). We do not consider so-

lutions with ϕh < 0 because qsGB gravity is invariant under

1 2 3
r/(2M)
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FIG. 2. Spontaneous scalarization of black holes. Left: the regions in

the η−M (in solar mass units) space where scalarized BHs exist. The

solutions belonging to each band are characterized by the number of

nodes of the scalar field radial profile. We only show the first three

scalarization regions, but our numerical analysis suggests an infinite

number of them. Top-right: the scalar field profiles for sample BH

solutions in each of the first three bands. Bottom-right: normalized

scalar charge Q/M as a function of η/M2. The most charged BHs

belong to the n = 0 band.

ϕ→ −ϕ. The field equations are invariant under the rescalings

rh → rh/l, M → M/l, η → η/l2, corresponding to a freedom

in choosing length units. BH solutions are then characterized

by dimensionless quantities such as η/M2 and η/r2
h
.

For each value of η/M2 we have numerically solved the

field equations, with ϕh in the range [0, ϕmax] and the other

boundary conditions fixed from the requirement of regularity

at the horizon. We have then extracted the scalar quantities

characterizing the solution – the mass M, the scalar charge

Q, and the asymptotic value of the scalar field ϕ∞ – from the

asymptotic expansions [17, 24, 30]:

eΓ = 1 − 2M/r + Q2M/(12r2) , (14)

ϕ = ϕ0 + Q/r + QM/r2 + (32QM2 − Q3)/(24r3) . (15)

While the Schwarzschild solution (ϕh = 0, ϕ0 = 0) is al-

lowed for any value of η, a solution with ϕh , 0, ϕ∞ = 0 only

exists when η/M2 belongs to a set of “scalarization bands”,

i.e. [2.53, 2.89], [17.86, 19.50], [47.90, 50.92], etc. The right-

end values of these bands correspond to the eigenvalues of

η/M2 found by solving the linear equation of the scalar field

on a fixed background. The scalarization bands in η/M2 cor-

respond to regions bounded by parabolas in the (η, M) plane

(shadowed regions in the left panel of Fig. 2). The scalar field

profiles of these solutions have n = 0, 1, . . . nodes (top-right

panel of Fig. 2), corresponding to the order number of the

scalarization band. A similar ladder of excited states was ob-

served for scalarized NSs in scalar-tensor theory [31, 32]. The

normalized scalar charge1 Q/M of these solutions is shown in

1 In other theories with a Gauss–Bonnet coupling the scalar charge and the
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FIG. 3. Tachyonic instability in a stellar background. Left: pro-

file of the Gauss-Bonnet invariant (top) and of the effective potential

(bottom), inside a M = 1.4 M⊙ NS with the SLy4 EoS, assuming

|η/M2| = 100/(1.4)2 ∼ 51. The regions where the effective potential

becomes negative are shaded. Right: values of η/M2 for which the

first bound state forms as a function of the compactness M/R.

the bottom-right panel of Fig. 2 as a function of η/M2. This

plot shows the values of η admitting a scalarized solution for

each value of the BH mass.

Spontaneous scalarization and neutron stars. Let us now

consider NSs in qsGB gravity. The Gauss-Bonnet invariant

for a static, spherically symmetric solution of the Tolman-

Oppenheimer-Volkoff (TOV) equations [33] is

G =
48m2

r6
− 128π(m + 2πr3 p)ε

r3
, (16)

where m = r(1 − 1/b)/2 is the mass function, and p and ε are

the pressure and energy density inside the star, respectively.

At the surface r = R, ε vanishes and (16) matches smoothly

the Schwarzschild value G = 48M2/r6, with M ≡ m(R) being

the star’s mass. We solve the TOV equations for a “canon-

ical” NS model with M = 1.4 M⊙, assuming the SLy4 [34]

equation of state (EoS). The Gauss-Bonnet invariant is mostly

negative throughout the interior of the star (see Fig. 3, top-left

panel); it is only positive near the surface of the star, and in

the exterior. This suggests that if η < 0, the scalar field can

develop a tachyonic instability inside the star, while if η > 0

the instability is triggered in the outer region/exterior of the

star.

In the bottom-left panel of Fig. 3 we show the effective

potential Veff for the “canonical” NS model discussed above,

with η = ±100 M2
⊙. As expected, there are (shaded) regions

where Veff becomes negative. These regions are inside the star

when η < 0, and outside the star when η > 0.

asymptotic value of the coupling are related by Q/M = 2 f,ϕ(ϕ∞)/M2 , and

this can lead to a bound on the coupling constant (e.g. [16, 24, 30]). It

should be noted that there is no such relation for qsGB because f,ϕ(ϕ∞) =

0.

Solving Eq. (9) in the NS background, we find that scalar-

ized solutions exist for both positive and negative values of η.

In the right panel of Fig. 3 we show the values of η/M2 corre-

sponding to the lowest-lying scalarized solutions with η > 0

and η < 0, as a function of the NS compactness. Note that

scalarization occurs for lower values of |η/M2| when the cou-

pling constant is negative than when it is positive.

As in the BH case, we expect these results to translate

into the existence of scalarized NSs at the fully nonlinear

level [35], i.e. by integrating the modified TOV equations ob-

tained from Eqs. (2a)-(2b) assuming a perfect fluid for matter.

Fully nonlinear stellar models will be explored in forthcoming

work.

Conclusions. We have identified and studied a subclass

of scalar-tensor theories with a coupling between the scalar

and the Gauss–Bonnet invariant that appears to exhibit spon-

taneous scalarization for both BHs and NSs. Interestingly, BH

scalarization does not have a single threshold. Instead, for a

given value of the coupling parameter η hairy BHs exist when

their mass lies in one of many narrow bands. Our exploration

for NSs strongly suggests that scalarization can take place for

both positive and negative values of η. However, the effect

appears to be stronger for negative values of η, for which BH

scalarization cannot occur. A full numerical study of NSs in

these theories is in progress and will be reported elsewhere. It

would be interesting to examine more closely the conditions

under which spontaneous scalarization can occur and its im-

plications for the structure of astrophysical BHs and compact

stars, especially in binary systems of interest for gravitational

wave detectors. A full study of the two-body problem in qsGB

is beyond the scope of this paper, but we anticipate interesting

phenomenology already at the post-Newtonian level [36]. Bi-

nary systems containing scalarized BHs and NSs (which have

nonzero scalar charge Q) should emit dipolar scalar radiation.

However, in contrast with dilatonic and shift-symmetric theo-

ries, where Q , 0 for all BHs, in our case scalarization only

happens – and therefore dipolar radiation would be emitted –

only in certain BH mass ranges (for a fixed coupling η). NSs

in the shift-symmetric theory have Q = 0 [37, 38], thus evad-

ing the stringent experimental constraints on dipolar radiation

emission from binary pulsars [39]. In qsGB gravity, if one of

the NSs in the binary happens to be scalarized, scalar radi-

ation would be emitted, leaving a smoking gun of the pres-

ence of the scalar field in the orbital dynamics. It would

also be interesting to investigate the strong field dynamics

of this theory. Apart from scalar-tensor theories [40–43], the

application of numerical relativity simulations to other theo-

ries of gravity is still in its infancy [44–47]. To perform nu-

merical simulations one must inevitably address the issue of

well-posedness [48, 49], which remains an open problem be-

yond the scope of our paper. By pointing out the existence

of potentially interesting phenomenology in qsGB we hope to

motivate further work in this direction. Finally, it might also

be worth extending our results to more general couplings be-

tween the scalar field and the Gauss–Bonnet invariant.

Note added. Recently, a preprint studying a similar model
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with BH spontaneous scalarization appeared in Ref. [50] and

a study of evasions of no-hair theorems in sGB appeared in

Ref. [51].
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