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Review

Variations in the Slope of the Psychometric
Functions for Speech Intelligibility:
A Systematic Survey

Alexandra MacPherson1,2 and Michael A. Akeroyd1

Abstract

Although many studies have looked at the effects of different listening conditions on the intelligibility of speech, their analyses

have often concentrated on changes to a single value on the psychometric function, namely, the threshold. Far less commonly

has the slope of the psychometric function, that is, the rate at which intelligibility changes with level, been considered. The

slope of the function is crucial because it is the slope, rather than the threshold, that determines the improvement in

intelligibility caused by any given improvement in signal-to-noise ratio by, for instance, a hearing aid. The aim of the current

study was to systematically survey and reanalyze the psychometric function data available in the literature in an attempt to

quantify the range of slope changes across studies and to identify listening conditions that affect the slope of the psychometric

function. The data for 885 individual psychometric functions, taken from 139 different studies, were fitted with a common

logistic equation from which the slope was calculated. Large variations in slope across studies were found, with slope values

ranging from as shallow as 1% per dB to as steep as 44% per dB (median¼ 6.6% per dB), suggesting that the perceptual

benefit offered by an improvement in signal-to-noise ratio depends greatly on listening environment. The type and number of

maskers used were found to be major factors on the value of the slope of the psychometric function while other minor

effects of target predictability, target corpus, and target/masker similarity were also found.

Keywords

speech-in-noise understanding, psychometric functions, perceptual benefit

Introduction

A psychometric function describes the relationship
between an observer’s performance on a psychophysical
task and some physical aspects of the stimuli. In particu-
lar, the psychometric function for speech intelligibility in
noise describes a listener’s ability to identify speech as a
function of its intensity. Often, the psychometric func-
tion is summarized by two key parameters: the threshold,
being the stimulus level required to give a particular level
of performance (e.g., 50% correct), and the slope, being
the maximum rate at which performance increases with
changes in the stimulus level. Many studies have demon-
strated that thresholds for speech intelligibility in noise
depend greatly on various aspects of the target speech
(e.g., French & Steinberg, 1947), the interfering sound
(e.g., Carhart, Tillman, & Greetis, 1969; Festen &
Plomp, 1990; French & Steinberg, 1947; Miller, 1947),
and the listener (e.g., Duquesnoy, 1983; Festen & Plomp,
1990; Peters, Moore, & Baer, 1998). The situations, how-
ever, that result in changes to the rate at which

intelligibility improves with an increase in the level of
speech have been much less extensively studied.

The slope is crucial, as it—not the thresh-
old—determines the increase in perceptual benefit a
listener is likely to gain from small changes in the
signal-to-noise ratio (SNR), such as may be offered by
a directional microphone on a hearing aid. A steep psy-
chometric function indicates that a small increase in
SNR would lead to a large increase in intelligibility; con-
versely, if the slope is relatively shallow, the same SNR
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improvement would lead to a smaller perceptual
improvement. We demonstrate here how much the
slope of the psychometric function varies across
experiments.

There is a wealth of psychometric function data avail-
able in the literature on speech identification, as many
studies have looked at the factors that can affect the intel-
ligibility of speech. Most of the published analyses of
these data, however, have focused on changes in thresh-
old, with slope changes far less commonly calculated and
reported. No systematic corpus of these data is available,
despite its obvious importance for isolating and identify-
ing the factors associated with changes in slopes. We
therefore carried out a systematic survey of the literature
on psychometric functions for speech intelligibility, rea-
nalyzing the data using a standard method to enable a
direct comparison of slope data across different studies.

Our aims were to (a) quantify how much the slope of
the psychometric function varies across experimental
designs and listening conditions, (b) identify listening
conditions that affect the slope of the psychometric func-
tion, and (c) discuss how these trends in slope conform
with previously proposed explanations for variations in
the slope of the psychometric function for speech
intelligibility.

Methods

A computerized literature search was undertaken to find
studies that had measured the intelligibility of speech as a
function of SNR. The first reports of common speech
tests and the studies citing these speech tests were
reviewed, as many of these studies include psychometric
functions in different noise conditions. A search was also
carried out for articles citing either Egan, Carterette, and
Thwing (1954) or Brungart (2001a)—these two studies
were singled out as they reported unusually shaped psy-
chometric functions of masked speech. The reference list
of Brungart’s article was also reviewed for possible stu-
dies to include in the survey. Other miscellaneous studies
containing psychometric functions that were found over
the course of approximately three years, up to a cutoff
date of February 2012,1 were also included.

The inclusion criteria were that studies needed to
report at least one psychometric function for speech
identification that was (a) measured as a function of
SNR or some other unit of relative presentation level
from which SNR could be calculated, (b) measured
over at least three points, (c) presented clearly in graph-
ical or tabular form, and (d) averaged over several lis-
teners. Individual data were excluded because we found
that these data tended to be harder to accurately measure
(e.g., multiple overlaying psychometric functions).
Although interlistener variability in slope would
undoubtedly provide additional insight into the factors

affecting slope, such an analysis of the data was outside
the scope of the current study, which aims to identify
broad trends in slope across different listening condi-
tions. Micheyl, Xiao, and Oxenham (2012) provide an
example of a detailed reanalysis of psychometric data
that does explicitly take into account individual
variability.

A total of 146 relevant studies were found, giving
1,133 individual psychometric functions for further ana-
lysis. The individual data points for each psychometric
function were recorded. These values were either taken
directly from the article if the psychometric functions
were reported in tabular form or extracted using a
custom-written MATLAB program if the psychometric
functions were displayed graphically. These data points
were then fitted with a logistic function:

P ¼ 100
1

1þ emðx�cÞ

� �
, ð1Þ

where x is the SNR (decibels), P is the percentage of
correctly identified items, and m and c are constants: c
being the SNR at which P¼ 50% correct, and m is the
slope of the function at x¼ c. The slope (in % per dB)
of the function is equal to �25m. The best fitting values
of m and c were found using the solver function of
Microsoft Excel (Microsoft, 2011), which uses a non-
linear least squares method. A logistic function was
selected, as it has been suggested to be a reasonable sig-
moidal model for psychometric data (Wichmann & Hill,
2001) and has been commonly used to describe psycho-
metric functions for speech intelligibility (e.g., Festen &
Plomp, 1990; Pichora-Fuller, Schneider, & Daneman,
1995; Rhebergen & Versfeld, 2005; Wightman,
Callahan, Lutfi, Kistler, & Oh, 2003).

For consistency across all studies, none of the logistic
fits was corrected for either chance or maximum per-
formance. The information required for these corrections
was not always available, and it was considered prefer-
able to follow a standard procedure for all cases rather
than correcting only a subset of the data. It is possible
that this lack of correction for chance and ceiling effects
could have affected slope estimates (Dai & Micheyl,
2011). Cases for which the standardized psychometric
function was an extremely poor fit were excluded, how-
ever, to limit the effects of such errors in slope estimates
(see Overview section).

The values of slope and c were added to the database
with coding information on the experimental design (see
later). In 219 psychometric functions, all data points
were either below P¼ 50% or above P¼ 50%. In these
cases, m, which is defined at P¼ 50%, is an extrapolation
of the data. As such, slopes calculated in this way are
unlikely to be good representations of the true slope of
the data, and so were excluded from further analysis.

2 Trends in Amplification 0(0)
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Each psychometric function in the survey was sub-
jected to detailed coding of the experimental design for
(1) target speech corpus (see later), (2) masker type (sub-
categories of speech, modulated noise,2 or static noise), (3)
number of maskers, (4) presentation of stimuli (subcate-
gories of monaural, diotic, or dichotic), (5) spatial loca-
tions of target and masker, (6) target language, (7) target
predictability (subcategories of high predictability from
context or low predictability from context), (8) whether
the target was primed before presentation, (9) any signal
processing of target or masker (subcategories of vocoded,
filtered, or added reverberation). If the masker was com-
peting speech, then further coding was carried out: (1)
masker language, (2) masker corpus, (3) gender of the
masker talker relative to the target talker (subcategories
of same gender, different gender, or same talker), (4)
masker intelligibility (subcategories of intelligible or unin-
telligible), (5) masker uncertainty (subcategories of
masker talker fixed from trial to trial or masker content
fixed from trial to trial), (6) pitch shift between target and
masker voices (subcategories of small if less than 3 semi-
tones, medium if 4–7 semitones, or large if greater than 8
semitones). Finally, general information about the stu-
dies’ participants was also coded: (1) age-group (subca-
tegories of children, young adult, or older adult) and (2)
hearing loss (subcategories of normal hearing, a reported
hearing loss, or cochlear implant user).

The target and masker speech were coded by the type
of speech corpora used (e.g., BKB, IEEE, CRM, and
SPIN).3 If this information was not available, or if the
speech corpus was uncommon, the speech corpus was
coded under the categories of valid sentences, invalid sen-
tences, words, digits, continuous speech, or short tokens.
Valid sentences described any stimuli consisting of syn-
tactically and semantically correct sentences (e.g., sen-
tences read from a history text book); invalid sentences
described any stimuli consisting of either syntactically
incorrect sentences (“cat on sat the mat”) or semantically
incorrect sentences (“the thorn can wake the kettle”);
continuous speech described any speech stimuli longer
than a single sentence; and short tokens described smaller
speech units such as syllables and phonemes.

Results

Overview

To measure how well the logistic equation fitted the data,
a root mean square (RMS) error value of the curve from
the data points was calculated. On the whole, the fits
were regarded as good as the RMS was small (mean
RMS¼ 3.2%). However, 29 psychometric functions
had RMS values of 10% or greater and so were excluded
from the survey at this stage (they are further discussed
in the Nonmonotonic Psychometric Functions section).

Figure 1 shows example data from the survey and illus-
trates some good, as well as some poor, fits of the logistic
functions to the data.

After these removals, and those of cases whose slope
values were based on extrapolation, 885 psychometric
functions remained in the survey, taken from 139 differ-
ent studies. Table 1 summarizes the stimuli and partici-
pant information for each study (all studies are listed in
the references). Full details on all coded factors for each
study (including those excluded) can be found in the
supplementary material.

It was found that a log-normal distribution (Buzsáki
& Mizuseki, 2014; Johnson & Kotz, 1970) gave an excel-
lent fit to the overall frequency distribution of slope
values:

f ¼
885

ðs� �Þ
ffiffiffiffiffiffiffiffi
2��
p

� �
exp

logeðs� �Þ

�

� �� �
, ð2Þ

where f is frequency and s is slope. The best fitting values
of � and r were found using Excel’s Solver, which gave
values of 1.46 and 0.63, respectively. Figure 2 shows the
overall distribution of slope values and this best-fitting
log-normal curve. It can be seen that there is a very wide
variation in the slope. The minimum and maximum
values of slope were 0.4% per dB and 43.8% per dB,
the mean was 7.5% per dB, and the median was 6.6%
per dB. There was a clear positive skew, with the bulk of
values, including the median, lying to the left side of the
mean.

Major Trends

With 885 cases, it is not too surprising to find substantial
variations across details of stimuli, maskers, and other
aspects of experimental design. The analysis here there-
fore concentrates on broad categories rather than on
specific individual combinations. The full data set is
available in the supplementary material.

Type of masking noise. The first major trend in the slope
survey data is that speech maskers give shallower psy-
chometric functions than either amplitude-modulated
noise maskers or static noise maskers. Table 2 shows
the median slopes and interquartile ranges of psychomet-
ric functions measured for the six general classes of
speech stimuli and the seven most commonly reported
speech corpora when different types and numbers of
maskers were used. Table 3 shows the number of studies
and the number of individual psychometric functions
that these values are based on.4 It can be noted from
Table 2 that of the 11 different target speech types for
which slopes have been measured in both a speech
masker and a noise masker (be it either modulated
noise or static noise), eight of them gave smaller

MacPherson and Akeroyd 3
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Figure 1. Example psychometric functions from the survey illustrating examples of good, average, below average, and poor fits of the

standard logistic function (solid line) to the data (open circles). The RMS value gives an indication of the fit, with cases where the RMS value

was above 10% being excluded from the survey. Cases that gave good fits include those for SSI sentences in a one-talker masker (Dirks &

Wilson, 1969a), SPIN sentences in a six-talker babble (Elliott, 1979), and digits in a speech spectrum static noise (HearCom, 2009). Cases

that had average fits (i.e., RMS values close to the mean for the survey) include those for SPIN sentences in a six-talker babble (Dirks, Bell,

& Rossman, 1986), CRM sentences in an amplitude-modulated noise (Arbogast, Mason, & Kidd, 2002), and IEEE sentences in a Gaussian

noise (Bernstein & Grant, 2009). Example cases that had below-average fits include those for CRM sentences in a two-talker masker

(Wightman & Kistler, 2005), digits in a six-talker babble (Wilson et al., 2006), and invalid short tokens in a one-talker masker (Danhauer,

Doyle, & Lucks, 1986). Examples of poor fits include valid sentences presented in a one-talker masker (Dirks & Bower, 1969) and CRM

sentences in a one-talker masker (Brungart, 2001a).
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median slope values for psychometric functions measured
in a speech masker than they did in a noise masker
(namely, Words, Valid sentences, Invalid sentences,
Continuous speech, CRM, HINT, SSI, and Other).

Figure 3 shows the overall distributions of slope
values found for three different masker types: speech,
modulated noise, and static noise.5 In an attempt to dis-
entangle the effect of the type of masker used from the
slope effect seen when the number of maskers was
increased (see Number of Masking Noises section),
only cases where a single masker was used were included
in this figure. There is a substantial difference between
the three distributions: the measures of central tendency
(i.e., median and mean slope values) decreased in value
from static noise maskers (median¼ 7.7% per dB)
through modulated noise (median¼ 6.1% per dB) to
speech maskers (median¼ 3.7% per dB). This last
median was considerably shallower than that of the over-
all median slope reported earlier (median¼ 6.6% per
dB), suggesting that the shallowest end of the distribu-
tion was more densely populated by cases that used
speech maskers.

Number of masking noises. The second major trend is that
the slope of the psychometric function tends to increase
as the number of maskers increases, at least up to
approximately three or four maskers. Table 2 shows
that increasing the number of speech maskers from one
to two increases the slope by, on average, 4% per dB,
which begins to approach the values produced by either
a modulated noise or static noise masker.

Figure 4 shows the distribution of slope values as a
function of the number of maskers used. To avoid a
confound of the effect of masker type on slope, only
psychometric functions measured using speech maskers T
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Figure 2. The overall distribution of slope values measured in

the systematic slope survey, across all 885 cases (see Equation 2).

The solid line is a log-normal distribution fitted to the data. The

median for the distribution is indicated by an arrow.

MacPherson and Akeroyd 11

 at Glasgow University Library on June 18, 2014tia.sagepub.comDownloaded from 

http://tia.sagepub.com/


XML Template (2014) [28.5.2014–3:17pm] [1–26]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/TIAJ/Vol00000/140003/APPFile/SG-TIAJ140003.3d (TIA) [INVALID Stage]

were included.6 It can be seen that the distributions were
shifted to the right and to larger values as the number of
maskers was increased from one to two, to three or more.
Only in the one-masker condition was the median slope
value (median¼ 3.7% per dB) below that of the overall
median slope value shown in Figure 2. The distribution
in the bottom panel is for cases with 5–20 speech mas-
kers. The distribution, mean, and median slope values
for this condition were very similar to those found
when three or four maskers were used. This would sug-
gest that once the number of maskers reached three or
four, any additional maskers had a negligible effect on
the slope.

Minor Trends

Although the type and number of maskers used had a
large effect on slope, these factors cannot solely account
for all the slope variation seen in the survey. For exam-
ple, there was a range of 16% per dB between the lowest
and highest slope values for cases with one speech
masker (see Figure 4, top panel). Several more minor
trends in slope will now be briefly described.

Predictability of target speech. Figure 5 compares the slopes
of psychometric functions for highly predictable speech
targets with those for less predictable speech targets. The
data came principally from experiments where the SPIN
sentences (Kalikow, Stevens, & Elliot, 1977) were used as
targets, as this is the main corpus in which the degree of
target predictability is manipulated. The left column
includes slope values for speech maskers, whereas the
right column includes slope values for noise maskers.7

For the speech maskers, a clear effect was found, with
less predictable targets producing markedly shallower
slopes (median¼ 7.1% per dB) than highly predictable
targets (median¼ 13.8% per dB). This slope difference

was reduced if the masker was noise; however, here, the
low-predictability median slope was 5.4% per dB and the
high-predictability median slope was 8.6% per dB. In
addition to a difference in median slope values, there
was also a difference in the width of the distributions
of the slope values between the high and the low predict-
able targets: When either speech or static noise maskers
were used, broader slope distributions were seen for the
highly predicable targets than for the less predictable
targets.

Target corpus. Figure 6 shows the distributions of slope
values for targets taken from various corpora. The slopes
measured using four standard speech tests (CRM,
HINT, IEEE, and SSI) are displayed separately for
speech maskers (left column) and static noise maskers
(right column).8 The data show that when a speech
masker is used, the choice of target corpus has little
effect on slope (median slopes¼ 3.7%, 3.4%, 4.5%,
and 4.6% per dB for CRM, HINT, IEEE, and SSI,
respectively), but a large variation in slope is seen when
the masker was a static noise (median slopes¼ 10.1%,
9.1%, 4.8%, and 17.1% per dB; IEEE gave the lowest
while SSI gave the highest).

Similarity of target and masker voices. Figure 7 shows the
distributions of slope values for varying degrees of
target/masker voice similarity. The subcategories of simi-
larity include (unprocessed)9 target and maskers spoken
by the same talker, by a different person of the same
gender, or by a person of a different gender. These sub-
categories include cases where only one speech masker
was used. The slopes for the same talker category were
shallower than those for talkers of different genders
(medians of 3.4% compared with 5.0% per dB). The
distribution of slopes given when the target and masker
were of the same gender but spoken by different people,

Table 3. Number of Studies Reporting Data for Each of the Target/Masker Combinations in Table 2.

Masker

Short

tokens Words Digits

Valid

sentences

Invalid

sentences

Continuous

speech CRM HINT IEEE NU-6

PB

lists SPIN SSI Other

1 Speech masker 2/10 1/4 – 5/46 3/13 1/2 8/41 1/6 2/10 – – 1/1 2/10 1/2

2 Speech maskers 1/6 1/3 – 2/9 5/38 – 7/42 – 1/3 – – – – 1/10

3 Speech maskers – – – – 1/2 – 4/20 – – – – – – –

4þ Speech maskers 2/3 6/13 2/13 2/7 1/4 – – – 2/3 4/19 – 7/31 1/4 9/26

1 Modulated noise masker 2/5 3/23 2/3 1/4 4/21 1/3 1/4 1/11 2/6 1/12 3/3

2 Modulated maskers – – – 1/1 – – 1/1 – – – – – – –

3 Modulated maskers – – – – – – 1/1 – – – – – – –

1 Static noise masker 13/55 13/63 4/19 14/32 6/34 1/3 5/9 6/19 4/19 6/9 8/27 4/9 2/8 27/51

2 Static noise maskers – – – – 1/4 – – – – – – – – –

Mixed – 1/1 – 1/3 1/2 – 3/15 – – – – – 1/1 1/3

Note. Number of individual cases is given in bold.
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Figure 4. The distributions of slopes found when one, two, three

or four, or greater than five maskers were used. The dotted line

indicates the overall median slope value for the survey, while the

arrow indicates the median slope value for each specific distribu-

tion. Only cases where speech maskers were used are included.

Figure 3. The distributions of slope values for three different

categories of masker: speech, amplitude-modulated noise, and

static noise. The dotted lines indicate the overall median slope

value for the survey, while the arrows indicate the median slope

value for each specific distribution. Only cases where one masker

was used are included.
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however, overlaps with each of the other distributions.
This wider distribution may reflect the greater variation
in similarity for this subcategory, that is, some same-
gender voices were likely to be more similar than others.

Other minor effects. Prior exposure to, or priming, some
aspects of either the target or masker before a trial also
affects the slope of the psychometric function. Slope
values tended to be slightly steeper when either the
target or masker sentence was primed compared with
when no prime was presented (medians of 7.8% per
dB, n¼ 27 compared with 5.9% per dB, n¼ 374 for
speech maskers, and 8.9% per dB, n¼ 19 compared
with 7.4% per dB, n¼ 342 for the static noise maskers).
Primed cases included (a) acoustic primes, where target
or masker voices were primed, (b) linguistic primes,
where the content of the target or masker was primed,

and (c) dual primes, where both the acoustic and content
of the target or masker were primed (e.g., the prime was
the start of the test sentence).

The content of the masking speech also has a small
effect on slope. When the content of the masker was very
similar to that of the target, for example, when they were
taken from the same speech corpus, slopes tended to be
shallower (median¼ 4.6% per dB, n¼ 117) than when
the masker content was more linguistically distinct
from the target, that is, when they were taken from dif-
ferent speech corpora (median¼ 6.5% per dB, n¼ 281).
More generally, masking speech whose content was
meaningful gave shallower psychometric functions (med-
ian¼ 4.0% per dB, n¼ 203) than those with non-
meaningful content (e.g., time-reversed speech, foreign
language speech, invalid sentences, or babble; med-
ian¼ 7.3% per dB, n¼ 215).

Figure 5. The different distributions of slope values found when there was either a high or low probability of target speech being

predicted from previous context. The left panels plot these distributions for speech maskers, while the right panels plot these distributions

for static noise maskers. The dotted lines indicate the overall median slope value for the survey, while the arrows indicate the median slope

value for each specific distribution. Only cases where one masker was used are included.
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Figure 6. The distribution of slope values found for four different speech corpora (CRM, HINT, IEEE, and SSI), when they were presented

in speech maskers (left panels) and when they were presented in static noise maskers (right panels). Again the dotted lines in each panel

indicate the overall median, while the arrows indicate the median for each category of target, and only cases where one masker was used

are included.
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There was also an indication that listener age had an
effect on the slope of the psychometric function. There
was a trend of increasing slope with age when a speech
masker was used (n¼ 34, 299, and 63, medians¼ 4.6%
per dB, 5.8% per dB, and 7.1% per dB for children,

young adults, and older adults, respectively). No effect
of age on slope was evident, however, when a static noise
masker was used (n¼ 10, 248, and 44, medians¼ 8.3%
per dB, 7.4% per dB, and 7.8% per dB, for children,
young adults, and older adults, respectively).

The hearing ability of the listeners (normal hearing,
hearing impaired, or cochlear implant user) was coded
for in the survey. In cases using a speech masker, there
was a trend of increasing slope with hearing impairment
(medians¼ 6% per dB and 7.5% per dB, n¼ 345 and 55
for normal hearing and hearing-impaired listeners,
respectively); however, a reverse trend was observed in
cases using a static noise masker, with slope decreasing
with increased impairment (medians¼ 7.8% per dB,
5.9% per dB, and 2.7% per dB, n¼ 312, 34, and 15 for
normal hearing, hearing-impaired listeners, and cochlear
implant users, respectively).

The results for the effect of age and hearing impair-
ment on slope are somewhat tentative, however, as the
sample sizes of the groups were particularly unequal in
both types of comparison. Further, the two effects are
difficult to disentangle as in 98% of cases including
young listeners, the listeners were also normal hearing,
and in 70% of cases including older listeners, the lis-
teners were also hearing impaired, thus partially con-
founding the effects of age and hearing impairment.

Nonmonotonic Psychometric Functions

As previously noted, any cases where the data had to
be extrapolated to fit a logistic function, or cases where
the logistic functions were a poor fit to the data, were
excluded from the slope survey. The latter was mostly
due to extremely shallow or unusual psychometric
functions. These generally took two forms: functions
where performance plateaued over a specific SNR
range (usually �12 to 0 dB) before increasing at
higher SNRs, and functions with dips where perform-
ance instead decreased over this SNR before increasing
(see Figure 1, bottom panels). Twenty-three of the
cases that were excluded from the survey due to high
RMS values were nonmonotonic in shape (e.g., plat-
eaus or dips).

The majority of functions in this subset were from
speech maskers where only one masker was used (19 of
23). While these nonmonotonic psychometric functions
were measured using several different speech stimuli, the
two largest contributors were from using CRM stimuli
(10/23) and valid sentences (5/23). Most occurred when
the same talker was used in the target and the masker
(18/23), whether the target was unprocessed (9/23), pro-
cessed (e.g., vocoded, 7/23), or mixed with other maskers
(2/23). The listening conditions giving the shallowest
slopes fit with the trends reported earlier for shallow
slopes identified in the main slope survey.

Figure 7. The distributions of slope values found for speech

maskers with three different levels of talker similarity to the target

speech: same talker, same gender talker, and different gender

talker. The dotted lines indicate overall median slope, while the

arrows indicate individual medians for each distribution. Only

cases where one masker was used are included.
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Discussion

We systematically surveyed the published data on the
psychometric functions for speech intelligibility to iden-
tify the main factors that affect its slope. Large variations
in slope were found, with slopes ranging from as shallow
as 1% per dB to as steep as 44% per dB. The median
value across 139 studies (885 cases) was 6.6% per dB.
The type and number of maskers used were major fac-
tors on the value of the slope of the psychometric func-
tion. Other minor effects of target predictability, target
corpus, and target/masker similarity were also found.
There was also an indication that age and hearing
impairment might also affect slope, although it was not
possible for the current survey to completely disentangle
these two effects.

Slope Changes as a Consequence of Fluctuating
Maskers

Our analyses have clearly demonstrated that masker type
affects the slope of the psychometric function, with
speech maskers found to give shallower slopes than
noise maskers, be they amplitude modulated or static
noise. The number of speech maskers used also affected

the slope of the psychometric function, with the slope of
the function increasing as the number of maskers was
increased from one to about three or four. Given that
speech can be thought of as the sum of multiple ampli-
tude-modulated frequency bands (Drullman, Festen, &
Plomp, 1994) and that increasing the number of maskers
will alter the quality of the amplitude variations (Cooke,
2006; Miller, 1947), both of these effects indicate the
importance of masker amplitude modulations on slope.

The effects of amplitude modulation on slope can be
understood by considering glimpsing (Figure 8). When
target speech is presented in a fluctuating masker, there
will be instances in which the speech sounds coincide
with amplitude minima (or dips) in the masking wave-
form. In these dips local SNR is increased, allowing the
listener to glimpse the target speech signal (Cooke, 2006;
Miller & Licklider, 1950). These glimpses can greatly
improve speech intelligibility and so lower speech recep-
tion thresholds, as the information they provide can help
to identify even the parts of the speech that are still
masked (Miller, 1947; Takahashi & Bacon, 1992;
Wilson & Carhart, 1969). Thus, amplitude modulations
increase the SNR range over which target speech will
remain audible (Rhebergen & Versfeld, 2005), as
glimpses of target speech may remain even as SNR is
decreased. The result is a shallower psychometric

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. A schematic illustration of the nonlinear increase in speech intelligibility that arises with amplitude-modulated maskers. Panels

(a) to (c) represent a speech signal presented in a static noise. As SNR is decreased (i.e., the masker is increased), the proportion of the

signal that is audible decreases, as does speech identification. Panels (e) to (g) illustrate the same speech signal presented in an amplitude-

modulated noise. This time, as SNR decreases, glimpses of the target are still available, which can be used to aid in speech identification.

Even at the lowest SNR in Panel (g), a large proportion of these glimpses still remain. Panel (d) shows an example psychometric function for

speech (CRM sentences) in a static noise, and Panel (h) shows an example psychometric function for the same speech stimuli in an

amplitude-modulated masker.
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function for modulated maskers than for static maskers
(Speaks et al., 1967).

When a single competing talker is used as the masker,
the temporal fluctuations are relatively slow, and there
are likely to be many opportunities where the target
speech will coincide with a dip in the amplitude of the
masker, that is, there will be many opportunities for
glimpsing the target speech (Miller & Licklider, 1950).
As more maskers are added, the spectral and temporal
dips begin to fill (Cooke, 2006; Miller, 1947). The chance
that the target will temporally overlap with at least one
of the maskers becomes greater, and overall amplitude
modulations in the masking mixture effectively become
shallower and briefer. The opportunities for glimpsing
the target, therefore, become fewer. The reduced oppor-
tunity for glimpsing leads to an increase in slope. In the
extreme case, if enough voices are added to the masking
signal, then it would approach that of a speech-shaped
static noise (e.g., Cooke noted that when six or more
masking voices were present, intelligibility was not sig-
nificantly different from that of a speech-shaped static
noise masker). Our analyses demonstrate that only
three or four masking voices are needed before the
slopes of psychometric functions became equivalent to
those given by a static noise.

Curiously, we found that amplitude-modulated noises
did not give substantially shallower slopes than the static
noise maskers, as might be expected by this glimpsing
argument (see Figure 3). This could possibly be
explained by the wide range of maskers that fell into
the category of modulated noise, that is, any noise
masker whose amplitude was temporally varied regard-
less of modulation depth, frequency, or duration.
Modulation depths ranged from 1 to 48 dB, and modu-
lation rates varied from 1 to 100 interruptions per
second. Not all modulated maskers will result in a flat-
tening of the psychometric function; for instance, only
fluctuations with relatively long durations (greater than
200ms) have been found to give shallower psychometric
functions than nonmodulated maskers (Howard-Jones &
Rosen, 1993). It is likely that the survey did not capture
the subtle effects that experimental manipulation of amp-
litude modulations has on slope over and above the con-
sistent modulations exhibited by speech maskers.

There was an indication from the survey that older,
hearing-impaired listeners tended to give steeper psycho-
metric functions than young normal hearing listeners
when speech was presented in a competing speech
masker. This finding accords with the slope pattern
that would be expected if this listener group were less
able to make use of brief dips in the power of back-
ground noise to help identify target speech, as has pre-
viously been suggested (e.g., Festen & Plomp, 1990). This
reduced glimpsing ability for older, hearing-impaired lis-
teners has been attributed to a reduced temporal

resolution (Lutman,1991; Schneider, 1997) and, in the
case of listeners with normal hearing thresholds but
with deficits listening in noisy environments, to reduced
fidelity when encoding suprathreshold sounds
(Bharadwaj, Verhulst, Shaheen, Liberman, & Shinn-
Cunningham, 2014). Reduced glimpsing would, in gen-
eral terms, result in an amplitude-modulated masker
acting more like a static noise masker, which would
lead to a steeper psychometric function.

Slope Changes as a Consequence of Target/Masker
Confusion

The slope survey identified 23 cases where the psycho-
metric function was nonmonotonic. Most of these func-
tions were produced when a speech masker was used,
and nearly all of those functions were given when at
least one of the speech maskers was spoken by the
same voice as the target. These results suggest that a
high degree of similarity between the target and the
masker is required to give nonmonotonic psychometric
functions. The survey also demonstrated that even when
psychometric functions were monotonic, manipulating
the acoustic similarity of the target to the speech
masker affected the slope, as shallower slopes were
found when the target and masker voices were spoken
by the same person than when they were spoken by
people of different genders. Linguistic similarity between
the target and masker, that is, if they were both taken
from the same speech corpus, also tended to result in
shallower psychometric functions. Conversely, there
was the suggestion that providing a cue that could aid
in the differentiation of a target from a masker when
both were speech, such as providing a prime of the
target voice or content, could steepen the slope of the
psychometric function. These effects combined indicate
that the degree of confusion that exists between a target
and a masker can be a factor in the resultant slope of the
psychometric function.

The role of confusion on slope can be explained by
increased reliance on a level difference between target
and masker signals (Brungart, 2001a; Dirks & Bower,
1969; Egan et al., 1954). Such reliance is thought to
occur when difficulties arise disentangling elements of a
target signal from a similar sounding masker signal. In
such cases, if the target is either less intense or more
intense than a masker, then the level difference can be
used as a cue to distinguish which sound is which. The
greater the reliance that is placed on this cue, the more
dissociated intelligibility is likely to become from overall
SNR. Intelligibility can in principle be better at negative
SNRs, where a clear level difference exists between the
two signals, than at SNRs near zero, where the level
difference is smaller. Extreme confusion between a
target and a masker (i.e., where both signals are
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spoken by the same person) can, therefore, have the
effect of flattening the slope of the psychometric function
or even giving a dip in the function near 0 dB (i.e., where
there is no level difference cue available).

Slope Changes as Consequence of the Availability of
Top-Down Information

The survey demonstrated that target stimuli that con-
tained keywords that were predictable from their content
gave steeper slopes than those whose keywords were
unpredictable. It was also demonstrated that targets
taken from some speech corpora gave shallower slopes
than others. The speech corpora whose targets tended to
give shallow slopes were commonly open-set such as the
IEEE corpus (Rothauser et al., 1969). Conversely, tar-
gets taken from closed-set corpora, such as the SSI
(Speaks & Jerger, 1965), gave the steepest slopes. These
effects indicate that the relative contributions of percep-
tual and cognitive factors may influence slope.

Pichora-Fuller et al. (1995) suggested that congruent
previous context constrains possible word options, shift-
ing the influence of word identification from perceptual
(bottom-up) to cognitive (top-down) information. The
mechanism is essentially positive feedback; with a greater
dependence on top-down information, word identifica-
tion can increase more rapidly with changes in level as
small increases in acoustic information may be sufficient
to further constrain possible speech elements. The prob-
ability of other speech elements then being guessed cor-
rectly increases, resulting in a steepening of the
psychometric function (Bronkhorst et al., 1993). If,
however, there is little top-down information available
to constrain word options or if this information is incon-
gruent with the rest of the utterance (as is the case when
keywords are unpredictable), intelligibility will be based
on bottom-up information alone and will thus increase
more slowly as level is increased, giving a relatively shal-
low psychometric function. Several individual studies
have clearly demonstrated this effect (Dirks et al.,
1986; Dubno, Ahlstrom, & Horwitz, 2000; Elliott,
1979; Kalikow et al., 1977; Lewis et al., 1988; Pichora-
Fuller et al., 1995).

Aside from slopes being generally steeper when target
speech could be predicted from its context, it was also
noted in the current survey that distributions of slope
values tended to be broader for such targets than for
those whose content was unpredictable. It is possible
that this difference in slope distributions reflects a vari-
ation in the reliance on context and top-down informa-
tion by different listeners across studies. It has been
suggested, for example, that older listeners can benefit
more from supportive context than younger listeners
can (Pichora-Fuller et al., 1995). A greater reliance on
context would, as mentioned earlier, have a tendency to

steepen the slope of the psychometric function while a
greater reliance on perceptual information would have a
tendency to flatten the slope of the psychometric func-
tion. A shift in the balance of these two strategies may, in
part, be the reason that steeper slopes were seen in the
current survey for older, hearing-impaired listeners than
for younger, normal hearing listeners, and the greater
variation in the use of context by listeners across studies
may explain the broader slope distribution for predict-
able, compared with unpredictable, target utterances.

The number of possible responses available in a
speech test can also alter the relative contributions of
perceptual and cognitive factors in speech identification.
The SSI, for example, is usually presented as a closed-set
corpus (Speaks & Jerger, 1965) in which listeners are
asked to match presented sentences to a list of a possible
10 sentences. Top-down information in this case can very
effectively constrain identification; only part of the sen-
tence needs to be audible for identification to be success-
ful. Small changes in audibility, therefore, can have large
effects on intelligibility resulting in a steep slope. The
IEEE corpus, on the other hand, is open set
(Rothauser et al., 1969), as it consists of 720 sentences
on different topics. Top-down information is far less con-
straining in this case. Although the context of the sen-
tence may allow some top-down influence, speech
identification will be much more heavily dependent on
bottom-up information for these speech stimuli com-
pared with the SSI, thus giving less improvement in intel-
ligibility as SNR is increased and so a shallower
psychometric function.

The CRM corpus is also a closed set, offering 32
response options. The survey demonstrated that despite
this, the CRM corpus tended to give relatively shallow
slopes (e.g., 3.7% per dB with a single speech masker).
This may be partially explained by the fact that there are
no contextual or semantic cues available in CRM sen-
tences to aid in the identification of the keywords. The
CRM keywords are likely less constrained by top-down
information than the SSI corpus. Also, studies that used
CRM sentences as targets also commonly used CRM
sentences as maskers. This increased similarity between
the target and masker, as described in the Slope Changes
as a Consequence of Target/Masker Confusion section,
may also explain the shallower than expected psychomet-
ric functions for this particular speech corpus when pre-
sented in a speech masker.

Conclusions

The slope of the psychometric function for masked
speech varies greatly (mean, 7.5% per dB; range, 0–
44% per dB). Understanding the factors affecting the
slope of the psychometric function and the mechanisms
that underlie these slope changes is important, as it gives
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a means of gauging the amount of perceptual benefit that
can be expected given a specific change in SNR in a
specific listening condition.

The survey of 885 psychometric functions has demon-
strated that the type and number of speech maskers both
had an effect on slope as did the choice of target corpus,
its predictability, and its similarity to the masker. Three
broad underlying mechanisms were outlined to explain
why there is such a large variation across listening con-
ditions, these mechanisms including slope changes as the
result of amplitude modulations in the masker, confu-
sion between the target and the masker, and the avail-
ability of top-down information. In particular, single
speech maskers are likely to give particularly shallow
slopes, as they contain amplitude modulations that
offer extensive opportunities for glimpsing while still
sharing acoustic and linguistic features that may
become confused with the target speech.

The current survey has highlighted that the slope of
the psychometric function, and therefore the amount of
perpetual benefit that can be gained from an increase in
SNR, is not fixed but instead varies greatly depending on
both target and masker selection. These findings would
suggest that care needs to be taken in selecting both
target and masker stimuli for speech research with con-
sideration made about the likely shape of the psychomet-
ric function, as well as the likely threshold. That the
slope of the psychometric function can vary so much is
particularly pertinent for listeners who struggle with
speech-in-noise understanding and who rely on a hearing
aid to provide improvement in speech audibility. The
slope for these listeners will relate directly to the
amount of benefit they might expect to receive from
their hearing aid. The current study was unable to ascer-
tain the direct effects that hearing impairment and age
had on the slope of the psychometric function. These
effects are an important direction for future research,
as an understanding of them is crucial if we wish to
quantify the amount of perceptual benefit a listener is
likely to gain from any change in SNR offered by a
hearing aid.
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Notes

1. The date marked the end of the first author’s PhD student-

ship during which time this work was carried out.
2. Modulated maskers included all maskers with temporally

fluctuating amplitude, regardless of the type and spectral

shape of modulation.
3. The 26 speech corpora were coded: AB Lists—Isophonemic

Monosyllabic Word test (Boothroyd, 1968), ASL—Audio-

visual Sentence Lists (MacLeod & Summerfield, 1990),

BKB—Bamford-Kowal-Bench sentence lists (Bench,

Kowal, & Bamford, 1979), CAT—Callsign Acquisition

Test (Rao & Letowski, 2006), CCT—California

Consonants Test (Owens & Schubert, 1977), CID

sentences—Central Institute for the Deaf sentences

(Silverman & Hirsh, 1955), CST—Connected Speech Test

(Cox & Gilmore, 1987), CRM—The Coordinate Response

Measure (Bolia, Nelson, Ericson, & Simpson, 2000),

DANTALE II—Danish sentence test (Wagener et al.,

2003), FAAF—The Four Alternative Auditory Feature

tests (Foster & Haggard, 1987), Hagerman

sentences—Swedish sentences (Hagerman, 1982),

HINT—Hearing In Noise Test (Nilsson, Soli, & Sullivan,

1994), IEEE—IEEE sentences (Rothauser et al., 1969),

LIST—Leuven Intelligibility Sentences Test (Van

Wieringen & Wouters, 2008), Matrix Test (HearCom,

2009), MCDT—Multiple Choice Discrimination Test
(Schultz & Schubert, 1969), MRT—Modified Rhyme Test

(House et al., 1965), NU-6—Northwestern University

Auditory Tests No. 6.(Tillman & Carhart, 1966), PB

List—Phonetically balance words lists (Egan, 1948),

Picture Identification Task (Wilson & Antablin, 1980), PSI

Test—Pediatric Speech Intelligibility Test (Jerger et al.,

1981), SPIN—Speech In Noise Test (Kalikow et al.,

1977), SSI—Synthetic Sentence Identification Test (Speaks

& Jerger, 1965), TMV—open-set sentences (Helfer &

Freyman, 2009), TTI—The NSMRL tri-word test of intel-

ligibility (Sergeant et al., 1979), W-22—Central Institute for

the Deaf word lists (Benson et al., 1951).
4. Note that as fewer than 20 psychometric functions were

found for the 16 remaining speech tests, the data for these

have been combined and appear as “Other” in Tables 2

and 3.

5. The slopes of psychometric functions measured for mixed

maskers (those with more than one category of masker)

were excluded from this particular analysis.
6. Few studies have looked at the use of more than one noise

masker; therefore, if all masker types were included, the

increased masker conditions would be biased toward

speech maskers.
7. Due the low number of slopes found for one speech masker,

the number of speech maskers was not restricted in this case

and includes all speech masker cases regardless of number of

maskers.
8. Only cases where one masker was used have been included;

other standard speech corpora have been excluded from this

analysis due to small sample sizes with just one masker.
9. Cases where the masker or the target speech had been

manipulated or processed in some way, for example, the

fundamental frequency was shifted or the speech was
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vocoded, have been excluded, as these would affect the simi-
larity between the target and masker voices.
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